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Abstract
This paper investigates the weight minimization of stiffened panels simultaneously optimizing sizing, layout, and topology 
under stress and buckling constraints. An effective topology optimization parameterization is presented using multiple level-
set functions. Plate elements are employed to model the stiffened panels. The stiffeners are parametrized by implicit level-
set functions. The internal topologies of the stiffeners are optimized as well as their layout. A free-form mesh deformation 
approach is improved to adjust the finite element mesh. Sizing optimization is also included. The thicknesses of the skin and 
stiffeners are optimized. Bending, shear, and membrane stresses are evaluated at the bottom, middle, and top surfaces of the 
elements. A p-norm function is used to aggregate these stresses in a single constraint. To solve the optimization problem, 
a semi-analytical sensitivity analysis is performed, and the optimization algorithm is outlined. Numerical investigations 
demonstrate and validate the proposed method.

Keywords  Topology optimization · Stiffened panel · Stress · Buckling

1  Introduction

Stiffened panel structures have been a long standing inter-
est of Professor Haftka, whose first journal paper in 1968 
investigated the buckling of stiffened shells (Singer and 
Haftka 1967). Due to their high strength-to-weight ratio, 
stiffened panels are widely used in aircraft applications. 
However, they are usually assembled from thin plates and 
shells, which are prone to buckle and stress fracture/yield 
under flight loads. The growing use of high-performance 
composite structures has further motivated the development 
of optimization for the design of stiffened panels.

Professor Haftka has developed and investigated a range of 
optimization to design stiffened panels to achieve the minimum 

weight subject to buckling and stress constraints (Nagendra 
et al. 1991, 1996). In general, heavily loaded fuselage and wing 
structures consist of stiffened panels with holes. However, 
holes in a panel may cause stress concentrations and the failure 
of the panel. Nagendra et al. (1991) investigated the minimum 
weight design of a stiffened composite panel with a centrally 
located hole, by optimizing ply thicknesses in the panel and 
stiffener laminates and the stiffener height. Constraints are 
imposed on the buckling load and the maximum strain near the 
hole. Structural optimization of stiffened panels often involves 
multiple local optima with comparable performance, mak-
ing it suitable for the genetic algorithms (GAs) which allow 
designers to obtain multiple candidate designs. However, the 
cost of the GA search is generally high, often requiring thou-
sands or more of structural analyses. Nagendra et al. (1996) 
made several changes in the GA to reduce the computational 
cost and improve its reliability. Compared with the optimized 
design by Nagendra et al. (1991) using a continuous optimi-
zation procedure, the weights of the optimized designs using 
GA optimization were decreased by about 8%. However, the 
use of the detailed finite element models for global optimiza-
tion remains unaffordable in many cases due to the expensive 
computational cost of the structural analysis. The considera-
tions of computational cost often dictate the use of simplified 
models in structural optimization, for example using a simple 
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finite strip model. Following the works (Nagendra et al. 1991, 
1996), experimental and analytical studies are conducted to 
test the validity of the buckling and failure analysis on the opti-
mized stiffened panels, so as to obtain a good understanding 
of the difference between analytical and experimental results 
(Nagendra et al. 1994; Park et al. 2001). Approximate analyses 
were also investigated by Vitali et al. (2002a, b), Venkatara-
man et al. (2003), and Lamberti et al. (2003), providing rea-
sonably accurate estimates efficiently and allowing the many 
thousands of structural analyses needed for global optimization 
to be performed. In the work by Vitali et al. (2002a), a crack 
propagation constraint was used as an example to demonstrate 
the feasibility of combining multi-fidelity models to obtain 
accurate results at a low computational cost. It is known that 
GAs scale poorly with an increasing number of design vari-
ables. When the sizing variables are included, they need to be 
restricted to a small and diluted set of parameters. Due to the 
large number of design variables in optimization of composite-
stiffened panels, a two-step optimization strategy combining 
a gradient-based method and GAs was presented by Heren-
cia et al. (2008). In the first step of the two-step optimization 
scheme, gradient-based optimization optimizes the lamination 
parameters, while at the second step, GA is used to identify the 
lay-ups for a super-stiffener’s laminates.

The optimum structural weight of stiffened panels are 
affected by various parameters, e.g., stiffener geometry, 
material selection, and manufacturing technology. Vitali 
et al. (2002b) studied structural optimization of a hat-stiff-
ened laminated composite panel. Venkataraman et al. (2003) 
performed optimization for both metallic and laminated 
composite-stiffened shells, and investigated how stiffener 
type, material choice, and manufacturing constraints influ-
ence the weight of optimized designs, as well as the conserv-
ativeness of the approximate analyses and design freedom 
(the number of design variables). The variability in material 
properties, manufacturing defects, and environmental fac-
tors also affect the optimized designs. The life of stiffened 
panels can be critically influenced by this uncertainty. Kale 
et al. (2008) performed reliability-based optimization and 
developed an inspection schedule for fatigue crack growth 
for the minimum life cycle cost of stiffened panels subject to 
uncertainty in material properties and loading.

