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Abstract 

Objective:  There is increasing evidence that amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative 
disease impacting large-scale brain networks. However, it is still unclear which structural networks are associated with 
the disease and whether the network connectomics are associated with disease progression. This study was aimed 
to characterize the network abnormalities in ALS and to identify the network-based biomarkers that predict the ALS 
baseline progression rate.

Methods:  Magnetic resonance imaging was performed on 73 patients with sporadic ALS and 100 healthy par-
ticipants to acquire diffusion-weighted magnetic resonance images and construct white matter (WM) networks 
using tractography methods. The global and regional network properties were compared between ALS and healthy 
subjects. The single-subject WM network matrices of patients were used to predict the ALS baseline progression rate 
using machine learning algorithms.

Results:  Compared with the healthy participants, the patients with ALS showed significantly decreased clustering 
coefficient Cp (P = 0.0034, t = 2.98), normalized clustering coefficient γ (P = 0.039, t = 2.08), and small‐worldness σ 
(P = 0.038, t = 2.10) at the global network level. The patients also showed decreased regional centralities in motor 
and non-motor systems including the frontal, temporal and subcortical regions. Using the single-subject structural 
connection matrix, our classification model could distinguish patients with fast versus slow progression rate with an 
average accuracy of 85%.

Conclusion:  Disruption of the WM structural networks in ALS is indicated by weaker small-worldness and distur-
bances in regions outside of the motor systems, extending the classical pathophysiological understanding of ALS as a 
motor disorder. The individual WM structural network matrices of ALS patients are potential neuroimaging biomarkers 
for the baseline disease progression in clinical practice.
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Introduction
Amyotrophic lateral sclerosis (ALS) is an intractable pro-
gressive neurodegenerative disease characterized clas-
sically by neurodegeneration and loss of upper motor 
neurons of the corticospinal tract and lower motor neu-
rons of the brainstem and spinal cord anterior horns [1]. 
While symptoms such as muscular weakness, spasticity 
and hyperreflexia may initially be manageable, the pro-
gressive loss of respiratory muscle innervation can lead 
to respiratory failure, typically within 2–4 years of symp-
tom onset [2]. There is increasing evidence that ALS also 
affects multiple neural systems beyond the motor cortex 
and corticospinal tract [3] and there is an urgent need to 
identify reliable biomarkers for ALS progression in clini-
cal practice and pharmacological trials [4].

Typically, decreased fractional anisotropy (FA) within 
focal brain regions including motor, frontal and pre-
frontal areas are found in white matter (WM) studies in 
ALS using diffusion tensor imaging (DTI) tractography 
[5] and tract‐based spatial statistics [6–8]. DTI metrics 
are sensitive markers for WM change [9], and have been 
recommended for ALS diagnosis [9] and assessment of 
disease progression [10, 11]. However, the direct corre-
lations between focal magnetic resonance imaging (MRI) 
metrics and neuropsychological measures are question-
able, because the motor, cognitive and behavioral func-
tions are mediated by multisynaptic brain networks [12]. 
Therefore, the notion of selective anatomic vulnerability 
[13] is being supplemented and to some extent replaced 
by the syndrome-specific network vulnerability notion 
[14], which is supported by concepts such as network-
wise degeneration [15], circuit-specific vulnerability [16] 
and disease progression along structural connectivity 
patterns [17]. DTI studies based on graph theory offer 
a valuable tool to analyze the topological organization 
of brain networks and inter-regional connections [18], 
which may be indicators of ALS progression [19]. In the 
‘connectomics’ analysis, cortical and subcortical brain 
regions are parcellated into nodes, and the WM metrics 
of tracks between them taken as the edges of a mathe-
matical graph. Such studies show that the brain networks 
have a “small-world” organization [18], intermediate 
between random networks, whose shorter overall path 
length is associated with a low level of local cluster-
ing, and regular networks or lattices, whose high level 
of clustering is accompanied by a long path length [18]. 
The small-world network architecture reconciles rela-
tively independent functioning (i.e. segregation) with fast 

information transfer (i.e. integration) [20]. Application of 
this powerful approach to the brain structural and func-
tional connectome in ALS has, however, yielded incon-
sistent results [19, 21–23].

