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Abstract: The occurrence of voltage violations is a major deterrent for absorbing more rooftop
solar power into smart Low-Voltage Distribution Grids (LVDGs). Recent studies have focused on
decentralized control methods to solve this problem due to the high computational time in performing
load flows in centralized control techniques. To address this issue, a novel sensitivity matrix was
developed to estimate the voltages of the network by replacing load flow simulations. In this paper,
a Centralized Active, Reactive Power Management System (CARPMS) is proposed to optimally
utilize the reactive power capability of smart Photovoltaic (PV) inverters with minimal active power
curtailment to mitigate the voltage violation problem. The developed sensitivity matrix is able to
reduce the time consumed by 55.1% compared to load flow simulations, enabling near-real-time
control optimization. Given the large solution space of power systems, a novel two-stage optimization
is proposed, where the solution space is narrowed down by a Feasible Region Search (FRS) step,
followed by Particle Swarm Optimization (PSO). The failure of standalone PSO to converge to a
feasible solution for 34% of the scenarios evaluated further validates the necessity of the two-stage
optimization using FRS. The performance of the proposed methodology was analysed in comparison
to the load flow method to demonstrate the accuracy and the capability of the optimization algorithm
to mitigate voltage violations in near-real time. The deviations of the mean voltages of the proposed
methodology from the load flow method were: 6.5× 10−3 p.u for reactive power control using
Q-injection, 1.02× 10−2 p.u for reactive power control using Q-absorption, and 0 p.u for active power
curtailment case.

Keywords: smart grid; renewable energy integration; rooftop solar PV; PV inverter control; voltage
violation

1. Introduction

Over the years, the integration of renewable Distributed Energy Resources (DERs) to
Low-Voltage Distribution Grids (LVDGs) has gained high prominence due to technological
advancements, increased demand in sustainable energy resources and the advent of decar-
bonisation programs by many countries [1–3]. In light of the increase in DERs, Photovoltaic
(PV) generation systems are shown to be the most effective DER prospect for LVDGs [4].
However, since the conventional LVDG was designed based on the assumption that power
flow would be from the primary substation to the loads [5], high PV penetration gives
rise to unforeseen problems [6]. The high penetration of rooftop PV in LVDGs can result
in reverse power flows [7] and an increase in the neutral current, leading to distribution
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and transformer losses due to overheating of the conductor [5,8–11]. A major problem of
reverse power flow is the occurrence of upper limit voltage violations, where the node
voltage at specific points of LVDGs is greater than the specified limit [12]. Further, studies
have revealed that voltage violations can occur at a penetration level as low as 2.5% due
to the integration of rooftop PV panels at prosumers’ will [13]. If such voltage violations
occur over sustained periods of time, it will cause severe damages to loads connected to
LVDGs. These detrimental effects of voltage violations compel the utility providers to limit
the usable PV capacity for LVDGs. Therefore, there exists a crucial need for an effective
solution to encourage the future integration of PV to LVDGs by attempting to mitigate
the quality-of-supply ramifications. How to mitigate the voltage violations in LVDGs is a
long-standing question to which much time and study have been devoted.

Multiple methods have been proposed in the literature to overcome this problem of
voltage violations in LVDGs. Feeder enhancement is one such method based on changing
the feeder cable with a larger cable or changing the characteristics of the feeder, such as
changing the values of multigrounded resistances [14]. While this improves the voltage
limits while decreasing neutral current, the approach is highly expensive. Moreover, given
the future consumption and PV penetration possibilities, this is not the most economical
solution. A more viable solution is the use of On-Load Tap Changing (OLTC) transformers
to change the tap positions to control the voltage levels [15–18]. Furthermore, since
frequent tap changes can increase the stress on the transformer, hence reducing its lifespan,
a novel optimization algorithm was proposed for resource sharing in [19] to reduce the
tap changing operations. However, the drawback of the slow response speed in OLTC
switching persists. In order to remedy this issue, fast response devices such as Battery
Energy Storage Systems (BESSs) and STATCOMs can be installed [20–24]. A piecewise
droop control using a BESS for rapid changes in voltage profiles was presented in [25]. More
recently, a reinforcement-learning-based management technique for BESSs was introduced
in [26].

A more promising control method is the use of Active Power Curtailment (APC)
during high PV penetration [27–30]. Due to the higher impact on voltage profiles by nodes
at the farther end of the feeder, most APC operations are performed on distant customers.
Since this is not equitable, a fair prosumer-based APC approach was proposed in [31].
A novel approach incorporating the Self-Consumption Ratio (SCR) of the customer to
determine the allowable PV injection was developed in [32]. Despite the effectiveness,
the spilling of solar power is not an economically attractive solution. Moreover, it is
a waste and also detrimental to the whole purpose of renewable energy usage, which
is to improve the energy mix such that the renewables receive a larger chunk. A more
comprehensive solution to this problem is to utilize the capability of the PV inverters to the
fullest to supply reactive power in order to mitigate voltage violations. Whilst this is a cost-
effective method requiring no additional installations, mitigating voltage violations in the
three-phase unbalanced system using only Reactive Power Control (RPC) is a challenging
problem [33,34]. Due to the large R/X ratios of distribution networks, the effect of reactive
power control is limited. Therefore, to completely remove the violations in the upper
limit, APC is required.