The arrangement and number of stiffeners in most of opti-
mization works on stiffened panel design have been predeter-
mined (Bhatia et al. 2011; Colson et al. 2010; Kapania et al. 
2005; Mulani et al. 2013; Tamijani et al. 2014). The focus of 
optimization has been sizing and shape of stiffeners and panels, 
commonly employing gradient-free optimization techniques 
such as GAs and the particle swarm optimization methods. 
Typical design variables include the panel thickness, stiffener 
spacing and thickness, height, orientation, and placement of 
stiffeners, as well as the optimal curvature for curved stiffen-
ers. Optimization of the arrangement and number of stiffeners, 

however, has received little attention. While topology opti-
mization offers a design method with the highest degree of 
design freedom, it parameterizes the design space with small 
continuum material units (i.e., 3D finite elements), and thus, 
it is challenging to enforce a plate-based stiffened panel con-
figuration in the resulting solution and typically requires an 
extremely fine mesh (Aage et al. 2017). Topology optimization 
has been used to optimize the internal topology for each of the 
stiffeners (Stanford et al. 2014; Townsend and Kim 2019) but 
with predetermined thickness distribution and stiffener layout.

We have recently demonstrated the feasibility of apply-
ing the level-set topology optimization method to simultane-
ously optimize size, layout, and topology of stiffened panels 
against buckling (Chu et al. 2021a, b). This employs plate 
elements to model stiffeners which are parametrized by mul-
tiple implicit level-set functions (LSFs), thus, optimizing the 
shape (straight or curved, and internal topology) and size 
of each stiffener, simultaneously with the orientation and 
number of the stiffeners and the panel thickness. Owing to 
the use of 2D plate elements, the mesh density can be several 
orders of magnitude less than for an equivalent mesh of 3D 
continuum elements (Aage et al. 2017). So far, only optimi-
zation against linear buckling has been studied.

This paper presents the level-set-based optimization 
method for both of the critical failure criteria, stress, and 
buckling, enabling the weight minimization of stiffened pan-
els simultaneously optimizing size, layout, and topology. A 
stiffened panel is discretized with plate elements. The layout 
of the stiffeners is optimized, and a free-form mesh deforma-
tion approach is improved to adjust the finite element mesh 
for the changing stiffener layout. The level-set method is 
utilized to optimize the topologies of the stiffeners, as well 
as the thicknesses of the skin and stiffeners. Bending, shear, 
and membrane stresses are evaluated at the bottom, middle, 
and top surfaces of the elements. The local stress constraints 
are aggregated into a global constraint using a p-norm func-
tion. A gradient-based optimizer is employed to solve the 
optimization problem. Numerical examples demonstrate the 
effectiveness of the proposed approach.

The remainder of this paper is organized as follows. In 
Sect. 2, the geometry and FE models of a stiffened panel are 
presented. Section 3 describes the mathematical formulation 
and the optimization methodology. Numerical examples and 
investigations of the optimum stiffened panels are presented 
in Sect. 4, followed by the conclusions in Sect. 5.

2 � Stiffened panel model

In this section, the geometry and FE models are described. 
The coordinates of the stiffener ends are used to manipulate 
stiffener layout, and LSFs are used to represent and optimize 
the internal topologies of the stiffeners. Sizing variables are 
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also included to optimize the thicknesses of the panel and 
stiffeners. As the stiffener layout changes, a free-form mesh 
deformation method is improved to adjust the FE mesh.

2.1 � Geometry model

Figure 1 illustrates how the geometry model of the panel with 
straight stiffeners is constructed and updated. As shown in 
Fig. 1i and j, the stiffened panel is described in terms of stiff-
ener layout, internal topologies of stiffeners, and thicknesses 
of the panel and stiffeners, and updated by optimizing them.

As shown in Fig. 1a and b, the positions, rotations, and 
spacing of the stiffeners are represented and manipulated by 
their two ends’ coordinates.

The level-set topology optimization methodology (Wang 
et al. 2003) is used to optimize the internal topologies of the 
stiffeners. One LSF is used for the description of the internal 
topology of each stiffener. The relationship between the LSF 
values ϕ and the resulting structure is shown in Fig. 1c and 
e, and d and f. The structural boundary of the n-th stiffener 
is defined as the zero level set of an implicit function ϕn(x):

(1)

⎧⎪⎨⎪⎩

𝜙n(x) ≤ 0 x ∈ Ωn

𝜙n(x) = 0 x ∈ Γn

𝜙n(x) > 0 x ∉ Ωn

, n = 1, 2, ...,N

 where Ω is the domain for the structure, and Γ is the struc-
tural boundary. x ∈ Ωd,n , where Ωd,n is the design domain 
containing the structure, Ωn ∈ Ωd,n . N LSFs are used for N 
stiffeners. Conventionally, the signed distance function is 
used for the LSF.

To determine the optimal internal topology of each stiff-
ener, the structural boundary is optimized by iteratively solv-
ing the level-set equation, Eq. (2):

 where tf is a pseudo-time for the level-set evolution and V 
is the velocity vector.

As shown in Fig. 1d, the LSF at each point is updated by 
solving the following discretized Hamilton–Jacobi equation 
using an up-wind differential scheme:

 where pt is a discrete point in the design domain, k is the 
iteration number, Vnormal is the normal velocity, and   |||∇�k

n,pt

||| 
is computed for each point using the Hamilton–Jacobi 
Weighted Essentially Non-Oscillatory method (HJ-WENO) 
(Jiang and Peng 2000). To improve the computational effi-
ciency, the level-set update is restricted to within a narrow 
band close to the boundary. This results in ϕn,pt being given 

(2)
��n

(
x, tf

)
�tf

+ ∇�n(x) ⋅ V(x) = 0,

(3)�k+1
n,pt

= �k
n,pt

− Δtf
|||∇�

k
n,pt

|||Vnormal,pt,

Fig. 1   Illustration of how to construct and update the geometry 
model of a sample stiffened panel: a the initial stiffened layout; b the 
updated stiffened layout; c the initial LSFs and their zero level set for 
the internal topologies of the stiffeners; d the updated LSFs and their 
zero level set for the internal topologies of the stiffeners; e the initial 

layout and internal topologies of the stiffeners; f the updated layout 
and internal topologies of the stiffeners; g the initial thickness dis-
tribution; h the updated thickness distribution; i the initial geometry 
model; j the updated geometry model
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only within this narrow band. For the re-initialization and 
velocity extension, the fast-marching method (Sethian 1999) 
is used.