Incorporating the interaction information across the 
whole brain, the single-subject network approach has 
value in characterizing objective brain features to dis-
tinguish patients from healthy individuals [24] as well 
as for predicting clinical outcomes after drug treatment 
[25]. Several clinical prognostic factors have been identi-
fied for ALS, including age, site of onset, functional and 
respiratory status, cognitive function, noninvasive venti-
lation, some genetic mutations [26], and clinical pheno-
types [27]. In addition, there are some biological markers 
proposed as related to the ALS outcome, including dys-
lipidemia [28, 29], uric acid [30, 31], creatinine, albu-
min [4], and granulocyte count [32]. However, it is still 
unclear whether the WM network parameters have pre-
dictive value for the ALS baseline progression rate.

In the present study, we applied graph theoretical anal-
ysis to DTI data to compare the topological properties of 
brain WM networks between ALS patients and healthy 
controls (HC) at the global, regional and connection lev-
els, and also evaluated the predictive value of the DTI-
based connectome for the baseline ALS progression.

Methods
Participants
Seventy-three patients with ALS and 100 age- and sex-
matched HCs were included in this study. All patients 
with ALS fulfilled the El Escorial revised criteria of the 
World Federation of Neurology for definite or probable 
ALS and none of them had affected family members. The 
severity of the disease was evaluated by the ALS func-
tional rating scale-revised (ALSFRS-R). The exclusion 
criteria for patients were: (1) severe dysarthria and hand 
weakness; (2) meeting the criteria of ALS-frontotemporal 
dementia; and (3) a history of other neurologic conditions 
that could affect the assessment. The cognitive abilities 
of the ALS patients were estimated using the Adden-
brooke’s Cognitive Examination–revised, Chinese Ver-
sion. No patient showed significant cognitive impairment 
according to our prior studies [33, 34] at the time of their 
neuropsychological assessment. The ALSFRS-R assessed 
three latent domains corresponding to bulbar, motor and 
respiratory functions [35, 36], defined as follows: bul-
bar score = sum of ALSFRS-R questions 1–3 (maximum 
score 12); motor score = sum of ALSFRS-R questions 
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4–9 (maximum score 24); respiratory score = sum of 
ALSFRS-R questions 10–12 (maximum score 12) [35]. 
The baseline ALS progression rate was calculated as  
(48 – ALSFRS-R)/time since disease onset [37]. The disease  
onset time was obtained based on patients’ recall and 
cross-checked by at least one of the close family members 
or against medical records if available. The anxiety and 
depression level of patients was measured by the Ham-
ilton Anxiety and Depression Rating Scale. Healthy par-
ticipants were recruited from local community through 
poster advertisements. The exclusion criteria for all 
participants were: (1) presence of focal brain lesions on 
routine MRI; (2) claustrophobia or standard MRI incom-
patibility; (3) history of alcohol/substance abuse; (4) 
comorbidity with neurological or psychiatric disorders or 
serious physical disease (including traumatic brain injury, 
cerebrovascular disease, hypertension, diabetes mellitus, 
ischemic heart disease, chronic liver disease, or other 
chronic systemic disorders); and (5) poor image quality 
or severe head motion via visual inspection. This study 
was approved by the Human Research Ethics Commit-
tee of West China Hospital and written informed consent 
was obtained from all participants.

