
Centralised and Distributed Shape Formation with
a Linear-Strength Model

Thesis submitted in accordance with the requirements of the University of Liverpool for
the degree of Doctor in Philosophy by

Abdullah Abdurhman Almethen

November 2021

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

Abstract
This thesis is in the area of algorithmic robotic systems, where the main objective is to inves-
tigate the fundamental possibilities and limitations of different centralised and distributed
algorithms related to shape formation, including the domain of small-scale robotics, such
as programmable matter. It aims to combine current formalisms and develop a new theo-
retical model that is expected to promote the hardware and practical achievements while
also enhancing the deployment and implementation of energy-efficient systems. It consists
of three main parts.

First, we introduced a new linear-strength model of a discrete system of entities residing
on a two-dimensional square grid. Each entity is modelled as a node occupying a distinct
cell, and the set of all n nodes forms initially a connected shape A on the grid. Entities are
equipped with a linear-strength pushing mechanism that can push a whole line of entities in
parallel in a single time-step on one position in a given (one of the four possible) direction
of a grid. A target connected shape B is also provided and the goal is to transform A into B
via a sequence of line moves. Existing models of individual movements – such as rotating or
sliding a single node – can be shown to be special cases of the present model, therefore their
(inefficient, quadratic time) universal transformations carry over. We present an efficient
centralised algorithmic framework that can universally transform any pairs of shapes in
sub-quadratic worst-case transformations.

The second part focuses on designing centralised transformations aiming at minimis-
ing the total number of moves subject to the constraint of preserving connectivity of the
shape throughout the transformation. That is, in each intermediate configuration we always
guarantee that an associated graph induced by the occupied nodes is connected. We intro-
duce very fast connectivity-preserving transformations for the case in which the associated
graphs of A and B contain a Hamiltonian path. In particular, our transformation com-
pletes in a number of moves, which is asymptotically equal to the best known running time
of connectivity-breaking transformations. Our most general result is then a connectivity-
preserving universal transformation that can transform A into B (and B into A), through
a sequence of sub-quadratic moves in a worst-case transformation.

The last part establishes a corresponding distributed model where nodes are simple
indistinguishable devices called agents, which act as finite-state automata. Each gent has
constant memory and can observe the states of nearby agents in a Moore neighbourhood.
Our main contribution is the first distributed connectivity-preserving transformation that
exploits line moves within sub-quadratic moves, which is asymptotically equivalent to that
of the best-known centralised transformations. The algorithm solves the line formation
problem that allows agents to form a final straight line from any shape, whose associated
graph contains a Hamiltonian path.

i

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

ii

Acknowledgements

By the grace and mercy of Allah (God), I have arrived at the end of my PhD journey,
which has been one of the most exciting and long adventures in my life, and now I would
like to express my gratitude to everyone who helped me during this journey.

First, and foremost, I would like to express my deep feelings of gratitude and appre-
ciation to my supervisors Professor Igor Potapov and Dr Othon Michail. I am indebted
to all of their invaluable support, guidance and knowledge. I am also grateful for their
encouragement and advice; it has been a privilege to have worked with them over the past
four years. This thesis would not be possible without them.

I would also like to thank my academic advisors Professor Prudence Wong, Dr Russell
Martin and Dr Konstantinos Tsakalidis for their useful feedback and research suggestions.

I am grateful to Professor Leszek Gąsieniec and Dr Tom Friedetzky for agreeing to act
as examiners of my thesis and for the time they spent on reviewing it.

My deep gratitude goes to my parents, Nora and Abdurahman, for their endless love,
devotion, also for encouraging me to follow this path and supporting me along the way, and
for everything they have done for me. To my siblings; their unlimited support has been
invaluable, in particular Dr Mazen for his special assistance. To my grandfather, Abdullah,
and uncle, Ali, for their spiritual support.

The special warmest gratitude goes to my wonderful wife, Basma, for standing by me
and dealing with hardships and tribulations over a challenging time. I have no words to
express my appreciation of her patience, dedication and exceptional efforts. To my kids,
Judi and Abdulrahman, for bringing happiness into our life.

Last but not least, I would like to extend my appreciation to Qassim University and
the Saudi Ministry of Education for sponsoring my research, as well as the Saudi Cultural
Bureau in London for supporting me throughout the course of my postgraduate studies.

iii

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

iv

Contents

Abstract i

Acknowledgements iii

Contents vi

List of Figures ix

List of Algorithms x

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 State of the art . 7

1.2.1 Relevant models and results . 9
1.2.2 More peripheral related topics . 11

1.3 Thesis outline . 15
1.4 Technical contributions . 18
1.5 Author’s publications . 24

2 Discrete Shape Formation 26
2.1 Discrete shapes . 26

2.1.1 Family of shapes . 29
2.2 The shape formation model . 31

2.2.1 The linear-strength model . 32
2.2.2 The sliding and rotation model . 32

2.3 Shape formation problem . 33
2.4 The linear-strength transformation properties 34
2.5 Lower bounds on line moves . 40

2.5.1 An Ω(n log n) lower bound for the 2-HOP tree 43
2.5.2 A conditional Ω(n log n) lower bound - one way transformation . . . 46

v

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

3 Unrestricted transformations 49
3.1 The Diagonal-To-Line transformation . 50

3.1.1 DL-Partitioning: An O(n
√
n)-time Transformation 50

3.1.2 DL-Doubling: An O(n log n)-time Transformation 53
3.1.3 An O(n log n)-time Transformation Based on Recursion 56

3.2 Universal Transformations . 61
3.2.1 U-Box-Partitioning: An O(n

√
n)-time Transformation 61

3.2.2 U-Box-Doubling: An O(n log n)-time Transformation 66

4 Connectivity-Preserving transformations 73
4.1 The Diagonal-To-Line transformation . 75

4.1.1 Folding: An O(n
√
n)-time Transformation 75

4.1.2 Extending: An O(n
√
n)-time Transformation 82

4.2 Walk-Through-Path: An O(n log n)-time Hamiltonian shapes transformation 88
4.2.1 Transforming diagonal shape into line shape 89
4.2.2 Transforming Hamiltonian shapes into a straight line 90
4.2.3 Correctness and runtime analysis . 92

4.3 Compression: An O(n
√
n)-time universal transformation 96

4.3.1 Universal transformation by compression approach 97
4.3.2 Correctness and runtime analysis . 98

5 Distributed transformations 108
5.1 The distributed model of line moves . 110
5.2 The distributed Hamiltonian transformation 112

5.2.1 Defining the next segment Si . 115
5.2.2 Checking the next segment Si . 119
5.2.3 Drawing a route map . 121
5.2.4 Pushing the next segment Si . 132
5.2.5 Recursive call on the segment Si into a line L′i 142
5.2.6 Merging the two lines Li and L′i . 143

5.3 Further discussion . 145

6 Conclusions 146
6.1 Final discussion . 146
6.2 Future research directions . 149

References 152

vi

List of Figures

1.1 Inside Ocado’s warehouse. 3
1.2 Ocado’s grid system. 3
1.3 An artistic view of a future application for programmable matter. 4
1.4 3D Catoms. 5
1.5 A dependency digram of transformations. 17
1.6 A simulation of the simple procedure. From left to right, rounds 0, 1, 2, . . . , n. 24

2.1 An illustration of a connected shape S. 28
2.2 Examples of Central Line shapes (nice shapes N I C E). 30
2.3 Examples of Hamiltonian shapes denoted H. 31
2.4 The O(n2) individual node distance between SD and SL. 31
2.5 Sliding and rotation. 33
2.6 A line of k nodes changes orientation from vertical to horizontal. 36
2.7 An example of a reversible line move. 37
2.8 A path P of a given configuration CP . A line L will pass along P 38
2.9 A special-case of a line L moving through a path P 39
2.10 A tree T of k nodes. 43
2.11 Every node of SD is contained into log n boxes. 47
2.12 Nodes of the diagonal shape leaving their initial boundaries. 47

3.1 DL-Partitioning - an O(n
√
n)-time Transformation 51

3.2 DL-Doubling - an O(n log n)-time transformation 55
3.3 Subdivide the diagonal SD recursively by a factor of 1

x 57
3.4 A tree representation of a recursive partitioning of the diagonal shape. . . . 59
3.5 A brute-force line formation. 63
3.6 An implementation of the length-n gathering boundary. 65
3.7 An example of the transformations during phase i. 67
3.8 An example of a ‘cut’ of unoccupied 2i × 2i sub-boxes. 68
3.9 A distance of 2i has to be paid from occupied to another unoccupied sub-box. 69

4.1 A diagonal line of 25 nodes. 75

vii

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

4.2 Folding the top segment of the diagonal line. 76
4.3 The first phase of folding. 76
4.4 The second phase of folding. 76
4.5 The third phase of folding. 77
4.6 The fourth phase of folding. 77
4.7 A Ladle shape in phase k, where j′ = j + k − 1. 78
4.8 Folding a Ladlek during a single phase. 80
4.9 An implementation of DLC-Extending on a diagonal of 25 nodes. 83
4.10 Two primitives, turn and push, during the first phase. 84
4.11 Two primitives, turn and push, during the second phase. 84
4.12 A Tshape in phase k. 85
4.13 An implementation of DLC-Extending on T k

shape during phase k. 86
4.14 First and second phase of Walk-Through-Path transformation. 90
4.15 A snapshot of phase i of HamiltonianToLine transformation. 91
4.16 Two cases of Line-Walk operation. 94
4.17 Compressing a leaf component horizontally. 98
4.18 Compressing a leaf component diagonally. 99
4.19 A square box of four length-

√
n boundaries, each of

√
n/2 non-adjacent cells. 101

4.20 A line occupies the whole dimension of a sub-box. 102
4.21 A line l of length i <

√
n in (a), is pushing one step right in (b). 102

4.22 Two lines occupying a row are separated by one empty cell 103
4.23 A special-case of Figure 4.21. 104
4.24 A line turns to fill in empty cells at a boundary of Bp. 104
4.25 A shape of zigzag line. 106
4.26 A diagonal zigzag line. 107

5.1 The eight neighbouring agents of p. 111
5.2 A snapshot of phase i of HamiltonianToLine transformation. 114
5.3 A zoomed-in picture of the core recursive technique RecursiveCall. 115
5.4 An implantation of DefineSeg on a line Li of four agents. 117
5.5 Two configurations of a Hamiltonian path. 121
5.6 An implantation of 4-bit line counter Li. 123
5.7 Drawing a map: A path and corresponding local arrows. 128
5.8 A configuration of Li (black dots) and Si (grey dots). 128
5.9 An implementation of the arrows collection on the shape in Figure 5.8. . . . 130
5.10 A fast “ m1○” and slow “ m2○” wave meeting at the middle of Si of 8 agents. . . 132
5.11 An implementation of synchronising 8 agents that is started in Figure 5.10. 135
5.12 An example of synchronising 7 agents - odd case. 137
5.13 A line Li of four agents pushing through a route of empty cells. 138
5.14 A line pushing through a non-empty cell. 140
5.15 A line pushing and turning through empty and non-empty cell. 140

viii

Centralised and Distributed Shape Formation
with a Linear-Strength Model Abdullah A. Almethen

5.16 Four agents of a line swap states with other agents. 140
5.17 A line pushing through a disconnecting corner. 141

ix

List of Algorithms

1 HamiltonianToLine(S) . 92
2 Compress(S) . 100

3 DefineSeg . 118
4 CheckSeg . 120
5 ComputeDistance(Li, Si) . 125
6 CollectArrows(Li, Si) . 127
7 Push . 134

x

Chapter 1

Introduction

1.1 Overview and Motivation

In the 1980s, a seven-year-old boy was enthralled with a Japanese anime series revolving
around a super robot constructed of fictional metal parts and capable of morphing into
various shapes. One day in school, during science class, the boy explained the fascinating
idea of this robot to his classmates, who were astonished and said together, ‘This is never
going to happen’. The teacher commented, smiling, that science fiction has long served as
a source of inspiration for the scientific research community, paving the way for great real-
life inventions that have been enormously successful and impactful. A prominent example
is Jules Verne’s 1870 adventure novel Twenty Thousand Leagues Under the Seas [115],
which later served as inspiration for the invention of the submarine. Another example
is the concept of geostationary orbits in communication, which was previously envisioned
by Arthur C. Clarke in his 1945 paper ‘Extra-Terrestrial Relays – Can Rocket Stations
Give Worldwide Radio Coverage?’ [38]. Thus, the possibility should not be excluded that
creations of science fiction TV shows, such as the communicator in Star Trek, may become
a tangible reality that we live in the foreseeable future.1

Since the invention of computers, scientists and engineers from different disciplines
have made great joint efforts to build emerging innovations and sophisticated technologies
to improve the quality of human life. One of their ultimate goals is to develop robotic
systems consisting of machines that can efficiently change their shape by coordinating
connectivity among them in order to perform complex tasks, adapt to new surroundings

1It happened! The communicator inspired the development of mobile phones.

1

2 Abdullah A. Almethen

and environments, and tolerate any damage. For instance, the components of such a robotic
system might be arranged into a spanning line shape to pass through a narrow canal, bridge,
pipe or corridor in a mine. They may then reconfigure into a starlike shape to navigate
rough terrain or a spherical shape in which they pivot on themselves to roll swiftly over
an even surface. In another domain, those system parts may need to create a fairly static
object – such as a barrier, dam or shield – or perform complicated missions or heavy-duty
tasks, such as coating an object in space.

A variety of sophisticated robotic systems are now within reach due to recent advances
in components from large to nano scales, including sensors, controllers, electronics and
electromechanical actuators with which individuals can change their positions in a medium
and move relative to each other. Through a simple set of rules and local actions, the
system components can carry out tasks that are well beyond an individual’s capabilities.
The implementation of a robotic system indicates whether the individuals are operated
centrally or self-operated through local decentralised control. In centralised systems, there is
an external program which globally controls all individuals with full knowledge of the entire
system. On the other hand, decentralised or distributed systems provide each individual
with enough autonomy to communicate with its neighbours and move locally. There have
been an impressive number of recent developments in collective robotic systems that have
demonstrated such systems’ potential and feasibility, from the milli or micro [28, 78, 85, 102]
down to the nano scale [62, 100].

This has opened the door for the implementation of many innovative real-life applica-
tions across a wide range of domains. A popular recent example is the newest automated
warehouse of the UK online grocery company Ocado [2], where a collection of robots were
deployed on a two-dimensional grid system, called the hive and demonstrated in Figure
1.1, and worked together to collect orders and pack groceries (for a demonstration of the
abstract representation of the square grid system, see Figure 1.2). The robots communicate
via 4G technology and use their sensors to coordinate their traffic. Each robot holds its
own battery, which can be recharged when it runs out in one of the charging bays placed
across the grid. Moreover, the robot exploits a self-control system with which it can follow
a movement profile to decide where and when to move and stop on the grid. Once a robot’s
sensors encounter any issues, the robot switches to standby mode and moves to a safe spot
for further investigation. Amazon [40] and Alibaba [127] – the leading American and Chi-
nese e-commerce companies, respectively – have also adopted similar successful applications
of robotic systems in their smart warehouses. Design of efficient and correct algorithmic

Chapter 1. Introduction 3

solutions for a collection of robots is important for building safe and reliable industrial pro-
cesses and production lines. Moreover, recent accident in July 2021 at Ocado’s warehouse
of collided robots highlighted the importance of building algorithms with a mathematical
guarantee to avoid major disruption, see [5].

Figure 1.1: Inside the hive, one of Ocado’s warehouses [1].

Figure 1.2: A number of robots travel atop a square grid system inside Ocado’s warehouses.

Researchers from a variety of fields, including computer science, materials science,
physics and biology, have recently made significant progress in developing innovative, scal-
able and adaptive tiny robotic-units systems. This grand vision is currently shaping the
research area of programmable matter, which was proposed by Toffoli and Margolus [113]

4 Abdullah A. Almethen

in 1991. The term ‘programmable matter’ refers to any kind of materials that can algo-
rithmically change its physical properties, such as shape, colour, density and conductivity
through transformations executed by an underlying program. ‘Algorithmically’, in this
context, means that the change (or transformation) is the result of executing an underlying
program. This new area has attracted growing interest from both theoretical and practical
viewpoints.

If this type of matter is realised, a plethora of practical challenges can be addressed in
a variety of domains. For example, in healthcare, a system of very tiny particles injected
into a human body could transform into several shapes to efficiently traverse veins and
capillaries and treat infected cells. In another domain, air and water contaminants could
be identified and metabolised by a system of micro-particles. Another future application
might be materials with the ability to verify structural integrity and repair any minor
flaws in construction. Ball [22] broadly and intuitively explored this emerging concept and
depicted future visions of this technology. Figure 1.3 shows one of these imaginings.

Figure 1.3: An artistic view of a future application for programmable matter [22].

Several ongoing projects are conducting research on the design of the hardware compo-
nents that make up programmable matter. For example, a research group from the Uni-
versity of Bourgogne Franche-Comté in France [3] has been involved in the development
and implementation of distributed systems consisting of a collection of smart micro–electro-
mechanical units. This project is a prominent collaborative initiative in this subfield and
spans a diversity of universities and institutions, including the University of Tokyo, the
University of Michigan, Carnegie Mellon University and our team at the University of

Chapter 1. Introduction 5

Liverpool [4].
Piranda and Bourgeois [97] conducted one implementation of this project, studying the

design of a milli-scale self-reconfigurable system consisting of components called Claytronics
atoms, or ‘catoms’, that are able to attach and detach from each other as well as rotate
around one another. Figure 1.4 depicts the rotation mechanism. The number of challenges
related to communication, motion and occupation grows at a steady pace with the number
of catoms in the system. Hence, in [97], the authors offer a range of geometrical practical
solutions to these issues.

Figure 1.4: Two catoms are shown next to each other at the bottom, while the rotation
movement is shown at the top [97].

This progress has motivated the parallel development of a theory of small scale robotic
systems. The apparent absence of formal theoretical foundations – including modelling,
possibilities and limitations, algorithms, computability and complexity – has been high-
lighted in, for instance, [89] and [91]. The development of a formal theory is a fundamental
step for further progress in those systems, as theory can accurately predict the most promis-
ing designs and suggest new ways to optimise them by identifying crucial parameters and
the interplay between them. It also provides (centralised or distributed) algorithmic solu-
tions that are best suited to each given design and task, coupled with provable guarantees
regarding their performance.

Several theoretical computer science subfields have appeared for different areas, includ-
ing reconfigurable robotics [17, 30, 46, 53, 126], metamorphic systems [66, 93, 117], mobile
robotics [37, 43, 45, 56, 124], passively-mobile systems [19, 20, 90, 91], DNA self-assembly
[60, 101, 118, 121], and even the theory of puzzles [25, 48, 81]. A latest ongoing effort is
the joining of these theoretical forces and developments within the emerging subfield of
‘Algorithmic Foundations of Programmable Matter’ [68]. More details and specific reviews
of the relevant literature are provided later in this chapter.

The shape formation problem (also known as pattern formation or shape transforma-

6 Abdullah A. Almethen

tion) is ubiquitous in the vast variety of robotic systems. Indeed, it might be considered
the most essential and natural goal in this area. Abstractly, take a step back from any spe-
cific instantiation of robotic systems and consider a system deployed on a two-dimensional
square grid in which a collection of spherical entities of limited computational capabilities
are typically connected to each other, forming an initial shape (or configuration) SI . The
shape formation problem is formulated as follows:

“The entities move on the grid to transform SI into a desired target shape SF within a
finite number of valid individual moves.”

A number of models for such systems have been established and introduced in the
literature. For example, Dumitrescu and Pach [64], Dumitrescu et al. [65, 66] and Michail
et al. [89] considered mechanisms whereby an individual device can move over and turn
around its neighbours through empty space. Transformations based on similar moves being
assisted by small seeds were also considered in [8]. Each approach – or, more precisely, each
model – has its own distinct beauty and has drawn attention to many interesting technical
problems and open research questions, in addition to contributing several valuable insights
for the development for future applications and prospective systems.

A linear-strength model: This thesis primarily focuses on boosting the theoretical
underpinning of robotic systems. In particular, it investigates how the capabilities of certain
mechanisms can induce more efficient shape transformations. To this end, it introduces a
new linear-strength model for a robotic system comprised of devices residing on a two-
dimensional square grid in which an entire line of consecutive devices can, in parallel in
a single time-step, move by one position in a given direction (referred to as a line move).
This model, called the line-pushing model, is a natural generalisation of other existing
models, with a particular emphasis on exploiting the power of parallelism for fast global
reconfiguration. Apart from the pure theoretical interest of exploring fast transformations
on a grid, this model also provides a practical framework for efficient reconfigurations of real
systems. This approach, for example, might be applied to reconfigurable robotic systems in
which individual devices are equipped with linear-strength locomotion mechanisms. This
might be another system of external linear-strength forces that occur naturally (e.g. gravity,
water, winds) or artificially (e.g. magnetic surface, mechanical energy, a person’s hands)
with which the devices adhere appropriately to form a desired shape.

Section 1.2 is devoted to a thorough discussion of the relevant literature with a particular
focus on related studies on the main problem of this thesis, which is the shape formation

Chapter 1. Introduction 7

problem in Section 1.2. Next, Section 1.3 provides an overview of the overall structure of
this thesis. Following that, in Section 1.4, we go over the specific problems that the thesis
addresses and summarise how this study contributes to the area of robotic systems along
with the publications in Section 1.5.

1.2 State of the art

We begin with a review of existing models and shape formation problems in the relevant
literature. As this research study is in line with newly established subfields of robotic
systems, we present a general, top-level overview of the most prominent related centralised
and distributed studies. A particular focus is given to the literature most closely associated
with the subject of shape formation, which is the main problem of this thesis. The overview
of relevant systems and models offered in this section is based mainly on the published
papers underpinning this thesis [10, 12, 13, 14, 15] and partially on the literature reviews in
other recent works [46, 47, 56, 63, 89, 110]. All omitted formal details, such as definitions,
conventions and proofs, can be found in the referenced literature.

A vast amount of literature on robotic systems has existed for a long time, and there
are certain commonalities among these studies. Almost all share some underlying principle
that permits the research community to establish a wide range of theoretical and practical
studies. Although there is an apparent paucity of theoretical literature in the context of
robotic systems (as noted in [89], among others), they contribute to some extent to the
ultimate goal of the emergence of a fine-grained collective system, such as programmable
matter. Here, we do not intend to provide a detailed description of each model or thoroughly
explore all proposed results in depth, as doing so would be beyond the scope of this thesis.
We thus intend to provide a brief survey of the most relevant systems, particularly from a
theoretical point of view, such as:

– Swarm and mobile robotic systems.

– Modular self-reconfigurable robotics and metamorphic systems.

– Models for programmable matter.

The methodology that can be used to categorise robotic systems has become somewhat
complicated due to the recent growth in the body of research as well as the overlapping

8 Abdullah A. Almethen

features among these systems. In general, one can categorise robotic systems into active
and passive. Entities in the passive systems have no control over their movements. Instead,
they move via interactions with the environment in which they live based on their own
structural characteristics. Prominent examples of research on passive systems appear in
the areas of population protocols [19, 90, 91], DNA computing [6, 26], chemical reaction
networks (CRNs) [61, 108], and tile self-assembly [31, 60, 96, 101, 118]. Active systems, on
the other hand, allow computational entities to act and control their movements in order
to accomplish a given task, which is our primary focus in this work. The most popular
examples of active systems include metamorphic systems [66, 93, 117], swarm and mobile
robotics [43, 72, 98, 102, 124], modular self-reconfigurable robotics [17, 76, 126] and recent
research on programmable matter [46, 53].

While the passive models are less relevant to our approach, a number of them investigate
problems similar to those of interest in this thesis, particularly tile self-assembly models.
Furthermore, some models may be considered to be on the border between passive and
active systems [47]. For example, population protocols can be viewed as partially passive
with regard to their movements while at the same time conducting active interactions (com-
munication and computation). Similarly, slime moulds (e.g. [27, 99, 112]) can be viewed as
a hybrid system, in which individuals actively control their motion but behave passively in
cooperation with their environment. Likewise, some swarm robots that communicate phys-
ically in a passive medium lie somewhere between passive and active systems (for some
recent work in this area, see e.g. [36, 86, 87, 105, 122]).

On the other hand, active systems, particularly those modelling graph-based space and
discrete systems, are more relevant to our algorithmic work, in which individuals interact
and move actively with self-control. Most swarm robotic systems are fully active, including
those of microcontrollers (see the excellent recent reviews in [23, 29, 59, 80] as well as
those on the sub-area of reconfigurable modular robotic systems [17, 18, 97, 126]). There is
substantial literature in this area, especially from a practical perspective, including within
the closely related subfield of metamorphic systems [65, 66, 117].

Research on shape formation problem

We are primarily interested in relevant models that are being considered or have been
used to investigate the classical shape formation problem. Starting with passive systems,
most prominent approaches on shape formation appear mostly within the domain of DNA

Chapter 1. Introduction 9

computing (e.g. [32, 55, 94]), in addition to tile-based self-assembly systems (e.g. [49, 100,
106, 109]) and population protocols (e.g. [88, 90]).

Indeed, shape formation is a well-known challenge in active robotic systems that has
been studied in nearly every model. Pattern formation is another name for this problem,
which appears frequently in swarm robotics. It has attracted a large amount of research
attention, especially regarding its practical and physical aspects. However, there is a dearth
of comprehensive surveys in the field summarising all formal and theoretical works on
pattern and shape formation. We thus strive to provide the most relevant findings, which
reflect typical examples of the acquired results.

1.2.1 Relevant models and results

Swarm robotic systems. Swarm robots are often composed of a group of autonomous
robots, each of which is outfitted with sensors that allow it to view, communicate and
manoeuvre in a given area. A wide range of problems has been considered within the context
of swarm robots, including shape formations [102], graph exploration [71] and gathering
problems [7]. It is an enormous field of research, with conferences dedicated specifically to
swarm robotics and subjects related to the discipline, such as ‘The International Conference
on Swarm Robotics and Swarm Intelligence’. Flocchini et al. [72] offered an excellent report
previewing several theoretical studies spanning a range of approaches in the area of mobile
(swarm) robots. One subfield – modular self-reconfigurable robotics – forms its own rich
area of research, as discussed next.

Modular self-reconfigurable robotics. The focus of this system is largely on the inner
aspects and motion features of robots, such as design, assembly, motion planning and
kinematic machine control, coupled with some theoretical treatments [75]. Formal theory
(e.g. [30, 82, 117]) promotes the hardware and practical achievements in a multiplicity of
modular robotic systems, mainly those with more capabilities than are accessible at small
scales (e.g. [67, 77, 102]). The recent Claytronics project [97], mentioned earlier, is a
remarkable exception, as it carefully considers the micro-scale limitations of robots. The
subclass of metamorphic systems (e.g. [35, 64, 65, 66]) is of particular interest, as it shares
several characteristics with our approach (Chapters 2, 3 and 4). A metamorphic system
may be thought of as ‘a robot of robots’ – that is, a collection of modular robots that
are connected physically and operate collectively as a single robot on the plane. Several
studies have exploited this model to investigate the shape formation [66, 89], locomotion

10 Abdullah A. Almethen

[33, 65] and exploration [58] problems. Hurtado et al. [82] presented a rigorous theoretical
framework for distributed systems in modular robotics. This is one of the studies most
closely connected to our distributed model (Chapter 5), as both share some characteristics
such as an underlying square grid system and a focus on the movement mechanisms of
robots.

Now, we devote a separate discussion to metamorphic robotic systems. The models
studied in those systems [64, 65, 66, 89] consider a number of spherical devices given in the
form of a (typically connected) shape A and lying on a two-dimensional square grid. The
goal is to transform A into a desired target shape B via a sequence of valid movements of
individual devices. The mechanisms examined in those papers were the ability to rotate and
slide a device over neighbouring devices (always through empty space). Transformations
based on similar moves and assisted by small seeds were also considered in [8].

Dumitrescu and Pach [64] demonstrated that, by combining rotation and sliding, they
could guarantee the feasibility of individual movements and show that any pair of connected
shapes (of the same number of robots) could universally transform to each other. They
also proved connectivity – that is, all intermediate shapes were connected during trans-
formations. Michail et al. [89] then proved that, if the devices are equipped only with a
rotation mechanism, the decision problem of transforming A into B is in P. They gave a
constructive characterisation of the (rich) class of pairs of shapes that are transformable to
each other.

Further, the authors in [66] and [89] developed distributed transformations for the
shape formation problem by exploiting individual movements and presented some decid-
ability questions, including their main universality question, which was later proved in [64].
The distributed model in [65, 66] enables a device to have a sense of the current state of
the global configuration, while the model in [89] allows only for a local view. Both [66]
and [89] exploited the pipelining technique to design distributed and centralised universal
transformations, respectively, that work in linear parallel time. However, other researchers
have explored the problem on alternative geometries, such as the hexagonal girds exploited
in [93] and [117].

Recently, our line-pushing model was introduced in [10] as a new model for various
robotic systems, especially those of nano-scale devices, such as programmable matter. It
investigates an alternative linear-strength mechanism, by which a line of one or more devices
can translate by one position on a two-dimensional grid in parallel in a single time-step.
The main goal is to determine whether this new mechanism can in principle be exploited

Chapter 1. Introduction 11

for the development of more efficient centralised and distributed algorithms, such as sub-
quadratic worst-case transformations. As a first step, we naturally restricted our attention
to centralised transformations. Our main result was a universal transformation of O(n log n)

worst-case running time (on the number of moves) that is permitted to break connectivity
[14] (where n denotes the number of devices of the shape and connectivity means that the
associated graph induced by the nodes occupied by the devices is connected).

By restricting our focus to connectivity-preserving transformations, we were able to
propose very fast transformations for a large class of connected shapes that takes the same
asymptotic O(n log n) moves. Our most general result is then a connectivity-preserving uni-
versal transformation that can transform any pair of connected shapes through a sequence
of sub-quadratic moves [12]. After examining basic concepts, we established an algorithmic
decentralised framework to enable line moves and implemented the first distributed trans-
formation that requires time asymptotically equivalent to that of the best-known centralised
transformations while preserving connectivity during its course [15]. The algorithm solves
the line formation problem, allowing agents to form a final straight line, starting from any
initial connected shape, whose associated graph contains a Hamiltonian path. More details
of our findings are covered in Section 1.4.

1.2.2 More peripheral related topics

On the theoretical side, a number of formal approaches on pattern formation have been
established to enhance the practical studies. For example, Flocchini et al. [73] studied
the fundamental algorithmic aspects for a set of anonymous robots (i.e. without IDs)
coordinating distributively and asynchronously on a plane of two axes and able to transform
into any predefined shape. Within this weak framework, they showed that such a formation
could not be achieved if the robots had no prior agreement about their environment (i.e.
common orientation). If, for example, the north direction is known to all robots, then any
odd-sized robot can accomplish the task, while even-sized robots cannot. More generally,
any set of robots can complete the transformation when two orthogonal directions are
provided (i.e. common chirality).

A similar formal study [44] identified the minimal computational restrictions that obliv-
ious robots (i.e. those with no memory) could impose in the setting of anonymous robotics
established by [73]. It also investigated under what conditions those oblivious robots could
form a set of geometric shapes starting from any arbitrary initial shape. Specifically, they

12 Abdullah A. Almethen

studied the set of geometric shapes that anonymous and oblivious robots could form asyn-
chronously on a system suffering a lack of global orientation. Our distributed model has
a comparable setting in which the individuals are anonymous and identical. They have
only visual sensory information about their local surroundings with no means of explicit
communication with each other but differ in that they have constant memory.

From an engineering point of view, a recently revealed system [102] demonstrated the
ability to manipulate thousands of micro-robots called kilobots to form complicated two-
dimensional shapes. The vision behind this achievement involves creating tiny, simple
kilobots of limited power that can be cheaply deployed on a two-dimensional plane. These
kilobots can collectively transform into multiple shapes through local interactions in a
distributed manner and are very resistant to associated global dynamics concerns, such as
errors and robot failures. Although the algorithm functions locally, the number of kilobots
in the system is predetermined by a global control. This reliance on the size of the system
can be evaded by an application of [103]. Another model [21] considers a swarm of many
simple square-shaped robots aligned on a two-dimensional grid, all of which have a generic
procedure that allows them to approximate reconfiguration into any arbitrary polygonal
shape, thus improving the system’s ability to repair and self-heal during formation.

Further, the combinatorial game theory of one-player games (e.g. puzzles [25, 48]) may
offer some insights into algorithms and complexity in robotic systems, such as decidability
of several motion-planning problems [81]. In addition, the area of cellular automata is a
well-known theoretical framework for studying a wide range of problems, particularly in
bio-inspired systems [39]. Many books have discussed its theory, power and applications
(e.g. [83, 107, 120, 119]). Moreover, some models have recently been built with the goal of
studying the complexity and revealing the boundaries of active nano-scale entities, such as
the nubot model [121] and the amoebot model [51]. Next, we discuss those models in more
detail.
Models for programmable matter. We present some prominent and relevant models
that have been recently introduced within the domain of programmable matter.

Woods et al. proposed the nubot model to establish a solid foundation for studying
and analysing the complexities of growth and dynamic bio-inspired systems composed of
active molecular entities [121]. This model is inspired by biology and based on tile-based
self-assembly, molecular motors and circuits. It aims to reveal the connection between
complicated molecular structures and dynamics. It is depicted as a triangular grid with
entities called monomers that move relative to one another and can emerge and vanish

Chapter 1. Introduction 13

from the grid. Changes in the states of individuals and their relative motions enable these
monomers to expand and contract, resulting in the formation of different assemblages in
the system. The nubot model differs from others in that there is always a large supply
of extra monomers available to be fed into the system on demand. Further, it exploits a
non-local propagation of movements across the system.

In the nubot model, all of its systematic main features permit a line formation in a
logarithmic time and number of states. Their primary result is the development of a uni-
versal transformation that allows monomers to grow any target two-dimensional connected
shapes within polylogarithmic time on the size of the shape. This is combined with the
time it takes to simulate a Turing machine (TM) that decides whether a given pixel is in the
target shape. The nubot framework is distinguished by its reliance on a key characteristic;
namely, a single monomer is able to deterministically push or pull around large structures
(i.e. other monomers). The question arose in [34] whether a more restrictive system could
obtain similar performance for these inherently uncontrolled and unpredictable molecular
movements. That study demonstrated the feasibility of forming squares in polylogarithmic
time and a line in sublinear expected time under engineered molecular models. Correspond-
ingly, this movement is analogous in spirit to the length-strength pushing mechanism used
throughout this thesis.