In this work, the panel and each of the stiffeners are con-
sidered to have the same thickness throughout. As shown 
in Fig. 1g and h, the panel thickness and the thickness of 
each stiffener are denoted by tp and ts,n (n = 1, 2, …, N) and 
optimized as well.

2.2 � Modified free‑form mesh deformation method

In this work, both the skin and stiffeners are modeled explic-
itly using four node Mindlin–Reissner plate element (Bathe 
and Dvorkin 1985) with a plane stress assumption. In our 
previous works (Chu et al. 2021a, b), the free-form mesh 
deformation method (Sederberg and Parry 1986) has been 
used to deform the finite element (FE) mesh to account for 
the updated stiffener layout. As shown in Fig. 2, a control 
mesh is established. The x and y coordinates of nodes on the 
control mesh equal to those of the two ends of the stiffeners 
or the panel vertices. As shown in Fig. 2c and d, the optimal 
layout of the stiffeners can be obtained by optimizing the 
coordinates of the nodes on the control mesh. The FE mesh 
is deformed to cater for the updated stiffener layout:

(4a)�FE = ��control,

(4b)�k+1
control

= �k
control

+ �,

(4c)�k+1
FE

= �k
FE

+ �,

 where xFE and xcontrol are nodal coordinates on the FE and 
control meshes, respectively. z and y represent their changes. 
N is the shape function.

When we applied the existing free-form mesh deforma-
tion method, we found that it can cause inaccuracy in stress 
computation of a stiffened panel. This is demonstrated in an 
example in Fig. 3, where a stiffened panel of 0.3 m × 0.3 m 
is considered. Young’s modulus of the material is E = 73.085 
GPa. Poisson’s ratio is υ = 0.33. As shown in Fig. 4, the 
panel is discretized uniformly with 80 × 80 plate elements 
and its stress distribution at the middle surface and first four 
buckling modes are given. σvm,m,max is the maximum von 
Mises stresses of elements at the middle surface, which 
occurs at the bottom right corner of the panel. λ1–λ4 are 
the first four buckling load factors. Figure 5 shows that the 
free-form mesh deformation method decreased σvm,m,max by 
5.9%. This is because, the FE mesh is deformed to make 
the widths of the elements around the bottom right corner 
of the panel larger. The distances between the central and 
Gauss points of these elements to the bottom right vertex of 
the panel increased.

Due to this discrepancy, the optimizer attempts to 
decrease the maximum stress primarily by deforming the 
FE mesh and moving the stiffeners. The maximum stress 
usually occurs around the stiffeners and panel edges. In order 
to minimize the effect of the mesh deformation on the stress 
computation, we modified the mesh deformation method to 
maintain the size of the FEs in these regions to be unchanged 
during optimization. Figure 6 shows the modified free-form 
mesh deformation method. The element boundaries of the 

(4d)� = ��,

Fig. 2   Illustration of updating 
the finite element mesh using 
the free-form mesh deformation 
method with control mesh: a the 
initial finite element and control 
meshes; b the top view of the 
initial finite element and control 
meshes; c the updated finite ele-
ment and control meshes; d the 
top view of the updated finite 
element and control meshes
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control mesh are placed on d FEs (d = 1 in Fig. 6) away from 
the stiffeners or panel edges. As shown in Fig. 6c and d, the 
movement of the element boundary of the control mesh is 
the same as that of the nearest stiffeners or panel edges:

 where ystiffener represents the changes of the coordinates of 
the stiffener ends. A is their mapping matrix. ystiffener is the 

(5)� = ��stiffener,

design variables in the stiffener layout optimization, and 
the deformation of the FE mesh can be achieved through 
Eqs. (4c), (4d) and (5). Different from Fig. 2, the widths of 
the FEs within d elements away from the stiffeners or panel 
edges are not changed as the update of the stiffened layout.

For the panel in Fig. 3, the FE mesh in Fig. 4 is deformed 
(shown in Fig. 7) using the modified free-form mesh defor-
mation method, with the same movements of “pseudo stiff-
eners” in Fig. 5. The discrepancy between σvm,m,max with 
the two FE meshes in Figs. 4 and 7 is 0.36%. Compared 
with the result using the previous free-form mesh deforma-
tion method in Fig. 4, the discrepancy is reduced by 94%. 
This shows the effectiveness of the modified free-form mesh 
deformation method for stress computation. It is noted that, 
for both the original and modified free-form mesh defor-
mation methods, the differences between λ1–λ4 are within 
0.024%. Using the modified free-form mesh deformation 
method, different mesh sizes and values of the parameter d 
(d ≥ 1) have also been tested. It has been found that, for the 
same mesh size, the maximum difference between σvm,m,max 
for different values of d is 0.24% and the maximum differ-
ence between λ1–λ4 is 0.035%. Therefore, for the numerical 
examples in the following sections, d = 1 is used.