Recent studies have vastly explored the APC and RPC mechanisms to minimize
voltage violations. These studies can be categorized into two: local/decentralized control
and centralized control methods. Control actions of decentralized control methods rely
completely on local measurements [35–39]. A combined approach of RPC and APC as a
droop control mechanism to mitigate the voltage violations was proposed in [34]. A Volt-
VAR Control (VVC) using two methods to determine the reactive power equation slope
was given in [40]. It presented a method with the robust minimization of absolute voltage
deviation and a closed-form solution inspired by chance constraints. In [41], a rule-based
decentralized RPC was performed taking into account the most sensitive nodes in the
network. An optimization technique was developed in [42] to coordinate the fast dispatch
of PV inverters with OLTCs in a decentralized manner due to computational burden in
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centralized systems. Meanwhile, a two-level control algorithm incorporating OLTCs and
BESSs with decentralized RPC was proposed in [43]. Multiple works in the literature
have also developed control mechanisms based on droop control [44,45]. Nevertheless,
the lack of information about the entire network status in decentralized control prevents
the optimal use of reactive power capacity in controlling the voltage violations. Therefore,
an uncoordinated management of PV inverters could result in violations shifting from
one end of the feeder to another, or even an overkill of reactive power usage [46]. This
gap in the lack of coordination among PV inverters has led to the use of optimization
techniques based on a centralized system to address this [47]. Moreover, the prevalence of
decentralized control has primarily hinged on the computational time burden in centralized
systems [48]. However, this constraint is overcome by replacing the time-consuming load
flow calculations by the introduced sensitivity matrix approximation in this paper.

However, provided that sufficient information about the network can be retained, cen-
tralized control is more efficient compared to decentralized control [46]. Such network state
observability is achieved by means of solar predictions [49] and state estimation [50], en-
abling a control at the tertiary level of the control architecture, as shown in Figure 1. To over-
come the lack of information about the network, a global solution is attained by the cen-
tralized control method, which determines the power injections/absorptions/curtailment
by means of an Optimal Power Flow (OPF) problem [51]. In [52], a comprehensive PV
control strategy was proposed to improve the operational performance of significantly
unbalanced a three-phase four-wire LVDG with high residential PV penetration, by con-
verting a multi-objective OPF problem into a single-objective OPF problem. A control
algorithm was introduced for maintaining the average customer voltage profile obtained
before introducing the PV into the circuit using the control of automatic devices, such as
voltage regulation and switched capacitor banks along with PV inverter reactive power [53].
Here, the PV inverter control settings were determined by the circuit loading, time of day
and PV location in the network. A combination of centralized and decentralized control
strategies utilising OLTCs and Capacitor Banks (CBs) was also proposed in [47,54]. It
further analysed the impact on the substation end and the effect of unbalance in phases in
PV integration.

Figure 1. Hierarchical control architecture.

However, these methods suffer from a high computation time due to varying reasons
such as the need to solve load flows within the optimization algorithm and the integration
of VAR compensation equipment. Most of the referenced centralized methods related to
power systems control use load flow analysis to calculate voltage variation [55–57]. Since
these methods achieve accurate results at the expense of time, a voltage and PV power
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sensitivity approach is used to calculate the voltage variations [27,58–61]. The different
sensitivity matrices used in the literature are discussed in Table 1.

Table 1. Sensitivity matrices existing in the literature.

How the Sensitivity Matrix Was Developed References Disadvantages of the Method

Inverse from the Jacobian of Newton–Raphson
power flow equations [27,58]

Repetitive computation of the inverse of the Jacobian, which
is computationally expensive with the increase in matrix
size.

Surface fitting technique and using simulations of
multiple load flow analysis [59,60]

An extensive simulation needs to be run in case of a change
in the network parameters to be able to develop a new
sensitivity matrix that will fit the network.

Using the topological structure of the network [61]

The derivation is performed for an MV distribution line
assuming constant voltage for the slack bus. However,
the secondary voltage of the LV network will fluctuate,
which needs to be accounted for.

In order to find the optimum solution to the centralized control method in mitigating
voltage violations, many optimization techniques have been researched. Among these,
SQP [52], Nonlinear Programming (NLP) [62,63], the Evolutionary Algorithm [64], La-
grangian multipliers [65], the Multi-Objective Evolutionary Algorithm (MOEA) [66] and
Particle Swarm Optimization (PSO) [55,67] have been widely used. In order to act as a
viable near-real-time system, the accuracy and the computational time of the algorithm play
a key role. Given the vast solution space of LVDG networks, i.e., high complexity of the
network due to the number of PV connections in the power system, the computational time
for convergence grows dramatically. Therefore, optimization techniques need to be tailored
to LVDG power systems such that the computational time is minimal whilst maintaining
robustness in terms of convergence to the optimal solution.

In this paper, we propose a Centralized Active, Reactive Power Management System
(CARPMS), which uses the combination of both RPC and APC to mitigate the voltage
violations in LVDGs at the tertiary control level. A sensitivity matrix derivation for the
voltage with respect to the PV power changes and a modified two-stage optimization
process with a Feasible Region Search (FRS) and PSO, to find the optimal power settings,
were developed. The incorporation of the sensitivity matrix vastly reduced the computa-
tional time as compared to traditional load-flow-based optimization in centralized control.
In addition, the FRS step in the two-stage optimization process was able to greatly reduce
the search space for the solution by narrowing the solution towards the optimum and
decreasing the time, thereby enabling a real-time application of the proposed solution.
The PSO algorithm was used as the second step to drive the solution to its best solution to
prevent frequent violations in the network.

The proposed CARPMS was simulated on a network belonging to an existing housing
complex named “Lotus Grove”, located in Colombo, Sri Lanka. The case study network
was chosen from the same region of the authors whilst being similar to the IEEE European
low-voltage test feeder [68,69] in network size and topology. Specifically, the following
contributions were made in this paper:

• A novel PV-power to voltage Sensitivity Matrix (SM) for LVDGs was developed using
line parameters accounting for the voltage variations in the secondary side;

• A Centralized Active, Reactive Power Management System (CARPMS) using this SM
for voltage violations in LVDGs is proposed;

• A modified two-stage optimization process is proposed, with the Feasible Region
Search (FRS) as an efficient space reduction algorithm to decrease the computational
time and ensure convergence of the PSO optimizer that follows it.
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2. Methodology
2.1. Centralized Active, Reactive Power Management System

In this section, the proposed CARPMS, which eliminates the voltage limit violations
at each node, is described. Figure 2 shows the operating mechanism of the CARPMS.
The CARPMS is equipped with smart meters at each PV panel in the network, ensuring
the access to active, reactive power and voltage readings at each PV panel node. Due to
delays incurred in communication and algorithm processing time [70], real-time data will
not reach the CARPMS. Therefore, it acts as a real time management system with control
actions relying on estimations of the network states predicted using historical data [50].
The proposed algorithm described in Section 4 is then used by the CARPMS to detect and
correct any voltage violations in the nodes.