Image acquisition
All participants were scanned using the same magnetic 
resonance scanner (3.0  T Siemens Trio, Erlangen, Ger-
many) with a 12-channel head coil. Head motion was 
minimized by foam padding. DTI images were acquired 
using a spin-echo echo-planar sequence with the fol-
lowing parameters: 64 noncollinear diffusion directions 
with b = 1000  s/mm2 and a reference image without 
diffusion weighting (b value = 0), 3  mm slice thickness 
with no interslice gap, repetition/echo time (TR/TE) 
6800/91  ms, field of view 1920 × 1920 mm2, flip angle 
90°, voxel 0.94 × 0.94 × 3.0 mm3 and 2 excitations. 
High-resolution 3D T1-weighted images were acquired 
using a magnetization-prepared rapid gradient-echo 
sequence with the following parameters: resolution 
1.0 mm × 1.0 mm × 1.0 mm, TR/TE 1900/2.26 ms, inver-
sion time 900  ms; flip angle 9°, FOV 256 × 256 mm2, 
matrix size 256 × 256, slice thickness 1 mm, no interslice 
gap, voxel 1 × 1 × 1 mm3 and 176 slices.

Image data processing and network construction
Data preprocessing and WM network construction were 
conducted mainly using the PANDA software (http://​
www.​nitrc.​org/​proje​cts/​panda/; a pipeline tool for diffu-
sion MRI analysis) [38]. The patient and control samples 
did not differ in scanning head motion for rotation, tran-
sition, and frame-wise displacement (all P > 0.05, Addi-
tional file 1: Table S1).

Whole-brain anatomical networks were constructed 
according to the approach used previously [39]. First, to 
define the nodes of the network, we used the automated 
anatomical labeling (AAL) atlas to divide the whole brain 
into 90 cortical and subcortical regions [40], as discussed 
and used previously [39, 41]. The connections between 
each pair of brain anatomical regions were determined 
by the FA value, which resulted in a  90 × 90 matrix for 
each participant. More details regarding the image pro-
cessing and network construction work can be found in 
Additional file 2.

Brain WM network topological measure analyses
We applied a network sparsity parameter, S, to give each 
network the same number of edges. According to previ-
ous studies [42, 43], we selected a range of S thresholds 
for the WM connectivity network such that: (1) the aver-
aged degree over all nodes of each thresholded network 
was > 2 × log 90; and (2) the small‐worldness σ of all 
thresholded networks was > 1.1 in all participants. Based 
on these criteria, we defined S ranging from 0.1 to 0.34. 
For each network, the area under the curve (AUC), cal-
culated over the range of S values with an interval step 
of 0.01, provides a summarized scalar for the topological 
characterization of brain networks unbiased by any single 
threshold.

Graph theoretical analysis was carried out on each 
participant’s WM network using the GRETNA software 
(http://​www.​nitrc.​org/​proje​cts/​gretna/) [44]. Both global 
(clustering coefficient Cp, characteristic path length Lp, 
normalized clustering coefficient γ, normalized charac-
teristic path length λ, small‐worldness σ, local efficiency 
Eloc and global efficiency Eglob) and regional metrics 
(nodal degree, betweenness and efficiency) were used to 
characterize network topology. For global measures, high 
values of Cp, γ, and Eloc reflect network segregation, i.e., 
the ability for specialized neuronal processing carried 
out among densely interconnected regions; while low 
values of Lp, λ, and high Eglob reflect network integration, 
i.e., the ability for global information communication or 
distributed network integration; σ characterizes an opti-
mized balance between network segregation and inte-
gration [45, 46]. For nodal measures, the three kinds of 
nodal centrality measurements can reflect the topologi-
cal importance of nodes in the network in different ways. 
More detailed explanation of topological measures can 
be found in the Additional file 2.

To detect the altered connectivity networks in patients 
with ALS, we used an NBS approach (http://​www.​nitrc.​
org/​proje​cts/​nbs/) [47] to define a set of supra-thresh-
old links in which any of the  connected components 
and their sizes could be determined (threshold, t = 2.62, 
P < 0.05 equal to Cohen’s d = 0.2). The significance of 

http://www.nitrc.org/projects/panda/
http://www.nitrc.org/projects/panda/
http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/nbs/
http://www.nitrc.org/projects/nbs/
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each supra-threshold link among the connected compo-
nents was estimated using a nonparametric permutation 
method (10,000 permutations).