Recently, Derakhshandeh et al. introduced the amoebot model, which “offers a versatile
framework to model organising particles and facilitates rigorous algorithmic research in the
area of programmable matter” [51]. It is an amoeba-inspired model consisting of a collection
of entities (called particles) residing on a two-dimensional hexagonal grid that have limited
computational, communication and locomotion capabilities. Since its appearance in 2014,
it has been the subject of a growing body of research and has been used to study several
problems, including shape formation [52, 53, 56], leader election [24, 56, 63] and coating
[46]. During this time, the amoebot model has occasionally been revised and updated to
address specific problems. Generally, it shares some similarities with the nubot model, such
as the underlying grid and the extension and contraction movement of particles relative to
each other. In his PhD thesis, Daymude [47] comprehensively discussed all updates, recent
activities and developments within the framework of the amoebot model.

In the amoebot model, the first algorithm was introduced is to solve the line formation
problem in [54]. Next, the transformation was extended in [52] to cover other simple con-
nected shapes, such as a snake-like shape. Following that, a more general transformation
was developed in [53]: given an initial well-structured configuration of particles forming a

14 Abdullah A. Almethen

triangle in which each particle encodes its final position, then the transformation allows
them to form a final target shape belonging to a set of connected shapes (regular hexagons)
within a sublinear number of rounds and quadratic expected time on the number of moves.
This transformation works under some assumptions, such as common agreement of orien-
tation (i.e. chirality), randomisation for symmetry breaking (i.e. to elect a leader) and a
sequential order of scheduler activation.

Most recently, Di Luna et al. [56] effectively abandoned those restrictions and devised
a wider general transformation that works for any feasible pair of connected shapes, where
‘feasible’ refers to which pair of connected shapes can be deterministically transformed to
each other. The final configuration is a scaled-up copy of the initial shape (i.e. is not
necessarily identical). That study brought the Look-Compute-Move (LCM) paradigm into
the amoebot framework to handle concurrency and avoid sequential activations. The trans-
formation completes its course in a quadratic number of rounds and movements, though it
only works for connected shapes that do not contain ‘holes’. In our distributed approach,
we use the LCM concept of mobile autonomous robots in the domain of line pushing.

Another relevant line of research in [43, 70, 79] studied a set of models considering a
single robot that moves over a static shape consisting of tiles. The goal is for the robot
to transform the shape by carrying one tile at a time. In those systems, the single robot
that controls and carries out the transformation is typically modelled as a finite automaton.
Those models can be viewed as partially centralised: on the one hand, they have a unique
controller, but on the other, that controller operates locally and suffers from a lack of global
information.

Furthermore, the pattern formation problem has also been widely researched in the
context of cellular automata, a classic and well-established model of computation devel-
oped in the 1940s by Stanislaw Ulam [114] and John von Neumann [116]. Packard and
Wolfram [95] presented an overview of preliminary findings. Many studies have exploited
cellular automata to form and investigate various patterns in biology (see a recent book in
[55]). One application can be seen in [94], where Nickson and Potapov exploited the model
of broadcasting automata to investigate the formation of discrete shapes induced by infor-
mational waves on a square grid lattice within von Neumann and Moore neighbourhoods.
This paradigm, which has linkages to many communication concepts in distributed com-
puting, can be simulated using cellular automata. Another application is in [32], where a
genetic algorithm was used to generate two- and three-dimensional target patterns through
evolving cellular automata.

Chapter 1. Introduction 15

Therefore, our model is inheriting a number of characteristics from the above models.
For example, the idea of movements corresponds to similar models of active systems in
which an individual can decide when and where to move, as previously mentioned in swarm
robotics and some programmable matter models. The minimum number of movements in
our model can be related to block-pushing and sliding puzzles in respect to the evaluation on
lower bounds. Moreover, the agent’s local vision in our distributed model is inherited from
Moore neighbourhoods in cellular automata. Abstractly, our distributed transformation
(in Chapter 5), as well as the nubot model, can be modelled as an application of a cellular
automaton to a certain degree. Our model differs in terms of how the cells in cellular
automata can appear and disappear on the system during an execution. Further, modular
self-reconfigurable robotics influences our objective of the shape formation problem.

1.3 Thesis outline

Nowadays, there are massive efforts underway to enhance energy efficiency and raise aware-
ness of the need to reduce energy demand in many various domains. In particular, from
the perspective of researchers and theoreticians in robotics, this highlights the importance
of designing and deploying more energy-efficient robotic systems. The majority of the ex-
isting formal research has examined transformation efficiency in terms of the traditional
complexity metrics of time and, occasionally, space, while completely neglecting the cost
of energy usage. Given that actuation is a major source of energy consumption in real
programmable matter and robotic systems, move minimisation is expected to contribute to
the deployment and implementation of energy-efficient systems. In this thesis, we consider
this critical issue in the context of our new model of line moves [14]. Our objective was
to trade time for number of line moves and investigate whether the parallelism inherent in
this new type of movement could be exploited for more efficient centralised and distributed
transformations. In conjunction with this, our other main goal is to reveal the underlying
principle of the proposed model.

Chapter 2 establishes a generic algorithmic framework of line moves for our discrete
shape formations in centralised setting. This includes all conventions, definitions and basic
facts to formalise the technical properties and algorithmic tools used throughout the thesis.
Next, formal definitions are given for all shape formation problems considered in this work.
The final section of this chapter discusses the first lower bounds established for this model
under the constraints of two sets of transformations.

16 Abdullah A. Almethen

As a first step towards understanding the power of the proposed model, we naturally
restrict our attention to centralised transformations in Chapters 3 and 4. This is because
distributed are model-dependent (in terms of, for example, knowledge and communication),
while centralised show what is possible in principle. Moreover, some of the ideas in cen-
tralised transformations might prove useful for their distributed counterparts. Chapter 3
explores two different shape formation problems. Throughout that chapter, we focus on a
worst-case instance and then present an efficient universal algorithm that correctly solves
the problem in which the transformations are allowed to drop the connectivity-preservation
condition during their course. We next develop and analyse the first connectivity-preserving
transformations for a worst-case pair of shapes, as well as a very fast connectivity-preserving
transformation for a large family of shapes (Chapter 4). The main contribution of that
chapter is a connectivity-preserving universal transformation.

The final technical chapter of this thesis establishes a decentralised linear-strength
framework for line moves (Chapter 5). It also introduces the first distributed transfor-
mation for robotic systems implementing the new mechanism. Furthermore, it formalises
all communication, interaction and vision in the tradition of finite state automata, allowing
for more precise handling of time, synchronisation and transformations. Our distributed
implementation solves the basic line formation problem and preserves all the good proper-
ties of the corresponding centralised solutions. These include the move complexity (i.e. the
total number of line moves) of the transformations and their ability to preserve the connec-
tivity of the shape throughout their course. In Chapter 6, we conclude with a discussion
of the thesis, highlighting a number of open problems and suggesting promising new future
research directions.

In this thesis, the proposed transformations are categorised into unrestricted (Chap-
ter 3), connectivity-preserving (Chapter 4) and distributed (Chapter 5), in an attempt to
provide a logical step-by-step story towards the main results. This arrangement is ex-
pected to facilitate the presentation and motivate the reader to comprehend the sequence
of development gradually, starting with elementary reasoning and basic operations. Fig-
ure 1.5 depicts a dependency digram that shows how transformations build on each other,
progressing chronologically from a hard-special case to more general restricted and dis-
tributed transformations with increasingly better bounds. In Section 3.1.1 of Chapter 3,
the hard-case partitioning approach has been used to develop better bound transformations
in Section 3.1.2 and universal transformations in Section 3.2.1, which were then exploited
altogether to achieve universality more efficiently in Section 3.2.2. Thus, Section 3.1.3

Chapter 1. Introduction 17

answers whether a uniform recursion of 3.1.2 could achieve better bound. In Chapter 4,
Section 4.1.1, which preserves connectivity for the hard-case, is influenced by Section 3.1.1
and then combined with Section 3.2.1 to produce more restricted universal algorithms in
Section 4.3. This also aided in the development of an alternative hard-instance strategy
(Section 4.1.2), whose algorithmic tools are integrated with those of Section 3.1.2 to gener-
ate connectivity-preserving Hamiltonian transformations of the best-known bound (Section
4.2), which are then distributed in Chapter 5.

Chapter 3 - unrestricted

Section 3.1.2

Section 3.1.1

Section 3.1.3Section 3.2.1

Section 3.2.2

Chapter 4 - connectivity-preserving

Section 4.1.1

Section 4.3Section 4.2

Chapter 5 - distributed

Section 5.2

Hard-case

Universal

O(n
√
n) O(n log n)

Section 4.1.2
Hard-case

Universal

Hamiltonian

Hamiltonian

Figure 1.5: A dependency digram of transformations.

As evidenced by a number of publications (listed in Section 1.5), this thesis covers a
rang of linear-strength transformations modelling, design, and implementation. First, in
Chapter 2, the line-pushing model and some of its technical features were introduced in
[10]. Furthermore, in Chapter 3, the O(n

√
n)-time and O(n log n)-time hard-case partition-

ing approaches in Sections 3.1.1 and 3.1.2, as well as an O(n
√
n)-time and O(n log n)-time

universal transformations in Sections 3.2.1 and 3.2.2, were initially published in [10]. Then,
they were extended and combined with the firstO(n

√
n)-time connectivity-preserving trans-

formations (Section 4.1.1) in [14]. Following that, the O(n log n)-time Hamiltonian (Sec-
tion 4.2) and O(n

√
n)-time universal transformations (Section 4.3) in Chapter 4 were pre-

sented in [12] to solve the connectivity-preservation condition. Finally, [15] makes the first
O(n log n)-time distributed connectivity-preserving transformation in Chapter 5.

18 Abdullah A. Almethen

1.4 Technical contributions

Let us consider a system deployed on a two-dimensional square grid in which a collection
of spherical devices (referred to as nodes or agents from now on) are typically connected to
each other, forming a shape SI . By a finite number of valid individual moves, SI can be
transformed into a desired target shape SF . In [64, 65, 66, 89] and related models, where
in any time-step at most one node can move a single position in its local neighbourhood, it
can be proved (see, for instance, [89]) that there will be pair of shapes that require Ω(n2)

moves to be transformed into each other. This follows directly from the inherent ‘distance’
between the two shapes and the fact that this distance can be reduced by only a constant
in every time-step. An immediate question has arisen then:

“How can we come up with more efficient transformations?”

Two main alternatives have been explored in the literature in an attempt to answer this
question. One is to consider parallel time, meaning that the transformation algorithm can
move more than one node (up to a linear number of nodes if possible) in a single time-
step. This is particularly natural and fair for distributed transformations, as it allows all
nodes to have their chances to take a move in every given time-step. For example, such
as transformations based on pipelining [66, 89], where essentially the shape transforms by
moving nodes in parallel around its perimeter, can be shown to require O(n) parallel time
in the worst case. This technique has also been applied in systems (e.g. [102]).

The other approach is to consider more powerful actuation mechanisms, that have
the potential to reduce the inherent distance faster than a constant per sequential time-
step. These are typically mechanisms where the local actuation has strength higher than
a constant. This is different from the above parallel-time transformations, in which local
actuation can only move a single node one position in its local neighbourhood and the
combined effect of many such moves at the same time is exploited. In contrast, in higher-
strength mechanisms, it is a single actuation that has enough strength to move many nodes
at the same time. Prominent examples in the literature are the linear-strength models of
Aloupis et al. [17, 18], in which nodes are equipped with extend and contract arms, each
having the strength to extend and contract the whole shape as a result of applying such an
operation to one of its neighbours. Further, the prospered model of Woods et al. [121], in
which a chain of nodes is being dragged parallel to one of the axes directions by a single
rotating node (acting as a linear-strength rotating arm).

Chapter 1. Introduction 19

Our proposed model in Chapter 2 follows similar approach, by introducing and inves-
tigating a linear-strength model in which a node can push a line of consecutive nodes one
position (towards an empty cell) in a single time-step. One of the most fundamental feature
of the proposed model is transformability. Section 2.4 shows that it can easily simulate the
combined rotation and sliding mechanisms of [64, 89] by restricting moves to lines of length
1 (i.e. individual nodes). It follows that this model is also capable of universal transfor-
mations, with a time complexity at most twice the worst-case of those models, i.e. again
O(n2). Naturally, our focus is set on exploring ways to exploit the parallelism inherent in
moving lines of larger length in order to speed-up transformations and, if possible, to come
up with a more efficient in the worst case universal transformation.

Further, as reversibility of moves is still valid in our model (Section 2.4), we adopt the
approach of transforming any given shape SI into a spanning line SL (vertical or horizontal).
This is convenient, because if one shows that any shape SI can transform fast into a line SL,
then any pair of an initial SI and final SF shapes (of the same size) can then be transformed
fast to each other by first transforming fast SI into SL and then SL into SF by reversing
the fast transformation of SF into SL. Given this, our focus in the thesis is to investigate
whether the presented linear-strength mechanism can achieve faster transformations that
transform any pair of connected shapes to each other. Next, we establish Ω(n log n) lower
bounds for two restricted sets of transformations in Section 2.5. These are the first lower
bounds, under restrictions, for this model and are matching the best known O(n log n)

upper bounds.
In Chapter 3, we start our investigation on a set of unrestricted transformations in

which the nodes are not necessarily preserving the system connectivity (i.e. the associated
graph induced by the occupied nodes is connected) during their course. Thus, we begin by
identifying the diagonal shape SD (which is considered connected in our model and is very
similar to the staircase worst-case shape of [89]) as a potential worst-case initial shape to
be transformed into a line SL. This intuition is supported by the O(n2) individual node
distance between the two shapes and by the initial unavailability of long line movements:
the transformation may move long lines whenever available, but has to pay first a number
of movements of small lines in order to construct longer lines. In this benchmark (special)
case, the trivial lower and upper bounds Ω(n) and O(n2), respectively, hold. More details
of this worst-case are discussed in Section 2.1.

For example, take the diagonal worst-case shape SD (e.g. Figure 3.1 (a)) and try to
convert it into a straight line SL. Observe that any transformation requires Θ(n2) sequential

20 Abdullah A. Almethen

individual movements to transform SD into SL, see for example Figure 2.4. By exploiting
linear-strength mechanism, let us now perform the following simple strategy; (1) divide SD
into several diagonal segments of length

√
n each (see Figure 3.1 (a)), then (2) turn each

segment into a straight line segment via individual moves, which takes linear time for each
segment (Figure 3.1 (b) and (c)). Next, (3) transfer every line segment all the way down
to the bottom of SD (Figure 3.1 (d)) in which each line segment pushes a maximum of
n distance. Finally, (4) change the orientation of all line segments in linear time to form
the target straight line SL (Figure 3.1 (e)). This transformation takes a total of O(n

√
n)

time-steps. Thus, in contrast to the aforementioned models, the new mechanism allows for
sub-quadratic strategies, like the one just sketched. The complete technical description of
this strategy will be presnted later in Section 3.1.1.

As the O(
√
n) length of uniform partitioning into segments is optimal for the above

type of transformation, we turn our attention into different approaches, aiming at further
reducing the running time of transformations. Allowing once more to break connectivity,
we develop an alternative transformation in Section 3.1.2 based on successive doubling.
The partitioning is again uniform for individual ‘phases’, but different phases have different
partitioning length. The transformation starts from a minimal partitioning into n/2 lines
of length 2, then matches them to the closest neighbours via shortest paths to obtain a
partitioning into n/4 lines of length 4, and, continuing in the same way for log n phases. It
thus maintains the invariant of having n/2i individual lines in each phase i, for 1 ≤ i ≤ log n.
Proving that the cost of pairwise merging through shortest paths in each phase is linear in
n, it is sufficient to conclude that this approach transforms the diagonal into a line in time
O(n log n), thus yielding a substantial improvement.

Observe that the problem of transforming the diagonal line shape into a straight line
seems to involve solving the same problem into smaller diagonal segments (in order to trans-
form those into corresponding line segments). Then, one may naturally wonder whether a
recursive approach could be applied in order to further reduce the running time. Section
3.1.3 provides a negative answer to this, for the special case of uniform recursion and at the
same time obtain an alternative O(n log n) transformation for the diagonal-to-line problem.

Then, the focus turns on attempting to generalise the ideas developed for the above
benchmark case in order to come up with equally efficient universal transformations. In
Section 3.2, we successfully managed to generalise both the O(n

√
n) and the O(n log n)

approaches, obtaining universal transformations of worst-case running times O(n
√
n) and

O(n log n), respectively. We achieve this by enclosing the initial shape into a square bound-

Chapter 1. Introduction 21

ing box and then subdividing the box into square sub-boxes of appropriate dimension. For
the O(n

√
n) bound, a single such partitioning into sub-boxes of dimension

√
n turns out

to be sufficient. For the O(n log n) bound we again employ a successive doubling approach
through phases of an increasing dimension of the sub-boxes, that is, through a new parti-
tioning in each phase. Therefore, our ultimate theorem (followed by a constructive proof,
providing the claimed transformation) states that:

“In this model, when connectivity need not necessarily be preserved during the
transformation, any pair of connected shapes SI and SF can be transformed to each other

in sequential time O(n log n).”

The connectivity-preservation is an important assumption for many robotic systems,
see for example [42]. It is a desirable property for the design of any robust transformation
to enhance reliable communication among different types of networks. This condition is
substantial for acquiring a computationally distributed nature, as well as for practical
applications that often require energy for data transmission and the implementation of
various locomotion methods. Further, maintaining connectivity could be crucial to prevent
the configuration from falling apart and to keep all agents powered. Thus, any disconnection
that occurs during transformations must be performed very carefully to prevent the creation
of any potentially separated sections that cannot be reconnected again.

Hence, Chapter 4 restricts the attention on designing centralised transformations with
the aim of minimising the total number of moves subject to the constraint of preserving
connectivity of the shape throughout the course of the transformation. That is, in each
intermediate configuration we always want to guarantee that the associated graphs induced
by the occupied nodes are connected. First, we take the algorithmic idea of partitioning
one step further, by developing two transformations building upon it, that can achieve the
same time-bound while preserving connectivity throughout their course: one is based on
folding segments in Section 4.1.1 and the other on extending them in Section 4.1.2.

Next, we present an O(n log n)-time transformation in Section 4.2, calledWalk-Through-
Path, that works for all pair of shapes (SI , SF) that have the same order and belong to the
family of Hamiltonian shapes. A Hamiltonian shape is any connected shape S associated to
a graph G(S) that contains a Hamiltonian path (see also Itai et al. [84] for the Hamiltonian
paths). At the heart of our transformation is a recursive successive doubling technique,
which starts from one endpoint of the Hamiltonian path and proceeds in log n phases.
In every phase i, it moves a terminal line Li of length 2i a distance 2i higher on the

22 Abdullah A. Almethen

Hamiltonian path through a LineWalk operation. This leaves a new terminal sub-path Si
of the Hamiltonian path, of length 2i. Then the general procedure is recursively called on
Si to transform it into a straight line L′i of length 2i. Finally, the two straight lines Li

and L′i which are perpendicular to each other are combined into a new straight line Li+1

of length 2i+1 and the next phase begins.
A core technical challenge in making the above transformation work is that Hamiltonian

shapes do not necessarily provide free space for the LineWalk operation. Thus, moving a
line has to take place through the remaining configuration of nodes while at the same
time ensuring that it does not break their and its own connectivity, including keeping itself
connected to the rest of the shape. We manage to overcome this by revealing a nice property
of line moves, according to which a line L can transparently walk through any configuration
S (independently of the latter’s density) in a way that: (i) preserves connectivity of both
L and S and (ii) as soon as L has gone through it, S has been restored to its original state,
that is, all of its nodes are lying in their original positions. This property is formally proved
in Proposition 4.

Section 4.3 demonstrates a universal transformation, called compression, that within
O(n
√
n) moves transforms any pair of connected shapes of the same order to each other,

while preserving connectivity throughout its course. Starting from the initial shape SI
computed on a spanning tree T of G(S), enclose the shape into a square box of size n and
divide it into sub-boxes of size

√
n, each of which contains at least one sub-tree of T . By

moving lines in a way that does not break connectivity, we compress the nodes in a sub-box
into an adjacent sub-box towards a parent sub-tree. By carefully repeating this we manage
to arrive at a final configuration which is always a compressed square shape. The latter
is a type of a nice shape (a family of connected shapes defined in 2.1.1), which can be
transformed fast into a straight line in linear time. We provide an analysis of this strategy
based on the number of charging phases, which turns out to be

√
n, each making at most

n moves, for a total of O(n
√
n) moves.

Despite the fact that the preceding transformations reveals the underlying transfor-
mation complexity, they are not directly applicable to real robotic systems. Hence, the
next main goal is to develop the first distributed transformations implementing this linear-
strength move. If possible, it will always guarantee to preserve all the good properties of
the corresponding centralised solutions. These include the move complexity (i.e. the total
number of line moves) of the transformations and their ability to preserve the connectivity
of the shape throughout their course.

Chapter 1. Introduction 23

The central coordinator of the previous transformations have a global control over all
individual nodes in the system. Thus, it is fully aware of the number of nodes in the system
and their initial/final configuration. Moreover, it is responsible for deciding which line will
be pushed and who will push that line. This contains the push direction, distance and
timing in a particular sequential or parallel order. Further, the central authority has the
power to notify nodes on the line about their move and relocation in a single time-step, as
well as to terminate the transformations. Hence, communication takes less time and may
not even be an issue in the centralised setting.

However, there are considerable technical challenges that must be overcome in order to
develop such a distributed solution. As will become evident, the lack of global knowledge
of the individual nodes and the condition of preserving connectivity greatly complicate the
transformation, even when restricted to special families of shapes. For example, nodes
should deduce whether they are part of a line through local vision and communication,
as well as decide who is in charge of pushing. Timing is an essential issue as the pushing
node needs to know when to start and stop pushing. When moving or turning, all nodes
of the line must follow the same route, ensuring that no one is being pushed off. There is
an additional difficulty due to the fact that nodes do not automatically know whether they
have been pushed (but it might be possible to infer this through communication and local
observation).

In Chapter 5, we establish an algorithmic framework that enables individuals to exploit
the linear-strength of line moves in a distributed manner: Consider a discrete system of
n simple indistinguishable devices, called agents, forming a connected shape SI on a two-
dimensional square grid. Agents act as finite-state automata (i.e. they have constant
memory) that can observe the states of nearby agents in a Moore neighbourhood (i.e. the
eight cells surrounding an agent on the square gird). They operate in synchronised Look-
Compute-Move (LMC) cycles on the grid. All communication is local, and actuation is
based on this local information as well as the agent’s internal state.

Let us consider a very simple distributed transformation of a diagonal line shape SD
into a straight line SL, |SD| = |SL| = n, in which all nodes execute the same procedure
in parallel synchronous rounds. In general, the diagonal appears to be a hard instance
because any parallelism related to line moves that might potentially be exploited does not
come for free. Initially, all nodes are occupying the consecutive diagonal cells on the grid
(x1, y1), (x1 +1, y1 +1), . . . , (x1 +n−1, y1 +n−1). In each round, a node pi = (x, y) moves
one step down if (x− 1, y − 1) is occupied, otherwise it stays still in its current cell. After

24 Abdullah A. Almethen

O(n) rounds, all nodes form SL within a total number of 1 + 2 + . . . + n = O(n2) moves,
while preserving connectivity during the transformation. See Figure 2.5.

Figure 1.6: A simulation of the simple procedure. From left to right, rounds 0, 1, 2, . . . , n.

The above transformation, even though time-optimal has a move complexity asymptot-
ically equal to the worst-case single-move distance between SI and SF . This is because it
always moves individual nodes, thus not exploiting the inherent parallelism of line moves.
Our goal, is to trade time for number of line moves in order to develop alternative dis-
tributed transformations which will complete within a sub-quadratic number of moves.
Given that actuation is a major source of energy consumption in real robotic systems (e.g.
programmable matter), moves minimisation is expected to contribute in the deployment
and implementation of energy-efficient systems.

Our main contribution then is the first distributed connectivity-preserving transforma-
tion that exploits the line moves within a total of O(n log n) moves, which is asymptotically
equivalent to that of the best-known centralised transformations. The algorithm solves the
line formation problem that allows agents to form a final straight line SL, starting from
any shape SI , whose associated graph contains a Hamiltonian path.

1.5 Author’s publications

The contributions of this thesis are based on co-authored publications in peer-reviewed
scientistic journals and conference proceedings. The following is a chronological list of all
publications and manuscripts that are currently under submission.

• A. Almethen, O. Michail, I. Potapov. “Pushing Lines Helps: Efficient Universal Cen-
tralised Transformations for Programmable Matter”. In: International Symposium on
Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS) 2019 (pp. 41-59) [10], also a full version available on
arXiv, arXiv:1904.12777 [11].

Chapter 1. Introduction 25

• A. Almethen, O. Michail, I. Potapov. “Pushing Lines Helps: Efficient Universal
Centralised Transformations for Programmable Matter”. In: Theoretical Computer
Science. 2020; 830:43-59 [14].

• A. Almethen, O. Michail, I. Potapov. “On efficient connectivity-preserving transfor-
mations in a grid”. In: International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS) 2020
(pp. 76-91) [12].

• A. Almethen, O. Michail, I. Potapov. “On efficient connectivity-preserving transfor-
mations in a grid”. To appear in: Theoretical Computer Science [9], also available on
arXiv, arXiv:2005.08351 [13].

• A. Almethen, O. Michail, I. Potapov. “Distributed Transformations of Hamiltonian
Shapes based on Line Moves”. In: International Symposium on Algorithms and Ex-
periments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGO-
SENSORS) 2021 (pp. 1-16) [15]. Invited for the TCS journal special issue on
ALGOSENSORS 2021.

• A. Almethen, O. Michail, I. Potapov. “Distributed Transformations of Hamiltonian
Shapes based on Line Moves”. Under journal submission, also available on arXiv,
arXiv:2108.08953 [16].

Chapter 2

Discrete Shape Formation

In this chapter, we provide a generic algorithmic framework for our discrete shape forma-
tion problems. It brings together all notations, definitions and basic facts that are used
throughout the thesis.

First, we formally define the overall settings of the centralised system (the distributed
version is later introduced separately in Chapter 5 due to consistency). Following that, in
Section 2.1, we present a formal description of connected shapes, then focus particularly on
a multiple set of discrete shapes addressed in the transformations. Next, we introduce our
shape formation model in Section 2.2, including the linear-strength mechanism alongside
other related special-case models. After that, Section 2.3 formally defines all of the shape
formation problems considered in this thesis. We then provide several properties that
typically facilitate the development of our transformations. The final section, Section 2.5,
establishes the first lower bounds of this models for two restricted sets of transformations.

2.1 Discrete shapes

All transformations considered in this thesis operate on a two-dimensional square grid, in
which each cell has a unique position of non-negative integer coordinates (x, y), where x
represents columns and y denotes rows in the grid. A set of n nodes (or called agents) on
the grid forms a shape S (of the order n), where every single node u ∈ S occupies only one
cell, cell(u) = (ux, uy). Nodes and agents are used interchangeably to denote entities of
centralised and distributed systems, respectively. A node u can be indicated at any given
time by the coordinates (ux, uy) of the unique cell that it occupies at that time. A node

26

Chapter 2. Discrete Shape Formation 27

v ∈ S is a neighbour of (or adjacent to) a node u ∈ S if and only if their coordinates satisfy
ux − 1 ≤ vx ≤ ux + 1 and uy − 1 ≤ vy ≤ uy + 1 (i.e. their cells are adjacent vertically,
horizontally or diagonally). Throughout, all logarithms are to base 2.

Definition 1 (A discrete shape). A discrete shape S is a finite set of nodes on a two-
dimensional square grid.

A shape S is associated with a graph G(S) = (V,E), where u ∈ V iff u is a node of S
and (u, v) ∈ E iff u and v are neighbours in S. In other words, G(S) is the graph induced
by the occupied nodes of S. Then, a connected shape is defined as follows.

Definition 2 (A connected shape). A shape S is connected iff G(S) is a connected graph.

A spanning tree of G(S) is denoted by T (S) (or just T when clear from context). When-
ever we state that such a tree is given we make use of the fact that T (S) can be computed
in polynomial time. In what follows, n denotes the number of nodes in a shape under
consideration. The following definitions from [89] shall be useful for our transformations.
To illustrate the shape, we colour black any cell occupied by a node (as in Figure 2.1).

Definition 3. A hole H of S is a set of empty cells enclosed by non-empty cells that are
occupied by nodes u ∈ S, such that any simple path of infinite length that starts from an
empty cell in the hole h ∈ H and moves, only vertically and horizontally, must pass through
a black cell of a node u ∈ S.

Definition 4. A compact shape is a connected shape that does not contain any holes.

Definition 5. The perimeter (border) of S is defined as a polygon of unit length line
segments, which surrounds the minimum-area of the interior of S.

Definition 6. The surrounding layer of a connected shape S consists of all empty cells in
the grid that share at least a line segment or a corner with the S’s perimeter.

Definition 7. The external surface of a connected shape S consists of all non-empty cells
in the grid that share at least a line segment or a corner with the S’s perimeter.

Figure 2.1 depicts the perimeter, surrounding layer and external surface of S as a yellow
line, grey cells and cells of black spherical nodes, respectively. The following proposition
shows that the external surface of a connected shape S is connected (proved in [89]).

Proposition 1. The surrounding layer of any connected shape S is itself a connected shape.

28 Abdullah A. Almethen

Figure 2.1: All nodes of S occupy the black cells, where black spherical nodes reside on the
external surface of S. The surrounding layer’s cells are coloured grey, while the yellow line
depicts the perimeter of S. The dashed black cells define a hole of S.

Proof. The proof is a modification of Proposition 2 from [89] to fit our model. Assume S
is connected, then the perimeter of S is connected too; and hence, it forms a cycle. Each
segment of the perimeter is contributed by two cells, belonging to the external surface and
the surrounding layer (recall Definitions 5, 6 and 7). Now, if one walks on the perimeter
(vertically or horizontally) or turns (left or right) clockwise or anticlockwise at any segment,
one of the following cases will occur:

• Pass through two adjacent vertical or horizontal cells on the surrounding layer and
the external surface of S.

• Stay put at the same position (cell) on the external surface and move through three
neighbouring cells connected perpendicularly on the surrounding layer of S.

• Stay put at the same position (cell) on the surrounding layer and pass through three
neighbouring cells connected perpendicularly on the external surface of S.

• Stay put at the same position (cell) on the surrounding layer and:

1. Either pass through two neighbouring cells connected diagonally on the external
surface of S.

2. Or pass through three neighbouring cells connected perpendicularly on the ex-
ternal surface of S.

Chapter 2. Discrete Shape Formation 29

Thus, all cases above preserve the connectivity of the surrounding layer and the external
surface of S.

2.1.1 Family of shapes

Now, we define different essential shapes and introduce some classes of connected discrete
shapes that are considered in this thesis.

Definition 8 (A straight line). A straight line SL is a connected shape of n nodes occupying
a sequence of consecutive cells vertically in (x, y), (x, y+1), . . . , (x, y+n−1) or horizontally
in (x, y), (x+ 1, y), . . . , (x+ n− 1, y) (not, e.g. diagonally).

Definition 9 (A diagonal shape). A diagonal line shape SD is a connected shape of n nodes
occupying a sequence of consecutive cells diagonally in (x, y), (x + 1, y + 1), . . . , (x + n −
1, y + n− 1).

Figure 2.2(c) shows an example of the diagonal line shape. Now, we consider two
family of more general shapes, Central Line shapes, to use as efficient intermediate shapes
at more complex transformation and Hamiltonian shapes to exploit as an infinite class
of connected shapes, which offers insight and reveals useful properties towards the future
possible development of universal transformations.

Central Line shapes

Let us first introduce a family of Central Line shapes, which we also call N I C E shapes.
A central line or a nice shape is, informally, any connected shape that contains a particular
line called the central line (denoted LC). Intuitively, one may think of LC as a supporting
(say horizontal) base of the shape, where each node u not on LC must be connected to
LC through a vertical line. Figure 2.2 shows some examples of a nice shape and non nice
shapes.

Definition 10 (A nice shape). A nice shape S ∈ N I C E is a compact connected shape,
which contains a central line LC ⊆ S, such that every node u ∈ S \ LC is connected to LC

via a line perpendicular to LC

30 Abdullah A. Almethen

Figure 2.2: The central line LC occupies black cells of nice shapes in (a), (b) and (d). The
shape in (c) is not nice (due to the lack of LC) as is the shape in (e), which has a hole
(white cells), preventing the existence of LC .

Hamiltonian shapes

We define another family of shapes, called Hamiltonian shapes and denoted H. Figure 2.3
presents some examples of this class of shapes.

Definition 11 (A Hamiltonian shape). A shape S is called Hamiltonian iff G(S) = (V,E)

contains a path starting from a node u ∈ V , visiting every node in V exactly once and
ending at a node v ∈ V , where v 6= u.

In this thesis, the diagonal SD and the straight line SL are considered to be an extreme-
case for a pair of shapes that can be transformed to each other. On a two-dimensional square
grid, SL represents an extreme instance of the Central Line shapes, that is, SL contains the
longest central line (of length n) that a connected shape can have. Likewise, SD is another
hard-case shape belonging to the family of Hamiltonian shapes due to the fact that all
nodes of SD occupy n distinct rows and columns, that is, it draws n lines on the grid, each
of length 1. Further, the O(n2) individual node distance between the two shapes (SD, SL),
as well as the initial lack of long line movements, reinforce this intuition. See an illustration
in Figure 2.4. A more detailed discussion of this is given later in Section 2.5.

Chapter 2. Discrete Shape Formation 31

(a) A double-spiral shape (b) A shape of two different Hamiltonian paths
in yellow.

Figure 2.3: Examples of Hamiltonian shapes denoted H.

1

2

3

4

n

Distance(∆) = n

∆ = 4

3

2

∑
∆ = 1 + . . . + n = O(n2)

Figure 2.4: The O(n2) individual node distance between SD (blue nodes) and SL (grey
nodes).

2.2 The shape formation model

In this thesis, we investigate a linear-strength transformation model, called the line-pushing
model. A line L is a sequence of consecutive non-empty cells occupied by nodes, u ∈ S,
vertically or horizontally (not, e.g. diagonally). A line move is an operation by which all

32 Abdullah A. Almethen

nodes of L move together in parallel in a single move, towards an empty cell adjacent to
one of L’s endpoints. That is, one of L’s endpoints pushes all nodes of L in parallel in a
single time-step on one position in a given (one of the four possible) direction of a grid. A
line move may also be referred to as a step (or move or movement) and time is discrete and
measured in number of moves throughout. A move in this model is equivalent to choosing
a node u and a direction d ∈ {up, down, right, left} and moving u one position in direction
d. This will additionally push by one position the whole line L of nodes in direction d, L
(possibly empty) starting from a neighbour of u in d and ending at the first empty cell.