Figure 2. Schematic overview of the CARPMS information flow.

The proposed algorithm will encounter voltage violations of two types: upper limit
and lower limit violations. Due to the low X/R ratio, the violations cannot be entirely
removed by RPC alone. In this case, the algorithm utilizes an optimized combination of RPC
and APC. A detailed flow of the algorithm steps is highlighted in Figure 3. The derivation
of the SM used is given in Sections 2.2–2.4, and the two-stage optimization in the control
algorithm is described in Sections 3 and 4.

2.2. Voltage Sensitivity Derivation for the Distribution Line

The SM is derived for a network without sparse line connections. This assumption
was made for the ease of proof, which can be easily extended for a network with sparse
line connections if necessary.

Consider a phase of a distribution line shown in Figure 4. Due to the negligible effect
of the longitudinal component, by neglecting the power losses, the voltage drop between
any kth and (k + 1)th node is given by,

|Vk −Vk+1| ∼=
PkRk + QkXk
|V∗k |

(1)

where Vk, Vk+1 are the complex voltages at the kth and (k + 1)th nodes, respectively, Rk is
the resistance of the line, Xk is the reactance of the line, Pk is the active power flow through
the line and Qk is the reactive power flow through the line.
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Figure 3. Proposed algorithm steps.

P
PV,n

Q
PV,n

V
0

V
n

V
r

0th busbar nth busbar rth busbar

Figure 4. A schematic LVDG network.

The equation above expresses the difference in the magnitude of the voltage between
two adjacent nodes. This equation was extended to calculate the voltages of all the nodes
in the network. To generalize, a radial LVDG network with (N + 1) number of nodes
was considered. Considering the power flow from the LV transformer in the network as
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positive power flow and using (1), the voltage drop up to the rth node from the transformer
end is given by,

|V0 −Vr| =
r−1

∑
h=0

PhRh + QhXh
|V∗h |

(2)

where V0 is the secondary voltage of the transformer for one of the three phases a, b or c,
which is also the zeroth node of the network.

The power flow of the transmission line is a collective function of domestic loads,
PV generations and power transmission losses. However, the power transmission losses
are negligible compared to other variables. Thus, the power transmitted through the
transmission line was derived as follows, which can be substituted in (2), yielding,

Ph + jQh =
N

∑
m=h+1

((PLm − PPVm) + j(QLm −QPVm)) (3)

|V0 −Vr| =
r−1

∑
h=0

∑N
m=h+1((PLm − PPVm)Rh + (QLm −QPVm)Xh)

|V∗h |
(4)

The network parameters Xh and Rh given in (4) are constant, unique and attainable
for every LVDG network. Whilst the load power and PV power generation parameters are
not easily obtainable in real time, the estimation of these parameters is possible [71–75].
The derivation of the voltage of the rth node with respect to the reactive power of the PV
system in the nth node was derived as,

∂Vr

∂QPVn

=
∂V0

∂QPVn

+
n−1

∑
h=0

Xh
|V∗h |

f or(r ≥ n) (5)

∂Vr

∂QPVn

=
∂V0

∂QPVn

+
r−1

∑
h=0

Xh
|V∗h |

f or(r < n) (6)

where ∂Vr
∂QPVn

is the voltage sensitivity of the rth node with respect to the reactive power
variation of the PV panel at the nth node and V0 is the voltage of the node connected at the
secondary side of the transformer. A schematic LVDG network showing the node notations
is shown in Figure 4.

Similarly, the voltage sensitivity of nodes with respect to the active power of the PV
system in the nth node can be derived.

2.3. Voltage Sensitivity Derivation at the Transformer End

In order to calculate ∂V0
∂QPVn

and similarly ∂V0
∂PPVn

, the LV transformer of the residential
network was modelled as shown in Figure 5.

Considering the secondary side of the transformer, the expression for current and
power flow in the secondary side was derived in terms of voltages and impedances
using the transformer model matrix in [76]. The power flow in the secondary side of the
transformer was obtained as,

Pa
s − jQa

s = (Va
0p
·Y1 −Vb

0p
·Y1 + VN

0s
·Y2) ∗ |Va

0s
|∠−δk − |Va

0s
|2 ·Y2 (7)

where Va
0p

, Vb
0p

and Vc
0p

are the primary side voltages of the LV transformer, Va
0s

, Vb
0s

and Vc
0s

(generically denoted by V0 in the previous section) are the secondary side voltages of the LV
transformer and Ia

0s
, Ib

0s
and Ic

0s
are the secondary side currents of the LV transformer of the

a, b and c phases, respectively. Y1 and Y2 are the primary and secondary side impedances
of the LV transformer, and N is the secondary to primary transformer turn ratio. Y1 = Yt

N ,
and Y2 = Yt, Va

0s
= |Va

0s
|∠δa.
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In order to calculate the voltage sensitivity of the transformer end with respect to
reactive power changes, the derivative of the imaginary component of (7) with respect to
V0s

a was obtained as,

∂Qa
s

∂|Va
0s
| = 2|Va

0s
| · Im(Y2)− Im((Va

0p
·Y1 −Vb

0p
·Y1 + VN

0s
·Y2)∠−δa) (8)

Since the active and reactive power of loads can be assumed to be constant during
a control sequence operation, using (3), the variation of reactive power for a given phase
with respect to the transformer end voltage is only the variation of PV power in that phase.