Statistical analyses
The demographic characteristics of the ALS and HC 
groups were compared using the R software (version 
4.0.0). A nonparametric permutation test (repeated 
10,000 times) was used to analyze between‐group differ-
ences in the AUC of global and nodal network metrics. 
After balancing statistical power against the risk of type I 
error, for all the nodal metrics, only the nodal centralities 
that changed in the same direction in at least two out of 
three different measures were reported [48]. After iden-
tification of the between-group differences in global and 
regional network metrics, partial Pearson’s correlation 
analyses were performed to assess their relationship with 
symptom severity including ALSFRS-R and its subscores, 
depression level and anxiety level, controlling for age, sex 
and illness duration.

Prediction of the baseline progression rate using 
single‑subject WM network
We further studied whether the single-subject WM net-
work of patients with ALS can be used to predict their 
baseline progression rate. To increase the robustness of 
the prediction, the progression rate was binarized to “fast 
progression” and “slow progression” using a cut-off value 
of 0.68 per month based on previous studies [49, 50]. To 
reduce the feature dimension, we converted the raw con-
nection data into principal components (PCs) using prin-
cipal component analysis (PCA). We fed the PCs which 
explained 80% variance of the connection data into the 
linear kernel support vector machine (SVM) algorithm 
(Additional file 1: Fig. S1). To get the unbiased classifica-
tion accuracy estimation and tune the hyperparameter 
C for the SVM, nested cross-validation was used (details 
found in Additional file 2).

To assess the significance of the prediction and to make 
sure that the proposed results did not reflect overfitting, 
we re-ran the study on a randomly permuted dataset. To 
do this, we shuffled the progression rate tags (slow and 
fast progression), breaking the relationship between ALS 
progression and MRI data and re-ran the analysis. This 
process was repeated for 5000 iterations and thus quanti-
fied the ability of the model to predict noise.

Finally, the top 10 PCs with highest weights in the SVM 
model were then mapped back from PCA space to WM 
connectivity space to identify the most important brain 
connections for ALS progression prediction. The predic-
tor importance score for connections was defined as the 
product of the absolute value of the weight of the PC in 

SVM model and principal component scores of the con-
nections [51].

Results
Demographic and clinical data
Demographic and clinical characteristics of the partici-
pants are summarized in Table 1. There were no signifi-
cant differences between the two groups in age, sex or 
years of education (P > 0.05).

Global and nodal topological alterations of the WM 
networks
Both the ALS and the HC groups exhibited small-world 
properties of the WM structural network architecture, 
with γ > 1 and λ ≈ 1. The patients with ALS showed 
decreased Cp (P = 0.0034, t = 2.98), γ (P = 0.039, t = 2.08) 
and σ (P = 0.038, t = 2.10) compared with HC (Fig.  1). 
These differences were still significant after taking 
account of the outliers.

The nodal topological centralities were decreased in 
patients with ALS compared with the HCs in the right 
medial orbital frontal cortex, the left medial superior 
frontal cortex, the right gyrus rectus, the right paracen-
tral lobule, the right inferior parietal cortex, the bilateral 
superior temporal pole, the left amygdala and the right 
caudate (P < 0.05, with significant change in the same 
direction in at least two of three centrality measures) 
(Fig. 2, Additional file 1: Table S2). Comparing the con-
nections measured by FA values, we found a network less 
connected in ALS than in HC, with 6 nodes and 5 edges 
after NBS correction (Fig. 2).

Although the head motion parameters between 
patients and HCs were not significantly different (all 
P > 0.05, Additional file 1: Table S1), to further minimize 
the impacts of head motion on the primary results, we 
also re-ran the between-group comparisons taking all 
head motion parameters (including 3 translation, 3 rota-
tion and 2 frame-wise displacement measures) as covari-
ates. As expected, all between-group comparisons led to 
the same results as that obtained before.