2.2.1 The linear-strength model

More formally and in slightly different terms: A line L = (x, y), (x+ 1, y), . . . , (x+k−1, y)

of length k, where 1 ≤ k ≤ n, can push all its k nodes rightwards in parallel in a single
move to positions (x + 1, y), (x + 2, y), . . . , (x + k, y) iff there exists an empty cell to the
right of L at (x + k, y). The ‘down’, ‘left’, and ‘up’ moves are defined symmetrically, by
rotating the whole system 90◦, 180◦, and 270◦ clockwise, respectively.

Definition 12 (A permissible line move). Let L be a line of k nodes, where 1 ≤ k ≤ n.
Then, L can move as follows (depending on its original orientation, i.e. horizontal or
vertical):

1. Horizontal. Can push all k nodes rightwards in parallel in a single move from (x, y), (x+

1, y), . . . , (x+k−1, y) to positions (x+1, y), (x+2, y), . . . , (x+k, y) iff there exists an
empty cell to the right of L at (x+ k, y). Similarly, it can push all k nodes to the left
to occupy (x− 1, y), (x, y), . . . , (x+ k, y), iff there exists an empty cell at (x− 1, y).

2. Vertical. Can push all k nodes upwards in parallel in a single move from (x, y), (x, y+

1), . . . , (x, y + k − 1) into (x, y + 1), (x, y + 2), . . . , (x, y + k), iff there exists an
empty cell above L at (x, y + k). Similarly, it can push all k nodes down to occupy
(x, y − 1), (x, y), . . . , (x, y + k), iff there exists an empty cell below L at (x, y − 1).

2.2.2 The sliding and rotation model

There are related settings in which the available moves to the nodes are rotation and sliding
[64, 89]. First, the sliding operation is equivalent in all those models, that is, if a node u is
located at a cell of the grid, u = (x, y), then u can slide right to an empty cell at (x+1, y+1)

Chapter 2. Discrete Shape Formation 33

over a horizontal line of length 2, such as in Figure 2.5(a). On the other hand, the rotation
models typically perform a single operation to rotate a node u1 = (x, y) around another
u2 = (x, y − 1) by a 90◦ clockwise rotation iff there exist two empty cells at (x+ 1, y) and
(x+ 1, y + 1), see Figure 2.5(b).

u1

x

y

x+ 1x− 1

y + 1

y − 1 u2 u3

(a)

u1

x

y

x+ 1x− 1

y + 1

y − 1 u2

(b)

Figure 2.5: (a) An example of sliding u1 over u2 and u3 to an empty cell to the right. (b)
Rotate u1 a 90◦ clockwise around u2.

2.3 Shape formation problem

A number of nodes are given in the form of a (typically connected) shape SI lying on a
two-dimensional square grid, the shape formation problem is to transform (reconfigure) SI
into a desired target shape SF via a sequence of valid movements of individual nodes. More
formally, the shape formation problem can be defined as a tuple M = (I, F), where I is
the set of initial shapes and F is the set of final shapes.

A configuration of the system is defined as a mapping C : Z × Z → {0, 1}, where
C(x, y) = 0 if cell(x, y) is empty or C(x, y) = 1 if cell(x, y) is occupied by a node. Equiv-
alently, a configuration can be defined as a set {(x, y) : x, y ∈ Z and C(x, y) = 1}. Let
C0 denote the initial configuration of the system. We say that C ′ is directly reachable
from C and denoted C → C ′, if C can be transformed into C ′ in one line move. More-
over, C ′ is reachable from C, denoted C →∗ C ′, if there is a sequence of configurations
C = C1, C2, . . . , Ct = C ′ such that Ci → Ci+1 holds for all i ∈ {1, 2, . . . , t− 1}.

Throughout this thesis, we consider a number of the shape formation problems defined
formally as follows:

34 Abdullah A. Almethen

DiagonalToLine. Given an initial connected diagonal line SD and a target vertical or
horizontal connected spanning line SL of the same order, transform SD into SL, without
necessarily preserving the connectivity during the transformation.

DiagonalToLineConnected. Restricted version of DiagonalToLine in which con-
nectivity must be preserved during the transformation.

HamiltonianLine. Given any initial Hamiltonian shape SI , the agents must form a final
straight line SL of the same order from SI via line moves while preserving connectivity
throughout the transformation.

HamiltonianConnected. Given a pair of connected Hamiltonian shapes (SI , SF) of the
same order, where SI is the initial shape and SF the target shape, transform SI into SF
while preserving connectivity throughout the transformation.

UniversalTransformation. Give a general transformation, such that, for all pairs of
shapes (SI , SF) of the same order, where SI is the initial shape and SF the target shape,
it will transform SI into SF , without necessarily preserving connectivity during its course.

UniversalConnected. Given any pair of connected shapes (SI , SF) of the same order,
where SI is the initial shape and SF the target shape, transform SI into SF while preserving
connectivity throughout the transformation.

2.4 The linear-strength transformation properties

As already mentioned, there are related settings in which any pair of connected shapes
SI and SF of the same order can be transformed to each other1 while preserving the
connectivity throughout the course of the transformation.2 This, for example, has been
proved for the case in which the available moves to the nodes are rotation and sliding [64, 89].
We now show that the models of [64] and [89] are special cases of our model, implying that
all transformations established there (with their running time at most doubled, including

1We also use SI → SF to denote that shape SI can be transformed to shape SF .
2In this thesis, whenever transforming into a target shape SF , we allow any placement of SF on the

grid, i.e., any shape S′F obtained from SF through a sequence of rotations and translations.

Chapter 2. Discrete Shape Formation 35

universal transformations) are also valid transformations in the present model.

Proposition 2. The rotation and sliding model is a special case of the line-pushing model.

Proof. We establish a technique to prove that our model is able to simulate rotation and
sliding models of [64, 89] on a two-dimension square grid system. First, the sliding operation
is equivalent in all those models, that is, if a node u is located at a cell of the grid, u = (x, y),
then u can slide right to an empty cell at (x+1, y+1) over a horizontal line of length 2, such
as in Figure 2.5(a). The ‘down’, ‘left’, and ‘up’ moves are defined symmetrically, by rotating
the whole system 90◦, 180◦, and 270◦ clockwise, respectively. Now, the presented model is
capable of performing the same sliding rule in those models, i.e., push a line of length 1
vertically or horizontally, as explained in Definition 12. For rotation, all mentioned models
perform a single operation to rotate a node u1 = (x, y) around another u2 = (x, y − 1) by
a 90◦ clockwise iff there exists two empty cells at (x + 1, y) and (x + 1, y + 1), see Figure
2.5(b). Analogously, this holds for all possible rotations by again rotating the whole system
90◦, 180◦, and 270◦ clockwise, respectively. Still, the rotation mechanism is also adopted by
this model following Definition 12, and actually it costs twice for a single rotation to take
place, compared with others. Subsequently, it implies that all transformations established
there (with its running time at most doubled), including universal transformations and
preserving connectivity (recall Proposition 1), are also valid transformations in the present
model.

We are now ready to show the following lemmas which will be used multiple times
during our transformations:

Lemma 1. It is possible to turn a horizontal line of length k into a vertical line of length
k or vice versa in 2k − 2 steps.

Proof. To simplify the argument, assume that a two-dimensional square grid contains only
a straight line L1 of k nodes at (x, y), . . . , (x, y + k − 1), where k ≥ 1, and empty cells on
(x + 1, y), . . . , (x + k − 1, y), as depicted in Figure 2.6. This assumption can be dropped
easily when L1 is a part of a connected shape S in the grid. Now, L1 wants to change its
direction; for the sake of simplicity, let us assume that L1 turns from vertical to horizontal,
where L1 occupies k consecutive rows and a single column. Hence, the first bottommost
node, u1 ∈ L1, moves one position right to occupy an empty cell on (x + 1, y), which
consequently creates a new empty cell at (x, y) that was occupied by u1. Then, by linear-
strength pushing mechanism, the consecutive k − 1 ∈ L1 nodes push down one move

36 Abdullah A. Almethen

altogether in parallel in a single-time-move towards the new empty cell (x, y) to occupy
positions (x, y), . . . , (x, y + k − 2). Thus, L1 consists now of k − 1 nodes occupying k − 1

consecutive rows, as shown in Figure 2.6(a), (b) and (c). Observe that u1 take one time-step
to move right, and all k − 1 nodes push down in one time-step. By repeating this at most
2k− 2 steps, it shall completely turn L1 to occupy a single row and k consecutive columns.
Therefore, any straight line of k nodes changes its direction in a number of steps at most
twice its length, 2k − 2 = O(k).

L1

u1

u2

uk

move one step right

(a) (b) (c)

x1 x2 x3 xk

u3

y1

y2

y3

yk

L1

u2

uk

xk

u3 m
ov
e
o
n
e
st
ep

d
ow

n

yk

u1

L1

u3

uk

xk

yk

u1u2

xk

uk L1u1u2u3

(d)

x1 x2 x3

y1

y2

y3

x1 x2 x3

y1

y2

y3

x1 x2 x3

y1

Figure 2.6: A line of k nodes changes orientation by two consecutive steps per node. (a)
Move u1 one step right. (b) and (c) All k − 1 nodes push down altogether in a single step.
In (d), the line has finally transformed from vertical to horizontal after 2k steps.

A property that typically facilitates the development of transformations, is reversibility
of moves. To this end, we next demonstrate that line moves are reversible.

Lemma 2 (Reversibility). Let (SI , SF) be a pair of connected shapes of the same number
of nodes n. If SI → SF (‘→’ denoting ‘can be transformed to via a sequence of line moves’)
then SF → SI .

Proof. First, we should prove that each single line move is reversible. Figure 2.7 left shows
four nodes forming two vertical and one horizontal lines, L1 = {u1, u2}, L2 = {u3, u4}
and L3 = {u2, u3}, respectively. Assume this configuration has no more space to the left,

Chapter 2. Discrete Shape Formation 37

beyond the dashed line; therefore, L1 moves to occupy the empty cell (i+ 2, j + 1). Now,
all L1 nodes are moving altogether to fill in positions (i + 1, j + 1) and (i + 2, j + 1), as
depicted in Figure 2.7 right. Consequently, the previous line move creates another empty
cell at (i, j+1), which can be occupied reversibly by L1. Since every line move is reversible,
it implies that reversibility holds for any finite sequence of line moves.

u1 u2

u3 u4

i

i
+

1

j

j + 1

i
+

2
(a)

u1 u2

u3 u4

i

i
+

1

j

j + 1

i
+

2

(b)

Figure 2.7: An example of a reversible line move.

By reversibility (Lemma 2), we provide the following proposition for nice shapes (Central
Line shapes):

Proposition 3. Let (A ,B) ∈ N I C E be a pair of nice shapes of the same order. Then
A → B and B → A in O(n) steps.

Proof. Let SN I C E be a nice shape of order n that contains a central line of i nodes, for
some 1 ≤ i ≤ n, and assume without loss of generality, that LC is horizontal and occupies
row y1. By Definition 10, there will be n − i nodes, where all are connected to LC via a
line orthogonal to LC . Similarly, we can say there are L1, L2, . . . , Lw vertical lines of total
n − i nodes, where 1 ≤ w < n, which are all perpendicularly connected to LC . Now, by
Lemma 1, such a vertical line would perform a number of steps twice its length to change
its direction, occupy row y1 and be an extension to LC . Then, it follows that all those
vertical lines requires a total cost of at most 2(n − i) = O(n) steps to eventually occupy
n consecutive cells in row y1 where a straight line of order n remains. By Lemma 2, we
conclude that any pair of nice shapes are transformable to each other via a straight line in
O(n) steps.

We define a rectangular path P over the set of cells as P = [c1, c2, c3, . . . , ck], where
ci, ci+1 ∈ Z× Z are two cells adjacent to each other either vertically or horizontally, for all

38 Abdullah A. Almethen

i ∈ {1, 2, . . . , k − 1}. Given any rectangular path P , by CP we donate the configuration of
P , which is the subset of C (configuration of the system) restricted to the cells of P . The
following proposition proves a basic property of line moves which will be a core technical
tool for our Hamiltonian shapes transformations.

Proposition 4 (Transparency of Line Moves). Let S denote any shape, L ⊆ S any line
and P a rectangular path starting from a position adjacent to one of L’s endpoints. There
is a way to move L along P , while satisfying all the following properties:

1. No delay: The number of steps is asymptotically equal to that of an optimum move of
L along P in the case of CP being empty (i.e., if no cells were occupied). That is, L
is not delayed, independently of what CP is.

2. No effect: After L’s move along P , C ′P = CP , i.e., the cell configuration has remained
unchanged. Moreover, no occupied cell in CP is ever emptied during L’s move (but
unoccupied cells may be temporarily occupied).

3. No break: S remains connected throughout L’s move.

Proof. Whenever L walks through an empty cell (x, y) of P , a node u ∈ L fills in (x, y).
If L pushes the node u of a non-empty cell of P , a node v ∈ L takes its place. When L
leaves a non-empty cell (x, y) that was originally occupied by node v, L restores (x, y) by
leaving its endpoint u ∈ L in (x, y). Finally, Figure 2.9 shows how to deal with the case in
which L turns at a non-empty corner-cell (x, y) of P , which is only connected diagonally
to a non-empty cell of S and is not adjacent to any cell occupied by L. Figure 2.8 shows
an example of configuration CP .

LP

Empty cell

Occupied cell

corner cell (x, y)

Figure 2.8: A path P of a given configuration CP . A line L will pass along P .

Now assume that L turns at a non-empty corner cell (x, y) of P (say without loss of
generality, from horizontal to vertical direction). Typically the node occupying the corner

Chapter 2. Discrete Shape Formation 39

cell(x, y) moves vertically one step along P , and then L pushes one move to fill in the empty
cell (x, y) by a node u ∈ L. Unless (x, y) is being only connected diagonally to a non-empty
cell that is not a neighbour of any node u ∈ L. Figure 2.9 shows how to deal with the case
in which L turns at a non-empty corner-cell (x, y) of P , which is only connected diagonally
to a non-empty cell of S and is not adjacent to any cell occupied by L.

LP

Empty cell

Occupied cell

u
v

(a)

u
v

u
v

u
v

u
v

(b)

Figure 2.9: (a) A line L moving through a path P and arriving at a turning point of P . u
occupies a corner cell of P , and v occupies a cell of S and is only connected diagonally to u
while not being adjacent to any cell occupied by L. (b) L pushes u one position horizontally
and turns all of its nodes vertically. Then u moves back to its original position in P . All
other orientations are symmetric and follow by rotating the shape 90◦, 180◦ or 270◦.

Therefore, it always temporarily maintain global connectivity and restores all of those
nodes to their original positions. Hence, L’s move takes a number of moves to pass through
any CP equal to or even less than its optimum move in the case of empty CP . Therefore, L
can transparently walk through any configuration S (independently of the latter’s density)
in a way that: (i) preserves connectivity of both L and S and (ii) as soon as L has gone
through it, S has been restored to its original state, that is, all of its nodes are lying in
their original positions.

40 Abdullah A. Almethen

2.5 Lower bounds on line moves

The question of lower bound on line moves appears intriguing, i.e. to answer whether there
is an o(n log n)-time transformation (e.g. linear) or whether there is an Ω(n log n)-time
lower bound matching our best transformations (even when connectivity can be broken).
We suspect the latter but lack sufficient facts to substantiate or verify it. As will become
seen, it seems challenging to lower bound in the general case, most likely due the trade-off
between the cost of inherent individual distances and the cost of parallelism inherent in
line moves. Thus, this section reports our attempts on this and presents the first lower
bounds established for this model restricted to two sets of transformations. It is expected
to provide useful discussion that might help in proving the lower bounds on line moves.

In this section, we identify the connected shape of a diagonal line SD (see Definition
9) as a potential worst-case initial shape to be transformed into a line SL (see Definition
8). This intuition is supported by the O(n2) individual node distance between the two
shapes and by the initial unavailability of long line movements: the transformation may
move long lines whenever available, but has to pay first a number of individual and small
line movements in order to construct longer lines.

In this benchmark (special) case, the trivial lower and upper bounds Ω(n) and O(n2),
respectively, hold. Moreover, observe that a sequential gathering of the nodes starting from
the top right and collecting the nodes one after the other into a snake-like line of increasing
length is still quadratic, because, essentially, for each sub-trip from one collection to the
next, the line has to make a ‘turn’, meaning to change both a row and a column. In
models of single individual moves (e.g. rotation and sliding in [64, 89]), this costs a number
of steps equal to the length of the line, that is, roughly, 1 + 2 + . . . + (n − 1) = Θ(n2)

total time. In other words, each node in SD occupies a unique row and column where
n = #rows = #columns by which a transformation pays the maximum number of moves
to transform it into SL . Further, the diagonal SD is very similar to the staircase worst-case
shape of [89]. In what follow, we establish Ω(n log n) lower bounds for two restricted sets
of transformations. These are the first lower bounds for this model and are matching the
best known O(n log n) upper bounds.

Given an associated graph G = (V,E) of SD in which V is a set of nodes in SD and
E is non-negative edge weights (Manhattan distance between nodes). Then, to simplify
the problem, gather all nodes on SD at the bottom-most node. That is, every node in SD
must perform one or more hops through other nodes and end up at the bottom-most node.

Chapter 2. Discrete Shape Formation 41

When going through a node the two or more nodes can continue traveling together and
exploit parallelism.

Any such solution to the problem forms a spanning tree T ⊆ G, where every leaf to
root path corresponds to the hops of a specific node until it reached the end. The cost of
each subtree is: c(T) is the total sum of the distances of its edges plus the cost of nodes
c(V). Every edge E(u, v) has a cost equal to the distance of moving u to v, where each
node has a cost of paying for each internal node of a subtree the number of nodes in its
subtree. The latter cost is due to not being able to exploit parallelism whenever turning,
and any hop requires another turn. The cost due to distances is just:

c(E) =
∑

e∈E(T)

cost(e), (2.1)

and the cost of internal nodes is equal to:

c(V) =

d(T)∑
i=1

i · v ∈ d(T)i, (2.2)

where d(T) is the depth of tree T and d(T)i is the number of nodes at level i. The total
cost in number of moves given by such a tree T is the sum of 2.1 and 2.2:

c(T) = c(E) + c(V). (2.3)

Now, the two sums seem to give some trade-off. If the depth is very small, then the
cost due to distances seems to increase (e.g. if all nodes travel into one hop, they all
pay their distances and the cost is quadratic). This approach is similar to any sequential
transformation of individual movements which pays a cost of Θ(n2) to transform SD into SL.
The summation of the total individual distances is, Σ∆ = 0 + 1 + 2 + . . .+ (n−1) = Θ(n2),
independently of whether connectivity is preserved or not during transformations. This is
because of the inherent individual distance between SD and SL. On the other hand, the
tree T of very large depths looks as a spanning line where a lot of parallelism must be
exploited. The distance in this case would cost only c(E) = n− 1. While the sum of turns
at each node becomes quadratic, c(V) = n2. Therefore, we observe that more balanced
trees of logarithmic depth, such as binomial trees, manage to balance both sums and give
total cost n log n. Due to the trade-off, it does not seem easy to lower bound in the general

42 Abdullah A. Almethen

case. Further, it does not seem easy to lower bound the edges-sum even by some parameters
depending on the depth (so that both sums will be using similar parameters). It might not
even be related to that parameter. Therefore, we tried to further simplify the problem by
restricting the solutions to extremely limited depths. Below, we have successfully managed
to establish some special-case lower bounds for this problem.

It is quite obvious that no uniform strategy can yield better bound than the O(n log n)-
time universal strategy of Section 3.2, by simply increasing the number of lines that are
merging in every phase to decrease the number of phases. Hence, we have the following
proposition.

Proposition 5. Any strategy represented by a balanced tree performs at most O(n log n)

steps.

Proof. Observe that such a strategy is essentially trying to increase the degrees of the nodes
of a balanced tree and decrease its depth. For example, take any merging parameter k ≥ 2.
Notice that the O(n log n)-time transformation (DL-Doubling in Chapter 3) has k = 2, as it
is merging pairs of lines and get log n phases. So, in every phase i we are going to partition
the L lines into L/k groups of k consecutive lines each and merge the lines within each
group into a single line.

First, in phase 1, L = n, and we are partitioning into n/k groups. For each group we
are paying at least k2 asymptotically to merge the lines in it. Therefore for phase 1 we pay
(n/k)k2 = nk (this is similar also to the O(n

√
n)-time transformation in Section 3.2, but

there it only did it once and gathered all the lines to the bottom and not in any further
phases). Then in phase 2 L = n/k, we are partitioning into L/k = n/k2 groups. Each
group is paying at least k3 asymptotically, because the distance between consecutive lines
has now increased to k (roughly). Thus, it gives again cost at least nk, which should hold
for the other phases.

Now, observe that this strategy gives logk n = log n log k phases. If each is paying nk,
then the total cost is (nk)(log n log k) = n log n(k log k), which for all k ≥ 2 is at least
2n log n = Ω(n log n). This would be helpful because it excludes any attempts to get a
better than the O(n log n)-time transformation by simply playing with the degrees of the
tree in a uniform way (which in turn decreases its depth and thus the number of phases).

Chapter 2. Discrete Shape Formation 43

2.5.1 An Ω(n log n) lower bound for the 2-HOP tree

We start to study a special case lower bound for all solutions that represented by a tree T of
minimum depths. Assume any such solution moves all nodes in only one-way via shortest
paths towards their target positions. Once a node joins other nodes, they do not split after
that during the transformation. Let d(T) denote the depth of the tree. For d(T) = 1, the
tree becomes a star, and the total cost is quadratic in this case, due to the summation of
individual distances c(E) = 0 + 1 + 2 + . . .+ (n− 1) = Θ(n2).

Then, we investigate the tree T of depth at most 2, d(T) = 2. Observe that we
asymptotically pay for each node in the tree at least the square of the number of children.
The reason is that at most 2 children can be at distance 1, then at most 2 can be nodes
of distance 2; hence, at most 2 of distance i in general due to the neighbouring properties
of the diagonal on the two-dimensional square grid. Thus, any such tree gives a total of
c(T) =

∑
i d(ui)

2, where d(ui) is the number of children of ui. That is, the squares of the
degrees of all internal nodes, excluding their parent (the root ui).

Let T of k nodes be a tree of depth 1, as shown in Figure 2.10. Then, the total
asymptotic cost of the tree c(T) is at least:

c(T) ≥
k∑

i=0

d(ui)
2, (2.4)

where d(ui) is the degree of node ui.

u0

u1 u2 uk

Figure 2.10: A tree T of k nodes.

Given the tree T of k we show the first case of a minimum total cost T must pay if it
has a node ui ∈ T with degree at least n log n;

Lemma 3. If ∃ d(ui) ≥
√
n log n, then c(T) ≥ n log n, for all 0 ≤ i ≤ k.

Proof. The proof is straightforward. Consider the tree T of k nodes in Figure 2.10. If
k ≥

√
n log n, then the tree shall have a minimum total cost of c(T) ≥ d(u0)2 = k2 =

44 Abdullah A. Almethen

(
√
n log n)

2
= n log n. In general, if there exists a node ui ∈ T , for all 0 ≤ i ≤ k, such that

d(ui) ≥
√
n log n, then the total cost of the tree must be at least c(T) ≥ n log n.

Now, let us assume that all nodes in the tree have degrees less than
√
n log n. Thus, we

show the lower bound of Lemma 3 holds in this case.

Lemma 4. Let d(ui) <
√
n log n ∀i, where 0 ≤ i ≤ d(u0) = k. Then, c(T) > n log n.

Proof. Given a tree T of n nodes that has depth of 2, and a subtree T ′ ⊆ T of k nodes as
in Figure 2.10. So, let d(ui) <

√
n log n , for all 0 ≤ i ≤ d(u0) = k. Assume without loss of

generality that the nodes ui ∈ T ′, for all 1 ≤ i ≤ d(u0) = k, are ordered in non-increasing
degrees from left to right (increasing order i), that is, d(u1) ≥ d(u2) ≥ . . . ≥ d(uk). Hence,
there are n− (k + 1) ∈ T nodes remaining to be assigned. As d(u1) ∈ T ′ is the maximum,
it must hold that, d(u1) ≥ n−(k+1)

k , thus n−(k+1)
k ≤ d(u1) <

√
n log n. Next, there are

n− (k+ 1)− d(u1) ∈ T nodes need to be allocated. As d(u2) ∈ T ′ is the maximum among
the rest, it must hold that d(u2) ≥ n−(k+1)−d(u1)

k−1 , thus n−(k+1)−d(u1)
k−1 ≤ d(u2) <

√
n log n.

In general, if a node d(ui) ∈ T ′ is the maximum, then the following must hold that,

d(ui) ≥
n−

(∑i−1
j=0 d(ui)

)
− 1

k − (i− 1)
, (2.5)

thus,

n−
(∑i−1

j=0 d(ui)
)
− 1

k − (i− 1)
≤ d(ui) <

√
n log n. (2.6)

Now, plug i = 1 and k = d(u0) in (2.5) yields,

d(u1) ≥ n− d(u0)− 1

d(u0)
>
n−
√
n log n− 1√
n log n

, (2.7)

when i = 2, we will get,

d(u2) ≥ n− (d(u0) + d(u1))− 1

d(u0)
>
n− 2

√
n log n− 1√

n log n− 1
. (2.8)

Chapter 2. Discrete Shape Formation 45

For all 1 ≤ i ≤ d(u0) = k, we shall obtain,

d(ui) ≥
n−

(∑i−1
j=0 d(ui)

)
− 1

d(u0)− (i− 1)
>
n− i

√
n log n− 1√

n log n− (i− 1)
. (2.9)

Then, we plug (2.9) into (2.4), which implies,

c(T) >

d(u0)∑
i=0

[
n− i

√
n log n− 1√

n log n− (i− 1)

]2

> (
√
n log n)

−1
d(u0)∑
i=0

(n− i
√
n log n− 1)

2

= (
√
n log n)

−1

[
d(u0) · n2 + n

d(u0)∑
i=0

(i2 log n− 2i
√
n log n)

]
. (2.10)

We need to bound the summation of (2.10):

d(u0)∑
i=0

n(i2 log n− 2i
√
n log n) =

d(u0)∑
i=0

i2 log n−
d(u0)∑
i=0

2i
√
n log n

= log n
(
d(u0)3 + d(u0)2 + d(u0)

)
− 2
√
n log n · d(u0)2. (2.11)

Now, plug (2.11) into (2.10), then it will give a total cost of the tree c(T) that asymptotically
bounded on:

c(T) > (
√
n log n)

−1
(
n2 · d(u0) + n log n · d(u0)3 −

√
n log n · d(u0)2

)
>
n2 · d(u0) + n log n · d(u0)3

√
n log n

− n log n. (2.12)

Finally, since d(u0) > 1, it implies that,

c(T) >
n2

√
n log n

− n log n =

(√
n

log2n
− 1

)
n log n =

= Ω(n log n). (2.13)

As a result, both Lemmas 3 and 4 show that the total cost of any spanning tree c(T)

46 Abdullah A. Almethen

of n nodes and depth at most d(T) ≤ 2 is always bounded by Ω(n log n).

Theorem 1. Any 2-HOP spanning tree of n nodes and depth at most d(T) ≤ 2 has a total
cost c(T) of Ω(n log n).

2.5.2 A conditional Ω(n log n) lower bound - one way transformation

Now, we present another restricted lower bound for transformations of line moves. Again,
our techniques is based on one-way assumption in which all nodes move in one direction
via shortest paths towards the target node (e.g. from top to bottommost node in the
diagonal). Whenever a node joins other nodes, they continue travelling together and do
not split thereafter. Assume a potential placement of SL horizontally on the bottommost
row y1 or vertically at the leftmost column x1 of the shape. Without loss of generality,
assume all lines are moving down and leftwards. This is convenient as they always push a
minimum distance towards their target positions on the potential placement of SL.

Enclose each individual node of SD into a square box of dimension d∆ = 1, this gives
a total of n boxes, see the black squares boxes in Figure 2.11. Then, double the dimension
d∆ = 2 to surround n/2 boxes of two nodes each, see the red squares boxes in Figure 2.11.
Repeat doubling dimensions log n times, until arriving at a single box of d∆ = n, which
contains all nodes of SD. Assume that n is a power of 2, the total number of all boxes then
shall be n+ n/2 + n/4 + . . .+ 1 = 2n− 1 boxes, where there are n boxes of d∆ = 1, n/2 of
d∆ = 2, . . . and 1 box of d∆ = n.

Now, observe that such a transformation at any order during its course, must pay at
least n steps to push n nodes out from their black boxes of d∆ = 1. Hence, a trivial lower
bound of Ω(n) holds. Further, when a line l1 of 1 node occupying a box of d∆ = 1 is
pushed one move to cross the boundary, no one will be pushed for free, see a demonstration
in Figure 2.12(a). The same argument follows, when a line l2 of length 2 contained into
a 2 × 2 red box, pushes a distance of 2, say to the left, then no line will leave its red box
for free, as depicted in Figure 2.12(b). By this observation, any transformation requires at
least d∆ · n/d∆ moves to evacuate all lines from n/d∆ boxes of d∆, where the dimension
d∆ = 2k for all 0 ≤ k ≤ log n. Hence, no line will be pushed for free at any order during
the course ot the transformation.

With this, we can then calculate the total minimum moves that must be paid to empty
all 2n− 1 boxes containing lines (of various lengths). That is, any strategy needs to pay a
minimum number of d∆ = 2k moves to evacuate each occupied box at any order of its course.

Chapter 2. Discrete Shape Formation 47

d = 1

8

4

2

n

n

1

n

2

Figure 2.11: Every node of SD is contained into log n boxes.

4

2
d∆ = 1

(a)

d∆ = 1

4

2

(b)

Figure 2.12: (a) If a node (line of length 1) inside a black box pushes one move, no one
will be pushed for free. (b) A line of length 2 pushing a distance of 2 towards the left and
getting out of its red box.

Thus, the total minimum moves can be given by (1 ·n)+(2 ·n/2)+(4 ·n/4)+ . . .+(n ·1) =

n + n + . . . + n. Since we have log n different dimensions, this gives a total of n log n

minimum number of moves. Hence, any transformation exploiting line moves asks for at

48 Abdullah A. Almethen

least Ω(n log n) moves to transfer all n nodes from their initial cells in SD to their final
cells at the potential placement of SL, i.e. to transform SD into SL. Therefore, we can say
that:

Proposition 6. Any shape transformation exploiting line moves and restricted to a one-way
direction requires Θ(n log n) moves to transform SD into SL.

Chapter 3

Unrestricted transformations

As a first step towards understanding the power of the proposed model, we naturally restrict
our attention to centralised transformations, assuming that the connectivity needs not be
necessarily preserved during the execution. This unrestricted framework provides more in-
sight into the underlying principle of the parallelism inherent in line moves, which has the
potential to be exploited for efficient, i.e. sub-quadratic worst-case, transformations. Fur-
thermore, some of the algorithmic tools in unrestricted centralised transformations might
prove useful for more restricted versions.

In this chapter, we consider a number of transformations that not necessarily preserve
the connectivity of the shape throughout the execution. In Section 3.1, we first introduce
the partitioning transformation of time at most O(n

√
n) moves for the apparent extreme-

case of converting the diagonal line shape into a straight line in Section 3.1.1. As the
uniform partitioning into segments is optimal for the above type of transformation, we
turn our attention into different unrestricted transformations, aiming at further reducing
the running time. Hence, Section 3.1.2 presents an alternative transformation based on
successive doubling, yielding a substantial improvement of at most O(n log n) moves to
transform the diagonal into a line. Then, we show in Section 3.1.3 that a uniform recursion
approach for this special case obtains an alternative O(n log n) transformation and could
not be applied to further reduce the running time for the diagonal-to-line problem.

Following that, Section 3.2 generalises the techniques created for the preceding bench-
mark case and introduces universal transformations with equivalent efficiency. Both the
O(n
√
n) and the O(n log n) approaches have been successfully generalised, obtaining uni-

versal transformations of worst-case running times O(n
√
n) in Section 3.2.1 and O(n log n)

49

50 Abdullah A. Almethen

in Section 3.2.2, respectively. This is accomplished by surrounding the initial shape in a
square bounding box and then subdividing the box into square sub-boxes of appropriate
size. A single such partitioning into sub-boxes of size

√
n ×
√
n is found to be adequate

for the first bound, O(n
√
n). We then use a successive doubling strategy for the O(n log n)

bound, this time through phases of increasing sub-box dimension, that is, a new partitioning
in each phase.

3.1 The Diagonal-To-Line transformation

As mentioned earlier, we identify the diagonal connected shape SD of order n (see Definition
9) as an initial potential worst-case shape to be transformed into a straight line SL. Our
goal is then to transform SD into SL in which the shape is allowed to break its connectivity
throughout transformations. We do this, because this problem seems to capture the worst-
case complexity of transformations in the line-pushing model. For example, SD can be
viewed as a staircase shape of stairs of length 1, which is much harder than the staircase
worst-case shape of [89] of stairs of length 2. Further, this particular diagonal shape consists
of the maximum number of n lines of length 1 across all connected shapes drawn on the
square grid.

Below, we demonstrate an O(n
√
n)-time strategy, called DL-Partitioning, to transform

the diagonal SD into a straight line SL without necessarily preserving the connectivity
during the transformation.

3.1.1 DL-Partitioning: An O(n
√
n)-time Transformation

This transformation solves DiagonalToLine as follows. Divide the diagonal into several
segments, as in Figure 3.1(a), each segment performs a trivial (inefficient, but enough for
our purposes) line formation by moving each node independently to its leftmost column
(Figure 3.1(b)). Hence, all segments are transformed into lines (Figure 3.1(c)). Now,
transfer each line segment all the way down to the bottommost row of the diagonal SD
(Figure 3.1(d)). Finally, turn the orientation of all line segments to form the target straight
line (Figure 3.1(e)).

More formally, let SD denote a diagonal of n nodes occupying (x, y), (x+1, y+1), . . . , (x+

n−1, y+n−1), such that x and y are the leftmost column and the bottommost row of SD,
respectively. Then, SD is divided into d

√
ne segments, l1, l2, . . . , ld√ne, each of length b

√
nc.