Figure 5. Equivalent circuit of the delta-wye transformer.

Then, by obtaining the reciprocals, the variation of the transformer end voltage with
respect to the PV reactive power connected to the given phase was computed using
Equation (8).

∂|Va
0s
|

∂Qa
PV

=
∂|Va

0s
|

∂Qa
s

(9)

Similarly, using the real part of (7), the variation of the transformer end voltage with
respect to the PV active power can be obtained.

2.4. Combined Sensitivity Matrix Model

The combined sensitivity model was derived based on the results from Sections 2.2 and 2.3.
Considering the number of PV panels in the system as M and the number of nodes in
the system as N, using Equations (5), (6) and (9) and their analogous equations for active
power, the combined SM model of the network with respect to the power generation of PV
systems was derived as,

[
∆V
]

N×1 =
[

∂V
∂QPV

∂V
∂PPV

]
N×2M

[
∆QPV
∆PPV

]
2M×1

=
[
∑h

Xh
|V∗h |

∑h
Rh
|V∗h |

]
N×2M

[
∆QPV
∆PPV

]
2M×1

+ ∆V0


1
1
...
1


N×1

(10)
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where
[
∆V0

]
N×1 is the voltage change at the LV transformer end to be added to each

node and
[
∆V
]

N×1 is the combined voltage variation at each node due to the PV power
variations (at each iteration). The system was linearized assuming that the variation in the
PV system power within the control sequence algorithm is considerably small.

3. Problem Formulation

The aim of this work was to determine an optimum setting to prevent voltage viola-
tions in LV networks. An RPC mechanism followed by APC is carried out if RPC alone
is unable to rectify the voltage violations. Thus, two optimization functions defined in
Sections 3.1 and 3.2 were proposed to converge on the optimal operating point. The objec-
tive functions of the optimization algorithms intend to minimize the active and reactive
power settings whilst satisfying the voltage limit constraints and the inverter constraints.
The voltage limits pertain to the lower and upper limits of the acceptable voltages in LVDG
networks, whereas the inverter constraints depend on the power ratings of the inverters.

The state of the PV inverter being varied by the algorithm depending on the three con-
trol methods Q-absorption, P-curtailment and Q-injection is depicted in Figure 6. The “X”
mark shows an instance of an initial state of the inverter during the day. During RPC
Q-absorption, the state moves vertically downwards to a given optimum point. If it
reaches the inverter constraint/capability curve, this implies that Q-absorption cannot be
performed under the given conditions. Then, P-curtailment is performed during which
the state of the inverter moves along the capability curve, reducing the amount of active
power injected to the network. It can also be noted that the maximum allowable value of
Q-absorption, Qabs,max, varies depending on the active power state of the inverter. The in-
verter state during night-time is marked “Y”. Here, RPC (Q injection) is carried out, and the
inverter state moves upwards along the Q-axis (injecting reactive power to the network)
till it reaches an optimal point or its full Q injection capacity: Qinj,max.

Active

Power (P)

R
e
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ti

ve
 P

o
w

e
r 

(Q
)

X P
RATED

Q
RATED

Y

R
e

ac
ti

ve
 P
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e
r 

(Q
)

P
RATEDY

Q
abs, max

Active

Power (P)

Q
abs, max

Q
RATED

,Q
inj, max

Q-absorption

Q-absorption + P-curtailment Q-injection

Inverter constraint curve

(a) (b) (c)

R
e

ac
ti

ve
 P

o
w

e
r 

(Q
)

X P
RATED

Q
RATED

Y

Active

Power (P)

Figure 6. PV inverter status change for control using (a) Q-absorption, (b) Q-absorption and P-
curtailment and (c) Q-injection.

3.1. Optimization of Reactive Power Control

The objective function of the optimization of RPC is expressed as a function of the
total deviation of node voltages from 1 p.u and the neutral voltage as given by,

JRPC = min
Q

n

∑
i=1

(cd ∗Vd,i + cneut ∗Vneut,i) (11)
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where Vd,i is the total deviation of voltages of node i from 1 p.u, Vneut,i is the neutral voltage
of node i and cd and cneut are scaling constants. Vneut,i is calculated by the vector addition
of the three-phase voltages of node i.

Subject to the constraints:

1. The voltage of the node should be within the specified upper and lower limits given by,

Vlower limit ≤ Vnodes + ∆V ≤ Vupper limit (12)

where Vlower limit and Vupper limit are the accepted lower (0.95 p.u) and upper limit
(1.05 p.u) voltages in LVDG systems, respectively, Vnodes is the calculated voltage of
the nodes using optimization variables and ∆V is the estimated voltage change due
to changes in P and Q of the PV systems;

2. The inverter constraints given below should be satisfied,

S2
PVi
≥ P2

PVi
+ Q2

PVi
(13)

The variables of the optimization problem were the reactive power setting at each
node with a PV panel in the network, which can be expressed as Optim. Variable (OV) Q =[
Qpv1 , Qpv2 , Qpv3 , Qpv4 , . . . , Qpvm

]
.

In order to formulate this optimization problem to minimize (11) whilst satisfying the
above constraints, penalties were introduced to ensure that the optimal solution satisfies
the constraint of voltage violations to the best case possible by penalising the cost function
when constraints are violated. Hence, the optimization problem was reformulated as a
minimisation of the penalized objective function J1 given by (14).

J1 = min
Q

(
cvial ∗ eNvial ∗ JRPC

)
(14)

where Nvial is the sum of the number of violations in each phase and cvial is a scaling
constant.

3.2. Optimization of Active Power Curtailment

The objective function of the optimization of APC included the amount of active
power curtailed and is expressed as,

JAPC = min
P

n

∑
i=1

(
∆PPVi + cd ∗Vd,i + cneut ∗Vneut,i

)
(15)

where ∆PPVi is the amount of curtailed active power, Vd,i is the total deviation of voltage of
node i from 1 p.u, Vneut is the neutral voltage of node i and cd and cneut are scaling constants.