Relationships between topological properties and clinical 
variables
Exploratory partial Pearson’s correlation analyses 
showed that the small-worldness indices were posi-
tively correlated with ALSFRS (r = 0.27, P = 0.017, 
Fig. 3a); the degree centrality of the right medial orbital 
frontal cortex was negatively correlated with depression 
symptoms (r = − 0.30, P = 0.011) (Fig. 3b) and the nodal 
efficiency of the right paracentral lobule was positively 
correlated with ALSFRS (r = 0.28, P = 0.015) (Fig.  3c). 
After excluding outliers, the correlation between the 
degree centrality of the right medial orbital frontal 
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cortex and depression symptoms did not reach statis-
tical significance (r = − 0.24, P = 0.051), but all other 
correlation results remained significant. We also found 
correlation relationships between network metrics and 
ALSFRS-R subscores (Table 2).

Machine learning analysis using single‑subject WM 
networks to predict ALS progression
The demographic and head motion variables were com-
parable between the subgroups of fast and slow pro-
gression rate (Additional file  1: Table  S3). Using WM 

Table 1  Demographic and clinical characteristics of study participants

ALS amyotrophic lateral sclerosis, CON healthy controls, ALSFRS-R Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, n.a. not available, n.s not significant
a Calculated as (48 – ALSFRS-R score)/time since disease onset
b The toxic substances included pesticides, heavy metals, and organic solvents
c Anxiety level was evaluated by the Hamilton Anxiety Rating Scale
d Depression level was evaluated by the Hamilton Depression Rating Scale
e Bulbar score = the sum of ALSFRS-R questions 1–3 (maximum score of 12)
f Motor score = the sum of ALSFRS-R questions 4–9 (maximum score of 24)
g Respiratory score = the sum of ALSFRS-R questions 10–12 (maximum score of 12)

ALS CON Statistical significance

Sample size 73 100

Age, mean (SD), years 49.8 (7.9) 49.8 (8.7) t = 0.98, n.s

Sex (female/male) 33/40 57/43 χ2 = 1.9, n.s

Education level, mean (SD), years 9.0 (3.2) 8.9 (4.1) t = -0.16, n.s

BMI, mean (SD) 22.4 (2.7) 22.9 (2.8) t = -1.3, n.s

Bulbar onset (%) 23.5% n.a

Disease duration, mean (SD), months 10.58 (5.86) n.a

Progression rate, mean (SD), units/montha 0.71 (0.63) n.a

Exposure to toxic substances (yes/no)b 15/58 n.a

Anxiety level, mean (SD)c 4.1 (5.2) n.a

Depression level, mean (SD)d 7.2 (7.2) n.a

ALSFRS-R, mean (SD) 42.0 (3.9) n.a

ALSFRS-R_bulbar, mean (SD)e 10.8 (1.8) n.a

ALSFRS-R_motor, mean (SD)f 19.1 (3.5) n.a

ALSFRS-R_resp mean (SD)g 12 (0) n.a

Fig. 1  Abnormal global metrics in patients with ALS compared with HC. The clustering coefficients (a), normalized clustering coefficients (b) and 
small-worldness index (c) in ALS were significantly decreased compared with HC. Abbreviations: ALS, amyotrophic lateral sclerosis; HC, healthy 
controls; Cp, clustering coefficients; Gamma, normalized clustering coefficients; Sigma, small-worldness index
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matrices, the mean balanced classification accuracy for 
predicting ALS baseline progression rate was 85%, which 
is well above the chance expectation using the same 
model (P < 0.05, Additional file 1: Fig. S2). We calculated 

the predictive importance score for each connection in 
the WM network. The 50 most relevant WM connections 
contributing to the SVM classification are shown in Fig. 4 
and Table 3.

Discussion
In the present study, we found significant changes in the 
topological architecture of brain structural network at 
different levels. At the global level, the whole‐brain WM 
network showed decreased small-worldness in patients 
with ALS, reflected by lower σ, and decreased segrega-
tion reflected by lower Cp and λ. At the regional level, 
several nodes located mainly in the frontal, temporal and 
subcortical regions showed decreased topological cen-
tralities in patients with ALS. At the connection level, we 
found decreased WM connections between the nodes 
with decreased centralities. In addition, the machine 
leaning model showed that the single-subject structural 
connection network can be used as a biomarker to pre-
dict the ALS progression rate, which may inspire further 
clinical practice.