As shown in Fig. 1c and d, based on the undeformed 
mesh, it is straight forward to calculate the elemental den-
sity values wu for each stiffener (Chu et al. 2021a). Due to 
the one-to-one correspondence between the elements of the 

Fig. 3   Loading and boundary conditions for the design of a stiffened 
panel under combined compression and shear

Fig. 4   Panel with the undeformed FE mesh, and its stress distribution at middle surface and first four buckling modes under combined compres-
sion and shear, σvm,m,max = 426.12 MPa, λ1 = 0.1154, λ2 = 0.1717, λ3 = 0.2828, λ4 = 0.4191
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undeformed and deformed FE meshes, shown in Figs. 8a and 
1b, a direct mapping can be used and the density distribution 
w for the stiffener is obtained by wj = vj. The density distri-
bution is w = 1 for all the elements on the panel.

After updating the nodal coordinates on the FE mesh and 
obtaining the elemental density and thickness distributions, 
the stiffness and geometric stiffness matrices for finite ele-
ment j can be calculated (Townsend and Kim 2019):

(6a)
Kj = wjK

s
j

(
Es, �s, �, tj, �FE

)
+
(
1 − wj

)
Kv
j

(
Ev, �v, �, tj, �FE

)
,

 where Ks
j
 and Kv

j
 represent the stiffness matrices of finite 

element j with solid and void phases, respectively. Ks
g,j

 and 
Kv
g,j

 denote the geometric stiffness matrices of finite element 
j with solid and void phases, respectively. Es and Ev are the 
Young’s moduli of finite element j with solid and void 
phases, respectively. ρs and ρv are the densities of finite ele-
ment j with solid and void phases, respectively. tj is the 
thickness of finite element j. υ is Poisson’s ratio.

(6b)
Kg,j = wj

(
�jKg,js

(
Es, �s, �, tj, �FE

)
+
(
1 − wj

)
Kv
g,j

(
Ev, �v, �, tj, �FE

))
,

Fig. 5   Panel with the FE mesh using the free-form mesh deformation method with control mesh, and its stress distribution at middle surface and 
first four buckling modes under combined compression and shear, σvm,m,max = 400.91 MPa, λ1 = 0.1154, λ2 = 0.1717, λ3 = 0.2828, λ4 = 0.4191

Fig. 6   Illustration of updat-
ing the finite element mesh 
using the modified free-form 
mesh deformation method with 
control mesh: a the initial finite 
element and control meshes; b 
the top view of the initial finite 
element and control meshes; c 
the updated finite element and 
control meshes; d the top view 
of the updated finite element 
and control meshes
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When the pressure is applied, the forces applied on the FE 
mesh are redistributed as the stiffener layout is updated. As 
shown in Fig. 9, the force applied to a point pf is calculated 
as follows:

 where P is the pressure value per unit length. Lpf−1 and Lpf 
are the lengths of the elemental boundaries with the point pf.

To compute the displacement and buckling load factors of 
the stiffened panel, the linear elasticity and Eigen-buckling 
equations in Eqs. (8a, 8b) are solved using the HSL MA57 
solver (HSL 2002) and ARPACK (Lehoucq et al. 1998), 
respectively:

(7)Ppf =
P
(
Lpf−1 + Lpf

)
2

,

(8a)�� = � ,

(8b)
(
� + ��g(�)

)
� = �,

 where K, u, and f are the structural stiffness matrix, static 
deflection, and applied load, respectively. Kg is the geomet-
ric stiffness matrix. λ and v represent the eigenvalue/eigen-
vector pair for buckling.

The von Mises stress of the element is calculated by

 where

(9)�vm =
(
wj�

T
j
�vm,j�j

) 1

2

,

(10a)
�

vm
= ∫

A

�T

b
�T

b
��

b
�
b
dA + ∫

A

�T

s
�T

s
��

s
�
s
dA

+ ∫
A

�T

m
�T

m
��

m
�
b
dA,

Fig. 7   Panel with the FE mesh using the modified free-form mesh 
deformation method with control mesh, and its stress distribution at 
middle surface and first four buckling modes under combined com-

pression and shear, σvm,m,max = 424.60 MPa, λ1 = 0.1154, λ2 = 0.1717, 
λ3 = 0.2828, λ4 = 0.4192

Fig. 8   Physical density field: a initial; b updated

Fig. 9   Illustration of the application of pressure
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The notations Cb, Cs, and Cm are the constitutive matrices 
for the bending, shear, and membrane stresses, respectively. 
Bb, Bs, and Bm are the relative strain–displacement matrices. 
A is the area of the element. V is the Voigt matrix. z is the 
distance from the middle surface, −t∕2 ≤ z ≤ t∕2 . The von 
Mises stresses σvm,b, σvm,m, and σvm,t of the element at the bot-
tom, middle, and top surfaces can be represented as follows:

3 � Optimization

In this section, the optimization problem is described. To 
solve this problem with a gradient-based optimizer, a semi-
analytical sensitivity analysis is performed. The optimization 
algorithm is also presented.