Subject to the constraints:

1. The voltage of the nodes should be within the specified upper and lower limits as
in (12);

2. The inverter constraint given below should be satisfied,

S2
PVi

= P2
PVi

+ Q2
PVi

(16)

The variables of the optimization problem here were the active power setting at
each node in the network, which can be expressed as Optimization variable (OV) P =
[Ppv1 , Ppv2 , Ppv3 , Ppv4 , . . . , Ppvm ].

Similar to the RPC case, the optimization problem was reformulated by including
the same penalties such that the penalty is applied when the constraint is violated. This
ensures the optimal solution of the objective function satisfies all constraints.
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4. Two-Stage Optimization

This section outlines the proposed modified optimization algorithm consisting of two
processes in sequence:

• Feasible Region Search (FRS);
• Particle Swarm Optimization (PSO).

The aim of FRS is to drive the elements in the Optimization Variable (OV) towards
the feasible region, where upper or lower limit voltage violations are nonexistent. This
is followed by a PSO algorithm, where these variables in the feasible region are then
optimized according to a predefined cost function, to find the best possible solution.

4.1. Feasible Region Search

The number of elements in the OV increases with the number of PV panels connected
to a given network, which results in a large search space. At the initial violated conditions,
the existence of the OV far away from the feasible region and the high dimensionality of
the search space may result in the poor performance of a standard PSO algorithm. This is
because the first step of the PSO is an initialisation procedure (discussed in Section 4.2),
being a random scattering of OVs in the neighbourhood of the current OV.

Through FRS, we determine a new initial point for the PSO by moving the present
OV towards the feasible region. The driving function of the OV is given by,

OV[i, j] = OV[1, j] + α[i] ∗ ∆OVmax[j] (17)

for all j = 1, 2 . . . m (total number of elements in OV[i, :]), where OV[1, j] is the initial value
of the jth element in the OV, driven towards the feasible region by α[i]. Here, α[i] is the
driving parameter, which is a monotonically increasing function from 0–1. ∆OVmax[j] is
the maximum possible change of OV[:, j]. This results in OV[i, j], the calculated position of
the jth element of the OV at the ith iteration.

In a PV integrated network, the vector OV[i, :] is the power settings of each inverter
connected to the network at any given iteration i. ∆OVmax[j] is the maximum Q-absorption,
Q-injection or P-curtailment capacity of the jth inverter. This also determines the driving
direction of the elements of OV, as the sign of ∆OVmax[j] is dependent on the current
nature of the voltage violation. In the instance of an upper limit violation, ∆OVmax[j] will
be negative, as the P and Q setting of the jth inverter, which correspond to the maximum
P-curtailment and Q-absorption capacity, are negative. ∆OVmax[j] will be positive for lower
limit violations, as the inverter state travels in the direction of positive Q for Q-injection,
as discussed in Section 3.

During each iteration, OV[i, j] is computed such that it moves closer to the feasible
region. As the sign of ∆OVmax[j] ensures the current OV[i, :] moves towards the feasible
region, the driving parameter α serves to gradually increase the change in OV[:, j]. If this
change happens to be very large, there exists a possibility of OV overshooting towards
unwarranted solutions, as illustrated in Figure 7. For example, lower limit violations
may occur if Q-absorption takes place at its maximum capacity to mitigate an upper limit
violation. This problem is overcome by the use of α, which gradually increases with each
iteration i, allowing FRS to terminate as soon as OV[i, j] reaches the feasible region.

For most instances, upon the termination of FRS, the system is devoid of any upper
or lower limit violations. Although it is possible to complete the control process using
only FRS, it does not fully optimize the network as it does not consider parameters relative
to the cost function given by (14) and (15). Instead, it only accounts for the existence of
violations in the system. Furthermore, FRS acts as a decoupled control algorithm, where
the inverter power settings in the ith iteration are independent of each other, where each
element in OV[i, :] is modified by the same value of α. However, in the case that the FRS
is unable to drive the OV to the feasible region, it is ensured that the OV is as close as
possible to the feasible region. In the case of FRS on an upper limit violation, if a lower limit
violation emerges, the FRS is terminated when the total number of violations is minimum.
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Similarly, in the case of FRS on a lower limit violation, if an upper limit violation emerges,
FRS is terminated when the total number of violations is again minimum. This establishes
that the final OV from the FRS is as close to the feasible region and beyond adequate as an
initialization for the PSO.

solution space 

driving path

initial position of optimisation variables

feasible region (no violations)

final position of optimisation variables

(α
1
< α

2
<α

3
)driving parameter

α
1

α
2

α
3

α

Figure 7. Effect of α on FRS.

Although slower than FRS, the PSO algorithm performs as a collective control algo-
rithm. This implies that the factor α at which Q-absorption, Q-injection or P-curtailment is
performed relative to the capacity of the inverter will be optimized. For instance, in the
absence of solar power, PSO will ensure more Q is injected to the network by inverters
furthest from the secondary transformer, where the cumulative voltage drop is high. Due
to the properties of the cost function proposed in Section 3, PSO will further push the
optimal point much more towards the centre of the feasible region. This allows for higher
margins of errors in the state estimation of the PV integrated network, as a small deviation
in the OV will not drift the solution towards unfeasible regions.

4.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a heuristic algorithm used in problems with
high-dimensional search domains. It is a nature-inspired algorithm, which is based on the
foraging technique of flocks of birds and schools of fish. There are six steps in standard
PSO [67], as shown in Algorithm 1.

Algorithm 1: Steps of PSO.