The WM structural networks in patients with ALS 
showed weaker small-worldization, evidenced by 
decreased clustering coefficients and small-worldness 
index. The small‐world organization reflects an optimal 
balance between network segregation (reflected by Cp, 
γ, or Eloc) and network integration (reflected by Lp, λ, or 
Eglob) of information processing [20], and the balance can 
be measured as σ [52]. Despite having an overall small‐
world architecture qualitatively similar to HC, patients 
with ALS showed lower Cp and γ, resulting in a lower 
small-worldness index σ. These alterations of small-
worldness were positively correlated with ALSFRS, sug-
gesting a clinical relevance.

These results are consistent with a recent multicenter 
study that reported altered global structural brain net-
work properties in patients with ALS [53]. In contrast, 

Fig. 2  Nodal centrality and connection abnormalities in patients 
with ALS compared with the healthy controls. Nodal centralities in 
nine nodes (red) were decreased in ALS compared with the HC. Using 
NBS, 5 connections (green) were decreased in ALS compared with 
HC. SFGmed, superior frontal gyrus (medial part); TPOsup, temporal 
pole (superior part); AMYG, amygdala; IPL, inferior parietal lobe; CAU, 
caudate; ORBsupmed, orbital frontal cortex (superior medial part); 
ORBsup, orbital frontal cortex (superior part) 

Fig. 3  Correlations between topological metrics and clinical variables in patients with ALS. a Small-worldness indexes were positively correlated 
with ALSFRS. b Nodal degree centralities in right medial OFG were negatively correlated with the Hamilton depression scores. c Nodal efficiency 
centralities in right paracentral lobule were positively correlated with the ALSFRS. Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS, 
amyotrophic lateral sclerosis functional rating scale; OFG, orbital frontal gyrus
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several early studies on WM connectomics have reported 
no global topological alterations in patients with ALS 
[21, 22, 54]. Although these studies utilized similar MRI 
sequences and tracking methods, their sensitivity to 
these topological changes may have been limited by rela-
tively small sample sizes and/or relatively low numbers of 
non-collinear diffusion directions in the DTI sequence. 
Zhang et al. have reported that patients with ALS show a 
consistent rearrangement towards a regularized architec-
ture evidenced by increased path length and clustering 
coefficient [23]. This difference may result from different 
network definitions, as they used the structural covari-
ance networks, in which the connections were defined by 
the Pearson correlation coefficients between two regions 
of interest in gray matter. However, rearrangement 

toward a regularized network itself reflects a breakdown 
of the original optimal small-world network architecture. 
No doubtfully, different modalities can provide different 
perspectives on network abnormalities. In future connec-
tome studies on ALS, different modalities can be com-
bined to include functional MRI, diffusion MRI and gray 
matter MRI in larger sample sizes.

In addition to the global topological abnormalities, we 
found topological alterations in several brain regions. 
Consistent with the recent multicenter study [53], we 
found decreased nodal centralities in ALS patients in 
both motor and nonmotor networks including the sec-
ondary motor regions, the prefrontal regions, the tem-
poral regions (superior temporal pole), the basal ganglia 
regions and the parietal region.