3.1 � Problem formulation

The minimum weight problem for stiffened panels subject 
to stress and buckling constraints can be written as follows:

 where t = [tp, ts,1, …, ts,N]T, ystiffener and ϕ = [ϕ1, …, ϕN]T are 
the sizing, layout, and topology design variables, respec-
tively. σupper_bound is the upper bound of the von Mises stress. 
Ne is the number of the finite elements. The first Nλ buckling 
modes are considered and λlower_bound is the lower bound of 
the critical buckling load factor. Since the modified free-
form mesh deformation method is utilized to adaptively 
adjust the FE mesh, overlap and intersection between the 
adjacent stiffeners are prevented by setting the spacing con-
straints. L denotes stiffener spacing, and Llower_bound is its 
lower bound. NL is the total number of spacing constraints. 
The spacing constraints have an effect of controlling the 
widths of the finite elements, which naturally avoids an 
excessive element distortion.

(10b)�b = z�b.

(11a)�vm,b = �vm
|||z=−h∕2

(11b)�vm,m = �vm
||z=0

(11c)�vm,t = �vm
|||z=h∕2

(12)

min
�,�stiffener,�

m
(
�, �stiffener,�

)

s.t. �vm,b,j
(
�, �stiffener,�

) ≤ �upper_bound j = 1, 2,… ,Ne

�vm,m,j
(
�, �stiffener,�

) ≤ �upper_bound j = 1, 2,… ,Ne

�vm,t,j
(
�, �stiffener,�

) ≤ �upper_bound j = 1, 2,… ,Ne

�q
(
�, �stiffener,�

) ≥ �lower_bound q = 1, 2,… ,N�

Ll
(
�stiffener

) ≥ Llower_bound l = 1, 2,… ,NL

,

The stiffener spacing L is defined as the difference 
between the end coordinates of the two adjacent stiffeners:

The mass m is defined by the mass matrix:because, when 
the pressure is applied, the forces

 where the vector g contains ones for deflection degrees of 
freedom along the gravity direction and zeros elsewhere.

In Eq. (12), von Mises stresses σvm,b, σvm,m, and σvm,t of 
each element at the bottom, middle, and top surfaces are 
considered. In this work, the p-norm function is used as a 
stress aggregation to approximate the maximum stress:

 where p is a p-norm parameter. Since the p-norm is always 
greater than the maximum with finite p, the adaptive scaling 
constraint (Le et al. 2010) is employed to enforce a con-
straint on the actual maximum stress:

 where α is computed at the k-th iteration:

Therefore, the optimization problem in Eq. (12) becomes

3.2 � Sensitivity analysis

In this work, a gradient-based optimizer, IPOPT (Wächter 
and Biegler 2006), is used to solve the optimization prob-
lem described in Eq. (18). Therefore, the sensitivities of 
the mass m, the p-norm function of the von Mises stress 
σpn, the buckling load factor λq, and the stiffener spacing 
Ll are required.

3.2.1 � Sensitivity analysis for layout optimization

The derivative of m with respect to yi can be calculated by

(13)Ll = xl+1
control

− xl
control

.

(14)m = �T��,

(15)�pn =

(
Ne∑
j=1

(
�
p

vm,b,j
+ �

p

vm,m,j
+ �

p

vm,t,j

))1∕p

,

(16)��pn ≤ �upper_bound.

(17)�k =
max

(
�k−1
vm,b,j

, �k−1
vm,m,j

, �k−1
vm,t,j

)

�k−1
pn

.

(18)

min
�,�stiffener,�

m
(
�, �stiffener,�

)

s.t. ��pn
(
�, �stiffener,�

) ≤ �upper_bound

�q
(
�, �stiffener,�

) ≥ �lower_bound q = 1, 2,… ,N�

Ll
(
�stiffener

) ≥ Llower_bound l = 1, 2,… ,NL

.
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To calculate the sensitivity of σpn, the augmented Lagran-
gian functional for σpn is given by

 where uad,s is the adjoint vector.
Differentiating Eq. (20):

By collecting the terms with ∂u/∂y in Eq. (21) and setting 
them to zero, the derivative of the augmented Lagrangian 
functional for σpn with respect to yi can be calculated by

 where

The derivative ∂σpn/∂yi is equivalent to ∂Ψ/∂yi in Eq. (22) 
due to the adjoint method.

To calculate the sensitivity of λq, Eqs. (8b) and (8a) are 
pre-multiplied by the eigenvector vq and the adjoint vector 
uad,b:

Substituting Eq. (24b) into Eq. (24a) and differentiating 
yield:
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By collecting the terms with ∂u/∂y in Eq. (25) and setting 
them to zero,

 where

It is noted that df/dyi ≠ 0 in Eqs. (22) and (26). This is 
because, when the pressure is applied, the forces applied on 
points of the FE mesh are changed based on Eq. (7) as y is 
updated. For simplicity, ∂M/∂yi, df/dyi, ∂K/∂yi, and ∂Kg/∂yi 
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are calculated via the finite difference method as is the deriv-
ative dLl/dyi for the spacing constraint.

3.2.2 � Sensitivity analysis for topology optimization

To update the LSFs representing the stiffener internal topol-
ogies, derivatives with respect to the level-set value of the 
boundary points ϕn,b are computed by

 where ∂wj/∂vj = 1 because wj = vj. The function g represents 
an equation, i.e., m, σpn, λq and Ll. dLl/dwj = 0.