Chapter 3. Unrestricted transformations 51

√
n√
n

√
n√
n

n
(x, y)

l√n

l√n−1

l2

l1

(a)

√
n

1
2
3

∆ =
√
n− 1

(i, j)

(b)
√
n

n

n−
√
n

l√n

l√n−1

l1
l2

(c)

y +
√
n− 1

y

y + n− 1

x x+
√
n− 1 x+ n− 1

(d)

y

x x+
√
n− 1 x+ n− 1

(e)

Figure 3.1: (a) Divide the diagonal into
√
n segments of length

√
n each. (b) A closer view

of a single segment, where 1, 2, 3, . . . ,
√
n− 1 are the distances for the nodes to form a line

segment at the leftmost column. (c) Each line segment is transferred downwards to the
bottommost row of the shape in (d). (e) All line segments turned to fill in the bottommost
row, and hence, form the target straight line.

Figure 3.1(a) illustrates the case of integer
√
n. Without loss of generality, DL-Partitioning

consists of three phases:

• Phase 1: Transforms each diagonal segment l1, l2, . . . , l√n into a line segment. Notice
that segment lk, 1 ≤ k ≤

√
n, contains

√
n nodes occupying positions (x + hk, y +

52 Abdullah A. Almethen

hk), (x+hk + 1, y+hk + 1), . . . , (x+hk +
√
n−1, y+hk +

√
n−1), for hk = n−k

√
n;

see Figure 3.1(b). Each of these nodes moves independently to the leftmost column
of lk, namely column x+hk, and occupy (x+hk, y+hk), (x+hk, y+hk +1), . . . , (x+

hk, y + hk +
√
n − 1). By the end of Phase 1,

√
n vertical line segments have been

created (Figure 3.1(c)).

• Phase 2: Transfers all
√
n line segments from Phase 1 down to the bottommost row

y. Observe that line segment lk has to move distance hk (see Figure 3.1(d)).

• Phase 3: Turns all
√
n line segments into the bottommost row y (Figure 3.1(e)) into

positions (x+ hk, y), (x+ hk + 1, y), . . . , (x+ hk +
√
n− 1, y).

Now, we are ready to analyse the running time of all phases of DL-Partitioning.

Theorem 2. DL-Partitioning solves the DiagonalToLine problem in O(n
√
n) moves.

Proof. In the first phase, the cost of the trivial line formation is the run of all distances for
d
√
ne nodes to be gathered at the leftmost column of a single segment lk. Observe that in

Figure 3.1(b), the d
√
ne nodes of lk have to move distances of ∆ = 0, 1, 2, . . . , (

√
n − 1).

Therefore, the total run t1 of all distance of other
√
n−1 nodes in a single segment (except

the bottommost node lk which stays still), is:

t1 = 1 + 2 + . . .+ (
√
n− 1) =

√
n−1∑
i=1

i

=

√
n(
√
n− 1)

2
=
n−
√
n

2

= O(n). (3.1)

Multiplying (3.1) by d
√
ne implies the total distances T1 for all segments:

T1 = t1 · d
√
ne

= O(n
√
n). (3.2)

Now, all d
√
ne line segments move downwards the in phase 2 (except the one already there).

Thus, any line segment lk has to transfer a distance of n− k
√
n to reach the y bottommost

Chapter 3. Unrestricted transformations 53

row. The total run T1 in the second phase is:

T2 =

√
n−1∑
k=1

(n− k
√
n) = (n

√
n− n)−

√
n−1∑
k=1

k
√
n

= (n
√
n− n)−

√
n

(√
n(
√
n− 1)

2

)
= O(n

√
n). (3.3)

The last phase basically turns (re-orientates) each line of d
√
ne nodes into the y bottommost

row of length n. Now, each line segments lk contributes a node at the bottommost row
y, therefore, we have d

√
ne nodes are sitting on row y, and the other n − d

√
ne nodes are

waiting to be pushed (turned) into the bottommost row of length n. By Lemmas 1 and 9,
the transformation fills in the bottommost row y, and each node turns within two moves
to reach y, implying a total T3 for all n− d

√
ne as follows:

T3 = 2 · (n− d
√
ne) = 2n− 2

√
n = 2(n−

√
n)

= O(n). (3.4)

The sum of (3.2), (3.3) and (3.4) gives the total cost T in moves for all phases,

T = T1 + T2 + T3

=
n(
√
n− 1)

2
+
n(
√
n− 1)

2
+ 2(n−

√
n)

= O(n
√
n).

3.1.2 DL-Doubling: An O(n log n)-time Transformation

We now investigate another approach (called DL-Doubling) that solves DiagonalToLine

more efficiently in a total of O(n log n) moves. This algorithm achieves a better bound of
O(n log n) than the prior one in Section 3.1.1, which was O(n

√
n). The main idea is as

follows. The initial configuration can be viewed as n lines of length 1. We start (in phases)
to successively double the length of lines (while halving their number) by matching them
in pairs through shortest paths, until a single straight line remains. Let the lines existing

54 Abdullah A. Almethen

in each phase be labelled 1, 2, 3, . . . from top-right to bottom-left. In each phase, we shall
distinguish two types of lines, free and stationary, which correspond to the odd (1, 3, 5, . . .)
and even (2, 4, 6, . . .) lines from top-right to bottom-left, respectively. In any phase, only
the free lines move, while the stationary stay still.

In particular, in phase i, every free line j moves via a shortest path to merge with the
next (top-right to bottom-left) stationary line j + 1. This operation merges two lines of
length k into a new line of length 2k residing at the column of the stationary line. In
general, at the beginning of every phase i, 1 ≤ i ≤ log n, there are n/2i−1 lines of length
2i−1 each. These are interchangeably free and stationary, starting from a free top-right one,
and at distance 2i−1 from each other. The minimum number of steps by which any free
line of length ki, 1 ≤ ki ≤ n/2 can be merged with the stationary next to it is roughly at
most 4ki = 4 · 2i (by two applications of turning of Lemma 1). By the end of phase i (as
well as the beginning of phase i+ 1), there will be n/2i lines of length 2i each, at distances
2i from each other. The total cost for phase i is obtained then by multiplying n/2i free
lines, each is paying at most 4 · 2i to merge with the next stationary, thus, a linear cost in
each one of log n phases in total. See Figure 3.2 for an illustration of DL-Doubling.

More formally, given an initial diagonal line SD of n nodes. Due to symmetry, it
is sufficient to show transformations occurring on one orientation. Initially, the set of
n/2 free nodes are on (x1, y1), (x3, y3), . . . , (xn−1, yn−1) while the n/2 stationary occupy
(x2, y2), (x4, y4), . . . , (xn, yn). In each phase i, 1 ≤ i ≤ log n, each line doubles and has
a length of 2i. In phase i = 1, all free lines of length 1 move a distance ∆ = 1 to
their left to occupy (x2, y1), (x4, y3), . . . , (xn, yn−1) and merge with the next following n/2
stationary lines. Hence, a total of n/2 vertical lines of length 2 are created with bottommost
nodes occupying (x2, y1), (x4, y3), . . . , (xn, yn−1), as depicted in the top of Figure 3.2. In
the second phase, those n/2 vertical lines are arranged into two sets, n/4 free and n/4

stationary lines interchangeably at distance ∆ = 22−1 = 2 from each other. Thus, all of
the free move a distance ∆ = 3 to form n/4 vertical lines of length 4 each. DL-Doubling
repeats this process log n to eventually end up with the final straight line SL of order n.

Observe that each free line goes through several turns in order to merge with the
next following stationary line. In particular, each free line performs the following: turn
its orientation, push one move to connect perpendicularly with the stationary and finally
turns orientation again where both form a double-length line. Lemma 1 states that during
any phase i, a free line of length ki, where 1 ≤ ki ≤ n/2, performs at most 4ki = 4 · 2i

moves to merge with closest stationary line. Thus, we give the following lemma.

Chapter 3. Unrestricted transformations 55

n/2 free lines of length 1

n/2 stationary lines of length 1

Each free line moves ∆ = 1 to join

the colsest stationary line at phase 1

n/4 free lines of of length 2

n/4 stationary lines of length 2

n/8 free lines of of length 4

n/8 stationary lines of of length 4

Each free line moves ∆ = 3 to

the colsest stationary line at phase 2
After (logn− 2) phases

The final spanning line of n

1
2

3

n− 1
n

1
2
3

n− 1
n

Figure 3.2: The process of the O(n log n)-time DL-Doubling. Nodes reside inside the black
and grey cells.

Lemma 5. By the end of phase i, DL-Doubling takes at most O(n) moves to form n/2i

lines of length 2i each, where 1 ≤ i ≤ log n.

Proof. Given that in phase i each free line of length 2i−1 pays at most 4 · 2i−1 = 2i+1 − 3

moves (applying Lemma 1 twice), then all of the n/2i lines pay a total cost ti of at most:

ti =
n

2i
·
(
2i+1 − 3

)
= 2n− 3n

2i
= n

(
2− 3

2i

)
. (3.5)

Thus, for each phase i, the bound of O(n) moves holds trivially and inductively.

Utilising Lemma 5, we can now formulate the following:

Theorem 3. DL-Doubling solves the DiagonalToLine problem in O(n log n) moves.

Proof. The goal line SL of length n increases exponentially in each of the log n phases
during the transformation. With that, the total running time T of this transformation is

56 Abdullah A. Almethen

computed by summing the cost of 3.5 over all log n phases, as follows:

T =

logn∑
i=1

ti

=

logn∑
i=1

n(2− 3

2i
) = 2n log n− 3n

logn∑
i=1

1

2i
. (3.6)

Let us compute the right summation of 3.6,

logn∑
i=1

1

2i
=

(
1

2
+

1

4
+

1

8
+ . . .+

1

2logn

)
, (3.7)

by multiplying 3.7 by 2 and subtracting it again by itself,(
1 +

1

2
+

1

4
+

1

8
+ . . .+

1

2log(n−1)

)
−
(

1

2
+

1

4
+

1

8
+ . . .+

1

2log(n−1)
+

1

2log(n)

)
= 1− 1

2log(n)
. (3.8)

Then, plug 3.8 into 3.6, this yields,

2n log n− 3n

(
1− 1

2logn

)
= 2n log n− 3n+

3n

2logn
= n

(
2 log n+

3

2logn
− 3

)
= O(n log n).

Thus, it has been proved that DL-Doubling transforms SD of n nodes into SL in a total
of O(n log n) moves.

3.1.3 An O(n log n)-time Transformation Based on Recursion

An interesting observation for DiagonalToLine (i.e. without necessarily preserving con-
nectivity), is that the problem is essentially self-reducible. This means that any transforma-
tion for the problem can be applied to smaller parts of the diagonal, resulting in small lines,
and then trying to merge those lines into a single straight line. An immediate question is
then whether such recursive transformations can improve upon the O(n log n) best upper
bound established so far. The extreme application of this idea is to employ a full uniform
recursion (call it DL-Recursion), where SD is first partitioned into two diagonals of length

Chapter 3. Unrestricted transformations 57

n/2 each, and each of them is being transformed into a line of length n/2, by recursively
applying to them the same halving procedure. Finally, the top-right half has to pay in a
total of at most 4(n/2) = 2n to merge with the bottom-left half and form a single straight
line (and the same is being recursively performed by smaller lines).

More formally, consider a diagonal SD of n nodes where the bottom-left and top right
nodes occupy (x1, y1) and (xn, yn), respectively. Then, the goal is to collect all nodes at
the leftmost column, say xn. The collection can be arranged in a recursive way by creating
stop points (partitions) on SD in which each stop point always creates equal partitions of
the same length. This can be parametrised by n

x for each partition, where 2 ≤ x ≤ n. For
example, if x = 2, we have a stop point that halves SD into 2 partitions of length dn2 e. As a
consequence, the first node on the top will stop at the middle of SD and wait for all nodes
to its right to gather at that point (column) and then continue directly to the gathering
(column) xn.

Now, let us repeat the same precess on each of the x partitions recursively, by considering
the partition as a diagonal of length roughly n

x − 1, which is divided into x sub-partitions
each of length n

x2 roughly. Every recursion shrinks the partitions by a factor of 1
x . For

example, in the x = 2 case, we halve the length of the partitions every time we subdivide,
therefore, we will end the recursion when it arrives at partitions of length 1, which will
happen after log n repetitions. That occurs similarly for the general x case by simply end
after logx n repetitions. For example, Figure 3.3 demonstrates this procedure.

1

n

Stop point = n
x

n
x
− 1

n
x
− 1

1

n

n
x

n
x2 − 1

n
x2

n
x2

n
x2 − 1

n
x2 − 1

n
x2 − 1

1

n

n
x

n
x2

n
x2

2
3 1

1

Next Partition After log n

n− 1

Figure 3.3: Shows all steps of subdividing the diagonal shape recursively by a factor of 1
x ,

where x = 2.

Next, we draw an abstract underlying tree of the partitioning process to trace all neces-
sary computations required to travel from the diagonal SD into a bottommost left column
xn. Figure 3.4 presents the tree of n nodes and weighted edges indicate the minimum

58 Abdullah A. Almethen

distances (shortest paths) ∆ between them. The abstract tree has a degree and depth
of log2 n, which is also the number of phases that are needed to chase the segmentation
recursively. Here, node n is the root of the tree occupies the target column at xn, and it
has log n child nodes n− 1, n− 2, n− 4, . . . , n2 of distances ∆ = 1, 2, 4, . . . , n2 , respectively.
Now, the distance ∆ between a parent u and child node v defines two basic properties: 1)
the number of sub-child nodes (siblings) of v, namely each child node v gets log ∆(u, v)

sub-child nodes, and 2) the maximum cost by which a child node v requires to merge with
its parent u, and it is computed by (2∆+1 − 3) (a reader may consult Lemma 5 and The-
orem 3 concerning the maximum cost). For example, the n

2 child node needs (2
n
2

+1 − 3)

steps to join its parent node n in a distance of ∆ = n− n
2 = n

2 , and at the same time, this
tells us that this child node is also holding log n

2 sub-child nodes. On the contrary, n − 1

node got no sub-child since log 1 = 0, so it is a leaf that requires (21+1 − 3) = 1 steps to
reach its parent node n. The same idea follows for other sub-trees, such as n

2 ,
n
4 ,

n
8 , . . . , 2.

Having said that, the implementation of any transformation strategy that solves the
above recursion problem can generally be reordered without affecting the cost, and each stop
point takes place in the reordered version. That is because the abstract tree representation
remains conveniently invariant (i.e. inherits the same cost) for any arrangement by which a
transformation can exploit to collect nodes into the target point (column or row). However,
this recursion proceeds in log n phases of cost , where in each phase i, for all 1 ≤ i ≤ log n,
we upper bound a cost that the transformation A pays at most to move all nodes in each
phase (even though A may move them in an entirely different order). In phase 1, A works
on nodes 1, 3, 5, . . . , n − 1 to eventually align all of them; hence, no matter in what order
the nodes move, A performs at most O(n2) steps during the first phase.

In the second phase, (columns or rows) of nodes 2, 4, 6, . . . , (n − 2) are occupied by 2

nodes. Those pairs of nodes principally move at some point (even together or as part of
other nodes going through them) to its parent nodes (i.e. the next occupied column or
row), with paying a cost of (22+1 − 3) = 5 each. Repeat the same argument for the rest of
the phases, the upper bound now is based on the following observation: whenever k nodes,
where 1 ≤ k < n, all move as maximum as (2k+1 − 3) steps to merge with the next stop
point (parent node). In other words, suppose that k nodes are a line of k nodes, it walks
at most (2k+1 − 3) steps to form a line with the next occupied row or column.

Generally, we can say that at any phase i of any transformation A solves the recursion
problem, where 0 ≤ i ≤ log n, there is a node v with other 2i nodes occupying the same
column (row), where the distance between v and its parent u (the next occupied column

Chapter 3. Unrestricted transformations 59

n

n− 1

∆ = 1

n− 2

n− 3

2

n− 4

n− 6

n− 7n− 5

n
2

log n− 4

n
2 − 1

n
2

n
4

n
4 − 1

log n
4 − 2

n
4

n
8

n
8

3 1

1 1 1

2

4

1 1

log n
2 − 2

1 1

2

Phase: 1

Phase: 2

logn

4

2

logn− 1

logn− 2

Phase:

Phase:

Phase:

Figure 3.4: The underlying tree representation of a recursive partitioning of a diagonal.
Edges are weighted by the minimum distance (∆) between nodes. See the text for more
explanation.

(row) is ∆(u, v) = 2i. Then, our purpose is to upper bound A’s cost for v to reach and
merge with u; therefore, v walks at most (2i+1 − 3) steps to form a line with u.

By analysing the running time of such a uniform recursion, we obtain that it is still
O(n log n), partially suggesting that recursive transformations might not be enough to
improve upon O(n log n) (also possibly because of an Ω(n log n) matching lower bound,
which is left as an open question). If we denote by Tk the total time needed to split and
merge lines of length k, then the recursion starts from 1 line incurring Tn and ends up with
n lines incurring T1. In particular, we analyse the recurrence relation:

Tn = 2 · Tn/2 + 2n = 2(2 · Tn/4 + n) + 2n = 4 · Tn/4 + 4n = 4(2 · Tn/8 + n/2) + 4n

60 Abdullah A. Almethen

= 8Tn/8 + 6n = · · · = 2i · Tn/2i + 2i · n = · · · = 2logn · Tn/2logn + 2(log n)n.

Since T1 = 1, we get,

Tn = n · T1 + 2n(log n) = n+ 2n(log n)

= O(n log n).

To prove this, let us rewrite the recurrence as,

Tn = aTn/b + Θ(nd), (3.9)

for constants a ≥ 1, b > 1 and d ≥ 1. Then by the master theorem [41], Tn satisfies the
following three cases:

Tn =


case 1: Θ(nd), if d > logb a;

case 2: Θ(nd log n), if d = logb a;

case 3: Θ(nlogb a), if d < logb a.

Recall that the recurrence runtime is,

Tn = 2Tn/2 + 2n.

Hence, we have a = 2 and b = 2 and thus logb a = log2 2 = 1. Since d = logb a = 1, we
can apply case 2 of the master method and conclude that Tn = O(n log n). Now, let us
drop the assumption (n is a power of two) and prove that Tn = O(n log n) for all n. In the
general case, the running time gets the following recurrence:

Tn = Tdn/2e + Tbn/2c + Θ(n).

By replacing aTn/b in 3.9 by a1Tdn/be + a2Tbn/bc, where a1, a2 ≥ 0 and a1 + a2 = a, then
the master theorem still holds, and hence the bound Tn = O(n log n) remains true for all
n. Finally, we give the following theorem,

Theorem 4. DL-Recursion transforms any diagonal SD of order n into a line SL in
O(n log n) moves.

Chapter 3. Unrestricted transformations 61

3.2 Universal Transformations

In this section, we develop universal transformations that transform any initial connected
shape SI into any target shape SF of the same order n exploiting line moves in which the
connectivity of the shape can be broken during the transformation. Due to reversibility
(Lemma 2), it is sufficient to show that any initial connected shape SI can be transformed
into a straight line (implying then that any pair of shapes can be transformed to each other
via the line and by reversing one of the two transformations).

3.2.1 U-Box-Partitioning: An O(n
√
n)-time Transformation

We present a universal transformation, called U-Box-Partitioning, that solves Univer-

salTransformation in O(n
√
n) moves. Observe that any initial connected shape SI

can be enclosed in an appropriately positioned n× n square (called a box). Our universal
transformation is divided into three phases:

Phase A: Partition the n×n box into
√
n×
√
n sub-boxes (n in total in order to cover

the whole n× n box). In each sub-box move all nodes in it down towards the bottommost
row of that sub-box as follows. Start filling in the bottommost row from left to right, then
if there is no more space continue to the next row from left to right and so on until all nodes
in the sub-box have been exhausted (resulting in zero or more complete rows and at most
one incomplete row). Moving down is done via shortest paths (where in the worst case a
node has to move distance 2

√
n). This brute-force line formation is illustrated in Figure 3.5.

Phase B: Choose one of the four length-n boundaries of the n × n box, say without
loss of generality the left boundary. This is where the straight line will be formed. Then,
transfer every line via a shortest path to that boundary (incurring a maximum distance of
n−
√
n per line).

Phase C: Turn all lines (possibly consisting of more than one line on top of each other),
by a procedure similar to that of Figure 3.1(e), to end up with a straight line of n nodes
on the left boundary.

Now we provide a more formal description of U-Box-Partitioning. First, there are two
variants of

√
n×
√
n sub-boxes:

62 Abdullah A. Almethen

1. Occupied sub-box : Denoted by s and contains k nodes of SI , where 1 ≤ k ≤ n.

2. Unoccupied sub-box : An empty sub-box (has no nodes).

Given that, we show some basic properties of occupied sub-boxes. Given an occupied
sub-box s of k nodes, where 1 ≤ k ≤ n, then the maximum number of lines which can
be formed inside s is at most d k√

n
e. As mentioned above, those k lines can be aligned

horizontally at bottommost rows or vertically at leftmost columns of the occupied sub-box
by a brute-force line formation in Figure 3.5. Hence, the following lemma gives an upper
bound on the number of sub-boxes that any initial connected shapeSI may occupy.

Lemma 6. A connected shape SI of order n occupies O(
√
n) sub-boxes.

Proof. By Corollary 1, any SI can occupy at most O(nd) sub-boxes of dimension d. In this
case, U-Box-Partitioning divides the n×n square box into n×n sub-boxes of size d =

√
n,

with SI occupying no more than n√
n

= O(
√
n) sub-boxes.

Below, we prove the correctness and analyse the running time of phase A.

Lemma 7. Starting from any connected shape SI of order n, Phase A completes within
O(n
√
n) moves.

Proof. By Lemma 6, let SI be a connected shape of n nodes occupies
√
n sub-boxes of size

√
n ×
√
n each, and s ∈ SI be any occupied sub-box of k nodes, where 1 ≤ k ≤ n. Then,

s performs a trivial line formation to collect all k nodes at its bottommost (or leftmost)
boundary. Consider the worst case of s having a node that occupies the top-right corner
and wants to gather at the bottom-left. It needs to move a distance of at most ∆ = 2

√
n

via shortest path to arrive at the bottom-left corner. Observe that s forms at least one
complete line of length

√
n or one incomplete of less than

√
n. Since SI is connected, there

must be at most
√
n occupied sub-boxes, implying that a total of at most n√

n
= O(

√
n) lines

(complete or incomplete) living inside all of those occupied sub-boxes. With that, a line l of
w nodes, for all 1 ≤ l, w ≤

√
n, is formed within a total moves t that given by:

t = w · 2
√
n =
√
n · 2
√
n = 2n

= O(n). (3.10)

Finally, all of the
√
n lines ask for a total cost T1 of moves to complete the brute-force

line formation inside the occupied sub-boxes, which is computed by multiplying 3.10 by
√
n,

Chapter 3. Unrestricted transformations 63

as follows:

T1 =
√
n · t =

√
n · 2n = 2n

√
n

= O(n
√
n). (3.11)

√
n = 6

√
n = 6

√
n = 6

√
n = 6

Figure 3.5: An example of a brute-force line formation to collect all k nodes at bottommost
rows of a sub-box of size 6× 6 containing k = 11 nodes.

In phase B, set any (length-n) boundary of the n × n square box as the gathering
boundary of all lines that are formed in phase A. Then, the following lemma computes the
total moves of the gathering.

Lemma 8. Starting from any connected shape SI of order n, Phase B completes in O(n
√
n)

moves.

Proof. It follows from Lemmas 6 and 7. Let SI be a connected shape of order n enclosed by
a n× n box and then partitioned into

√
n×
√
n occupied sub-boxes of k nodes each, where

1 ≤ k ≤ n. By phase A, there are l lines, for all 1 ≤ l ≤
√
n, formed inside all

√
n occupied

sub-boxes. Without loss of generality, define the left border of the n×n box as the gathering
boundary for all those lines. The distance between any line inside an occupied sub-box and
the defined boundary is no longer than n−

√
n. Thus, each line moves a distance δ by at

most δ ≤ n−
√
n to arrive at the gathering boundary. Then, all lines l reach the left border

with a total cost T2 of at most:

T2 = l · δ

=
√
n · (n−

√
n) = n

√
n− n

= O(n
√
n). (3.12)

64 Abdullah A. Almethen

By the end of phase B, all
√
n lines have transferred and arrived at the length-n gather-

ing boundary, where each contributes a node to that boundary. By Lemma 9, in phase C,
all of those lines fill in the length-n border in order to form the goal straight line. Formally,
we give the following Lemma.

Lemma 9. Consider any length-n boundary and n nodes forming k lines, where 1 ≤ k ≤ n,
that are perpendicular to that boundary. Then, by line moves, the k lines require at most
O(n) moves to form a line of length n on that boundary. This implies that Phase C is
completed in O(n) moves.

Proof. In Figure 3.6, the lines {l1, l2, . . . , lk} of n nodes are connected perpendicularly the
dashed line which denotes the length-n gathering border, where 1 ≤ k ≤

√
n. The n nodes

are sufficient to completely fill up the border of length ∆ = n. Now, pick the first line l1 of
k1 nodes and start to push k1 into the topmost point of the boundary, until either 1) k1 are
exhausted, or 2) reaching the topmost point of the boundary and still have nodes waiting
to be pushed. In this case, l1 can easily begin to push the remaining of k1 downwards at
the boundary. Repeat the same strategy for all other lines shall fill in the length-n border
completely by n nodes.

Observe that each of the k lines contributes one node to length-n boundary and there
is still n − k nodes waiting to be pushed at that boundary. By an application of Lemma
1, each of the n− k nodes requires 2 moves to be included to the border. This means that
all n − k nodes must conduct a total of 2(n − k) moves in order to completely fill up the
border of length n. Thus, for all k lines of n nodes connected perpendicularly to a length-n
border, U-Box-Partitioning pushes the k lines of n nodes into the length-n border in a total
T3 of at most,

T3 = 2(n− k) = 2(n−
√
n)

= O(n). (3.13)

By Lemmas 6, 7 and 9, the following lemma state that any connected shape SI can
transform into a line SL in sub-quadratic moves.

Chapter 3. Unrestricted transformations 65

length-n gathering boundary

∆ = n

l1
l2

lk

Figure 3.6: The dashed line indicates the length-n gathering boundary of the n × n box,
whilst the bold black lines represent the k lines of n nodes.

Lemma 10. U-Box-Partitioning transforms any connected shape SI into a straight line SL
of the same order n, in O(n

√
n) moves.

Proof. The sum of 3.11, 3.12 and 3.13 computes the overall moves T as follow:

T = T1 + T2 + T3

= O(n
√
n) +O(n

√
n) +O(n)

= O(n
√
n), (3.14)

which finally provides an upper bound O(n
√
n) of U-Box-Partitioning to transform any

arbitrary connected shape SI into a single straight line SL of the same number of nodes.

In conclusion, putting Lemma 10 and reversibility (Lemma 2) together implies that, for
any pair of connected shapes SI and SF of the same order, U-Box-Partitioning can be used
to transform SI into SF (and SF into SI) in O(n

√
n) moves. Then, we formally state that:

Theorem 5. U-Box-Partitioning solves UniversalTransformation in O(n
√
n) moves.

66 Abdullah A. Almethen

3.2.2 U-Box-Doubling: An O(n log n)-time Transformation

We now introduce U-Box-Doubling, an alternative universal transformation that solves Uni-

versalTransformation more efficiently in O(n log n) moves, compared to the previous
one of O(n

√
n). This transformation has benefited from the strategies outlined in Sections

3.1.2 and 3.2.1. Refer to the dependency digram in Figure 1.5 for the development sequence
of the transformations.

Given a connected shape SI of order n, do the following. Enclose SI into an arbitrary
n× n square box that is completely containing SI (this is always possible). For simplicity,
we assume that n is a power of 2, but this assumption can be dropped. Proceed in log n

phases as follows: In every phase i, where 1 ≤ i ≤ log n, partition the n×n box into 2i×2i

sub-boxes, disjoint and completely covering the n × n box. Assume that from any phase
i−1, any 2i−1×2i−1 sub-box is either empty or has its k, where 0 ≤ k ≤ 2i−1, bottommost
rows completely filled in with nodes, possibly followed by a single incomplete row on top
of them containing l, where 1 ≤ l < 2i−1, consecutive nodes that are left aligned on that
row. This case holds trivially for phase 1 and inductively for every phase. That is, in odd
phases, we assume that nodes fill in the leftmost columns of boxes in a symmetric way.
Every 2i × 2i sub-box (of phase i) consists of four 2i−1 × 2i−1 sub-boxes from phase i− 1,
each of which is either empty or occupied as described above.

The operation of Boundary-Filling is to fill in empty cells at a boundary of the 2i×2i sub-
box by nodes of lines that are aligned perpendicularly to that boundary. Due to symmetry,
we only show the left boundary case. That is, start filling in empty cells from the leftmost
column bottom-top and continuing to the right, by exploiting a linear procedure similar
to that of Figure 2.6 (and of nice shapes). Without loss of generality, fill in the leftmost
column until the row is exhausted or the column is being completely occupied, in this case,
start filling in the next column to the right (see Figure 3.7(b)). If an incomplete column
remains in the top left 2i−1 × 2i−1 sub-box, push the nodes in it to the bottom of that
column.

Consider the case where i is odd, thus, the nodes in the 2i−1 × 2i−1 sub-boxes are
bottom aligned. For every 2i−1 × 2i−1 sub-box, move each line from the previous phase
that resides in the sub-box to the left as many moves as required until that row contains a
single line of consecutive nodes, starting from the left boundary of the sub-box, as shown
in Figure 3.7(a). Then, perform Boundary-Filling on the left boundary the 2i × 2i sub-
box, as in Figure 3.7(b). The case of even i is symmetric, the only difference being that

Chapter 3. Unrestricted transformations 67

(a) Pushing left in each 2i−1 × 2i−1 sub-box
of the 2i × 2i sub-box.

(b) The operation of Boundary-Filling on the
left boarder of the 2i × 2i sub-box.

Figure 3.7: An example of the transformations during phase i.

the arrangement guarantee from i − 1 is left alignment on the columns of the 2i−1 × 2i−1

sub-boxes and the result will be bottom alignment on the rows of the 2i × 2i sub-boxes of
the current phase. This completes the description of the transformation. We first prove
correctness:

Lemma 11. Starting from any connected shape SI of order n, U-Box-Doubling forms by
the end of phase log n a line of length n.

Proof. In phase log n, the procedure partitions into a single box, which is the whole original
n × n box. Independently of whether gathering will be on the leftmost column or on the
bottommost row of the box, as all n nodes are contained in it, the outcome will be a single
line of length n, vertical or horizontal, respectively.

Lemma 12. In every phase i, the ‘super-shape’ formed by the occupied 2i× 2i sub-boxes is
connected.

Proof. By induction on the phase number i. For the base of the induction, observe that for
i = 0 it holds trivially because the initial SI is a connected shape. Assuming that it holds
for phase i − 1, we shall now prove that it must also hold for phase i. By the inductive
assumption, the occupied 2i−1 × 2i−1 sub-boxes form a connected super-shape. Observe
that, by the way the original n× n box is being repetitively partitioned, any box contains
complete sub-boxes from previous phases, that is, no sub-box is ever split into more than
one box of future phases. Additionally, observe that a sub-box is occupied iff any of its
own sub-boxes (of any size) had ever been occupied, because nodes cannot be transferred
between 2i × 2i sub-boxes before phase i + 1. Assume now, for the sake of contradiction,
that the super-shape formed by 2i × 2i sub-boxes is disconnected. This means that there
exists a “cut” of unoccupied 2i × 2i sub-boxes as in Figure 3.8.

68 Abdullah A. Almethen

a cut of unoccupied 2i × 2i sub-boxes

occupied 2i × 2i sub-boxes

Figure 3.8: An example of a ‘cut’ of unoccupied 2i × 2i sub-boxes.

Replacing everything by 2i−1 × 2i−1 sub-boxes, yields that this must also be a cut of
2i−1 × 2i−1 sub-boxes, because a node cannot have transferred between 2i × 2i sub-boxes
before phase i + 1. But this contradicts the assumption that 2i−1 × 2i−1 sub-boxes form
a connected super-shape. Therefore, it must hold that the 2i × 2i sub-boxes super-shape
must have been connected.

Next, we give an upper bound on the number of occupied sub-boxes in a phase i.

Lemma 13. Given that U-Box-Doubling starts from a connected shape SI of order n, the
number of occupied sub-boxes in any phase i is O(n

2i
).

Proof. First, observe that a 2i × 2i sub-box of phase i is occupied in that phase iff SI

was originally going through that sub-box. This follows from the fact that nodes are not
transferred by this transformation between 2i× 2i sub-boxes before phase i+ 1. Therefore,
the 2i × 2i sub-boxes occupied in (any) phase i are exactly the 2i × 2i sub-boxes that the
original shape SI would have occupied, thus, it is sufficient to upper bound the number of
2i × 2i sub-boxes that a connected shape of order n can occupy. Or equivalently, we shall
lower bound the number Nk of nodes needed to occupy k sub-boxes.

In order to simplify the argument, whenever SI occupies another unoccupied sub-box,
we will award it a constant number of additional occupations for free and only calculate
the additional distance (in nodes) that the shape has to cover in order to reach another
unoccupied sub-box. In particular, pick any node of SI and consider as freely occupied that

Chapter 3. Unrestricted transformations 69

sub-box and the 8 sub-boxes surrounding it, as depicted in Figure 3.9(a). Giving sub-boxes
for free can only help the shape, therefore, any lower bound established including the free
sub-boxes will also hold for shapes that do not have them (thus, for the original problem).

Given that free boxes are surrounding the current node, in order for SI to occupy
another sub-box, at least one surrounding 2i × 2i sub-box must be exited. This requires
covering a distance of at least 2i, through a connected path of nodes. Once this happens,
SI has just crossed the boundary between an occupied sub-box and an unoccupied sub-
box. Subsequently, it has just crossed the boundary between an occupied sub-box and an
unoccupied sub-box. Then, by giving it for free at most 5 more unoccupied sub-boxes, SI
has to pay another 2i nodes to occupy another unoccupied sub-box; see Figure 3.9(b). We
then continue applying this 5-for-free strategy until all n nodes have been used.

(a) (b)

Figure 3.9: (a) A node of shape SI in red and the occupied sub-boxes that we give for free
to the shape. (b) The node just exited the sub-box with arrow entering an unoccupied
sub-box. By giving the 5 horizontally dashed sub-boxes for free, a distance of at least 2i

has to be travelled in order to reach another unoccupied sub-box.