Table 2  Correlation between the network metrics and ALSFRS-R subscores

Cp clustering coefficient, R right

Network metrics Class of subscores r value P value

Cp Motor 0.25 0.035

Nodal betweenness in R paracentral lobule Bulbar 0.29 0.013

Nodal efficiency in R paracentral lobule Bulbar 0.44 0.00013

Nodal efficiency in R caudate Bulbar 0.24 0.046

Fig. 4  The connections which contributed most to the Support Vector Machine classification. Linear kernel SVM weights of the top 10 principal 
components were mapped back onto white matter connectivity data. Only the top 50 connections are shown: the color bar represents the 
predictive importance scores of connections in the WM network feature space. Abbreviations: L, Left; R, right
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The cortical motor system is a distributed network 
of areas involved in different aspects of specific motor 
execution. Even simple movements are associated with 
activation of multiple cortical areas of the primary motor 
cortex and the secondary motor regions [55–57], includ-
ing the supplementary cortex, the premotor cortex, the 
paracentral lobule and the superior parietal motor areas, 
which are highly inter-connected, converging on the pri-
mary motor cortex [58]. Our results suggest that deficits 
of the secondary motor regions may be an important trait 
in ALS. Consistent with this, earlier neuroimaging stud-
ies have reported decreased cortical thickness and gray 
matter volume of the secondary motor regions in patients 
with ALS [59–61].

The pathological hallmarks of ALS are tau-negative 
and ubiquitin-positive intraneuronal inclusions, and the 
43-kDa TAR DNA-binding protein (pTDP-43) is a major 
component of the inclusions specific for frontotempo-
ral lobar degeneration and ALS [62]. Initially, the TDP-
43 burden is greatest in the agranular motor cortex and 
brainstem motor nuclei [63]. As the disease progresses, 
the pTDP-43 lesions increasingly involve the prefrontal 
(gyrus rectus and orbital gyri), striatum, amygdala and 
temporal lobe along axonal pathways [63, 64]. Consist-
ently, neuroimaging studies in ALS have also confirmed 
the spread of atrophy and/or hypometabolism to the 
frontal and temporal cortices [65–67]. DTI studies have 
also reported WM deficits in the frontotemporal regions 
[68, 69]. Longitudinal and combined structural and func-
tional MRI studies are needed to validate our hypothesis 
of disease progression along the functional and structural 
connections of the frontotemporal network.

We also found that the single-subject networks can pre-
dict the disease progression rate with an accuracy of 85%. 
Earlier studies also found that MRI abnormalities can be 
used to predict outcome in ALS. More severe abnormali-
ties of the corticospinal tract and the spinal cord predict 
a poorer long-term clinical outcome in patients with ALS 
[70, 71]. FA has been proven to be a sensitive DTI met-
ric for both diagnosis [72] and progression modeling [73]. 
An earlier WM network study has also found a relation-
ship between the FA-based connectivity degree in the 
frontal area and disease progression rate of patients with 
ALS [19]. Similarly, using deep learning, van der Burgh 
and colleagues also predicted outcomes of ALS patients 
with high accuracy by combining the WM network, mor-
phology and clinical information [74]. As an important 
alternative approach to studying ALS pathology progres-
sion, earlier studies [75–78] also found that alterations of 
network and other imaging features provide useful infor-
mation associated with disease progression [79] in the 
spatial domain. All this evidence indicates that the brain 
network information has significant predictive potential 