The derivative of m with respect to wj is calculated by

In a similar way to the computation of ∂σpn/∂yi, the deriv-
ative of σpn with respect to wj is obtained by
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In a similar way to the computation of ∂λq/∂yi, the deriva-
tive of λq with wj is obtained by
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In this work, the LSFs are always maintained as signed 
distance functions by a combination of the marching squares 
and fast-marching algorithms (Osher et al. 2004). In order 
to ensure the signed distance property |∇�|= 1 after every 
update of the LSF, the fast velocity extension algorithm 
(Adalsteinsson and Sethian 1999) is utilized. With Eq. (2), 
the relationship between the changes to the LSF values ∆ϕn,b 
at the boundary and ∆ϕn in the rest of the design domain is 
determined as follows:

Then the term ∂vj/∂ϕn,b can be computed via the implicit 
perturbation of the level-set boundary (Chu et al. 2021a). 
Specifically, a small perturbation ∆ϕn,b is assigned to the 
level-set value ϕn,b of the given boundary point of interest. 
Then the changes in the LSF ∆ϕn in the rest of the design 
domain can be obtained by Eq. (32). After implementing 
the marching squares and fast-marching algorithms, the new 
LSF and corresponding zero level set are obtained. This 
results in the new volume fraction vj. Then the term ∂vj/∂ϕn,b 
can be approximated by the finite difference method.

3.2.3 � Sensitivity analysis for sizing optimization

To implement the sizing optimization and update the thick-
ness distribution of the stiffened panel, derivatives with 
respect to t are computed through the chain rule:
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 where

Similarly,

3.3 � Optimization algorithm

Linearization of the optimization problem in Eq. (18) using 
Taylor’s expansion yields:
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 where m0, σpn,0, λq,0, and Ll,0 are the values at the current 
iteration. γ1, γ2, and γ3 are the move limits for ∆t, ∆ystiffener, 
and ∆ϕb, respectively. IPOPT (Wächter and Biegler 2006) 
is used to solve the optimization problem in Eq. (36) at each 
iteration to obtain ∆t, ∆ystiffener, and ∆ϕb to update the stiff-
ened panels.

The optimization methodology is illustrated in Fig. 10. t, 
ystiffener, and ϕ are optimized simultaneously.

4 � Numerical examples

Two numerical examples are presented to demonstrate 
and validate the optimization method. In these examples, 
the aluminum alloy, Al 2139, is used. Young’s moduli of 
the solid material and void phases are Es = 73.085 GPa 
and Ev = 10–6 × 73.085 GPa, respectively. The densities are 
ρs = 2700 kg/m3 and ρv = 0 for the solid material and void 
phase, respectively. Poisson’s ratio is υ = 0.33.

4.1 � Stiffened panel under compression and shear

A stiffened panel of 0.3 m × 0.3 m with the loading and 
boundary conditions shown in     Fig. 3 is considered for 
optimization. The lower and upper bounds of thicknesses of 
both the panel and the stiffeners are 0.001 m and 0.003 m, 
respectively. The upper bound of the von Mises stress 
σupper_bound = 427.5 MPa (Mulani et al. 2013). The lower 
bound of the critical buckling load factor is λlower_bound = 1.

The initial design with seven vertical stiffeners, each with 
a height of 0.03 m, is given in Fig. 11. The initial thick-
nesses are set to 0.002 m for both the panel and the stiffen-
ers. The panel is discretized with 80 × 80 plate elements, 
with 8 elements along the height of the stiffeners. Seven 
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,

level-set functions are used to represent the seven stiffeners. 
σvm,b,max, σvm,m,max, and σvm,t,max are the maximum von Mises 
stresses of elements at the bottom, middle, and top surfaces, 
respectively. p = 12 is used for Eq. (15). Based on our previ-
ous work (Chu et al. 2021b), the first 10 buckling modes are 
considered as constraints.

From the initial design and its buckling modes in Fig. 11, 
it can be seen that in-plane buckling occurs towards the bot-
tom-right-hand corner of the panel. The optimized design 
is given in Fig. 12, with the convergence curves in Fig. 13. 
In Fig. 12, it can be seen that the number of stiffeners is 
optimized to three diagonal stiffeners with two short stiff-
eners. The layout optimization places the stiffeners to the 
right-hand side of structure to increase the stiffness in these 
regions. Meanwhile, with the topology and sizing optimiza-
tion, the internal topology, height, and width of the remain-
ing stiffeners are optimized as well as the thicknesses. As a 
result, the buckling modes are less localized than those of 
the initial design while the mass of the optimized design is 
decreased by 38.6%. Both the stress and buckling constraints 
are satisfied.

To investigate the effect of the stress constraint on the 
optimized design, the optimization problem is solved again 
with different upper bounds and without a stress constraint. 
The buckling constraints are still set with λlower_bound = 1. 
The optimized designs are given in Figs. 14, 15, and 16. 
The comparison is given in Table 1. For all the optimized 
designs, the stress and buckling constraints are satisfied. The 
stress is concentrated at the right-bottom corner of the panel. 
As σupper_bound increases, the thickness and the stiffness of the 
panel are decreased. Correspondingly, more stiffeners are 
needed to resist the buckling and ensure that the buckling 
constraint is satisfied.
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To investigate the effect of buckling constraints on the 
optimized design, the problem is also solved with buckling 
constraints with different lower bounds. The stress constraint 
is set with σupper_bound = 427.5 MPa. The optimized designs 
are given in Figs. 17 and 18. The comparison is given in 
Table 2. For the optimized designs with λlower_bound = 1, 
2, and 3 in Figs. 12, 17, and 18, their panel thicknesses 
are 1.886 × 10–3 m, 1.874 × 10–3 m, and 1.865 × 10–3 m, 
respectively. The difference is within 1.1%. As λlower_bound 
increases, more stiffeners remain in the optimized design. 
This shows that, the impact of the buckling constraints on 
the stiffeners are greater than that on the panel.