To sum up, the shape has been given 8 sub-boxes for free, and then for every sub-box
covered it has to pay 2i and gets 5 sub-boxes. Thus, to occupy k = 8 + l · 5 sub-boxes, at
least l · 2i nodes are needed, that is,

Nk ≥ l · 2i. (3.15)

But, that leads to

k = 8 + l · 5⇒ l =
k − 8

5
. (3.16)

70 Abdullah A. Almethen

Thus, from (3.15) and (3.16):

Nk ≥
k − 8

5
· 2i. (3.17)

But shape SI has order n, which means that the number of nodes available is upper bounded
by n, i.e. Nk ≤ n, which gives:

k − 8

5
· 2i ≤ Nk ≤ n⇒

k − 8

5
· 2i ≤ n⇒ k − 8

5
≤ n

2i
⇒

k ≤ 5

(
n

2i

)
+ 8.

We conclude that the number of 2i×2i sub-boxes that can be occupied by a connected shape
SI , and, thus, also the number of 2i × 2i sub-boxes that are occupied by U-Box-Doubling
in phase i, is at most 5(n/2i) + 8 = O(n/2i).

As a corollary of this, we obtain:

Corollary 1. Given a uniform partitioning of n×n square box containing a connected shape
SI of order n into d× d sub-boxes, it holds that SI can occupy at most O(nd) sub-boxes.

We are now ready to analyse the running time of U-Box-Doubling.

Lemma 14. Starting from any connected shape of n nodes, U-Box-Doubling performs
O(n log n) moves during its course.

Proof. We prove this by showing that in every phase i, 1 ≤ i ≤ log n, the transformation
performs at most a linear number of moves. We partition the occupied 2i × 2i sub-boxes
into two disjoint sets, B1 and B0, where sub-boxes in B1 have at least 1 complete line (from
the previous phase), i.e. a line of length 2i−1, and sub-boxes in B0 have 1 to 4 incomplete
lines, i.e. lines of length between 1 and 2i−1 − 1. For B1, we have that |B1| ≤ n/2i−1. In
each phase, we may have horizontal or vertical lines that need to be aligned to the left or
bottom boundary of their 2i × 2i sub-box, respectively, depending on the parity of i. As
the two cases are symmetric, without loss of generality we only show horizontal lines which
are moving to their left. Hence, for every complete line, we pay at most 2i−1 to transfer it
left. As there are at most n/2i−1 such complete lines in phase i, the total cost for this is
at most 2i · (n/2i−1) = n.

Chapter 3. Unrestricted transformations 71

Each sub-box in B1 may also have at most 4 incomplete lines from the previous phase,
as in Figure 3.7 left, where at most two of them may have to pay a maximum of 2i−1 to
be transferred left (as the other two are already aligned). As there are at most n/2i−1

sub-boxes in B1, the total cost for this is at most 2 · 2i−1 · (n/2i−1) = 2n. Therefore, the
total cost for pushing all lines towards the required border in B1 sub-boxes is at most:

n+ 2n = 3n. (3.18)

For B0, we have (by Lemma 13) that the total number of occupied sub-boxes in phase i
is at most 5(n/2i) + 8, therefore, |B0| ≤ 5(n/2i) + 8 (taking into account also the worst
case where every occupied sub-box may be of type B0). There is again a maximum of 2
incomplete lines per such sub-box that need to be transferred a distance of at most 2i−1,
therefore, the total cost for this to happen in every B0 sub-box is at most:

2 · 2i−1

(
5 · n

2i
+ 8

)
= 5n+ 8 · 2i ≤ 13n. (3.19)

By paying the above costs, all occupied sub-boxes have their lines aligned to the left, and
the final task of the transformation for this phase is to apply a linear procedure in order to
fill in the left boundary of the 2i × 2i sub-box. This procedure costs at most 2k for every
k nodes aligned as above, in a total of at most (2n − 2) steps (see Lemma 1). As there is
an additional cost of 2i−1 for an incomplete line to be transferred into the bottom left, as
shown in Figure 3.6, the total cost for this phase is at most:

2n− 2 + (2i−1) ≤ 3n. (3.20)

This completes the operation of U-Box-Doubling for phase i. Putting (3.18), (3.19), and
(3.20) together, we obtain that the total cost Ti, in moves, for phase i is,

Ti ≤ 3n+ 13n+ 3n = 19n.

As there is a total of log n phases, we conclude that the total cost T of the transformation
is,

T ≤ 19n · log n

= O(n log n).

72 Abdullah A. Almethen

Finally, together Lemma 11, Lemma 14, and reversibility (Lemma 2) imply that; for any
pair of connected shapes SI and SF of the same order n, transformation U-Box-Doubling
can be used to transform SI into SF (and SF into SI) in O(n log n) moves. Then, we
formally state:

Theorem 6. U-Box-Doubling solves UniversalTransformation in O(n log n) moves.

Chapter 4

Connectivity-Preserving
transformations

The connectivity-preservation condition is crucial in many robotic systems, see for example
[42]. It is a desired feature for any resilient transformation that aims to improve the reliabil-
ity of communication in different types of networks. Furthermore, maintaining connectivity
among all robots is vital for practical applications that regularly require energy for data
transmission and the execution of various locomotion mechanisms. Although this is often a
desirable condition in distributed systems, we study it first in the context of global knowl-
edge within our centralised framework. This is because distributed are model-dependent (in
terms of, for example, knowledge and communication), whereas centralised systems demon-
strate what is theoretically feasible and probably help to come up with different techniques
that may be applicable to the distributed algorithms. The majority of the connectivity
solutions presented in this chapter aided in the design of distributed transformations later
in Chapter 5.

This chapter investigates the case where the transformations are more constrained and
must preserve the shape’s connectivity during its execution. To this end, we present solu-
tions that provably ensure that the corresponding graphs of all intermediate configurations
are connected throughout the transformations.

We start our investigation with the potentially hard-case of transforming the diagonal
line shape into a straight line in Section 4.1. First, we solve this problem by presenting an
O(n
√
n)-time transformation called DLC-Folding in Section 4.1.1. This approach divides

the diagonal into
√
n segments of length

√
n each and proceeds in

√
n phases. In each

73

74 Abdullah A. Almethen

phase, it folds the segments sequentially in a top-down order via two main operations, turn
and push. In the final phase, the algorithm forms a square shape, which can be transformed
fast into a line. Thus, this transformation (folding) preserves connectivity and takes total
time O(n

√
n). Next, in Section 4.1.2, we provide another O(n

√
n)-time transformation

called DLC-Extending, which also maintains connectivity during the transformation using a
different technique. This approach begins at a topmost

√
n-length segment of the diagonal,

then extends and doubles its size through an implementation of two primitives, turn and
push until arriving at the target straight line of length n.

Going a step further in Section 4.2, we manage to reduce the running time and presented
very fast connectivity-preserving transformations for the case in which the associated graphs
of the initial and goal shapes contains to a Hamiltonian line. Our transformations, in
particular, perform O(n log n) moves, which is asymptotically equivalent to the best known
running time of connectivity-breaking transformations shown in the previous chapter. It
is called Walk-Through-Path and proceeds in log n phases. In each phase i, this procedure
transforms a terminal 2i nodes on the Hamiltonian path into a straight line whose length
is doubled as follows. First, a respective line of length 2i−1 from the previous phase i− 1 is
identified. Afterwards, a feasible transformation path is computed via a specific operation
called LineWalk. Once having that transformation path, the respective line (of length 2i−1)
pushes to its destination. This line is then merged recursively with the remaining nodes in
that phase to form a new line of length 2i.

The last section in this chapter, Section 4.3, demonstrates our most general algorithm
which is a connectivity-preserving universal transformation that can transform any pair
of connected shapes of the same order to each other within subquadratic time, namely,
through a sequence of at most O(n

√
n) moves. This algorithm encloses the initial shape,

which is represented by a spanning tree T , into a square box of size n and spilites it into
sub-boxes of size

√
n, each of which contains at least one sub-tree of T . It then compresses

the nodes in a sub-box into a neighbouring sub-box towards a parent sub-tree by shifting
lines in a way that does not break connectivity. A final compressed square configuration is
achieved by carefully repeating this technique. The latter is a type of Central Line shapes
(or nice shapes), defined in Section 2.1.1, which can be fast transformed into a straight line
in linear time. By the reversibility of our model, we then analyse this strategy based on
the number of charging phases, which turns out to be

√
n each with at most n moves, for

a total of O(n
√
n) moves.

Chapter 4. Connectivity-Preserving transformations 75

4.1 The Diagonal-To-Line transformation

In this section, we present two shape transformations that can reconfigure the diagonal
connected shape SD into a straight line SL while preserving connectivity during transfor-
mations. Recall that we focus on this apparently hard instance due to several special
properties that cannot be found in other connected shapes. For example, each single node
of SD occupies a unique x- and y- axis, forming an initial shape of n lines of length 1.
This gives the O(n2) individual node distance between SD and SL. Below, we provide two
O(n
√
n)-time transformations, DLC-Folding and DLC-Extending, that preserve connectiv-

ity of the shape throughout the transformation.

√
n = 5

n
=
25

l1

l2

l3

l4

l5

Figure 4.1: A diagonal line of 25 nodes.

4.1.1 Folding: An O(n
√
n)-time Transformation

Consider an SD of n nodes occupying (x, y), (x+ 1, y + 1), . . . , (x+ n− 1, y + n− 1), such
as the diagonal line of 25 nodes depicted in Figure 4.1. Below, we give an O(n

√
n)-time

transformation to transform SD into SL by exploiting the line-pushing mechanism, while
preserving connectivity of the shape throughout transformations.

This strategy divides SD into
√
n segments each of length

√
n and proceeds in

√
n

phases. Informally, DLC-Folding performs two different operations, turn and push to fold

76 Abdullah A. Almethen

the diagonal segments in every phase as follows: turn diagonals into straight lines, push
them a distance of

√
n towards the following diagonal segment and then inversely turn the

lines again into diagonals. Figure 4.2 shows the transformations in the first phase where it
folds the top segment of SD. This transformation keeps folding segments above each other,
until arriving at the bottom segment. By the end of the final phase, DLC-Folding forms
a Central line shape (nice shape), which can then be trivially transformed into a line (see
Proposition 3). Figures 4.1–4.6 demonstrate the above transformations on a diagonal of 25
nodes.

√
n

√
n

l1 √
n

Turn

l2

√
n

Push Turn

√
n

√
n

Base point b1

Base point b2

Figure 4.2: Folding the top segment of the diagonal line.

Turn TurnPush

Base point p1

Figure 4.3: The first phase of folding.

TurnPushBase point p2 Turn

Figure 4.4: The second phase of folding.

More formally, let SD denote a diagonal of n nodes, where (x, y) is the left bottom point
of SD. Then, SD is divided into

√
n segments, l1, l2, . . . ,

√
n, each of which has a length of

Chapter 4. Connectivity-Preserving transformations 77

TurnPushTurn

Base point p3

Figure 4.5: The third phase of folding.

TurnPushTurn
Base point p4

Figure 4.6: The fourth phase of folding. The resulting connected shape in the far right is
a nice shape.

√
n, where l1 and l√n are the top and bottom segments of SD, respectively. Each segment lk,

1 ≤ k ≤
√
n, consists of

√
n nodes occupying (i, j), (i+1, j+1), . . . , (i+

√
n−1, j+

√
n−1),

where i = x+ hk and j = y + hk, for hk = n− k
√
n. Here, lk has a base point bk = (i, j),

which is the bottommost node of lk.
Due to symmetry, it is sufficient to demonstrate one orientation. The top segment l1

folds around b1 in the first phase as follows: (1) Turn all
√
n nodes into the bottommost row

of l1 (brute-force line formation) from positions (i, j), (i+1, j+1), . . . , (i+
√
n−1, j+

√
n−1)

into (i, j), (i+1, j), . . . , (i+
√
n−1, j). Thus, a horizontal line of length

√
n is formed whose

base point b1 keeps place at (i, j). Then, (2) Push l1 a distance of
√
n towards the leftmost

column y of SD to occupy (i−
√
n, j), (i+ 1−

√
n, j), . . . , (i+

√
n− 1−

√
n, j). Next, (3)

perform an inverse operation of (1) which converts the line l1 into a diagonal again to stay
atop the following diagonal segment l2 on positions (i−

√
n, j −

√
n+ 1), (i+ 1−

√
n, j −

√
n + 2), . . . , (i +

√
n − 1 −

√
n, j) (except the base point b1 which stays still in place, at

(i−
√
n, j)). By the end of this phase, two parallel diagonal segments l1 and l2 (shown in

Figure 4.2) were formed as components of a new connected shape defined below.

Definition 13. A Ladle is a connected shape of order n consisting of two parts, D and S.
For a given phase k, where 2 ≤ k ≤ d

√
ne, we have Ladlek = Dk +Sk, where both parts are

connected via a base point bk = (i, j), such that:

- Dk, is a diagonal containing n− k
√
n+ 1 nodes occupying (x, y), (x+ 1, y+ 1), . . . , (i, j),

such that (x, y) are the left bottom point of Ladlek, where
√
n < i = j < n −

√
n + 1. Dk

is connected to Sk via (i, j).

78 Abdullah A. Almethen

- Sk, is parallelogram consists of k parallel diagonal segments of size k
√
n nodes formed

√
n

lines. Sk is connected to Dk via its bottommost node at (i, j).

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point ba

(i, j)

√ n

(i, j′)

(i +
√

n − 1, j′ +
√

n − 1)

(i +
√

n − 1, j +
√

n − 1)

Figure 4.7: A Ladle shape in phase k, where j′ = j + k − 1.

Figure 4.7 shows an example of Ladle shape in phase k. Now, the following lemmas
prove correctness of DLC-Folding :

Lemma 15. Let SD be a diagonal of order n partitioned into d
√
ne segments l1, l2, ..., l√n.

By the end of the first phase, DLC-Folding converts SD into a Ladle.

Proof. Due to symmetry, it is sufficient to show the implementation on the top segment
of SD. The first phase formed (1) a diagonal part occupies (x, y), (x + 1, y + 2), . . . , (x +

n −
√
n − 1, y + n −

√
n − 1) and (2) two parallel diagonal segments of 2

√
n nodes where

both are connected via the base point (x + n −
√
n − 1, y + n −

√
n − 1). Observe that

this point is the topmost node of the diagonal part and the bottommost of the two parallel
diagonal segments while the rest nodes are making a single diagonal line. Thus, this new
shape meets all conditions of a Ladle mentioned in Definition 13.

Lemma 16. Given a Ladle of n nodes in phase k, where 1 < k ≤
√
n. Then, DLC-Folding

increases the size of Sk by
√
n and decreases the length of Dk by

√
n in phase k + 1.

Proof. The size of the Ladle = |n| must be the same each phase and at all times. In phase
k, a Ladlek consists of two parts, Dk = |n − k

√
n + 1| and Sk = |k

√
n| connected via a

common node (i, j) (see Definition 13). Now, we want to fold the Sk section, which has k

Chapter 4. Connectivity-Preserving transformations 79

segments of length
√
n placed diagonally on top of each other. Without loss of generality,

transfer all
√
n vertical lines downward to the bottommost row i of Sk, which must form k

horizontal lines by entirely filling up the k bottom rows of Sk. As a result, the horizontal
lines form a rectangle, as seen in Figure 4.8(a), which can be pushed

√
n distance to the

left, as shown in Figure 4.8(b). Hence, the strategy turns these lines inversely above the
next diagonal segment (except the rightmost one), as depicted in Figure 4.8(c). By the end
of phase k + 1, a new Ladle has been created, consisting of Dk+1 = |n − (k − 1)

√
n + 1|

and Sk+1 = |(k+ 1)
√
n| connected via the base point bk+1 at (i−

√
n, j −

√
n). Therefore,

in phase k+ 1, the size of Sk+1 increased by
√
n nodes, while the length of Dk+1 decreased

by
√
n. Thus, for any phase k, where 1 < k ≤

√
n, this holds trivially and inductively.

Next, we prove that DLC-Folding transforms SD into a Central Line (nice) shape within
√
n phases.

Lemma 17. DLC-Folding converts SD into a Central Line shape through
√
n phases.

Proof. From Lemma 15, by phase k = 2, SD converts into a Ladle2 of D2 = |n− 2
√
n+ 1|

and S2 = |2
√
n|. Then, according to Lemma 16, by the final phase k =

√
n, D√n = φ

is exhausted, whereas the parallelogram part acquires all n nodes, S√n = |n|. Hence, the
resulting new shape is a compressed into

√
n×
√
n lines, which is a Central Line shape.

Let us now analyse the running time of DLC-Folding.

Lemma 18. Given a diagonal SD of order n partitioned into
√
n segments, DLC-Folding

folds the topmost (bottommost) segment in O(n) moves.

Proof. By a brute-force line formation of the first phase, the top (bottom) segment of SD
of length

√
n becomes a line (similar of Figure 3.1(b)), which is trivially computed by:

1 + 2 + ...+ (
√
n− 1) =

√
n(
√
n− 1)

2
=
n−
√
n

2
= O(n).

The line then pushes at most
√
n moves before turning inversely into a diagonal at the

same cost of (n −
√
n)/2 = O(n). Therefore, the first segment folds in a total cost t1of

moves at most:

t1 =
n−
√
n

2
+
√
n+

n−
√
n

2
= n−

√
n+
√
n = n

80 Abdullah A. Almethen

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point bk

(i, j)

(i, j′)
(i +

√
n, j′)

(i +
√

n, j)

√
n

(a)

(x, y)

(i −
√

n, j)

(i −
√

n, j′) (i − 1, j′)

(i − 1, j)

√
n

(b)

(x, y)

(i −
√

n, j −
√

n − 1)

(i −
√

n, j′ −
√

n − 1)

(i − 1, j′)

(i − 1, j − 1)

√ n

Base point bk+1

Sk+1 = (k + 1)
√

n

Dk+1 = n − (k − 1)
√

n + 1

(c)

Figure 4.8: Folding a Ladlek over phase k, where j′ = j + k− 1. See Lemma 16 for further
explanation.

= O(n).

Lemma 19. By the end of phase k, for all 1 < k ≤
√
n, DLC-Folding takes at most O(n)

moves to transform Ladlek into Ladlek+1.

Proof. During phase k, all
√
n lines of Sk = |k

√
n| convert into k lines within a total run

of moves by at most:

1 + 2 + ...+ (
√
n− 1) = O(n). (4.1)

Chapter 4. Connectivity-Preserving transformations 81

Now, those k lines push a distance of
√
n in a total of at most:

k
√
n = O(n), (4.2)

moves. Then, the
√
n lines turn diagonally above the following segment incurring the same

cost of (4.1) by at most:

n−
√
n

2
= O(n). (4.3)

With this, the total cost of phase k is given by summing (4.1), (4.2), and (4.3):

tk =
n−
√
n

2
+ k
√
n+

n−
√
n

2
= n−

√
n+ k

√
n

= O(n). (4.4)

This holds trivially from phase 2 and inductively for every phase k, where 1 < k ≤
√
n.

Altogether, Proposition 3 and Lemmas 18 and 19 imply that,

Theorem 7. DLC-Folding solves DiagonalToLineConnected in O(n
√
n) moves.

Proof. By Lemma 18, DLC-Folding creates a Ladle in a total cost of moves by at most:

T1 =
n−
√
n

2
. (4.5)

Now, by Lemma 19, the total running time for all k phases, 1 < k ≤
√
n, is given as follows:

T2 =

√
n−1∑
i=1

n−
√
n+ i

√
n = n

√
n− 2n−

√
n+
√
n

√
n−1∑
i=1

i

= n
√
n− 2n−

√
n+

(
n
√
n− n
2

)
=
n
√
n− 5n− 2

√
n

2

= O(n
√
n). (4.6)

Sum the cost of the first phase in (4.5) to the remaining phases (4.6) to obtain the total
cost of moves T3 for this transformation as follows:

T3 = T1 + T2

82 Abdullah A. Almethen

=
n−
√
n

2
+
n
√
n− 5n− 2

√
n

2
=
n
√
n− 4n− 3

√
n

2

= O(n
√
n). (4.7)

Since the resulting shape of DLC-Folding is a Central Line (nice) shape, which can be
transformed into a line SL in O(n) moves (see Proposition 3), therefore, the overall cost T
required to transform SD into SL, is bounded by:

T = T3 +O(n)

= O(n
√
n).

4.1.2 Extending: An O(n
√
n)-time Transformation

DLC-Extending is another approach for transforming the diagonal SD into a straight line SL
in O(n

√
n) moves that preserves connectivity throughout transformations. This algorithm

may not have an advantage over the above, though it has influenced the development of
the following Hamiltonian transformations in Section 4.2 (recall the dependency digram
in Figure 1.5). Thus, we devote a separate section to present this transformation in more
details.

Using a similar partitioning of SD into
√
n segments, this strategy performs two primi-

tives, turn and push in each of the
√
n phases. In each phase k, 1 ≤ k ≤

√
n, the extension

is implemented as follows: (1) Turn: a diagonal segment lk of SD transforms into a line by a
brute-force line formation. (2) Push: the line formed in (1) pushes towards the other end of
the SD, extending the k-length target straight line by

√
n. Repeat this in each phase shall

arrive at the ultimate straight line SL of length n. Figure 4.9 shows an implementation of
DLC-Extending on a diagonal of 25 nodes.

More formally, consider an initial diagonal SD of n nodes partitioned as in DLC-Folding
(see Section 4.1.1). For the sake of simplicity, we only examine converting from the topmost
segment l1 ∈ SD occupying cells (i, j), (i+ 1, j+ 1), . . . , (i+

√
n− 1, j+

√
n− 1), where i =

x+hk and j = y+hk, for hk = n−k
√
n. Analogously, this corresponds to the bottommost

section. Initially, the diagonal l1 performs a brute-force line formation to turn into a line, i.e.
collect all nodes to occupy the leftmost columns of l1 on (i, j), (i, j+ 1), . . . , (i, j+

√
n− 1).

Due to symmetry, the same transformation holds to collect them at the bottommost row.

Chapter 4. Connectivity-Preserving transformations 83

Turn TurnPush

TurnPush Push

PushTurn Turn

Push

Figure 4.9: An implementation of DLC-Extending on a diagonal of 25 nodes.

Then, the line l1 pushes
√
n moves to positions (i, j−

√
n), (i, j+ 1−

√
n), . . . , (i, j+

√
n−

1−
√
n). Figure 4.10 demonstrates the first phase.

In the second phase, the next diagonal segment l2 turns into a line to occupy a position
where both l1 and l2 are connected perpendicularly via (i, j −

√
n), as depicted in Figure

4.11). Hence, l1 changes its direction to be in line with l2 and both merge into a single
straight line of length 2

√
n. This creates a specific connected shape, called Tshape and

defined as follows:

Definition 14. A Tshape is a connected shape of order n consisting of two parts, D and
S. Both are connected via a common intersection point (i, j). In phase k, 1 < k <

√
n,

T k
shape = Dk + Sk is defined as follows:

• Dk is a diagonal line containing n − k
√
n + 1 nodes occupying (x, y), (x + 1, y +

1), . . . , (i, j), where x and y are the leftmost column and the bottommost row of T k
shape,

84 Abdullah A. Almethen

√
n

√
n

√
n

√
n

n

√
n

√
n

√
n

n

n
−
√ n

lk

lk−1

l2

l1

Turn

√
n

√
n

√
n

n

Push

(x, y)

Figure 4.10: Two primitives, turn and push, during the first phase.
√
n

√
n

√
n

n n

n
−
2
√ nTurn

√
n

√
n

n

Push

√
n

√
n

Figure 4.11: Two primitives, turn and push, during the second phase.

Chapter 4. Connectivity-Preserving transformations 85

respectively, for all
√
n < i = j < n−

√
n+ 1.

• Sk is a horizontal or vertical line of length k
√
n nodes occupying (i−

√
n− 1, j), (i+

1−
√
n− 1, j), . . . , (i′, j) or (i, j−

√
n− 1), (i, j+ 1−

√
n− 1), . . . , (i, j′), respectively,

where i′ = i+ k
√
n− 1 and j′ = j + k

√
n− 1

Figure 4.12 shows an example of T k
shape = Dk + Sk in phase k. Now, we prove the

correctness of DLC-Extending. First, we show the formation of a Tshape from a diagonal
SD.

k
√

n −
√

n
√

n

Sk = k
√
n

Dk = n− k
√
n+ 1

(x, y)

(i −
√

n − 1, j)

(i, j)

(i + k −
√

n − 1, j)

intersection point =

Figure 4.12: A Tshape in phase k.

Lemma 20. Let SD be a diagonal of order n partitioned into d
√
ne segments l1, l2, ..., l√n.

By the end of the second phase, DLC-Extending converts SD into a Tshape.

Proof. Applying the two main primitives, turn and push, sequentially on the two topmost
segments, l1 and l2, shall form two connected components: (1) A diagonal at (x, y), (x+1, y+

1), . . . , (i, j), where i = x+n−2
√
n−2 and j = y+n−2

√
n−2. (2) A horizontal or vertical

line of length 2
√
n occupying (i− 2

√
n, j), . . . , (i+ 2

√
n, j) or (i, j− 2

√
n), . . . , (i, j+ 2

√
n).

Both (1) and (2) intersect at (i, j) and meet Definition 14.

The following lemma demonstrates that the two primitives of DLC-Extending hold for
any phase k, for all 2 ≤ k <

√
n.

Lemma 21. Given a T k
shape of n nodes in phase k, for all 2 ≤ k <

√
n. Then, DLC-

Extending transforms T k
shape into T k+1

shape in phase k + 1.

86 Abdullah A. Almethen

Proof. By Definition 14, assume Sk is horizontal in phase k (this is sufficient as the vertical
holds due to symmetry). First, the topmost diagonal segment of Dk turns into a line of

√
n

nodes from cells (i−
√
n+1, j−

√
n+1), . . . , (i−1, j−1) into (i−

√
n+1, j−

√
n+1), . . . , (i−

√
n + 1, j − 1). Thus, the shape’s connectivity is still preserved, and the new constructed

line is now perpendicular with Sk. Next, the line segment Sk pushes towards the new line
vertically by a length of

√
n on positions (i−

√
n, j−2

√
n), . . . , (i−

√
n, j+k−2

√
n). Hence,

a new connected shape in phase k + 1 is now consisting of Dk+1 of length n − (k − 1)
√
n

and Sk+1 of length (k + 1)
√
n, where both intersect at a common point (i−

√
n− 1, j); as

shown in Figure 4.13. Finally, we derive that DLC-Extending decreases the length of Dk+1

by
√
n and increases the length of Sk+1 by

√
n at the end of phase k + 1.

Sk = k
√

n

D k
=

n
−

k
√ n

+
1

Sk+1 = (k + 1)
√

n

D k
+
1
=

n
−

(k
−

1)
√ n

+
1

(x, y)

intersection point

(i, j)

(i −
√

n, j) (i + k −
√

n, j)

(x, y)

(x, y)

(i −
√

n, j) (i + k −
√

n, j)

(i −
√

n, j −
√

n)

(i −
√

n, j −
√

n)

intersection point

(i −
√

n, j − 2
√

n)

(i −
√

n, j + k − 2
√

n)

Turn

Push

Figure 4.13: An implementation of DLC-Extending on T k
shape during phase k.

By the end of the final phase
√
n, the following lemma shows that DLC-Extending forms

a straight line SL of n nodes.

Lemma 22. DLC-Extending transforms SD into a straight line SL by the end of phase
√
n.

Chapter 4. Connectivity-Preserving transformations 87

Proof. By Lemmas 20 and 21, the end of phase
√
n− 1 shall form:

T
√
n−1

shape = D√n−1 + S√n−1

=
[
n− (

√
n− 1)

√
n
]

+
[
(
√
n− 1)

√
n
]

=
[
n− (n−

√
n)
]

+
[
(n−

√
n)
]

=
[√
n
]

+
[
(n−

√
n)
]
,

where |D√n−1| =
√
n and |S√n−1| = n−

√
n. Therefore, DLC-Extending forms the straight

line SL, via turn and push, by the end of the finial phase
√
n.

To sum up, the following theorem states that, given any diagonal of n nodes, this
transformation solves the DiagonalToLineConnected problem within O(n

√
n) moves.

Theorem 8. DLC-Extending solves the DiagonalToLineConnected problem in O(n
√
n)

moves.

Proof. By Lemmas 20, 21 and 22, DLC-Extending performs transformations using the two
main primitives, turn and push, throughout a total of

√
n phases. The brute-force line

formation of ‘turn’ on a single diagonal segment costs a number of moves t1 given by:

t1 = 1 + 2 + . . .+ (
√
n− 1) =

√
n−1∑
i=1

i =

√
n(
√
n− 1)

2
=
n−
√
n

2

= O(n). (4.8)

With that, multiply 4.8 by d
√
ne to obtain the cost T1 of total moves required for all d

√
ne

phases (diagonal segments):

T1 = t1 · d
√
ne =

n−
√
n

2
· d
√
ne =

n
√
n− n
2

= O(n
√
n). (4.9)

Then, the cost of the push primitive increases gradually every phase k by a factor of d
√
ne,

for all 1 ≤ k ≤
√
n. Thus, in phase k, it costs a total number of moves t2 that asymptotically

bounded by (see Lemma 1):

t2 = 2k. (4.10)

88 Abdullah A. Almethen

The total moves T2 of ‘push’ is the sum of 4.10 plus the cost of pushing the last segment
of length

√
n:

T2 =

√
n−1∑
i=1

t2 + 2
√
n

=

√
n−1∑
i=1

2i+ 2
√
n = 2

√
n−1∑
i=1

i+ 2
√
n = 2 · n−

√
n

2
+ 2
√
n = n−

√
n+ 2

√
n

= O(n). (4.11)

Finally, putting 4.9 and 4.11 together, we conclude that DLC-Extending takes a total cost
of moves T given by,

T = T1 + T2

=
n
√
n− n
2

+ n+
√
n

= O(n
√
n).

4.2 Walk-Through-Path: An O(n log n)-time Hamiltonian shapes
transformation

In this section, we build upon the above strategies aiming to design a very efficient and
general transformation that are additionally able to keep the shape connected throughout
their course. We present Walk-Through-Path, an O(n log n)-time transformation for the
HamiltonianConnected problem that works for any pairings shapes (SI , SF) ∈ H of
the same order and belong to the family of Hamiltonian shapes denoted H (see Definition
11). Recall that a Hamiltonian shape is any connected shape S whose associated graph
G(S) contains a Hamiltonian path (consult also [84] for Hamiltonian paths). In the con-
tinuous setting, a natural analogue of Hamiltonian paths is space-filling curves [104] (e.g.
Hilbert curve), referring to a curve which covers the entire two-dimensional square (or n-
dimensional in general).

Our transformation starts from one endpoint of the Hamiltonian path of SI and ap-

Chapter 4. Connectivity-Preserving transformations 89

plies a recursive successive doubling technique to transform SI into a straight line SL in
O(n log n) time. By replacing SI with SF in Walk-Through-Path and reversing the resulting
transformation, one can then go from SI to SF in the same asymptotic time.

4.2.1 Transforming diagonal shape into line shape

We first demonstrate the core recursive technique of this strategy in a special case which
is sufficiently sparse to allow local reconfigurations without the risk of affecting the con-
nectivity of the rest of the shape. In this special case, SI is a diagonal of any order and
observe that SI , SF ∈ H holds for this case. We then generalise this recursive technique
to work for any SI ∈ H and add to it the necessary sub-procedures that can perform local
reconfiguration in any area (independently of how dense it is), while ensuring that global
connectivity is always preserved.

Let SI be a diagonal of n nodes un, un−1, . . . , u1, occupying cells (x, y), (x + 1, y +

1), . . . , (x + n − 1, y + n − 1), respectively. Assume for simplicity of exposition that n is
a power of 2; this can be dropped later. As argued above, it is sufficient to show how SI

can be transformed into a straight line SL. In phase i = 0, the top node u1 moves one
position to align with u2 and form a line L1 of length 2, as depicted in Figure 4.14(a). Next
phase, L1 moves and turns to align with u4, then repeat whatever done in phase i = 0

again on nodes u3 and u4 (where both form a diagonal segment D2 to create a line L′1, and
then combine the two perpendicular lines L1 and L′1 into a line L2 of length 4, as shown in
Figure 4.14(b).

In any phase i, for all 1 ≤ i ≤ log n, a line Li occupies 2i consecutive cells in a terminal
subset of SI (see an example in Figure 4.15(a)). Li moves through a shortest path towards
the far endpoint of the next diagonal segmentDi of length 2i (Figure 4.15(b)). Note that for
general shapes, this move shall be replaced by a more general Line-Walk operation (defined
in the sequel). By a recursive call on Di, Di transforms into a line L′i (Figure 4.15(c)).
Finally, the two perpendicular lines Li and L′i are combined in linear time into a straight
line Li+1 of length 2i+1 (Figure 4.15(d)). Observe that connectivity might be broken as L′i
moving up and Li pushing left in Figure 4.15(d); hence, this case can be resolved in many
ways, such as Figure 2.9 in Proposition 4. By the end of phase log n, a straight line SL of
order n has been formed.

90 Abdullah A. Almethen

u1

L1 = 2

push 1 step

un

(a) First phase.

L
2
=

2i
=

4

L1 = 2i−1 = 2

D 2
=
2

(b) Second phase.

Figure 4.14: First and second phase of Walk-Through-Path transformation on the diagonal
shape.

4.2.2 Transforming Hamiltonian shapes into a straight line

A core technical challenge in making the above transformation work in the general case, is
that Hamiltonian shapes do not necessarily provide free space, thus, moving a line has to
take place through the remaining configuration of nodes while at the same time ensuring
that it does not break their and its own connectivity. In the more general LineWalk op-
eration that we now describe, we manage to overcome this by exploiting transparency of
line moves, according to which a line L can transparently walk through any configuration
S (independently of the latter’s density); see Proposition 4.

LineWalk. At the beginning of any phase i, there is a terminal straight line Li of
length 2i containing the nodes v1, . . . , v2i , which is connected to an Si ⊆ SI , such that Si
consists of the 2i subsequent nodes, that is v2i+1, . . . , v2i+1 . Observe that Si is the next
terminal sub-path of the remaining Hamiltonian path of SI . We distinguish the following
cases:

(1) If Li and Si are already forming a straight line, then go to phase i+ 1.

Chapter 4. Connectivity-Preserving transformations 91

Li

D i

(a) A line Li and a diagonal segment
Di both of length 2i

Li

(b) Li moves through a shortest path
towards the far endpoint of Di.

D i

L′
i

Li

(c) Di recursively transforms into a
line L′i.

push Li

Li+1

(d) A line Li+1 of length 2i+1 formed
by combining Li and L′i.