1 Initialize the swarm of particles (i.e., population)
2 Compute the cost of each particle using the fitness function
3 Record the personal best of each particle and the global best of the entire

population
4 Update the velocity of each particle using the personal and global best and other

parameters
5 Calculate the new position of each particle
6 Repeat Steps 2–5 until each particle converges to its solution or the iteration count

is completed, and extract the global best of the entire population as the optimal
solution

Due to the large search space in this problem, standard PSO is unable to converge to a
satisfactory solution. As discussed previously in Section 4.1, FRS is carried out, and the
initial population is created by randomly scattering particles in the neighbourhood of the
OV, which is now located in the feasible region.

4.3. Primary Steps of Particle Swarm Optimization

The steps involved in PSO are shown in Algorithm 1. The update equation for the
position and velocity of the particles is given by,

xi[j + 1] = xi[j] + Vi[j + 1] (18)
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where xi[j] denotes the position of the ith particle at the jth iteration and xi[j + 1] and
Vi[j + 1] are the position and velocity of that particle for the next iteration. The velocity at
which the particle travels is expressed by,

Vi[j + 1] = Vi[j] + Pb ∗ (pi[j]− xi[j]) + Gb ∗ (g[j]− xi[j]) (19)

where Vi[j] is the velocity of the particle at the jth iteration, pi[j] and g[j] denote the current
personal and global best of the jth particle and Pb and Gb are the confidence factors for the
personal and global best, respectively.

The notion of the velocity is to set the direction of search and the extent of exploration
by the particle. This depends on where in the search space the current particle exists,
the recorded best position of that particle (personal best) and the recorded best position of
all particles (global best) since the start of the algorithm. The dependency of the personal
or global best on the velocity is governed by confidence factors, expressed by the two
variables Pb and Gb.

To find the optimal values of the parameters Pb and Gb, an exhaustive search using the
grid-search algorithm was carried out. Here, the ratio between Pb and Gb varied between
0.5 and 3 in steps of 0.5, and the number of iterations taken along with the final cost value
was recorded. The magnitude of these parameters was set in the range of 0–1. It was found
out that after FRS, as the particles were already scattered within the feasible region, each
particle following its own local optima resulted in lower cost values for the final solution
in most scenarios. Hence, more emphasis was given towards particles moving towards
their own local optima rather than global optimum. Therefore, a 2:1 ratio between Pb and
Gb was set during the optimization. This creates a wider net in the search space, thereby
exploring many local minima. This increases the likelihood that the global minimum will
be within this wide net.

To decrease the computational time whilst running the proposed two-stage opti-
mization algorithm, the PSO population parameter needs to be optimized. Therefore,
the convergence towards a feasible solution of the algorithm was recorded for initial pop-
ulations varying from 5–50. Throughout the population search, it was observed that the
optimization variable remained in the feasible region for all populations. Moreover, a pop-
ulation of 10 resulted in a significantly lower cost in comparison to an initial population of
5, whilst having a significantly lesser computational time compared to other population
sizes. Hence, a population of 10 was chosen as the optimal population parameter for the
PSO algorithm embedded in the proposed two-stage optimization.

5. Case Study

The network belonging to an existing housing complex “Lotus Grove” located in
Colombo, Sri Lanka, was used as the case study. The network location also provides cli-
matic variations of the tropical region. Its topology with 63 nodes is shown in Figure 8. The
Number 0 node is the root node and connected to the secondary side of the MV-LV trans-
former. The rated capacity of the transformer is 400 kVA delta-wye, and the input/output
voltage rating is 11 kV/415 V. The solid lines in Figure 8 represent the three-phase feeders
where three-phase or single-phase loads and PV systems are connected. The overhead
electricity distribution cable used is the aluminium aerial bundle cable (ABC-Al/XLPE of
3 × 70 + N54.6 + 1 × 16). There are 286 single-phase or three-phase customers and 50 PV
panels connected to the network. The PV panel locations are uniformly distributed across
the network with assigned ratings ranging from 2–7 kW and customer peak loads assigned
in the range of 0.5–1 kW through a uniformly distributed assignment process. The daily
operation curves for the PV systems and the daily load profile of customer loads used in
the case study are shown in Figure 9. A few random load and PV profiles used in the case
study are shown in Figure 10 to show the varying nature of the profiles evaluated. Images
1, 2 and 3 of Figure 10a represent sunny days that are randomly generated for a given
PV panel, while Images 4 and 5 of Figure 10a represent cloudy days. Thus, these random
generations encapsulate possible weather conditions that exist in a tropical environment.



Energies 2021, 14, 6596 14 of 24

SECTION 1

SECTION 3

SECTION 2

SECTION 8

SECTION 7

SECTION 4

SECTION 5

SECTION 6

DM 027
400 kVA

1

3
4

5
6

7

9
10

2

11

12

13 14
15

16
17

18
19

20
21

22
23

25
26

27
28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

57

58

59

60

61

62

51

52

53

54

55

56

0

8

24

Figure 8. Single line diagram of the test LVDG network (Lotus Grove, Sri Lanka) used for the simula-
tions.
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Figure 10. Random (a) PV profiles for a single PV panel and (b) load profiles for a single customer
used in the case study.

6. Results and Discussion

To simulate the occurrences of upper and lower limit voltage violations, Monte Carlo
(MC) simulations were run for three time instances. Since we intended to identify and
mitigate voltage violations, the most prevalent cases for such violations were identified
and Monte Carlo simulations were performed for these chosen times of the day: 10:00 h,
11:00 h and 21:00 h. This is due to the high PV power available between 10:00 h and 11:00 h,
while the load is much less, leading to severe upper limit violations. Similarly, the load
is maximum around 21:00 h while there is no PV power, leading to many lower limit
violations. Since the violations occurring at other time instances were much less, they
posed a much simpler problem to be solved. Therefore, showing the ability to solve the
worst-case time instances confirmed the ability to handle the simpler violated cases. Table 2
describes the three instances in terms of the hour of simulation, the network settings (PV
and load setting), the number of simulations and the number of control instances that
employed reactive power control or active power control (RPC or APC) or both, to mitigate
voltage violations.