Further optimization problems including (a) sizing opti-
mization only, (b) sizing and layout optimization, (c) topol-
ogy optimization only, (d) sizing and topology optimization, 
and (e) layout and topology optimization, are also solved for 
the design of the stiffened panel. In each case the stress and 
buckling constraints are set with σupper_bound = 427.5 MPa and 
λlower_bound = 1, respectively. Figure 19 shows the optimized 
designs. All of their stress and buckling constraints are satis-
fied. From Table 3, however, it can be seen that their masses 
are all greater than that in Fig. 12.

Fig. 10   Flowchart of the level-set-based stiffened panel optimization method
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Fig. 11   Initial design with seven vertical stiffeners, m = 0.826 kg, and its stress distributions and first four buckling modes under combined com-
pression and shear, σvm,b,max = 375.5 MPa, σvm,m,max = 387.1 MPa, σvm,t,max = 401.9 MPa, λ1 = 3.822, λ2 = 4.767, λ3 = 5.395, λ4 = 5.700

Fig. 12   Optimized design (σupper_bound = 427.5  MPa and 
λlower_bound = 1), m = 0.507  kg, and its stress distributions and first 
four buckling modes under combined compression and shear, 

σvm,b,max = 398.9  MPa, σvm,m,max = 411.2  MPa, σvm,t,max = 427.3  MPa, 
λ1 = 1.001, λ2 = 1.013, λ3 = 1.038, λ4 = 1.119
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Fig. 13   Convergence curves: a mass; b p-norm stress function and maximum stresses at the bottom, middle, and top surfaces; c buckling load 
factors

Fig. 14   Optimized design (σupper_bound = 356 MPa and λlower_bound = 1), 
m = 0.594 kg, and its stress distributions and first four buckling modes 
under combined compression and shear, σvm,b,max = 330.7  MPa, 

σvm,m,max = 341.6  MPa, σvm,t,max = 356.0  MPa, λ1 = 1.007, λ2 = 1.152, 
λ3 = 1.304, and λ4 = 1.399
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Fig. 15   Optimized design (σupper_bound = 513 MPa and λlower_bound = 1), 
m = 0.443 kg, and its stress distributions and first four buckling modes 
under combined compression and shear, σvm,b,max = 481.4  MPa, 

σvm,m,max = 495.3  MPa, σvm,t,max = 512.9  MPa, λ1 = 1.004, λ2 = 1.007, 
λ3 = 1.013, and λ4 = 1.052

Fig. 16   Optimized design (without stress constraint and 
λlower_bound = 1), m = 0.341  kg, and its stress distributions and first 
four buckling modes under combined compression and shear, 

σvm,b,max = 696.1  MPa, σvm,m,max = 722.1  MPa, σvm,t,max = 757.5  MPa, 
λ1 = 1.001, λ2 = 1.006, λ3 = 1.018, and λ4 = 1.024
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4.2 � Stiffened panel under compression, shear 
and bending

The stiffened panel with the loading and boundary condi-
tions shown in Fig. 20 is considered for optimization. The 
size of the panel is 0.3 m × 0.3 m. The lower and upper 
bounds of thicknesses of both the skin and the stiffeners are 
0.001 m and 0.003 m, respectively. The upper bound of the 

von Mises stress σupper_bound = 427.5 MPa. The lower bound 
of the critical buckling load factor is λlower_bound = 1.

The same initial design in Fig. 11 is used. Its stress dis-
tributions and buckling modes are shown in Fig. 21. The 
first 10 buckling modes are considered in the optimization.

To investigate the effect of p in the p-norm stress function 
in Eq. (15) on the optimized design, the problem is solved 
with a range of p values. The optimized designs are given 

Table 1   Comparison of the optimized results with different stress constraints and without a stress constraint

σupper_bound (MPa) λlower_bound m (kg) σvm,b,max (MPa) σvm,m,max (MPa) σvm,t,max (MPa) λ1 λ2 λ3 λ4

356 1 0.594 330.7 341.6 356.0 1.007 1.152 1.304 1.399
427.5 1 0.507 398.8 411.2 427.3 1.001 1.013 1.038 1.119
513 1 0.443 481.4 495.3 512.9 1.004 1.007 1.013 1.052
No stress constraint 1 0.341 696.1 722.1 757.5 1.001 1.006 1.018 1.024

Fig. 17   Optimized design (σupper_bound = 427.5  MPa and 
λlower_bound = 2), m = 0.528  kg, and its stress distributions and first 
four buckling modes under combined compression and shear, 

σvm,b,max = 395.7  MPa, σvm,m,max = 409.3  MPa, σvm,t,max = 427.4  MPa, 
λ1 = 2.006, λ2 = 2.017, λ3 = 2.029, λ4 = 2.035
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in Figs. 22, 23, 24, 25, 26, 27. The comparison is given in 
Table 4.