Figure 4.15: A snapshot of phase i of HamiltonianToLine transformation applied on a diag-
onal line shape. Light grey cells represent the ending positions of the corresponding moves
depicted in each sub-figure.

(2) If Si is a line perpendicular to Li, then combine them into a straight line by pushing
Li to extend Si and go to phase i+ 1.

(3) Otherwise, check if the (Manhattan) distance between v2i and v2i+1 is δ(v2i , v2i+1) ≤
2i, then Li moves from v2i = (x, y) vertically or horizontally towards either node
(x, y′) or (x′, y) in which Li turns and keeps moving to v2i+1 = (x′, y′) on the other
side of Si.

(4) If not, Li must first pass through a middle node of Si at v2i+2i−1 = (x′′, y′′), therefore
Li repeats (3) twice, from v2i to v2i+2i−1 and then towards v2i+1 .

92 Abdullah A. Almethen

Note that cases (3) and (4) ensure that Li is not disconnected from the rest of the shape.
Moreover, moving Li must be performed in a way that respects transparency (Proposition
4), so that connectivity of the remaining shape is always preserved and its configuration is
restored to its original state. These details are described later in this section.

Algorithm 1, HamiltonianToLine, gives a general strategy to transform any Hamiltonian
shape SI ∈ H into a straight line in O(n log n) moves. In every phase i, it moves a terminal
line Li of length 2i a distance 2i higher on the Hamiltonian path through a LineWalk
operation. This leaves a new terminal sub-path Si of the Hamiltonian path, of length 2i.
Then the general procedure is recursively called on Si to transform it into a straight line
L′i of length 2i. Finally, the two straight lines Li and L′i which are perpendicular to each
other are combined into a new straight line Li+1 of length 2i+1 and the next phase begins.
The output of HamiltonianToLine is a straight line SL of order n.

Algorithm 1: HamiltonianToLine(S)
S = (u0, u1, ..., u|S|−1) is a Hamiltonian shape
Initial conditions: S ← SI and L0 ← {u0}

for i = 0, . . . , log |S| do
LineWalk(Li)
Si ← select(2i) // select the next terminal subset of 2i consecutive

nodes of S
L′i ← HamiltonianToLine(Si) // recursive call on Si
Li+1 ← combine(Li, L

′
i) // combines Li and L′i into a new straight line

Li+1

end
Output: a straight line SL

4.2.3 Correctness and runtime analysis

Now, we are ready to show correctness of HamiltonianToLine transformation, which is ca-
pable of transforming any Hamiltonian shape S ∈ H into a line shape of the same order,
while preserving connectivity.

Lemma 23. Starting from an initial Hamiltonian shape SI ∈ H of order n, HamiltonianTo-
Line forms a straight line SL ∈ H of length n.

Proof. By the beginning of the final phase, the shape configuration consists of two parts,
a straight line L of length 2logn−1 and a shape S of 2logn−1 nodes. During this phase, L

Chapter 4. Connectivity-Preserving transformations 93

performs a LineWalk operation, S transforms recursively into L′ and then L combines with
L′ into a straight line SL of length 2logn = n. Consequently, SL shall occupy n consecutive
cells on the grid, either vertically or horizontally.

Lemma 24. The operation of Line-Walk preserves the whole connectivity of the shape
during phase i, where 1 ≤ i ≤ log n.

Proof. Let SI ∈ H be a Hamiltonian shape of order n in phase i, which terminates at a
straight line Li of length 2i nodes, starting from v1 to v2i . During phase i, this transfor-
mation doubles the size of Li by merging with the subsequent 2i nodes, which starts from
v2i+1 to v2i+1 on the Hamiltonian path.

We now show case (1) and (2) of the Line-Walk operation on a horizontal Li as the other
cases are symmetric by rotating the shape 90◦, 180◦ or 270◦ clockwise. In case 1, Li and Si
are already forming a straight line Li+1 of length 2i+1, and hence, the whole configuration of
the shape remains unchanged. In case (2), Li and Si are forming two perpendicular straight
lines in which Li can easily push into Si and extend it by 2i. By exploiting transparency of
line moves in Proposition 4, as Li pushes and Si extends to form Li+1, they are replacing
and restoring any occupied cell along their way through any configuration (independently
of how density is). As a result, the Line-Walk operation preserves connectivity of Li, Si
and the whole shape.

Now, let Li and Si be of the same configuration of case (3) or (4) described above, where
Li has length of 2i and Si consists of 2i nodes v2i+1, . . . , v2i+1 , occupying multiple rows and
columns. Due to symmetry, assume Li is horizontal on (x, y), (x + 1, y), . . . , (x + 2i, y)

and Si is the next terminal sub-path of the remaining Hamiltonian path. The Manhattan
distance between v2i = u and v2i+1 = v (given by δ(u, v) = |ux − vx|+ |uy − vy|) computes
the path that the line Li will go through to reach the far endpoint of Si. There are two
possible paths of one corner from u to v: (1) starts horizontally from cell (ux, uy) then turns
at (vx, uy) continuing vertically towards (vx, vy), or (2) starts from (ux, uy) then turns at
(ux, vy) continuing horizontally towards (vx, vy).

In case (3), the distance between v2i and v2i+1 is δ(v2i , v2i+1) ≤ 2i, thus Li moves
horizontally from v2i = (x, y) through (x′, y) at which Li changes its direction towards
v2i+1 = (x′, y′). A path may consist of at least 2i empty cells Li goes through to reach
the destination cell (x′, y′) in a worst-case scenario. Recall that Li already consists of 2i

nodes, which guarantees connectivity all the way until arriving at (x′, y′). Once Li has
arrived there, it can safely change its direction to line up with v2i+1 and occupy the column

94 Abdullah A. Almethen

x′, while preserving connectivity. Further, any non-empty cells of the path are eventually
restored due to the transparency of line moves shown in Proposition 4. Finally, the same
argument holds for (4) by applying (3) twice. Figure 4.16 shows an example of case (3)
and (4). Thus, Line-Walk always keeps the whole shape connected during any phase i of
the transformation.

L = 2i

v2i

v1 2iu1 u2 u2i

(a) The case when δ(v2i , v2i+1) ≤ 2i.

L = 2i
u1 u2 u2i

v1

v2i

2i+1

(b) The case when δ(v2i , v2i+1) > 2i.

Figure 4.16: Two cases of Line-Walk operation.

Now, we are ready to analyse the running time of HamiltonianToLine transformation.

Lemma 25. Given an initial Hamiltonian shape SI ∈ H of order n, HamiltonianToLine
transforms SI into a straight line SL in O(n log n) moves, while preserving connectivity
during the course of the transformation.

Proof. The bound O(n) trivially holds for case (1) and (2). We then analyse a worst-case
of (3) and (4) in which the transformation matches its maximum running time. Let Ti
denote the total number of moves from phase 1 up to i for all 0 ≤ i ≤ log n. In phase i, a
straight line Li of length 2i traverses along a path of at most 2 · (2i − 2) = 2i+1 − 4 cells in
which Li changes its direction twice paying a cost of at most 2i+2 − 4 moves. There is an
additive factor of 2 for a special-case in which Li turns at a non-empty corner as depicted
in Figure 2.9. With that, the operation of Line-Walk takes total moves k′i of at most:

k′i = (2i+1 − 4) + (2i+2 − 4) + 2 = 6(2i − 1).

Chapter 4. Connectivity-Preserving transformations 95

By the end of phase i, Li and L′i combine together into a straight line Li+1 of length 2i+1,
in a total cost k′′i of at most:

k′′i = 2(2i − 1),

moves. Hence, the operation of Line-Walk and combination of Li and L′i require at most
ki in phase i given by:

ki = k′i + k′′i

= 6(2i − 1) + 2(2i − 1) = 8(2i − 1)

= O(2i).

Now, let Ti−1 denote a total number of moves for a recursive call of HamiltonianToLine trans-
formation on Si (of 2i nodes) to transform it into a straight line L′i, then the transformation
in phase i requires at most:

Ti = 2 · Ti−1 + ki,

moves. Given that the first phase i costs T1 = 1, we compute the recursion as follows:

Ti = 2 · Ti−1 + ki = 2Ti−1 + 2i = 2(2Ti−2 + 2i−1) + 2i = . . .

= 2i · T1 + i · n = 2i + i · n

Thus, we claim that in the final phase i = log n, HamiltonianToLine transformation has a
total cost Tlogn of at most:

Tlogn = 2logn + n log n = n+ n log n

= O(n log n).

By induction, the basic case holds trivially. Let us assume it is true for phase i, and we
show that this must also be valid for phase i+ 1:

Ti+1 = 2i+1 + (i+ 1)n = 2(2i) + i · n+ n

As a result, in the final phase i = log n, we conclude that HamiltonianToLine transformation

96 Abdullah A. Almethen

performs a total cost Tlogn of at most O(n log n) moves.

By Lemmas 24 and 25, HamiltonianToLine transformation can transform any Hamilto-
nian shape S ∈ H into a straight line SL ∈ H of the same order within O(n log n) moves,
while preserving connectivity. By reversibility of line moves (consult Lemma 2), any pair of
Hamiltonian shapes SI , SF ∈ H of the same order can be transformed to each other by first
transforming SI into SL and then reversing the transformation of SF into SL, within the
same asymptotic time of O(n log n) moves. Thus, we have arrived at the following theorem:

Theorem 9. For any pair of Hamiltonian shapes SI , SF ∈ H of the same order n, SI can
be transformed into SF (and SF into SI) in O(n log n) moves, while preserving connectivity
of the shape during the course of the transformation.

4.3 Compression: An O(n
√
n)-time universal transformation

This section demonstrates a universal shape transformation that solves the Universal-

Connected problem in O(n
√
n) moves. It is called Compress and transforms any pair of

connected shapes (SI , SF) of the same order to each other, while preserving connectivity
during its course. The following is a high-level description of this strategy.

Starting from the initial shape SI of order n with an associated graph G(SI), compute
a spanning tree T of G(SI). Then, enclose the shape into an n× n square box and divide
it into

√
n×
√
n square sub-boxes. Each occupied sub-box contains one or more maximal

sub-trees of T . Each such sub-tree corresponds to a sub-shape of SI , which from now on
we call a component. Pick a leaf sub-tree Tl, let Cl be the component with which it is
associated, and Bl their sub-box. Let also Bp be the sub-box adjacent to Bl containing
the unique parent sub-tree Tp of Tl. Then compress all nodes of Cl into Bp through line
moves, while keeping the nodes of Cp (the component of Tp) within Bp. Once compression
is completed and Cp and Cl have been combined into a single component C ′p, compute a new
sub-tree T ′p spanning G(C ′p). Repeat until the whole shape is compressed into a

√
n×
√
n

square. The latter belongs to the family of Central Line (or nice) shapes (see Definition
10) and can, thus, be transformed into a straight line in linear time.

Given that, the main technical challenges in making this strategy work universally is
that a connected shape might have many different configurations inside the sub-boxes it
occupies, while the shape needs to remain connected during the transformation. In the

Chapter 4. Connectivity-Preserving transformations 97

following, we describe the compression operation, which successfully tackles all of these
issues by exploiting the linear-strength of line moves.

4.3.1 Universal transformation by compression approach

Let Cl ⊆ SI be a leaf component containing nodes v1, . . . , vk inside a sub-box Bl of size√
n ×
√
n, where 1 ≤ k ≤ n, and Cp ⊆ SI the unique parent component of Cl occupying

an adjacent sub-box Bp. If the direction of connectivity between Bl and Bp is vertical
or horizontal (see an example in Figure 4.17), push all lines of Cl one move towards Bp

sequentially one after the other, starting from the line furthest from Bp. Repeat the same
procedure to first align all lines perpendicularly to the boundary between Bl and Bp (Figure
4.17(d)) and then to transfer them completely into Bp (Figures 4.17(e)). Hence, Cl and Cp

are combined into C ′p, and the next round begins.

The above moves are carried out in such a way that all lines (in Cl or Cp) pushed by this
operation do not exceed the border of Bp. While Cl compresses vertically or horizontally,
it may collide with a component Cr ⊆ SI inside Bl. In this case, Cl stops compressing and
combines with Cr into C ′r, and the next round begins. If Cl compresses diagonally towards
Cp (vertically then horizontally or vice versa) via an intermediate adjacent sub-box Bm and
collides with Cm ⊆ SI inside Bm, then Cl completes compression into Bm and combines
with Cm into C ′m. Figure 4.18 shows how to compress a leaf component into its parent
component occupying a diagonal adjacent sub-box.

Algorithm 2, Compress, provides a universal procedure to transform an initial connected
shape SI of any order into a compressed square shape of the same order. It takes two
arguments: SI and the spanning tree T of the associated graph G(SI). In any round:
Pick a leaf sub-tree of Tl corresponding to Cl inside a sub-box Bl. Compress Cl into an
adjacent sub-box Bp towards its parent component Cp associated with parent sub-tree Tp.
If Cl compressed with no collision, perform combine(Cp, Cl) which combines Cl with Cp

into one component C ′p. If Cl collides with another component Cr inside Bl, then perform
combine(Cr, Cl) into C ′r. If not, as in the diagonal compression in which Cl collides with
Cm in an intermediate sub-box Bm, then Cl compresses completely into Bm and performs
combine(Cm, Cl) into C ′m. Once compression is completed, update(T) computes a new sub-
tree and removes any cycles. The algorithm terminates when T matches a single component
of n nodes compressed into a single sub-box.

98 Abdullah A. Almethen

Bl Bp

Push one step

(a)

Bl Bp

Push one step

(b)
Bl Bp

Push one step

(c)

Bl Bp

align to boundary
Until all lines

(d)
Bl Bp

Transfer all lines
completely into Bp

(e)

Figure 4.17: A leaf component Cl in blue compressing from the left sub-box Bl towards
its parent component Cp in black inside a horizontal adjacent right sub-box Bp. From the
top-left, Cl pushes all lines to align them perpendicularly to the boundary between Bl and
Bp then compresses them into Bp. All other orientations are symmetric by rotating the
shape 90◦, 180◦ or 270◦ clockwise.

4.3.2 Correctness and runtime analysis

In this section, we prove correctness of Compress transformation. First, we show that it
can transform any pair of connected shapes (SI , SF) of the same order to each other, while
preserving connectivity throughout. We then discuss its running time, which takes a total
cost of at most O(n

√
n) moves to compress any connected shape.

Given an initial connected shape SI holding n nodes enclosed into an n×n square that
is divided into

√
n ×
√
n square sub-boxes, we provide the following definitions that are

used in the rest of this chapter.

Definition 15 (Connectivity of sub-boxes). By the above partitioning, two occupied sub-

Chapter 4. Connectivity-Preserving transformations 99

(a) (b)

(c) (d)

Figure 4.18: A leaf component Cl in blue compressing from the top-left sub-box towards its
parent component Cp in black inside a diagonal adjacent bottom-right sub-box. From the
top-left, Cl compresses first horizontally towards an intermediate top-right sub-box, then
vertically into the bottom-right. All other orientations are symmetric by rotating the shape
90◦, 180◦ or 270◦ clockwise.

boxes, B1 and B2, are connected iff there are two distinct nodes u, v ∈ SI , such that u
occupies B1 and v occupies B2 where u and v are two adjacent neighbours connected verti-
cally, horizontally or diagonally.

Definition 16 (Connectivity of components). By the above partitioning, two connected
components, C1 and C2, are connected iff there are two distinct elements u ∈ C1 and
v ∈ C2, such that u and v are two adjacent neighbours connected vertically, horizontally or

100 Abdullah A. Almethen

Algorithm 2: Compress(S)
S = (u1, u2, ..., u|S|) is a connected shape, T is a spanning tree of G(S)

repeat
Cl ← pick(Tl) // select a leaf component associated with a leaf

sub-tree
Compress(Cl) // start compressing the leaf component
if Cl collides then

C ′r ← combine(Cr, Cl) or C ′m ← combine(Cm, Cl) // as described in
text

else
C ′p ← combine(Cp, Cl) // combine Cl with a parent component

end
update(T) // update sub-trees and remove cycles after compression

until the whole shape is compressed into a
√
n×
√
n square

Output: a square shape SC

diagonally.

Then, we show that each sub-box holds at most 2
√
n components.

Lemma 26. Any
√
n×
√
n square box can contain at most 2

√
n components.

Proof. Any component Cl ⊆ SI inside a sub-box Bl must be connected through a path to
one of

√
n/2 non-adjacent cells at a length-

√
n boundary of Bl, resulting in 2

√
n for the

four boundaries, as shown in Figure 4.19. Hence, any a sub-box can contain at most 2
√
n

disconnected components.

Then, the following lemma proves that any connected shape S of n nodes can be com-
pressed into a square box of dimension

√
n.

Lemma 27. Let S be a connected shape of order n occupies
√
n sub-boxes of size

√
n×
√
n

each. Then, it is always possible to compress all n nodes into a single sub-box.

Proof. The number of cells inside any sub-box is
√
n ×
√
n = n, then it is sufficient to be

filled by at most n nodes.

Next, the following lemma shows that Compress transformation eventually forms a Cen-
tral Line (nice) shape, which can be transformed fast into a straight line in linear time.

Chapter 4. Connectivity-Preserving transformations 101

√
n
2

√
n
2

√
n
2

√
n
2

Figure 4.19: A square box of four length-
√
n boundaries, each of

√
n/2 non-adjacent cells.

Lemma 28. Starting from an initial connected shape SI of order n, Compress transforma-
tion eventually forms a nice shape SN I C E of order n.

Proof. Regardless of which sub-box the shape will compress into, the resulting final shape
will form a square of size

√
n, which satisfies all conditions of nice shapes in Definition

10.

Given an initial connected shape SI of n associated with a graph G(SI), compute a
spanning tree T of G(SI). Then enclose SI into an n × n square box and divide it into
√
n ×
√
n square sub-boxes. Each occupied sub-box contains one or more maximal sub-

trees of T . Each such sub-tree corresponds to a component. Pick a leaf sub-tree Tl, let Cl

be the component with which it is associated, and Bl their sub-box. Let also Bp be the
sub-box adjacent to Bl containing the unique parent sub-tree Tp of Tl. We then provide
the following lemma:

Lemma 29. Compress transformation compresses a leaf component Cl ⊆ SI of k ≥ 1 nodes,
while preserving the global connectivity of the shape.

Proof. Due to symmetry, we present only one direction as all other directions hold by
rotating the shape 90◦, 180◦ and 270◦ clockwise. Assume Bl is a left sub-box horizontally
adjacent to right sub-box Bp. All k horizontal lines (rows) of Cl move sequentially towards
Bp, starting from the line furthest from the boundary between Bl and Bp. Given a line
l ∈ k with length i, 1 ≤ i ≤

√
n. Then, l must be in one of the following cases in order to

push one move horizontally from Bl into Bp:

102 Abdullah A. Almethen

• Case 1. Starting from the left to right boundary of Bl, a line l of length
√
n occupies

cells (x, y), . . . , (x +
√
n, y), and thus l moves one step to the right, occupying (x +

1, y), . . . , (x +
√
n + 1, y) in a such way similar to a simple position permutation of

l’s nodes to their right neighbour positions. Regardless of the shape configuration, l
creates an empty cell at (x, y) while remaining connected to any other nodes occupying
cells (x, y± 1), . . . , (x+

√
n, y± 1). See an example of this case in Figure 4.20(a) and

(b).

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 4.20: A line l of length
√
n occupies the whole dimension of a sub-box in (a), is

pushing one step right in (b).

• Case 2. A line l of length smaller than
√
n. It is similar of Case 1 in which l moves

one position to the right. Figure 4.21 shows one example of this case.

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 4.21: A line l of length i <
√
n in (a), is pushing one step right in (b).

• Case 3. Two horizontal lines l and l′, both smaller than
√
n in length, occupy

the same row and are separated by one empty cell. Say l starts from the leftmost

Chapter 4. Connectivity-Preserving transformations 103

column x and ends at x + i, with an empty cell (x + i + 1, y) and l′ occupying
(x + i + 2, y), . . . , (x +

√
n, y). This is similar to Case 2 in which l moves one step

towards cell (x+ i+ 1, y), then both lines merge into one, creating a new empty cell
at (x, y), as shown in Figure 4.22.

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 4.22: (a) Two lines occupying a row are separated by one empty cell inside Bl, both
of length less than

√
n. The left line moves one step to the right, then both combined into

a single line in (b).

As mentioned earlier, when a leaf component Cl occupying Bl compresses towards its parent
Cp occupying Bp, we now demonstrate that no line crosses the border of Bp.

• Case 4. A line l of length i <
√
n, beginning at the left boundary and terminating

at cell x + i of Bp, is adjacent to an empty cell to the right at (x + i + 1, y). Once
l is pushed one move to the right, it fills in the empty cell and occupies positions
(x+ 1, y), . . . , (x+ i+ 1, y) with length i+ 1. This is similar of Case 2 in Figure 4.21.

• Case 5. A line l of length
√
n starts from the left to right boundary of Bp. Once

l is pushed one move towards the right, it turns to fill in empty cells at the right
boundary of Bp, starting from the rightmost column to the left. Figures 4.23 and
4.24 depicts two different examples of filling the boundary of Bp.

In all of the above cases, the horizontal line l pushes one move towards the right while
maintaining the whole connectivity of the configuration. As an immediate observation:
whenever a line l ⊂ SI inside a sub-box Bl pushes one move towards the boundary between
(Bl, Bp), the global connectivity of the whole shape is preserved. This holds also for all k

104 Abdullah A. Almethen

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

√
n

√
n

Bl Bp

(c)

Figure 4.23: (a) A line l of length
√
n takes up a whole dimension of a parent sub-box Bp

with an empty cell above its right end node. As l pushes to the right, the end node moves
up towards that empty cell (b), and l moves one step to right in (c).

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 4.24: (a) A line l of length
√
n occupies the entire dimension of Bp, with rightmost

column completely filled. l fills up the nearest empty cell in the second column from the
right in this case (b).

lines that move one step from Bl to Bp, sequentially one after another at any order, starting
from the furthest-to-nearest line from Bp. Thus, this must hold for any finite number of

Chapter 4. Connectivity-Preserving transformations 105

line moves required to compress a leaf component Cl towards its parent Cp.

Let us now analyse the running time of this transformation. In some cases, the com-
pression cost can be as little as one move or as high as linear movements. For that, we
divide the overall cost into charging phases to facilitate the analysis. We then manage to
upper bound the cost of each charging phase independently of the sequential order of com-
pression. Below we provide a rough upper bound for all possible shape configurations. We
first show the total cost required to compress a leaf component Cl inside Bl into a parent
Cp occupying an adjacent sub-box Bp.

Lemma 30. Given a pair of components Cl and Cp of kl and kp nodes, 1 ≤ kl + kp ≤ n,
occupying two adjacent

√
n×
√
n sub-boxes Bl and Bp, receptively. Then, Cl compresses into

Cp inside Bp within at most O(n) moves while preserving connectivity during compression.

Proof. Assume a worst-case configuration when Bl and Bp are connected diagonally. In this
case, the compression needs to go through an intermediate sub-box Bm first then carry on
towards Bp. Each line kl ∈ Cl moves at most distance

√
n to cross the boundary between

Bl and Bp; hence, all kl lines need to pay at most n moves to completely transfer into Bm

and another n moves to compress into Bp. Further, we give an extra 2n moves for filling
in a boundary at Bp (as depicted in Figure 4.24). Thus, the transformation pays at most
t moves to compress Cl into Cp,

t = n+ n+ 2n = 4n

= O(n).

Given some partitionings, a family of connected shapes can be separated into n con-
nected components deployed on

√
n sub-boxes. For a variety of reasons, this family looks

to approach a worst-case complexity where the Compress transformation achieves its max-
imum cost. To begin, such partitioning separates a shape from this family into as many
components as possible up to n. Furthermore, the shape’s diameter, defined as the distance
between its two furthest nodes, has a maximum length of n. Unlike other densely connected
shapes with smaller diameters, the compression cost of these shapes can be rather high due
to the lack of long lines, which necessitates extra effort for individuals and short lines.
Thus, we provide this observation which closely follows Corollary 1.

106 Abdullah A. Almethen

Observation 1. There is a set of connected shapes denoted C, such that an instance S ∈ C
can have n components occupying the

√
n sub-boxes.

Figures 4.25 and 4.26 illustrate partitioning instances of two shapes from C. Since S ∈ C
is connected, each occupied sub-box has at most O(

√
n) connected components of size 1.

Apart from the sequential sequence of the transformation, our goal now is to upper bound
the cost that any connected shape S pays at maximum to compress based on the number
of occupied sub-boxes.

√
n

√
n

n

Figure 4.25: A shape of zigzag line with a partitioning positioned to cross the middle
through every two nodes.

Lemma 31. The Compress transformation compresses any connected shape S of order n
into a

√
n ×
√
n square shape in O(n

√
n) moves while preserving connectivity during its

course.

Proof. Let us analyse the compression cost of these shapes based a worst-case scenario.
To simplify the analysis, we divide the total cost T into

√
n charging phases t1, . . . t√n,

each corresponds to an occupied sub-box. Then we upper bound the cost in each phase
independently of the compression order. In any charging phase ti, for all 1 ≤ i ≤

√
n, the

strategy compresses at most O(
√
n) lines distance of O(

√
n), incurring a cost of n moves,

while preserving connectivity. In the worst case of Lemma 30, the compression may traverse
through diagonal sub-boxes, incurring at most 2n moves and an additional cost of 2n moves
for boundary rearrangements. Thus, the cost phase ti is bounded by:

ti = 4n,

Chapter 4. Connectivity-Preserving transformations 107

√
n

√
n

Figure 4.26: A diagonal zigzag line with a partitioning positioned to cross the middle
through every two nodes.

moves, which is mostly enough for an occupied sub-box to be cleared of its lines. Then,
the cost of all

√
n charging phases is sufficient to empty all occupied sub-boxes of all lines

inside them over the transformation, for a maximum total cost T :

T = 4n ·
√
n = 4(n

√
n)

≤ O(n
√
n),

moves.

By Lemmas 29 and 31, any connected shape S of order n can be transformed into
a Central Line (nice) shape, denoted SN I C E , within O(n

√
n) moves while preserving

connectivity. By reversibility, any pair of connected shapes SI and SF of the same order
can be transformed to each other within the same asymptotic time of O(n

√
n) moves by

first transforming SI into SN I C E and then reversing the transformation from SF into
SN I C E . Finally, the following theorem implies that:

Theorem 10. Compress solves UniversalConnected within O(n
√
n) moves.

Chapter 5

Distributed transformations

In the previous chapters, we studied and revealed the underlying transformation principles
of line moves – including modelling, feasibility and complexity – as well as presenting
several algorithmic solutions that are best suited for each given design and task, coupled
with provable guarantees on their performance. All of those transformations, however, are
centralised and cannot be directly applicable to real distributed robotic systems. Thus, our
current goal is to provide distributed transformations that, if possible, retain all the good
properties of the corresponding centralised solutions. These include the move complexity
(i.e. the total number of line moves) of the transformations and their ability to preserve
the connectivity of the shape during their course.

In this chapter, we establish an algorithmic framework that allows individuals to utilise
their linear-strength mechanism in a distributed manner. We develop the first distributed
connectivity-preserving transformation that exploits line moves and matches the bound of
the best-known centralised transformations. In Section 5.1, we define a discrete system
of n simple indistinguishable devices, called agents, forming a connected shape SI on a
two-dimensional square grid. Agents act as finite-state automata (i.e. they have constant
memory) that can observe the states of nearby agents in a Moore neighbourhood (i.e. the
eight cells surrounding an agent on the square gird). They operate in synchronised Look-
Compute-Move (LCM) cycles on the grid. All communication is local, and actuation is
based on this local information as well as the agent’s internal state.

Within this distributed setting of identical agents, breaking symmetry emerges as a
fundamental issue, rendering many agreement problems in distributed computing systems
impossible. For example, there is no deterministic algorithm to elect a leader for a set

108

Chapter 5. Distributed transformations 109

of agents sharing an identical local view. In [123], this concept is formally defined as
the symmetricity of a network. By concentrating on the shape formation problem, it is
necessary for the agents to have some common agreement on a coordinate system [74, 111].
They may, for example, form any arbitrary target shape if they have a common sense of
direction, unit distance and coordinate axes. Furthermore, the degree of synchronisation is
another major issue in distributed computing in general, and it has a special impact on the
feasibility of algorithms in graph-based robotic systems (see for example [50]). Thus, as a
first attempt at distributing line moves on the two-dimensional square grid, we adopted a
full-synchronised model of agents that share a sense of orientation which will be discussed
in more detail later.

Recall our O(n log n)-move connectivity-preserving centralised strategy presented in
Section 4.2 that solves the HamiltonianLine problem. Section 5.2, similarly, presents a
solution to the line formation problem, that is, for any initial Hamiltonian shape SI , form
a final straight line SL of the same order. It is quite common for newly proposed models in
distributed systems to commence with the basic shape formation problems, e.g. the line,
as a first stepping stone towards more general transformations, see for example the nubot
model [121] and the amoebot model [54]. This is confirmed by the fact that if every shape
can be transformed into a special (specific) intermediate shape (in our case a straight line),
any pair of shapes (with the same number of agents) can be transformed to each other.

In Section 5.2, we present the transformation in depth, including all of its algorithmic
aspects and technical tools. We assume that a pre-processing phase provides the Hamil-
tonian path, that is, a global sense of direction is made available to the agents through a
labelling of their local ports (e.g. each agent maintains two local ports incident to its pre-
decessor and successor on the path). Similar assumptions exist in the literature of systems
of complex shapes that contain a vast number of self-organising and limited entities. A
prominent example is [102] in which the transformation relies on an initial central phase to
gain some information about the number of entities in the system.

On a high-level, the algorithm transforms a Hamiltonian shape into a straight line in
log n phases (each consisting of six sub-phases) as follows: In phase i, 2i−1 terminal agents
on the path forming a straight line merge with the next 2i−1 agents of any configuration, in
order to form a new straight line of length 2i; hence, the line length is doubled in each phase.
On one end of the Hamiltonian path, a pre-elected leader (by a central control) leads this
process. By transmitting and swapping states along the Hamiltonian path in Sections 5.2.1
and 5.2.2, agents that participate in forming the respective line, are identified. Afterwards

110 Abdullah A. Almethen

a feasible transformation path is computed in Section 5.2.3. This is done by exploiting
the agent’s knowledge about their respective successor in the Hamiltonian path, and thus
their respective local Hamiltonian direction. In Section 5.2.4, the agents thereby act as a
distributed binary counter. Once having that computed path, the leader pushes the line
from the prior phase (of length 2i−1) to its destination. This line, in Sections 5.2.5 and
5.2.6, is then merged recursively with the active agents in that phase.

5.1 The distributed model of line moves

Below, we define our distributed transformation model that make use of line moves. Al-
though some settings were discussed before in Chapter 2, we need to define them again here
for consistency and to put everything in place, as a new separate model, and to avoid any
confusion with the centralised model. We consider a system consisting of n agents forming
a connected shape S on a two-dimensional square grid in which each agent p ∈ S occupies a
unique cell cell(p) = (x, y), where x indicates columns and y represents rows. Throughout,
an agent shall also be referred to by its coordinates. Each cell (x, y) is surrounded by eight
adjacent cells in each cardinal and ordinal direction, (N, E, S, W, NE, NW, SE, SW).

At any time, a cell (x, y) can be in one of two states, either empty or occupied. An
agent p ∈ S is a neighbour of (or adjacent to) another agent p′ ∈ S, if p′ occupies one of the
eight adjacent cells surrounding p, that is their coordinates satisfy p′x−1 ≤ px ≤ p′x +1 and
p′y − 1 ≤ py ≤ p′y + 1, see Figure 5.1. For any shape S, we associate a graph G(S) = (V,E)

defined as follows, where V represents agents of S and E contains all pairs of adjacent
neighbours, i.e. (p, p′) ∈ E iff p and p′ are neighbours in S. We say that a shape S is
connected iff G(S) is a connected graph. The distance between agents p ∈ S and p′ ∈ S
is defined as the Manhattan distance between their cells, ∆(p, p′) = |px − p′x| + |py − p′y|.
A shape S is called Hamiltonian shape iff G(S) contains a Hamiltonian path, i.e. a path
starting from some p ∈ S, visiting every agent in S and ending at some p′ ∈ S, where
p 6= p′.

Each agent is equipped with the linear-strength mechanism defined in Section 2.2. Recall
that, given a line L consisting of a sequence of k agents occupying consecutive cells on
the grid, say without loss of generality L = (x, y), (x + 1, y), . . . , (x + k − 1, y), where
1 ≤ k ≤ n. Then, the agent p ∈ L occupying (x, y) is capable of performing an operation
of a line move by which it can push all agents of L one position rightwards to positions
(x+ 1, y), (x+ 2, y), . . . , (x+ k, y) in parallel in a single time-step (i.e. all of the k agents is

Chapter 5. Distributed transformations 111

p

N

S

EW

NW NE

SESW

p

Figure 5.1: An agent p is a neighbour to any agent locating at one of the eight surrounding
cells in grey.

pushed one step right at the same time, while only the pushing agent is aware of this move
and the other k−1 agent are not necessarily informed in a single time-step). The line moves
towards the ‘down’, ‘left’ and ‘up’ directions are defined symmetrically by rotating the
system 90◦, 180◦ and 270◦ clockwise, respectively. This linear-strength pushing mechanism
can be equipped internally to an agent or in a system of external forces that occur naturally
(e.g. gravity) or artificially (e.g. magnetic surface). We call the number of agents in S the
size or order of the shape.

We assume that the agents share a sense of orientation through a consistent labelling
of their local ports. Agents do not know the size of S in advance neither they have any
other knowledge about S. Each agent has a constant memory (of size independent of n)
and a local visibility mechanism by which it observes the states of its eight neighbouring
cells simultaneously. The agents act as finite automata operating in synchronous rounds
consisting of Look-Compute-Move (LCM) steps.

Thus, in every discrete round, an agent observes its own state and for each of its eight
adjacent cells, checks whether it is occupied or not. For each of those occupied, it also
observes the state of the agent occupying that cell. Then, the agent updates its state or
leaves it unchanged and performs a line move in one direction d ∈ {up, down, right, left}
or stays still. A configuration C of the system is a mapping from Z2

≥0 to {0} ∪Q, where Q
is the state space of agents. We define S(C) as the shape of configuration C, i.e. the set of
coordinates of the cells occupied in S. Given a configuration C, the LCM steps performed
by all agents in the given round, yield a new configuration C ′ and the next round begins.
If at least one move was performed, then we say that this round has transformed S(C) to
S(C ′).