Table 2. Monte Carlo simulations.

Time of Day PV Source Base Load Number of Simulation Runs
Control Instances

RPC Q-abs APC RPC Q-inj

10:00 76% 30% 1000 403 7 0
11:00 93% 50% 2000 325 102 0
21:00 0% 100% 500 0 0 500

As observed in Table 2, voltages at simulations carried out at 10:00 violated more often,
due to the low base loading. However, they tended to have a higher possibility of mitigating
the upper limit violations using only RPC Q-absorption. Comparatively, at 11:00, when
PV penetration increases, the rectification cannot be solely performed via Q-absorption, as
shown in Table 2; hence, a higher number of APC rectifications (Q-absorption followed
by APC) took place. For the simulation at 21:00 (night-time), every simulation contained
lower limit violations only, which was caused by full base loading. With a large number of
simulations using randomly generated individual base loads, PV sources and PV positions
in the network for each simulation, the robustness of the control algorithm under extreme
circumstances was ensured.



Energies 2021, 14, 6596 16 of 24

To maintain computational consistency within this study, all simulations were run
on an Intel i7-8700k processor with 16GB of RAM. All scripts and functions were written
using MATLAB R2020a. Load flow computations were carried out using the OpenDSS
interface with MATLAB.

6.1. Validation of the Sensitivity Matrix

This section demonstrates the validity of the proposed sensitivity matrix for voltage
sensitivity calculation for power injection/absorption/curtailment. The SM was analysed
with respect to the load flow approach for the MC simulations discussed in Table 2 for the
amount of power injected/absorbed/curtailed and the respective voltage change that was
achieved. This is presented in Figure 11a for RPC and Figure 11b for APC, where each
marker denotes the values after each MC simulation. The voltage change presented in this
figure is for the worst violated node in each case where the deviation of the initial voltage is
largest from 1 p.u. Therefore, the RPC Q-injection scenarios were analysed with respect to
the node with the lowest voltage (less than 0.95 p.u) since it had lower limit violations, and
the RPC Q-absorption scenarios were analysed with respect to the node with the highest
voltage (greater than 1.05 p.u) since it had upper limit violations. APC was also analysed
with respect to the node with the highest voltage, but in comparison to the active power
used. The voltage profiles after the optimization using the load flow method and the SM
method are further discussed in Section 6.3.
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Figure 11. Change in reactive/active power and the corresponding voltage change in the most
violated node for (a) reactive power control and (b) active power curtailment.

The amount of active power used in both methods was almost consistently the same
in APC, as seen in Figure 11a. This is because the optimization was designed with a
high penalty to the amount of active power curtailed. Therefore, it was FRS that greatly
contributed to APC, as the FRS step drives the solution as close as possible to the feasible
region and the PSO always ensures that the final solution has minimal active power
curtailed, i.e., at the boundary of the feasible region.

Considering RPC, two distinct regions can be seen in Figure 11b. The RPC using
Q-absorption reduced the voltage in the nodes by consuming reactive power, hence in
the lower-left quadrant of the plane, whereas RPC using Q-injection lifted the voltage by
supplying reactive power, hence on the top-right quadrant. It can be observed that the
plots for both the SM and the load flow approach are very much overlapping. The SM can
be seen to slightly overcompensate in reactive power usage in the range of 20–30 kVARs
with a difference in the voltage change lying within 0.01 p.u.

While the SM overcompensates in reactive power usage, this difference is minimal
in comparison to the computational time benefit of the SM over the load flow approach.
The distribution of the computational times using the SM and the load flow for the MC
simulations is shown in Figure 12. It can be observed that the SM approach converges to
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the solution with a time benefit of 55.1% for the mean computational time, as shown in
Table 3.

Figure 12. Comparison of computational time for the load flow and SM approaches.

Table 3. Elapsed computational time for sensitivity matrix and load flow calculation.

Calculation Method
Computational Time/s

Mean Std. Deviation Minimum Maximum

Load Flow 18.38 2.58 14.75 44.38
Sensitivity Matrix 8.26 0.90 5.35 12.10

6.2. Feasible Region Search for Optimization

Out of the 3000 MC simulations conducted for the Q-absorption and APC scenarios
(as in Table 2), FRS was able to drive the OV to the feasible region devoid of any voltage
violations. Meanwhile, in the 500 MC simulations conducted for the Q-injection scenarios,
except for 35 simulations, FRS was again able to drive the OV to the feasible region devoid
of any violations. Considering the 35 rare instances out of all simulation runs, FRS ensured
that the OV was driven to the closest possible setting to the feasible region, ensuring that
the PSO was able to converge to the optimal solution.

To demonstrate the effectiveness and necessity of FRS in the proposed two-stage
optimization algorithm, 100 separate MC simulations were run with and without FRS.
Within each MC simulation, the two-stage optimization and the standalone PSO were
carried out for varying population sizes and initialization parameters, and the solutions
were analysed.

In this study, the initialization parameter used was the scatter variance, which deter-
mines the spread of the PSO particles that are initially populated in the neighbourhood at
the starting point. Increasing the population and scatter variance together increases the
probability of these particles being closer to the optimal solution, due to a large number
of particles in the initial population being spread over a vast area in the solution space.
However, given a large solution space as in this study, standalone PSO does not always
guarantee a solution in the feasible region even under the aforementioned initial conditions.
These results are summarized in Table 4. Here, it was observed that on average, 34% of
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solutions obtained by standalone PSO did not fall under the feasible region. In contrast,
when FRS was used with PSO, every scenario generated using the MC simulation resulted
in the final solution being inside the feasible region, i.e., no violations. This shows the
necessity of FRS in the optimization algorithm, where it effectively drives the optimization
variable towards the solution, thus enabling PSO to carry out finer adjustments towards
finding an optimal solution.

Table 4. Percentage of unfeasible solutions after standalone PSO for varying population size and
scatter variance.