For this example, it can be seen from Figs. 21, 22, 23, 24, 
25, 26, and 27 that the stress concentrations occur around the 
ends of the stiffeners. Compared with the previous loading 
condition in Fig. 3, the stress distribution and locations of 
the stress concentrations are more dependent on the configu-
ration of the stiffeners. The optimized designs in Figs. 22, 

23, 24, 25, 26, and 27 all satisfy the stress and buckling con-
straints. However, when p increases from 6 to 10, there are 
obvious changes in the internal topologies of the stiffeners. 
The 4th and 6th stiffeners get wider and higher. When p is 
12 or greater, the thickness distributions, layouts, and inter-
nal topologies of the stiffeners are almost the same. From 
Table 4, it can be observed that, when p increases from 6 
to 18, the masses of the optimized designs are gradually 

Fig. 18   Optimized design (σupper_bound = 427.5  MPa and 
λlower_bound = 3), m = 0.552  kg, and its stress distributions and first 
four buckling modes under combined compression and shear, 

σvm,b,max = 398.3  MPa, σvm,m,max = 411.0  MPa, σvm,t,max = 427.4  MPa, 
λ1 = 3.018, λ2 = 3.032, λ3 = 3.046, λ4 = 3.056

Table 2   Comparison of the optimized results with different buckling constraints

σupper_bound (MPa) λlower_bound m (kg) σvm,b,max (MPa) σvm,m,max (MPa) σvm,t,max (MPa) λ1 λ2 λ3 λ4

427.5 1 0.507 398.8 411.2 427.3 1.001 1.013 1.038 1.119
427.5 2 0.528 395.7 409.3 427.4 2.006 2.017 2.029 2.035
427.5 3 0.552 398.3 411.0 427.4 3.018 3.032 3.046 3.056
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Fig. 19   Optimized design using different kinds of optimization with σupper_bound = 427.5 MPa and λlower_bound = 1: a sizing optimization; b sizing 
and layout optimization; c topology optimization; d sizing and topology optimization; e layout and topology optimization

Table 3   Comparison of the optimized results using different kinds of optimization with σupper_bound = 427.5 MPa and λlower_bound = 1

Optimization m (kg) Percentage greater 
than (f) for the mass 
(%)

σvm,b,max (MPa) σvm,m,max (MPa) σvm,t,max (MPa) λ1 λ2 λ3 λ4

(a) Sizing 0.646 27.4 401.6 413.1 427.5 3.247 3.943 4.325 4.415
(b) Sizing and layout 0.645 27.2 402.3 413.5 427.5 3.126 3.859 4.297 4.489
(c) Topology 0.564 11.2 397.6 407.8 420.2 1.007 1.011 1.044 1.099
(d) Sizing and topology 0.514 1.38 406.0 415.7 427.5 1.002 1.004 1.028 1.101
(e) Layout and topology 0.545 7.50 401.7 411.1 422.3 1.002 1.011 1.034 1.081
(f) Sizing, layout and topology 0.507 0 398.8 411.2 427.3 1.001 1.013 1.038 1.119
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decreased. When p increases from 18 to 24, the masses of 
the optimized designs remain roughly the same. Their differ-
ence is only 0.11%. This shows that, when p is low, the opti-
mization may converge to a local optimum. Nevertheless, 
the difference between the masses of the optimized designs 
in Figs. 22, 23, 24, 25, 26, and 27 are within 3.3%. The 
optimized results are reasonably insensitive to the selection 
of the value of p. Therefore, when the value of p is selected 

in the range from 6 to 24, acceptable optimized designs can 
be obtained.

5 � Conclusions

Inspired by Professor Haftka’s pioneering research in design 
of stiffened panels, this paper presents a computational 
scheme for stiffened panel design simultaneously optimiz-
ing size, layout, and topology under stress and buckling con-
straints. An effective level-set-based topology optimization 
formulation is presented. The geometry and FE model updat-
ing procedure is described in detail and, a semi-analytical 
sensitivity analysis is presented. The optimization algorithm 
is also outlined. The numerical investigations show that the 
presented method is able to effectively solve stiffened panel 
design problems. The stiffener layout is optimized, the stiff-
ener number is reduced, and the materials in the panel and 
remaining stiffeners are redistributed to produce the mini-
mum weight designs while satisfying the stress and buckling 
constraints. The influences of the stress constraint, buckling 
constraints, and p in p-norm stress function on the optimized 
solutions are demonstrated. The presented method offers a 

Fig. 20   Loading and boundary conditions for the design of a stiffened 
panel under combined compression, shear, and bending

Fig. 21   Initial design with seven vertical stiffeners, m = 0.826 kg, and its stress distributions and first four buckling modes under combined com-
pression, shear and bending, σb,max = 268.7 MPa, σm,max = 182.6 MPa, σt,max = 323.4 MPa, λ1 = 1.485, λ2 = 3.449, λ3 = 3.866, and λ4 = 4.618
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Fig. 22   Optimized design with p = 6, m = 0.458 kg, and its stress distributions and first four buckling modes under combined compression, shear, 
and bending

Fig. 23   Optimized design with p = 8, m = 0.454 kg, and its stress distributions and first four buckling modes under combined compression, shear, 
and bending
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Fig. 24   Optimized design with p = 10, m = 0.453  kg, and its stress distributions and first four buckling modes under combined compression, 
shear, and bending

Fig. 25   Optimized design with p = 12, m = 0.448  kg, and its stress distributions and first four buckling modes under combined compression, 
shear, and bending
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Fig. 26   Optimized design with p = 18, m = 0.443  kg, and its stress distributions and first four buckling modes under combined compression, 
shear, and bending

Fig. 27   Optimized design with p = 24, m = 0.444  kg, and its stress distributions and first four buckling modes under combined compression, 
shear, and bending
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practical design tool to design and optimize a stiffened panel 
configuration with the greatest design freedom.
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