An agent p ∈ S is defined as a 5-tuple (X,M,Q, δ,O), where Q is a finite set of
states, X is the input alphabet representing the states of the eight cells that surround an
agent p on the square grid, so |X| = |Q|8, M = {↑, ↓,→,←, none} is the output alphabet

112 Abdullah A. Almethen

corresponding to the set of moves, a transition function δ : Q × X → Q ×M setting a
new state and action by receiving an input and being in a particular state and the output
function O : δ ×X →M specifying the produced action for a specified input.

5.2 The distributed Hamiltonian transformation

In this section, we develop a distributed algorithm that uses line movements to form a
straight line SL from an initial connected shape SI that is associated with a graph that
has a Hamiltonian path. As we will argue, this strategy performs O(n log n) moves, that
is, it is as efficient with respect to moves as the best-known centralised transformation, and
completes within O(n2 log n) rounds, while keeping the whole shape connected during its
course. As these are the initial attempts to distribute line moves, let us start with some
prerequisites:

• We assume that through some pre-processing the Hamiltonian path P of the initial
shape SI has been made available to the n agents in a distributed way. That is, each
agent pi knows the local ports incident to its predecessor pi−1 and its successor pi+1,
for all 1 ≤ i ≤ n.

• The head p1 and the tail pn, respectively, are where P begins and finishes. They are
also responsible for pushing the line on an interchangeable basis during the transfor-
mation.

• The head p1 is leading the process (as it can be used as a pre-elected unique leader)
and is responsible for coordinating and initiating all procedures of this transformation.

In order to simplify the exposition, we assume that n is a power of 2; this can be easily
dropped later. The transformation proceeds in log n phases, each of which contains six
sub-phases (or sub-routines). Each sub-phase consists of one or more synchronous rounds.
The transformation begins with a simple line of length 1, then gradually flattens all agents
along P while doubling its length, until it reaches the final straight line SL of length n.
The high-level description of this strategy is provided below.

A state q ∈ Q of an agent p will be represented by a vector with seven components
(c1, c2, c3, c4, c5, c6, c7). The first component c1 contains a label λ of the agent from a finite
set of labels Λ, c2 is the transmission state that holds a string of length at most three, where
each symbol of the string can either be a special mark w from a finite set of marks W or

Chapter 5. Distributed transformations 113

an arrow direction a ∈ A = {→,←, ↓, ↑,↖,↗,↙,↘} and c3 will store a symbol from c2’s
string, i.e. a special mark or an arrow. The local Hamiltonian direction a ∈ A of an agent p
indicating predecessor and successor is recorded in c4, the counter state c5 holds a bit from
{0, 1}, c6 stores an arrow a ∈ A for map drawing (as will be explained later) and finally
c7 is holding a pushing direction d ∈ M . The “·” mark indicates an empty component; a
non-empty component is always denoted by its state. An agent p may be referred to by
its label λ ∈ Λ (i.e. by the state of its c1 component) whenever clear from context. For
simplicity, we shall only mention the affected components of the state of the agents.

By the beginning of phase i, 0 ≤ i ≤ log n − 1, there exists a terminal straight line
Li of 2i active agents occupying a single row or column on the grid, starting with a head
labelled lh and ending at a tail labelled lt, while internal agents have label l. All agents in
the rest of the configuration are inactive and labelled k. During phase i, the head lh leads
the execution of six sub-phases:

(1) DefineSeg: Identify the next segment Si of length 2i in the Hamiltonian path.

(2) CheckSeg: Check whether Si is in line or perpendicular line to Li. Go to (6) if
perpendicular or start phase i+ 1 otherwise.

(3) DrawMap: Compute a route map that takes Li to the end of Si.

(4) Push: Move Li along the drawn route map.

(5) RecursiveCall: A recursive-call on Si to transform it into a straight line L′i.

(6) Merge: Combine Li and L′i together into a straight line Li+1 of 2i+1 double length.
Then, phase i+ 1 begins.

Figure 5.2 gives an illustration of a phase of this transformation when applied on the
diagonal line shape. First, it identifies the next 2i agents on P . These agents are forming a
segment Si which can be in any configuration. To do that, the head emits a signal which is
then forwarded by the agents along the line. Once the signal arrives at Si, it will be used
to re-label Si so that it starts from a head in state sh, has 2i − 2 internal agents in state
s, and ends at a tail st; this completes the DefineSeg sub-phase. Then, lh calls CheckSeg
in order to check whether the line defined by Si is in line or perpendicular to Li. This can
be easily achieved through a moving state initiated at Li and checking for each agent of
Si its local directions relative to its neighbours. If the check returns true, then lh starts a

114 Abdullah A. Almethen

S i
=
2
i

Li = 2i

lhlt
sh

st

ll

s

s

s

(a) DefineSeg, CheckSeg and DrawMap.

Li
lhlt ll

sh

st

s

s

s

(b) Push.

S i

L′
i

Li

sh

lst

s

s

s
lhll

(c) RecursiveCall.

push Li

Li+1

lt lhll

sh
s

s
st

(d) Merge.

Figure 5.2: Similar to Figure 4.15, a snapshot of phase i of the Hamiltonian transformation
on the shape of a diagonal line . Each occupied cell shows the current label state of an
agent. Light grey cells show ending cells of the corresponding moves.

new round i+ 1 and calls Merge to combine Li and Si into a new line Li+1 of length 2i+1.
Otherwise, lh proceeds with the next sub-phase, DrawMap.

In DrawMap, lh designates a route on the grid through which Li pushes itself towards
the tail st of Si. It consists of two primitives: ComputeDistance and CollectArrows. In
ComputeDistance, the line agents act as a distributed counter to compute the Manhattan
distance between the tails of Li and Si. In CollectArrows, the local directions are gathered
from Si’s agents and distributed into Li’s agents, which collectively draw the route map.

Chapter 5. Distributed transformations 115

2i−1

|Li| = 2i

2i−2

4

22

1

phase i

2i−1

2i−2
|Si| = 2i

Figure 5.3: A zoomed-in picture of the core recursive technique RecursiveCall shown in
Figure 5.2(c).

Once this is done, Li becomes ready to move and lh can start the Push sub-phase. During
pushing, lh and lt synchronise the movements of Li’s agents as follows: (1) lh pushes while lt
is guiding the other line agents through the computed route and (2) both are coordinating
any required swapping of states with agents that are not part of Li but reside in Li’s
trajectory. Once Li has traversed the route completely, lh calls RecursiveCall to apply the
general procedure recursively on Si in order to transform it into a line L′i. Figure 5.3 shows
a graphical illustration of the core recursion on the special case of a diagonal line shape.
Finally, the agents of Li and L′i combine into a new straight line Li+1 of 2i+1 agents through
the Merge sub-procedure. Then, the head lh of Li+1 begins a new phase i+ 1. Now, we are
ready to proceed with the detailed description of each sub-phase.

5.2.1 Defining the next segment Si

Given a terminal straight line Li on the Hamiltonian path P , this sub-phase identifies the
next segment Si and activates its 2i agents. The algorithm works as follows: The line

116 Abdullah A. Almethen

head lh transmits a special mark “ H○” to go through all active agents in P . It updates its
transmission component c2 as follows: δ(lh, ·, ·, a ∈ A, ·, ·, ·) = (lh, H○, ·, a ∈ A, ·, ·, ·). This
is propagated by active agents by always moving from a predecessor pi to a successor pi+1,
until it arrives at the first inactive agent with label k, which then becomes active and the
head of its segment by updating its label as δ(k, H○, ·, a ∈ A, ·, ·, ·) = (sh, ·, ·, a ∈ A, ·, ·, ·).
Similarly, once a line agent pi passes “ H○” to pi+1, it also initiates and propagates its own
mark “ l○” to activate a corresponding segment agent s. The line tail lt emits “ T○” to
activate the segment tail st, which in turn bounces off a special end mark “⊗” announcing
the end of DefineSeg. By that time, the next segment Si consisting of 2i agents, starting
from a head labelled sh, ending at a tail st and having 2i − 2 internal agents with label s,
has been defined. The “⊗” mark is propagated back to the head lh along the active agents,
by always moving from pi+1 to pi.

Lemma 32. DefineSeg correctly activates all agents of Si in O(n) rounds.

Proof. When an active agent pi with label inline l or tail lt observes the head mark “ H○” on
the state of its predecessor pi−1, it then updates transmission state c2 to “ H○” and initiates a
special mark on its waiting state c4. This can be either inline “ L○” or tail “ T○” mark. Once
an inactive agent notices predecessor with “ L○” or “ T○” mark, it activates and changes its
label c1 to the corresponding state, “s” or “st”, respectively. Immediately after activating
the tail st, it bounces off a special end mark “⊗” transmitted along all active agents back
to the head lh of the line to indicate the end of this sub-phase. That is, the tail st sets “⊗”
in transmission state, so when agent pi observes successor pi+1 showing “⊗”, it updates its
transmission state to c2 ← ⊗. When witnessing predecessor and successor with an empty
transmission state, an agent resets c2 to “·”. Once the head lt detects the “⊗” mark, it
then calls the next sub-routine, CheckSeg. Because the transformation always doubles the
length of the straight line, the line Li cannot be of odd length, unless the initial line of one
agent labelled lh and adjacent to an inactive neighbour on the path P . In this case, the
adjacent agent activates when it observes the head mark, updates label to sh and reflects
an end special mark “⊗” back to lh.

Figure 5.4 depicts an implementation of DefineSeg on a straight line of four agents,
in which the next segment Si is represented as a line for clarity, but it can be of any
configuration. All transitions of this sub-routine is given in Algorithm 3, excluding all that
have no effect.

Chapter 5. Distributed transformations 117

(lh, H©, ·) (l, ·, ·) (l, ·, ·) (lt, ·, ·) (k, ·, ·)
r0

(lh, ·, ·) (l, H©, L©) (l, ·, ·) (lt, ·, ·) (k, ·, ·)
r1

(lh, ·, ·) (l, L©, ·) (lt, ·, ·) (k, ·, ·)
r2

(l, H©, L©)

(lh, ·, ·) (l, ·, ·) (k, ·, ·)
r3

(l, L©, L©) (lt, H©, T©)

(lh, ·, ·) (sh, ·, ·)r4
(lt, L©, T©)

(lh, ·, ·) (sh, L©, ·)
r5

(l, ·, ·) (lt, L©, T©)

(l, ·, ·)

(l, ·, ·)

(l, L©, ·)

(lh, ·, ·) (sh, L©, ·)
r6

(l, ·, ·) (lt, T©, ·)(l, ·, ·)

(k, ·, ·)

(s, ·, ·)

(k, ·, ·)

(k, ·, ·)

(lh, ·, ·) (sh, T©, ·)
r7

(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, L©, ·) (k, ·, ·)

(lh, ·, ·) (sh, ·, ·)r8
(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, T©, ·) (s, ·, ·) (k, ·, ·)

(lh, ·, ·) (sh, ·, ·)r9
(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, ·) (s, T©, ·) (k, ·, ·)

(lh, ·, ·) (sh, ·, ·)r10
(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, ·) (s, ·, ·) (st,⊗, ·) (k, ·, ·)

(lh, ·, ·) (sh, ·, ·)r11
(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, ·) (s,⊗, ·) (st, ·, ·) (k, ·, ·)

(lh,⊗, ·) (sh, ·, ·)r17
(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, ·) (s, ·, ·) (st, ·, ·) (k, ·, ·)

End mark ⊗ propagates back to head

Figure 5.4: An implantation of DefineSeg on a line Li of four agents depicted as black
dots. Each agent uses only its 3 state components (c1, c2, c3), where c1 is the label state,
c2 the transmission state and c3 the waiting mark state. In round r = 0, Li is labelled
correctly, starting from a head lh and ends at a tail lt with internal agents l. Inactive
agents with circles are labelled k. First, lh sets c2 ← H○. Thereafter, when an active agent
pi notices predecessor pi−1 showing “ H○” , it updates to c2 ← H○ (a small triangle indicates
this initialisation in rounds r0, r1, r2, r3, and r10). Agents of label l and lt propagate “ L○”
and “ T○”, respectively. Whenever an inactive agent sees predecessor presenting a mark, it
activates (grey dots) and updates label to corresponding state. Once activating the segment
tail st, it propagates an end mark “⊗” back to the head to start CheckSeg.

Lemma 33. DefineSeg requires at most O(n) rounds to define Si.

Proof. The head mark “ H○” shall traverse all agents of the line Li of length |Li| until it
arrives at the first inactive agent, taking O(|Li|) rounds. Thus, all other agents on the line
propagate marks that take O(|Li|) parallel rounds to reach their corresponding agents on

118 Abdullah A. Almethen

Algorithm 3: DefineSeg
S = (p1, . . . , p|S|) is a Hamiltonian shape
Initial configuration: S ← SI , a line L ⊂ S of length k = 1, . . . , log |S|, labelled as
in Figure 5.4 topmost

H○← p1.c2 // head sets a mark in transmission state
repeat

// each agent acts based on its current label state
Head lh:
if (p1.c2 = H○) then · ← pi.c2 // reset transmission state

if (pi+1.c2 = ⊗) then ⊗ ← p1.c2 // observe end mark; end this sub-phase

Active:
if (pi−1.c2 = H○) // observe predecessor with head mark
then

H○← pi.c2

if (inline pi.c1 = l) then L○← pi.c3

if (tail pi.c1 = lt) then T○← pi.c3

end
if pi−1.c2 = L○ then L○← pi.c2 // predecessor shows inline mark

if pi−1.c2 = T○ then T○← pi.c2 // predecessor shows tail mark

if
(
(pi.c2 = H○ ∨ L○ ∨ T○) ∧ pi−1.c2 = ·

)
then

pi.c2 ← pi.c3 // transmit marks
· ← pi.c3 // rest marks

if pi+1.c2 = ⊗ then ⊗ ← pi.c2 // successor shows end mark

if pi.c2 = ⊗ then · ← pi.c2 // rest transmission state

Inactive:
if (pi−1.c2 = H○) then sh ← pi.c1 // activate to segment head sh

if (pi−1.c2 = L○) then s← pi.c1 // activate to insegment s

if (pi−1.c2 = T○) then
st ← pi.c1 // activate to segment tail st
⊗ ← pi.c2 // initiate end mark

until (p1.c2 = ⊗)
CheckSeg

the next segment. In the worst case, the line can be of length n/2, which requires at most
O(n) rounds of communication to identity the next segment Si of length n/2.

Chapter 5. Distributed transformations 119

5.2.2 Checking the next segment Si

This sub-phase checks the geometrical configuration of the new defined segment Si, deter-
mining if it is in line with Li, perpendicular to Li or contains one turn (L-shape). It aims
to save energy in the system, surpassing one or more of the subsequent sub-phases. First,
when Si is in line with Li (as illustrated in Figure 5.4), both Si and Li already form a single
straight line Li+1 of double length, so the next phase i+ 1 begins. This reduces the cost of
DrawMap, Push, RecursiveCall and Merge. Second, if Si is forming a line perpendicular to
Li (see Figure 5.5(a)), Li only needs to reverse direction and line up with Si to generate
Li+1, bypassing the extra cost of DrawMap and proceeding directly to Push. Lastly, Si has
a single turn (looks like L-shape) (see Figure 5.5(b)), where it can simply turn at its corner
and align with Li, create Li+1 and save the cost of DrawMap, Push and RecursiveCall. A
high-level explanation is provided below.

When lh observes “⊗”, it propagates its own local direction stored in component c4 =

a ∈ A by updating c2 ← c4. Then, all active agents on the path forward a from pi to pi+1

via their transmission components. Whenever a pi with a local direction c4 = a′ ∈ A notices
a′ 6= a, it combines a with its local direction a′ and changes its transmission component to
c2 ← aa′. After that, if a p′i having c4 = a′′ ∈ A observes a′′ 6= a′, it updates its transmission
component into a negative mark, c2 ← ¬. All signals are to be reflected by the segment
tail st back to lh, which acts accordingly as follows: (1) starts the next sub-phase DrawMap
if it observes “¬”, (2) calls Merge to combine the two perpendicular lines if it observes aa′

or (3) begins a new phase i+ 1 if it receives back its local direction a. Algorithm 4 shows
the pseudocode of this sub-routine.

Lemma 34. CheckSeg correctly checks the configuration of Si to be one of the following:

• Si is in line with Li.

• Si forms a straight line perpendicular to Li.

• Si forms an L-shape.

• Si contains more than one turn.

Proof. This sub-routine starts as soon as the head lh observes the end mark “⊗” of Define-
Seg, which means that all agents of the segment Si are active and labelled correctly. Given
that, the input configuration of CheckSeg is a Hamiltonian path terminates at straight

120 Abdullah A. Almethen

Algorithm 4: CheckSeg
S = (p1, . . . , p|S|) is a Hamiltonian shape
Initial configuration: S ← SI , a line L ⊂ S of length k = 1, . . . , log |S|, labelled
correctly as in Figure 5.4 bottommost

p1.c2 ← p1.c4 // head emits its direction
repeat

// each agent acts based on its current label state
Head lh:
if (p1.c2 = c4) then · ← pi.c2 // reset transmission state

if (pi+1.c2 = ¬) then ¬ ← p1.c2 // end this sub-phase

if (pi+1.c2 = X) then start phase i+ 1 // a new phase begins

if (pi+1.c2 = �) then PushLine(L) // Si has one turn

Active:
if (pi−1.c2 = c4) then c4 ← pi.c2 // observe same direction

if pi−1.c2 6= c4) then c4�← pi.c2 // show a turn

if (pi−1.c2 = c4�) then ¬ ← pi.c2 // show another turn

if (pi+1.c2 = ¬ ∨ X∨ �) then pi.c2 ← pi+1.c2 // transmit marks backwards

if (p|2L|−1.c2 = c4) then X← p|2L|.c2// si transmits mark backwards

if (p|2L|−1.c2 = c4�) then �← p|2L|.c2 // si transmits mark backwards

if (pi−1.c2 6= ·) then · ← pi.c2 // reset transmission state

until p1.c2 = ¬
DrawMap

line Li followed by Si, both are composed of 2i active agents. All other inactive agents in
the rest of the configuration are labelled k. During this sub-phase, the active agents use
their local path directions stored in state c4 by which a pi knows each ports incident to
predecessor pi−1 and successor pi+1.

Now, lh updates its transmission state to c2 ← c4 where it emits its local direction held
in c4. Assume without loss of generality, c4 holds a local direction pointing to the east
neighbour “→”, then lh performs this state transition: δ(lh,⊗, ·,→) = (lh,→, ·,→). This
arrow “→" propagates through transmission states to all active agents of Li and Si. When
a pi−1 displays an empty transmission state, each agent pi updates state c2 to “·”. If “→”
matches a local direction stored on c4 of pi, then pi transmits the same arrow “→” from

Chapter 5. Distributed transformations 121

L

S

(a) Li is perpendicularly to Si.
L

S

(b) Si has a single turn.

Figure 5.5: Two configurations of a Hamiltonian path terminates at a straight line Li (in
black dots) followed by a segment Si (in grey dots) on the path.

pi−1 to pi+1. If pi stores a turning arrow (e.g. “↓” or “↑”) on c4, then it updates state
c2 with a special L-shape mark, “→�”, which is then passed to pi+1. Whenever pj stores
a turning arrow and observes pj−1 showing “→�” , pj initiates a negative mark c2 ← ¬,
which is relayed back to lh, calling out for DrawMap. Once st observes “→�”, it bounces off
the mark “�” back towards lh to start Push. Otherwise, st propagates a special check-mark
“X” backwards, alerting lh that both Li and Si already form a straight line.

Now, we provide analysis of this procedure.

Lemma 35. An execution of CheckSeg requires at most O(n) rounds of communication.

Proof. Consider the worst-case in which the direction mark traverses a n-length path and
a special mark “X” bounces off the other end of the path and returns to the head. This
journey takes at most 2n − 2 rounds, during which an agent pi, 1 ≤ i ≤ n, emits the
direction mark to pi+1 and “X” to pi−1, excluding the two endpoints of the path.

5.2.3 Drawing a route map

This local technique creates a map and calculates the shortest route of minimum turns,
with the goal of achieving the lowest cost. On the square grid, the most efficient way to
accomplish this is to draw a route of a single turn, such as L-shaped routs. For the purpose
of connectivity preservation, it can be demonstrated that there exist some worst-case routes

122 Abdullah A. Almethen

in which the line Li may disconnect while travelling towards the tail of Si. Essentially, this
can be seen in a route where the Manhattan distance between the the line tail lt and the
segment tail st is ∆(lt, st) ≥ |Li|, for additional information, see Section 4.2.

Thus, this distance ∆(lt, st) is important in determining whether to take an L-shaped
route directly to st or to go through an intermediary agent of Si, passing through two L-
shaped routes. From our distributed perspective, the Manhattan distance ∆(lt, st) cannot
be computed in a straightforward manner due to several challenges, such as individuals with
constant local memory and limited computational power. Below, DrawMap addresses these
challenges by using Li agents as (1) a distributed binary counter for calculating the distance
and (2) a distributed memory for storing local directions of agents, which collectively draw
the route map.

This sub-phase computes the Manhattan distance ∆(lt, st) between the line tail lt and
the segment tail st, by exploiting ComputeDistance in which the line agents implement a
distributed binary counter. First, the head lh broadcasts “ C○” to all active agents, asking
them to commence the calculation of the distance. Once a segment agent pi observes “ C○”,
it emits one increment mark “⊕” if its local direction is cardinal or two sequential increment
marks if it is diagonal. The “⊕” mark is forwarded from pi to pi−1 back to the head lh.
Correspondingly, the line agents are arranged to collectively act as a distributed binary
counter, which increases by 1 bit per increment mark, starting from the least significant at
lt.

When a line agent observes the last “⊕” mark, it sends a special mark “ 1○” if ∆(lt, st) ≤
|Li| or “ 2○” if ∆(lt, st) > |Li| back to lh. As soon as lh receives “ 1○” or “ 2○”, it calls
CollectArrows to draw a route that can be either heading directly to st or passing through
the middle of Si towards st. In CollectArrows, lh emits “V” to announce the collection of local
directions (arrows) from Si. When “V” arrives at a segment agent, it then propagates its
local direction stored in c4 back towards lh. Then, the line agents distribute and rearrange
Si’s local directions via several primitives, such as cancelling out pairs of opposite directions,
priority collection and pipelined transmission. Finally, the remaining arrows cooperatively
draw a route map for Li (see Definition 17). Below, we give more details of DrawMap.

Definition 17 (A route). A route is a rectangular path R consisting of a set of cells
R = [c1, . . . , c|R|] on Z2, where ci and ci+1 are two cells adjacent vertically or horizontally,
for all 1 ≤ i ≤ |R| − 1. Let C be a system configuration, CR denotes the configuration of R
where CR ⊂ C defined by [c1, . . . , c|R|].

Chapter 5. Distributed transformations 123

Distributed Binary Counter

Due to the limitations of this model, individual agents cannot calculate and keep non-
constant numbers in their state. Alternatively, the line Li of k = 2i agents can be utilised
as a distributed binary counter (similar to a Turing machine tape) which is capable to store
up to 2k − 1 unsigned values. This k-bit binary counter supports increment which is the
only operation we need in this procedure. Each agent’s counter state c5 is initially “·” and
can then hold a bit from {0, 1}. The line tail lt denotes the least significant bit of the
counter. An increment operation is performed as follows: Whenever a line agent pi detects
pi+1 showing an increment mark “⊕”, pi switches counter component c5 from “·” or 0 to 1
and destroys the “⊕” mark. If pi holds 1 in c5, it flips 1 to 0 and redirects the increment
mark “⊕” to pi−1 (i.e. update the transmission state c2 to “⊕”). See an implantation of
this counter in Figure 5.6.

(lh, ·, ·) (sh,⊕, 0)(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh,⊕, 0)

(lh, ·, ·) (sh,⊕, 0)(l, ·, ·) (lt, ·, 1)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)

(lh, ·, ·) (sh, ·, 0)(l, ·, ·) (lt,⊕, 0)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)

(lh, ·, ·) (sh, ·, 0)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)(l, ·, 1) (lt, ·, 0)

Figure 5.6: A 4-bit line counter Li. Agents of Li and Si are depicted by black grey dots,
respectively. The state of an agent is (c1, c2, c5) denoting c1 the label, c2 transmission
and c5 counter components, omitting others with no effect. Each shaded area shows a
corresponding decimal number. Top: the counter has a decimal value of 0. 2nd: an
increment of 1. 3rd: the line tail lt flips state c5 from 1 to 0 and updates c2 with “⊕”.
Bottom: the counter increased by 1 corresponding to a decimal value 2.

ComputeDistance procedure

Initially, the head lh emits a special mark “ C○” to all active agents, asking them to commence
the calculation of the Manhattan distance ∆(lt, st) between the line tail lt and the segment
tail st. Whenever a segment agent pi (of label sh, s or st) observes pi−1 with “ C○”, it performs
one of two transitions: (1) It updates transmission state to c2 ← ⊕ if its local direction

124 Abdullah A. Almethen

stored in c4 is cardinal (horizontal or vertical) from {→,←, ↑, ↓}. (2) If c4 holds a diagonal
direction from {↖,↗,↙,↘}, it receptively updates the transmission and waiting states, c2

and c3, to “⊕”. Eventually, the segment head sh produces the last special increment mark
“⊕′”. In principle, any diagonal direction between two cells in a square grid can increase
the distance by two (in the Manhattan distance), whereas horizontal and vertical directions
always increase it by one.

As a result, all increment marks initiated by segment agents are transmitted backwards
to the counter Li, similar to the propagation of end mark described in DefineSeg. Hence,
the binary counter increases by 1 bit each time it detects “⊕”, starting from the least
significant bit stored in lt. Because of transmission parallelism, the binary counter may
increase by more than one bit in a single round. When a line agent pi sees predecessor
with the last increment mark “⊕′”, pi passes “ 1○” towards the line head lh. This mark “ 1○”
is altered to “ 2○” on its way to lh only if it passes a line agent of a counter state c5 = 1,
otherwise it is left unchanged. Eventually, the head lh observes either “ 1○”, by which it
calls CollectArrows procedure to draw a route map directly to the tail st of Si, or “ 2○”, by
which it calls CollectArrows to push via a middle agent s towards st. We provide Algorithm
5 of the ComputeDistance procedure below.

Let ∆(lt, st) denote the Manhattan distance between the line tail lt and the segment
tail st. The following lemma shows that this procedure calculates ∆(lt, st) in linear time.

Lemma 36. ComputeDistance requires O(|Li|) rounds to compute ∆(lt, st).

Proof. Consider an input configuration labelled (

Li︷ ︸︸ ︷
lh, . . . , l, . . . , lt,

Si︷ ︸︸ ︷
sh, . . . , s, . . . , st, k, . . . , k),

starting at a line head p1 of label lh, where |Li| = |Si|. We only show affected states
in this proof. Initially, lh emits a counting mark “ C○” by updating transmission state to
p1.c2 ← C○, then lh resets transmission state to c2 ← · in subsequent rounds. Once an active
agent pi in round rj−1 (where j ≤ 2|Li|) detects predecessor showing state pi−1.c2 = C○,
it updates transmission state to pi.c2 ← C○ in rj and then resets pi.c2 ← · in rj+1. Upon
arrival of “ C○” at st, its predecessor changes transmission state to c2 ← ⊕ and puts another
increment mark in waiting state c3 ← ⊕ if it stores a diagonal arrow in its local direction
c4.

Due to the goal of counting, the direction of st is dropped. Each segment agent pi
of label sh and s observes a successor presenting state pi+1.c2 = ⊕ in round rj−1, then
the following transitions apply in rj : (1) pi.c2 ← ⊕ if pi+1.c2 ← ⊕, (2) if pi.c2 ← ⊕ if

Chapter 5. Distributed transformations 125

Algorithm 5: ComputeDistance(Li, Si)
S = (p1, . . . , p|S|) is a Hamiltonian shape
Initial configuration: a straight line Li and a segment Si labelled as in Figure 5.6

1. The line head lh propagates counting mark C○ along Li and Si
2. Once C○ arrives at the segment tail st, a segment agent acts as follows:
3. st sends one increment ⊕ back to lh if its direction is cardinal or two ⊕ if
diagonal
// pipelined transmission
4a. s observes ⊕, sends one increment ⊕ back to lh if its direction is cardinal or
two ⊕ if diagonal

4b. sl observes ⊕, sends one increment ⊕′ back to lh if its direction is cardinal or
two ⊕′ if diagonal

5. The distributed counter Li increases by 1 bit each time it receives ⊕
6. A line agent observes the last ⊕′ coming to Li, sends a mark 1○ back to lh
7a. Each line agent observes 1○ and has 1 bit, passes 2○ towards lh
7b. Each line agent observes 1○ and has 0 bit, passes 1○ towards lh
7c. Each line agent observes 2○, passes 2○ towards lh
// Manhattan distance ∆ ≤ i
8a. When lh sees 1○, it calls CollectArrows to draw one L-shaped route
// Manhattan distance ∆ > i
8b. Otherwise, lh sees 2○ and calls CollectArrows to draw two L-shaped route

pi+1.c2 ← · and pi.c3 ← ⊕, (3) the head of segment sh sets pi.c2 ← ⊕′ if pi+1.c2 ← · and
pi.c3 ← ⊕ and (4) pi.c2 ← · if pi+1.c2 ← · and pi.c3 ← ·.

Correspondingly, the line agents (of labels lh, l and lt) behave as a binary counter
described above and illustrated in Figure 5.6. When a line agent pi detects “⊕” in the state
of pi+1 in round rj−1, it updates state based on one of theses transitions in round rj−1: (1)
pi.c5 ← 1 if pi.c5 ← · or pi.c5 ← 0 or (2) pi.c5 ← 0 and pi.c2 ← ⊕ if pi.c5 ← 1. In the case
where the last increment mark “⊕′” detected by pi in round rj−1, then pi updates state to
pi.c2 ← 1○ in rj . When pi−1 observes 1○, then it updates states to either (1) pi−1.c2 ← 1○
if pi−1.c5 = 0 or (2) pi−1.c2 ← 2○ if pi−1.c5 = 1. Thus, the mark “ 2○” is sent back to the
head lh, which finally sees either ‘ 1○” or “ 2○” and acts appropriately (calls CollectArrows
procedure). The counter size is sufficient to calculate ∆(lt, st) since the worst-case distance
is |Li| − 2.

Now, we analyse the cost of communication of this procedure in a number of rounds.
First, the counter mark “ C○” goes on a journey that takes t1 = 2|Li| = O(|Li|) rounds.

126 Abdullah A. Almethen

That is, the pipelined transmission of increment marks requires at most t2 = O(|Li|) parallel
rounds of communication. Moreover, the marks “ 1○” or “ 2○” travel to the head lh within at
most t3 = O(|Li|). Altogether, the total running time is bounded by t = t1+t2+t3 = O(|Li|)
parallel rounds.

CollectArrows procedure

Informally, the distance obtained from the ComputeDistance procedure can be (1) equal or
less than the line length |Li| (lh observes this mark “ 1○”) or (2) greater than |Li| (lh observes
“ 2○”). In case (1), it propagates a special collection mark “V” through all active agents
until it reaches the segment tail st. When “V” arrives, st broadcasts its local arrow in c4

back to lh via active agent transmission states. This journey accomplishes the following:
(a) Gathers arrows similar to st and puts them in priority transmission. (b) Eliminates
pairs of opposite arrows and replaces them with a hash mark “#”. (c) Arranges the arrows
on Li’s distributed memory. In case (2), lh emits a special mark “ M○” to sh, defining a
midpoint on Si through which the line Li passes towards st.

Now, sh propagates two marks down st, a fast mark “ m1○” is transmitted every round
and a slow mark moves three rounds slower “ m2○”. The fast mark “ m1○” bounces off st, where
both “ m1○” and “ m2○” meet in a Si middle agent pj , which changes label to s′t and a successor
pj+1 switches to s′h. This temporally divides Si into two segments, S1

i = sh, . . . , s
′
t and

S2
i = s′h, . . . , st. The middle agent s′t propagates “ M○” to tell lh that a midpoint has been

identified. Case (1) is then repeated twice to collect arrows from S1
i and S2

i and distribute
them into the line agents (distributed memory). After that, Push(S) begins. Algorithm 6
presents the pseudocode that briefly formulates this procedure.

The following lemma proves the correctness and analysis of CollectArrows.

Lemma 37. The CollectArrows procedure completes within O(|Li|) rounds.

Proof. Given an initial configuration defined in Lemma 36. Assume the Manhattan distance
δ(lt, st) ≤ |Li|. For simplicity, we prove (A) in algorithm 6 showing only affected states.
Once lh observes 1○, it emits a collection mark “V”, which then transfers forwardly among
active agents until it reaches st, similar to counting mark transmission described previously
in Lemma 36. When st detects “V”, it updates transmission state c2 with its local direction
held in c4 = d; recall that d is an arrow that locally shows where the Hamiltonian path
comes in and out, d ∈ {→,←, ↓, ↑,↖,↗,↙,↘}.

Chapter 5. Distributed transformations 127

Algorithm 6: CollectArrows(Li, Si)
Input: a straight line Li and a segment Si

// priority and pipelined transmission, see text for details
(A) Line head lh observes 1○
1. lh propagates collection mark V

2. Each active agent pi emits V to pi+1

3. st observes 1○ and propagates its direction d in c4, c2 ← c4

4. Each segment agent pi passes a direction to pi−1

5. Distribute directions into the line agents
6. Rearrangement of directions
7. Push(S) begins

(B) Line head lh observes 2○
1. lh propagates a midpoint mark M○
2. Each line agent pi broadcasts M○ to pi+1

3. sh sees M○, then emits fast m1○ and slow m2○ waves down to st
4. m1○ bounces off st and meets m2○ at middle agent pj with label changed to s′t
5. s′t propagates M○ to lh
6. Once lh sees M○ again, it goes to (A)

In what follows, we distinguish between cardinal {→,←, ↓, ↑} and diagonal directions
{↖,↗,↙,↘}. Figure 5.7 shows how local arrows are assigned to agents according to the
Hamiltonian path. For a cardinal local direction, st updates transmission state to c2 ← d

and marks local direction state with a star c4 ← d?, indicating that d has been collected. A
diagonal local direction between any two neighbouring cells on the two-dimensional square
grid is made up of two cardinal arrows, such as↖ is composed of ↑ and←. In other words,
an agent needs to move two steps to occupy an adjacent diagonal cell. For example, if st
stores a diagonal direction in c4, it puts d1 on transmission c2 ← d1, d2 on waiting state
c3 ← d2, and marks it with a star, c4 ← d?. Next round, the transmission state of st resets
c2 ← · if c3 is empty or sets c2 ← c3 if c3 contains an arrow.