Table 3  Top 50 relevant connections contributing to the SVM 
classification

White matter connection Predictive 
weight

Hippocampus L to Thalamus R 0.105

Inferior orbital frontal gyrus R to Calcarine R 0.104

Lingual gyrus R to Middle occipital gyrus L 0.095

Middle occipital gyrus L to Putamen L 0.095

Calcarine R to Middle temporal gyrus R 0.094

Superior occipital gyrus L to Inferior temporal gyrus L 0.093

Superior frontal gyrus L to Caudate R 0.093

Hippocampus R to Superior occipital gyrus L 0.092

Superior frontal gyrus R to Supplemental motor area L 0.092

Postcentral gyrus L to Inferior temporal gyrus L 0.091

Precuneus R to Superior temporal gyrus L 0.090

Inferior frontal gyrus (triangular part) R to Superior occipital gyrus R 0.089

Posterior cingulum R to Calcarine L 0.088

Middle orbital frontal gyrus R to Calcarine R 0.087

Inferior orbital frontal gyrus L to Middle occipital gyrus L 0.087

Precuneus L to Thalamus R 0.087

Posterior cingulum L to Calcarine R 0.086

Olfactory R to Caudate L 0.086

Rectus L to Calcarine L 0.086

Superior parietal gyrus R to Thalamus R 0.086

Inferior frontal gyrus (triangular part) R to Cuneus R 0.085

Superior frontal gyrus L to Medial superior frontal gyrus R 0.084

Superior orbital frontal gyrus L to Middle occipital gyrus L 0.084

Inferior orbital frontal gyrus L to Superior occipital gyrus L 0.084

Middle occipital gyrus L to Precuneus R 0.084

Calcarine L to Putamen L 0.084

Inferior frontal gyrus (triangular part) R to Calcarine R 0.083

Insula L to Calcarine L 0.083

Inferior orbital frontal gyrus R to Lingual R 0.082

Calcarine L to Caudate L 0.082

Superior temporal gyrus R to Inferior temporal gyrus R 0.082

Middle occipital gyrus R to Precuneus L 0.082

Medial superior frontal gyrus L to Precuneus L 0.081

Inferior orbital frontal gyrus L to Calcarine L 0.081

Insula L to Middle temporal gyrus L 0.081

Calcarine L to Middle occipital gyrus R 0.081

Superior medial frontal gyrus R to Medial orbital frontal gyrus L 0.081

Hippocampus R to Thalamus L 0.081

Cuneus R to Occipital Mid L 0.080

Amygdala L to Calcarine L 0.080

Hippocampus R to Occipital Mid L 0.079

Middle cingulum R to Postcentral gyrus R 0.079

Angular L to Precuneus L 0.079

Medial superior frontal gyrus L to Caudate R 0.079

Superior occipital gyrus R to Middle occipital gyrus L 0.079

Middle orbital frontal gyrus L to Calcarine L 0.079

Lingual R to Superior occipital gyrus L 0.079

Calcarine L to Superior temporal gyrus L 0.079

Superior frontal gyrus R to Medial orbital frontal gyrus L 0.079

Cuneus R to Putamen R 0.079

L left, R right
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to predict disease progression in patients with ALS as a 
supplement to other clinical measures.

The study has several limitations. First, although the 
method for echo plane imaging-distortion correction (i.e. 
non-linear registration) used in the current study is com-
mon in the field, state-of-the-art distortion correction 
methods like file-mapping [80], topup-based approach 
[81–83], or machine learning approaches [84, 85] are 
encouraged to be used in future studies. Second, cur-
rently there is no widely accepted optimal approach to 
defining nodes and edges. We used the widely used AAL 
90 template regions as nodes and mean FA values of fib-
ers as the weighting factor in the construction of graphs. 
Other measures such as Harvard–Oxford atlas can also 
be considered for calculating network metrics [38]. 
Third, this study was cross-sectional; how the WM net-
work architecture associated with ALS evolves dynami-
cally and how the WM network evolves in the progress 
of disease remain to be clarified in longitudinal studies. 
Fourth, in this study the progression rate was based on a 
retrospective interview. As ALS progression is dynamic, 
a prospective study design would be more suitable for the 
prediction analysis. Fifth, we did not collect genetic infor-
mation of the ALS patients. Although genetic factors 
have less impact on sporadic ALS compared with familial 
ALS [86], further studies should also collect the genetic 
information to study the interactions between MRI and 
genetic information. Finally, to reduce the scanning time 
and thus limit obstacles to participation, we chose 3-mm 
slice thickness DWI. This has led to non-isotropic voxels 
which might have a negative effect on the FA estimation 
and tractography. High-resolution diffusion-weighted 
images with isotropic voxel size would be a better choice 
in future studies, if scanner timing permits.

Conclusion
Our study demonstrated disruption of the WM struc-
tural networks in ALS, indicated by weaker small-world-
ness and regional disturbance in the regions outside 
of the motor systems, which might extend our typical 
understanding of ALS as a motor disorder; further, the 
WM structural network has potential to serve as the 
neuroimaging biomarkers for predicting the progression 
of ALS. This study also adds to the field of psychoradiol-
ogy [87–89], an evolving subspecialty of radiology, which 
is primed to be of major clinical importance in guiding 
diagnostic and therapeutic decision-making  in patients 
with neuropsychiatric disorders.
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