Population
Scatter Variance

0.1 0.2 0.5 1.0 2.0

5 41 41 45 45 46

10 38 38 38 40 41

20 33 30 30 33 33

30 30 30 29 29 30

50 28 27 27 28 28

It can be noted that increasing the population slightly reduces the overall number
of instances where the solution is unfeasible. However, it was observed that the average
computational time per iteration increased linearly with the size of the population. Hence,
an increase in the population size for PSO in order to optimize its performance will lead to
higher computational time in reaching the solution, which is unfavourable for the problem.

6.3. Two-Stage Optimization and Proposed Sensitivity Matrix

In order to create a considerable number of violations to emulate a possible worst-case
scenario handling capability of the proposed SM method and to demonstrate its robustness,
PV panel positions were randomly generated such that a relatively higher number of panels
were connected to Phase 3, increasing the number of violations in that phase. Therefore,
the initial and final voltages in the worst possible phase, Phase 3, after control using the
SM approach and the load flow method, both using the two-stage optimization, are shown
in Figure 13 for one particular simulation for each case at 10:00, 11:00 and 21:00.
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Figure 13. Voltage profiles of Phase 3 before and after control at (a) 10:00 using Q-absorption, (b) 11:00
using Q-absorption and P-curtailment and (c) 21:00 using Q-injection.

The distribution of the minimum voltage of the set of nodes after RPC using Q-
injection obtained using the 500 MC simulations conducted at 21:00 as per Table 2 is
shown in Figure 14. Similarly, the distribution of the maximum voltage after Q-absorption
obtained using 410 MC simulations (violated simulations) out of the 1000 simulations
conducted at 10:00 as per Table 2 is shown in Figure 15. It can be observed that the lower
limit violations and upper limit violations were successfully eliminated by the control
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sequences. There was a slight incremental shift of 6.5× 10−3 p.u of the mean voltage in
the minimum voltage distribution of the sensitivity matrix approach compared to the load
flow approach after Q-injection (Figure 14). Similarly, the maximum voltage distribution
of the sensitivity matrix method was slightly lower with a 1.02× 10−2 p.u difference of
the mean voltage compared to the load flow method (Figure 15). This was due to the
overcompensation of power by sensitivity matrix due to its approximation, as described in
Section 6.1. However, the optimization ensures that both methods successfully mitigate
voltage violations while minimising the voltage deviations in each phase.
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Figure 14. Distribution of minimum controlled voltages after Q injection obtained using MC simula-
tions at 21:00.
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Figure 15. Distribution of maximum controlled voltages after Q absorption obtained using MC
simulations at 10:00.

Finally, the APC algorithm is heavily dependent on the amount of active power
curtailed rather than the voltage deviations in each phase. Hence, when the Q-absorption
is not sufficient to remove the violations, APC is performed, which attempts to just remove
the violation. Therefore, the maximum voltage of the set of nodes is always at 1.05 p.u
(the upper limit). This is seen in Figure 16, which shows the distribution of the voltage
profile obtained after APC, using the 102 MC simulations (violated simulations) out of
2000 simulations conducted at 11:00 as per Table 2. Hence, in the APC case, both the
sensitivity matrix approach and the load flow approach yielded the exact same result.
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Figure 16. Distribution of maximum controlled voltages after P curtailment obtained using MC
simulations at 11:00.

7. Conclusions

In this paper, a novel Sensitivity Matrix (SM) and a Centralized Active Reactive
Power Management System (CARPMS) using inverter control to eliminate voltage limit
violations were introduced. The optimum PV power settings for the control sequence
were determined by a novel modified two-stage optimization algorithm. The two-stage
optimization algorithm takes the predicted PV power and the estimated node voltages as
inputs to determine the PV inverter active and reactive power settings to eliminate the
voltage violations whilst minimising the unbalance in the network.

To demonstrate the effectiveness of the proposed SM approach and the two-stage
optimization algorithm, a simulation study was performed on an existing LV network.
The effectiveness and necessity of the FRS combination with PSO (two-stage optimization)
was analysed by running 100 Monte Carlo simulations with FRS and without FRS (using
only PSO). It was observed that nearly 34% of the simulation scenarios were not solved
by the PSO-only optimization to remove the voltage violations. It was further observed
that there was considerable overlap as to which cases had violations after optimization
when using PSO only. This confirmed that the PSO algorithm is unable to handle specific
voltage violation scenarios regardless of the parameters being tuned. However, with the
combination of FRS (the two-stage optimization), all the simulations were able to find a
solution removing all violations. Furthermore, the two-stage optimization was able to find
solutions with a population of only 10, which further reduced the computational time.

The two-stage optimization algorithm performance was first implemented using load
flows and then using the SM for the voltage profile generation. The results showed that
the SM is able to successfully assimilate the performance of the state-of-the-art solution:
the load flow, in all cases of reactive power injection, reactive power absorption and
active power curtailment. The difference between the mean voltages of the proposed
methodology and the load flow methods were 6.5× 10−3 p.u for RPC using Q-injection,
1.02× 10−2 p.u for RPC using Q-absorption. It is noteworthy that the voltage profiles
obtained after APC were exactly the same for both methods (0 p.u mean voltage difference),
which reaffirmed the SM approach. Furthermore, the SM reduced the time consumed
for the voltage profile generation by 55% when compared to the load flow method. This
faster inverter control will mitigate voltage violations in LVDGs, thereby allowing utility
providers to accommodate more rooftop solar panels into LV networks.

The main advantage of the proposed two-stage optimization using the SM is the
reduction in time to generate the voltage profiles during the control sequence. Since the
SM approach is able to perform the network voltage estimation with a 55% reduction in
time with negligible accuracy loss, this will speed up the control of voltage violations in
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LVDGs. Furthermore, the CARPMS implementation’ initial cost is minimal due to the
use of existing PV inverters without the need for additional device installation for the
control operation.
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