We now show the priority and pipelined collection of local arrows of Si (in Algorithm
6). Assume a direction (arrow) d+ transmits from the segment tail st, travelling through
transmission states via an active agent pi+1 to pi. When d+ encounters an opposite arrow
d− recorded in transmission state pi.c2, both are erased and replaced by the hash sign “#”.
If d+ and d+ are similar, both take priority in c2. If d+ observes a perpendicular arrow
⊥ d, d+ is placed in c2 and ⊥ d in waiting state c3.

128 Abdullah A. Almethen

lh ltl sh ltlh l sh

s

s

st

c4(→) c4(→) c4(→) c4(→)

c4(↓)

s

s

st
c4(↘)

c4(↗)

l

c4(→)

l

ltlh l sh

s

s

st

c6(·) c6(→) c6(→)

l

c6(·)

Figure 5.7: Drawing a map: from top-left a path across occupied cells and corresponding
local arrows stored on state c4 in top-tight, where the diagonal directions, “↘” and “↗”,
are interpreted locally as, “↓→” and “↑→”. The bottom shows a route map drawn locally
on state c6 of each line agent.

Figure 5.8 depicts a configuration of Si consisting of eight agents, which their arrows
are collected in Figure 5.9 where we represent Li (white nodes) and Si (grey nodes) as a tab
for better visibility. In the topmost shape, local directions c4 are inside nodes, label c1 and
transmission c2 above nodes, waiting c3 (only for segment agents) and map state c6 (only
for line agents) below nodes. The process starts from round rj downwards. The associated
transitions for each active agent are detailed below, though they may be complicated,
therefore we supplement Figure 5.9 to make this sub phase easier to understand.

Figure 5.8: A configuration of Li (black dots) and Si (grey dots).

Given a segment agent pi of label s and st in round rj−1, where j ≤ 2|Li|. Then we show

Chapter 5. Distributed transformations 129

how pi acts when the direction is either cardinal or diagonal. In the first case, consider pi of
an uncollected cardinal direction di observes pi+1 showing a direction di+1, two directions
di+1(d1

i+1d
2
i+1) or # in transmission component c2. Then, pi updates its state in rj as

follows: (1) Set di+1 or d1
i+1 in transmission pi.c2 ← pi+1.c2, put di in waiting pi.c3 ← pi.c4

and mark it pi.c4 ← d?i if di is perpendicular to di+1, such as → and ↑. (2) Set pi.c2 ← #,
put di in waiting pi.c3 ← pi.c4 and mark its local direction pi.c4 ← d?i if di and di+1 are a
pair of opposite arrows, such as ↑ and ↓. (3) Set both directions di+1 and di in transmission
pi.c2 ← di+1di, resets c3 ← · and mark di with a star pi.c4 ← d?i if di and di+1 are a pair
of same arrows, such as ↑ and ↑. When a cardinal direction is already collected d?i , pi sets
di+1 or d1

i+1 in transmission pi.c2 ← pi+1.c2. If di+1 (or d1
i+1) and c3 = di are similar, then

pi sets pi.c2 ← di+1di (or pi.c2 ← d1
i+1di) and resets pi.c3 ← ·. If pi+1.c2 is empty, then pi

puts waiting direction in transmission pi.c2 ← pi.c4 or rests pi.c2 ← ·, otherwise.
In the second case, pi holds an uncollected diagonal arrow di(d

1
i d

2
i) in rj−1, so it performs

one of the following in rj : (1) Set di+1 and d1
i in transmission pi.c2 ← di+1d

1
i , put d

2
i in

waiting pi.c3 ← d2
i and mark di with a star pi.c4 ← d?i if di+1 and d1

i (or d
2
i) are similar, such

as ↑ and↖= (↑←). (2) Set pi.c2 ← #, put d2
i in waiting pi.c3 ← d2

i and mark the direction
d?i if di+1 is opposites to either d1

i or d2
i , such as ↑ and ↙= (↓←). If a diagonal arrow has

been already collected d?i , then pi sets di+1 or d1
i+1 in transmission pi.c2 ← pi+1.c2. If di+1

(or d1
i+1) and waiting direction c3 = di are the same, then pi updates to pi.c2 ← di+1di (or

pi.c2 ← d1
i+1di) and resets pi.c3 ← ·. If pi+1.c2 is empty then, pi puts waiting direction in

transmission pi.c2 ← pi.c4 or rests pi.c2 ← ·, otherwise.
Meanwhile, the line agents receive the collected arrows and divide them among respec-

tive states as follows. Let pi denote a line agent, holding a map state pi.c6 = ·, observes pi+1

showing a direction di+1 or a hash sign “#”. Then, pi acts accordingly: (1) pi.c6 ← di+1, (2)
if pi is lh or sees pi−1 with a map state c6 =#, then pi.c6 ←#. Whenever pi.c6 6= · detects
pi+1.c2 = di+1 or pi+1.c2 =# , then pi updates state to di+1 or “#" if pi−1.c6 = ·. Once
the line tail lt of a non-empty map component detects pi+1.c2 = ·, it propagates a special
mark “VX” via line agents towards lh, announcing the completion of arrows collection.

Now, let us discuss (B) in algorithm 6 in which lh observes “ 2○”, indicating the Manhat-
tan distance δ(lt, st) > |Li|. In reaction to this, lh emits the midpoint mark “ M○” forwardly
down the line agents towards sh. Once sh detects “ M○”, it emits two waves via the segment,
fast “ m1○” and slow “ m2○”. The fast wave “ m1○” moves from pi to pi+1 every round, while the
slow wave “ m2○” passes every three rounds. In this way, the fast wave “ m1○” bounces off st

and meets “ m2○” at a middle agent p′i of Si which updates label to s′t, and pi+1′ changes label

130 Abdullah A. Almethen

→→→→→→→→ → ↑ ← ↓ ←↑ ↑ ↑→→→→→→→→
c2

rj →→→→→→→→ → ↑ ← ↓ ←↑ ↑ ↑?→→→→→→→→

c4

↑

→→→→→→→→ → ↑ ← ↓ ←↑ ↑?→→→→→→→→
↑ ↑
↑?rj+1

→→→→→→→→ → ↑ ← ↓ ←?↑ ↑?→→→→→→→→
↑ ↑

↑?rj+2

←

→→→→→→→→ → ↑ ← ↓? ←?↑ ↑?→→→→→→→→
↑

↑?
←

rj+3

#

→→→→→→→→ → ↑ ↓? ←?↑ ↑?→→→→→→→→
↑

↑?
←

rj+4

#

←
←?

→→→→→→→→ → ↑ ↓? ←? ↑?→→→→→→→→
↑

↑?
←

rj+5

#

←
←?

↑
↑?

→→→→→→→→ → ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+6

←
←?↑?

↑ ↑

↑
↑?

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+7

←
←?↑?

↑ ↑↑
↑?

→

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+8

←
←?↑?

↑ ↑ ↑
↑?

→

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+9

←
←?↑?

↑

↑↑
↑?

→

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?rj+10

#

←?↑?
↑

↑↑
↑?

→

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+11

#

←?↑?
↑

↑

↑
↑?

←←

#

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+13

#

←?↑?
↑↑ ↑

↑?
#

→→→→→→→→ →? ↓? ←? ↑?→→→→→→→→ ↑?
←

rj+19

#

←?↑?
↑↑ ↑

↑?
#

c3c6

lhc1 ltl l l l l l sh s s s s s s st

Figure 5.9: An implementation of the arrows collection on the shape in Figure 5.8, see text
for explanation.

Chapter 5. Distributed transformations 131

to s′h as well. See a demonstration in Figure 5.10. Consequently, Si is temporarily divided
into two halves S1

i and S2
i labelled:

(. . . ,

S1
i︷ ︸︸ ︷

sh, . . . , s, . . . , s
′
t,

S2
i︷ ︸︸ ︷

s′h, . . . , s, . . . , st, . . .).

Now, s′t emits the “ M○” mark back to lh via transmission states, from pi to pi−1. Upon
arrival of “ M○”, lh invokes the sub-procedure (A) to begin collection on the first half S1

i and
Push(S) to move towards s′t, after which lh calls (A) again to travel into st.

We argue that the line Li always has sufficient memory to store all collected arrows.
The Manhattan distance will always be δ(lt, st) > |Li| if the segment Si has at least one
diagonal connection. Consider the worst-case scenario of a diagonal segment in which each
agent pi gains a local diagonal direction at a cost of two cardinal arrows. Recall that each
agent can store two arrows in its state, in c6 and c7. Given that, in the worst-case the
segment contains a total of 2|Si| local arrows. Thus, by applying (A) twice in each half of
Si, each single arrow of Si will find a room in Li.

We now calculate the running time of the CollectArrows(Li, Si) procedure on a number
of rounds. Starting from steps 1 and 2 of (A), the “V” mark takes a journey from lh to
st requiring at most t1 = |Li| + |Si| = O(|Li|) rounds. Then, the pipelined collection and
rearrangement of arrows in steps 3-6, require at most a number of parallel rounds equal
asymptotically to the length of |Si|+ |Li|, namely t2 = O(|Li|). Moreover, the cost of “VX”
transmission takes time t3 = |Li| rounds. In (B), the propagation of “ M○” costs t4 = |Li|,
another cost t5 = 3|Si| is preserved for (1) and (2), which is the communication of fast
“ m1○” and slow “ m2○” and the return of “ M○” to the head, respectively. Hence, (A) costs at
most tA = t1 + t2 + t3 = O(|Li|) parallel rounds of communication, whereas (B) requires
at most tB = t4 + t5 = O(|Li|). The same bound holds in the worst-case by applying (A)
twice. Therefore, this procedure requires a total number of at most T = 2tA + tB = O(|Li|)
parallel rounds to draw a route map.

Finally, ComputeDistance and CollectArrows procedures completes the DrawMap sub-
phase. By Lemmas 36 and 37, we conclude that:

Lemma 38. DrawMap draws a map within O(|Li|) rounds.

132 Abdullah A. Almethen

m2
m1

sh
rj

sts s s s s s

m2
m1

sh
rj+1

sts s s s s s

m2
m1

sh
rj+2

sts s s s s s

m2
m1

sh
rj+3

sts s s s s s

m2
m1

sh
rj+4

sts s s s s s

m2
m1

sh
rj+5

sts s s s s s

m2
m1

sh
rj+6

sts s s s s s

m2
m1

sh
rj+7

sts s s s s s

m2
m1

sh
rj+8

sts s s s s s

m2
m1

sh
rj+9

sts s s s s s

m2
m1

sh
rj+10

sts s s s s s

sh
rj+11

sts s s′t s′h s s

Figure 5.10: A fast “ m1○” and slow “ m2○” wave meeting at the middle of Si of 8 agents.
Observe that “ m1○” moves every round, while “ m2○” is three rounds slower.

5.2.4 Pushing the next segment Si

Unlike all previous sub-phases, the transformation now allows individuals to perform line
movements on the grid, taking advantage of their linear-strength pushing mechanism. That
is, a straight line Li of 2i agents occupying a column or row of 2i consecutive cells on the

Chapter 5. Distributed transformations 133

square grid can be pushed in a single step depending on its orientation in parallel vertically
or horizontally in a single-time step. The line head and tail are responsible for pushing the
line interchangeably during the transformation. Furthermore, Li has the ability to change
direction or turn from vertical to horizontal and vice versa.

A variety of obstacles must be overcome in order to translate the global coordinator of
line moves into a system of homogeneous agents capable of only local vision and communi-
cation. One of the most essential challenges is timing: an individual agent moving the line
must know when to start and stop pushing. Otherwise, it may disconnect the shape and
break the connectivity-preservation requirement. Further, the line may change direction
and turn around while pushing; hence, it must have some kind of local synchronisation over
its agents to ensure that everyone follows the same route and no one is pushed off. Failure
to do so may result in a loss of connectivity, communication, or the displacement of other
agents in the configuration. Moreover, pushing a line does not necessarily traverse through
free space of a Hamiltonian shape; consequently, a line may walk along the remaining con-
figuration of agents while ensuring global connectivity at the same time. However, we were
able to address all of these concerns in Push, which will be detailed below.

After some communication, lh observes that Li is ready to move and can start Push now.
It synchronises with lt to guide line agents during pushing. To achieve this, it propagates
fast “ p1○” and slow “ p2○” marks along the line, “ p1○” is transmitted every round and “ p2○”
is three rounds slower (shown early in DrawMap). The “ p1○” mark reflects at lt and meets
“ p2○” at a middle agent pi, which in turn propagates two pushing signals “ P○” in either
directions, one towards lh and the other heading to lt. This synchronisation liaises lh with
lt throughout the pushing process, which starts immediately after “ P○” reaches both ends
of the line at the same time. Recall the route map has been drawn starting from lt, and
hence, lt moves simultaneously with lh according to a local map direction â ∈ A stored in
its map component c6.

Through this synchronisation, lt checks the next cell (x, y) that Li pushes towards and
tells lh, whether it is empty or occupied by an agent p 6∈ Li in the rest of the configuration.
If (x, y) is empty, then lh pushes Li one step towards (x, y), and all line agents shift their
map arrows in c6 forwardly towards lt. If (x, y) is occupied by p 6∈ Li, then lt swaps states
with p and tells lh to push one step. Similarly, in each round of pushing a line agent pi
swaps states with p until the line completely traverses the drawn route map and restores it
to its original state. Figure 5.15 shows an example of pushing Li through a route of empty
and occupied cells. In this way, the line agents can transparently push through a route

134 Abdullah A. Almethen

of any configuration and leave it unchanged. Once Li has traversed completely through
the route and lined up with st, then RecursiveCall begins. Algorithm 7 provides a general
procedure of Push.

Algorithm 7: Push
Input: a straight line Li and a segment Si

The line head lh observes the completion of DrawMap
repeat

lh emits a mark to lt to start pushing // lt sees empty or non-empty cell
if c6 = dlt point to empty cell // local arrow of lt points to empty cell
then
lh syncs Li: update states and push one step

end
if c6 = dlt point to non-empty cell k then

lt activates k
lh syncs Li // swap and update states as described in text
Li pushes one step

end
until lh swaps labels with sh
RecursiveCall begins

Agents synchronisation

Many agent behaviours, including state swapping and line movements (parallel pushing),
are realised to be very efficient in the centralised systems of a global coordinator. In
contrast, the constraints in this model make these simple tasks difficult, as individuals with
limited knowledge cannot keep track of others during the transformation. This may result
in the disconnection of the whole shape, a modification in the rest of the configuration or
even the loss of a chain of actions that halts the transformation process. However, the
synchronisation of agents can assist to tackle such an issue where individuals can organise
themselves to eventually arrive at a state in which all of them conduct tasks concurrently.
This concept is similar to a well-known problem in cellular automata known as the firing
squad synchronisation problem, which was proposed by Myhill in 1957. McCarthy and
Minsky provided a first solution to this problem [92]. The following lemma demonstrates
how their solution can be translated to our model in order to coincide a Hamiltonian path
of n agents in such a way that they can perform concurrent actions in linear time.

Chapter 5. Distributed transformations 135

sh
rj+12

sts s s′t s′h s s

m2
m1m2

m1

sh
rj+13

sts s s′t s′h s s

m2
m1m2

m1

sh
rj+14

sts s s′t s′h s s

m2
m1m2

m1

sh
rj+15

sts s s′t s′h s s

m2
m1m2

m1

sh
rj+16

sts′ s′t s′h

m2
m1m2

m1

sh
rj+11

sts s s′t s′h s s

m2
m1m2

m1

m2
m1 m2

m1

s′ s′ s′

sh
rj+17

sts′ s′t s′h

m2
m1m2

m1m2
m1 m2

m1

s′ s′ s′

s′h
rj+18

s′ts′ s′t s′hs′ s′ s′
m2
m1 m2

m1 m2
m1 m2

m1 m2
m1 m2

m1 m2
m1 m2

m1

Figure 5.11: Synchronising 8 agents that were started in Figure 5.10 where the halving
procedure repeats until all agents reach a synchronised state.

Lemma 39 (Agents synchronisation). Let P denote a Hamiltonian path of n agents on
the square grid, starting from a head p1 and ending at a tail pn, where p1 6= pn. Then, all
agents of P can be synchronised in at most O(n) rounds.

Proof. From [92], the strategy consists of two cases, even and odd number of agents. First,
the head p1 emits fast mark “ m1○” and slow mark “ m2○” towards the tail pn. The “ m1○”
mark is communicated from pi to pi+1 via transmission components in each round, while
is transmitted from pi to pi+1 every three rounds. When “ m1○” reaches the other end of the
path pn, it returns to p1. Thus, the two marks collide exactly in the middle (see an example
in Figure 5.10). Now, the two agents who witness the collision update to a special state,
which will effectively split P into two sub-paths. Both agents repeat the same procedure in

136 Abdullah A. Almethen

each half of length n/2 in either direction of P . Repeat this halving until all agents reach
a special state (collision witness) in which they all perform an action simultaneously. An
implementation of this synchronisation is depicted in Figure 5.11.

Assume a path P of n odd agents in which p1 emits, “ p1○” and “ p2○” along P . In this
case, the two marks meet in a slightly different way, at an exact single middle agent pi on
P . This agent pi observes a predecessor pi−1 showing “ m2○” and successor pi+1 showing “ m1○”
in transmission state and responds by switching into another special state that allows it
to play two roles. That is, it emits “ p1○” and “ p2○” to both directions of P , this effectively
splits P into two sub-paths of length n/2 − 1 each. Now, repeat the process in each half
until the two marks intersect in the middle, at which point two agents notice the collision
and change to a special state. In the same way, divide until all agents have updated to a
synchronised state. Figure 5.12 depicts the synchronisation in the odd case.

Now, we are ready to describe the state transitions. In the first round rj , p1 updates
to p1.c2 ← m1○ and combines “ m2○” with “w” in waiting state, p1.c3 ← m2○w. Next round
rj+1, p1 updates state to p1.c3 ← m2○ and p1.c2 ← ·. In the third round rj+2, p1 updates
transmission state to p1.c2 ← m2○. Whenever pi notices: (1) pi−1 (or pi+1) showing “ m1○”,
pi shifts transmission to pi.c2 ← m1○ and pi−1 o(r pi+1) rests their transmission next round.
(2) pi−1 (or pi+1) showing “ m2○”, pi updates waiting state to pi.c3 ← m2○w and pi−1 (or pi+1)
rests their transmission next round. (3) pi+1 showing “ m1○” and pi−1 presenting “ m2○” (or
vice versa), pi updates to another special state and repeats (1). When both pi and pi+1

are presenting “ m1○” and “ m2○”, they update into a special state and repeat the procedure of
p1 in either directions. Repeat until all agents and their neighbours reach a special state
where all are synchronised.

Let us now analyse the runtime of this synchronisation in a number of rounds. The fast
mark “ m1○” moves along P taking n rounds plus n/2 to walks back to the centre in a total of
at most 3n/2 rounds. The same bound applies to the slow mark “ m2○” arriving and meeting
“ m1○” in the middle. The whole procedure is now repeated on the two halves of length n/2,
each takes 3n/4 rounds. This adds up to a total

∑n
i=1 3n/2i = 3n/2 + 3n/4 + . . . + 0 =

3n(1/2 + 1/4 + . . . + 0) = 3n(1) = 3n. Therefore, this synchronisation requires at most
O(n) rounds of communication.

Now, we show that under this model, a number of consecutive agents forming a straight
line Li can traverse transparently through a route R of cells on the grid of any configuration
CR using their local knowledge, without breaking connectivity.

Chapter 5. Distributed transformations 137

m2
m1

sh
rj

sts s s s s

m2
m1

sh
rj+1

sts s s s s

m2
m1

sh
rj+8

sts s s s s

sh
rj+9

sts s s′′ s s

m2
m1

sh
rj+10

sts s s′′ s s

m1m2
m1

sh
rj+13

sts s s′′ s s

m2
m1m2

m1

sh
rj+14

sts′′
m2
m1m2

m1m2
m1m2

m1

s′ s′ s′ s′

sh
rj+15

sts′′
m2

m1m2
m1m2

m1m2
m1

s′ s′ s′ s′

s′h
rj+16

s′ts′′s′ s′ s′ s′
m2
m1 m2

m1 m2
m1 m1

m1 m2
m1 m2

m1 m2
m1

Figure 5.12: An example of synchronising 7 agents - odd case.

Lemma 40. Let Li denote a terminal straight line and R be a rectangular path of any
configuration CR, starting from a cell adjacent to the tail of Li, where R ≤ 2|Li|−1. Then,
there exists a distributed way to push Li along R without breaking connectivity.

Proof. In Algorithm 7, the line head lh observes the collection mark “VX” indicating the
completion of DrawMap(S), which draws a route R (see Definition 17). As a result, lh emits
the question mark “?” to lt, which will broadcast via line agent transmission states from
pi to pi+1. Once ‘?” arrives there, lt checks whether its map arrow dlt points to an empty
or occupied cell, and if so, it emits a special mark “ Y○” back to lh indicating that a route

138 Abdullah A. Almethen

is free to push. By an application of Lemma 39, lh synchronises all line agents to reach a
concurrent state in which the following actions occur concurrently: (1) lh pushes Li one
position towards lt, based on its local direction on push state c7. (2) lt pushes one position
based on its map arrow c6 either in line direction or perpendicular to Li. In the latter, lt
updates state to c4 ← c6 and tells predecessor to turn next pushing. In general, (3) If pi
turns, it updates local direction c4 ← c6, and pi−1 updates push component pi−1.c7 ← pi.c6.
(4) pi of a present push component c7 moves one step in the direction held in c7, which
then rests to pi.c7 ← ·. (5) All line agents shift local map direction forwardly towards lt,
pi.c6 ← pi−1.c6. Repeat these transitions until lt encounters the segment tail st on the
route through which lt tells lh to sync and push again, while lt and st swaps their states.
Hence, any pi meets st, they swap states and rest their c6. Eventually, lh stops pushing
once it meets and swaps states with st. An example is shown in Figure 5.13.

lh l ltl

st

c4 =→
c6 =↑
c7 = ·

c4 =→
c6 =↑
c7 = ·

c4 =→
c7 = ·

c4 =→
c6 =→
c7 = ·

c6 =→

lh l ltl

st

c4 =→
c6 =↑
c7 = ·

c4 =→
c6 =↑
c7 = ·

c4 =→
c7 = ·

c4 =→
c6 =→
c7 = ·

c6 =↑

lh l

lt

l

st

c4 =→
c6 =↑
c7 = ·

c4 =→
c6 =↑
c7 = ·

c4 =→
c7 = ·

c4 =→
c7 = ·

c6 =↑ c6 =↑

sync

lh l
lt

l

st

c4 =→
c6 =↑
c7 = ·

c4 =→
c6 =↑
c7 = ·

c4 =→
c7 =↑

c4 =↑
c7 = ·

c6 =↑

c6 =↑
lh

l

lt

l

st

c4 =→
c6 =↑
c7 = ·

c4 =→
c6 =↑

c4 =↑
c7 = ·

c4 =↑
c7 = ·

c6 =↑

c6 =↑

c7 =↑

push one step

sync

push one step

sync

push one step

sync

push one step

lh

l

lt

l

st

c4 =→
c6 =↑

c6 =↑

c4 =↑
c7 = ·

c4 =↑
c7 = ·

c6 =↑

c6 = ·

sync

swap states with st

c4 =↑

c7 = ·

c7 =↑

lh

l

lt

l

st

c4 =↑
c7 = ·

c4 =↑
c7 = ·
c6 =↑

c4 =↑
c7 = ·

c4 =↑

c6 = ·

c6 = ·

c7 = ·
c6 = ·

Figure 5.13: A line Li of four agents pushing through a route of empty cells towards st.
All affected states (c4, c5 and c7) are shown inside each occupied cell.

During pushing through an L-shape route R, Li may turn one or at most three times.
In the following, we show that the number of turns depends on the orientation of both
Li and R. Without loss of generality, assume a horizontal Li turning at a corner towards

Chapter 5. Distributed transformations 139

st, such as Figure 5.13 where Li will temporally divide into two perpendicular sub-lines
while traversing to st. By a careful application of Lemma 39, both can be synchronised
and organised to perform two parallel pushing where lh liaises with lt and push the two
perpendicular sub-lines concurrently. Now, assume st is placed two cells above the middle
of Li, resulting in a route R of three turns along which Li temporally transforms into three
perpendicular sub-lines. Three agents simultaneously drive everyone to advance one step
ahead on R. Therefore, the line can be synchronised to perform at most three parallel
pushing operations that are asymptotically equivalent to the cost of one pushing, without
breaking connectivity. Below are transitions that demonstrate how Li pushes along R while
satisfying all of the transparency properties of line moves in Proposition 4:

– No delay: Li traverses R of any configuration CR within the same asymptotic number
of moves, regardless of how dense is CR.

– No effect: Li restores all occupied cell to their original state and keeps CR unchanged
after traversing R.

– No break: Li preserves connectivity while traversing along R.

Now, assume Li walks over a route R of non-empty cells occupied by other agents
(denoted by k) in the configuration that are not on Si. Whenever Li walks through R

and lt meets k on R, lt tells lh to stop pushing. The agent k now updates to a temporary
state labelled klt if it has a similar arrow of lt or kltc if it has a turn. Based on the map
arrow of lt, klt acts as a tail and checks whether the next cell (x, y) on R is empty, which
accordingly triggers to one of the following states : (1) (x, y) is empty, then klt emits a
mark back to lh to sync and push Li one step further. During this, klt changes state to kl
and each synchronised agent pi shifts map arrow to pi+1. During pushing, kl swaps states
with its predecessor and ensures that it remains in the same position (see Figure 5.14) until
it meets lh, at which kl can update to its original state k. (2) (x, y) is occupied by another
agent labelled k, then (a) klt changes to k?lt (or k

?
lt
c if the map arrow is a turn) and k into

klt , and (b) klt emits a special mark to the line agents asking for the next map arrow dklt .
Repeat this process as long as dklt indicates an occupied cell. Once klt observes an empty
cell (x′, y′), it performs (1) and updates k?lt . See a demonstration in Figure 5.15.

When Li moves through a series of non-empty cells, it guarantees that they are neither
separated or disconnected while pushing. To achieve this, when lt or klt calls for synchro-
nisation, any line agent pi labelled l whose successor shows a label with star (k?l or k?l c),

140 Abdullah A. Almethen

lh l l lt k lh l l lt klt
sync
push lh l l kl lt

→

Figure 5.14: A line Li of agents within grey cells pushing through a non-empty cell in blue
with a right map direction above lt.

lh l l lt k

→
k k

→↑
lh l l lt k k

↑
klt

sync
push lh l l lt k kkltkl lt lh l l lt k

↑
kltkl lt kltc

→→ →

↑ →

sync
push lh l lt kkl kltc

kltlt
l

sync
push lh lt kkl kltc

kltlt

l

kltl

Figure 5.15: A line Li of agents inside grey cells, with map directions above, pushing and
turning through empty and non-empty cells in blue (of label k). The green and yellow cells
show state swapping.

both swap their states. It continues to swap states forwardly via consecutive non-empty
cells until reaches the tail lt or a line agent l. Though, when Li traverses entirely through
R and reaches the segment tail st, it may find another non-empty cell after swapping states
with st. Hence, the same argument above still holds in this case. Figure 5.16 shows this
case.

l k?l l lk?l k?ll k?l lll ll k?ll lk?l l

Figure 5.16: Four agents in a line inside grey cells swap states with others occupying
consecutive yellow cells.

Whenever Li pushes into an empty cell (x, y), it fills (x, y) with an agent p ∈ Li.
During pushing, Li always keeps the original position of a non-empty cell and restores it
to its initial state (via state swapping). However, there exists a case that may break the
connectivity. Consider a line Li pushing along R and turning at a corner agent labelled
kltc, which has two diagonal neighbours where both are not adjacent to any line agent, as
depicted in Figure 5.17 top. In this case, when kltc moves down, it will break connectivity
with its upper diagonal neighbour. Hence, the transformation resolves this issue locally

Chapter 5. Distributed transformations 141

depending on the agents’ local view. When kltc observes a pushing agent and has one or
two diagonal neighbours, it temporarily switches to a state that allows it to move one step
further while lt updates into a turning agent. This also permits all line agents to turn
sequentially until they reach the head lh, which turns and waits for kltc to return to its
initial cell. Figure 5.17 depicts how to handle this situation. Other orientations follow
symmetrically by rotating the system 90◦, 180◦ or 270◦ clockwise and counter-clockwise.

k

k

ltlllh

k

k
klcltlllh

k

k
klcltlllh

k

k
klclt

l

l

lh

k

k
klc
lt
l

l

lh

k

Figure 5.17: A line Li pushing through a route R turns at a corner agent labelled kltc that
has two diagonal neighbours, neither of which is adjacent to any line agent.

Thus, all agents of Li are labelled and organised in such a way that can transparently
push through a route R of any configuration CR, whether it is being empty or partially/fully
occupied. It implies that Li remains connected when travelling as well as the whole con-
figuration. Further, the original state of CR has been restored and all of its occupied cells
(if any) have been left unchanged. As a result, Li meets all of the transparency criteria of
line moves in Proposition 4.

The complexity of Push is provided in the following lemma based on the number of line
moves and communication rounds.

Lemma 41. A straight line Li traverses through a route R of any configuration CR, taking
at most O(|Li|) line moves within O(|Li| · |R|) rounds.

Proof. The bound of moves depends on three factors, the number of empty cells on R, the
length of Li and the number of turns on R. Say that R is free of agents (fully empty) and

142 Abdullah A. Almethen

has at most 3 turns, then Li requires at most |Li| + 3|Li| + |Li| = 5|Li| = O(|Li|) moves
(proved in Lemma 40) to push through R. On the other hand, the communication cost of
this sub-phase could be very high in the case of a fully occupied route R when individuals
perform many functions such as synchronisation, activation, state swapping, and map arrow
forwarding. Those actions can be carried either sequentially or concurrently during the
transformation and can be analysed independently of each other. In this case, we set an
upper bound on the most dominating work.

Assume that R is completely occupied by other agents in the shape (in a worst-case),
from the cell adjacent to the line tail lt to the cell adjacent to sh. Then, lt needs to
traverse over at most |R| agents in order to arrive at sh, which costs tc1 = |R| rounds.
Further, lt requires a number of synchronisations equal to |Li| to move all line agents along
R at a cost of no more than tc2 = |Li| · |R| rounds. In each synchronisation, a line agent
swaps its state with |R| agents and forwards its map direction over line agents to lt within
at most tc3 = |Li| + |R| rounds. Thus, this sub-phase results in a maximum number of
communications T c = tc1 + tc2 + tc3 = |R| + (|Li| · |R|) + (|Li| + |R|) = O(Li| · |R|) rounds.
This bound holds when other agents occupy |Li| consecutive horizontal and vertical cells
beyond sh.

5.2.5 Recursive call on the segment Si into a line L′i

This sub-phase, RecursiveCall, is the heart of this transformation and is recursively called
on the next segment Si, which eventually transforms into another straight line L′i of 2i

agents.

When a segment tail st swaps states with lh, it accordingly acts as follows: (1) prop-
agates a special mark transmitted along all segment agents towards the head sh, (2) de-
activates itself by updating label to c1 ← k, (3) resets all of its components, except local
direction in c4. Similarly, once a segment agent pi observes this special mark, it propagates
it to its successor pi+1, deactivates itself, and keeps its local direction in c4 while resetting
all other components. When the segment head sh notices this special mark, it changes to a
line head state (c1 ← lh) and then recursively repeats the whole transformation from round
1 to i−1. Figure 5.3 presents a graphical illustration of RecursiveCall applied on a diagonal
line shape.

Chapter 5. Distributed transformations 143

5.2.6 Merging the two lines Li and L′i

The final sub-phase of this transformation is Merge, which combines two straight lines
into a single double-sized line, described as follows. The previous sub-phase, RecursiveCall,
transforms the segment Si into a straight line L′i, starts from a head lh and ends at a tail
lt. Currently, the tail of L′i occupies a cell adjacent to the head of Li. Hence, lh can simply
check if L′i is in line or perpendicular to Li exploiting the previous procedure of CheckSeg.
Without loss of generality, say that the tail agent of L′i occupies cell (x, y) and Li occupies
cells (x+ 1, y), . . . , (x+ |Li| − 1, y). Then, L′i could be either (1) perpendicular with agents
occupying (x, y), . . . , (x, y + |Li| − 1) or (2) in line on cells (x, y), . . . , (x − |Li| − 1, y). In
(1), lh emits a mark that travels via agents of L′i until it reaches the other head, where it
asks to change the direction of L′i, allowing L

′
i and Li to combine into a single straight line

Li+1 of double length and designate one head and tail for Li+1. In (2), L′i and Li have
already formed Li+1; all that remains is to switch and update labels to assign a head lh,
tail lt and 2i+1 − 2 line agents l in between.

Now, it is sufficient to upper bound this sub-phase by analysing only a worst-case of
(1). Obviously, the straight line L′i pushes and turns within a distance equal to its length
in order to line up with Li. It is worth noting that the agents of L′i do not require full
synchronisation for each push. Instead, they simply need to sync the head and tail of L′i
where both perform pushing at the same time. When an agent pi ∈ L′i turns, it tells its
predecessor pi−1 ∈ L′i to turn too. Hence, the total number of moves is at most O(|L′i|). The
communication cost splits into: (1) A special mark from lh traverses across L′i in O(|L′i|)
rounds. (2) All agents of L′i synchronise in O(|L′i|) rounds. (3) Label swapping costs at
most |L′i|+ |Li| = O(|L′i|). Therefore, all agents in Merge communicate in linear time, and
then we can say:

Lemma 42. An execution of Merge requires at most O(|Li|) line moves and O(|Li|) rounds
of communication.

Finally, we analyse the recursion in a worst-case shape in which individuals consume
their maximum energy to communicate and move. The runtime is based on the analysis of
the centralised version that has been proved in Section 4.2. Let T c

i and Tm
i denote the total

number of communication rounds and moves in phase i, respectively, for all i ∈ 1, . . . , log n.
Apart from RecursiveCall, the 2i agents forming a straight line Li in phase i go through
DefineSeg, CheckSeg, DrawMap, Push and Merge sub-phases that take total parallel rounds

144 Abdullah A. Almethen

of communication tci at most:

tci = (4 · |Li|) + (|Li| · |R|) ≈ O(|Li| · |Li|).

Then, in Push and Merge sub-phases, the line Li traverses along a route of total movements
tmi in at most:

tmi = |Li|+ |L′i| = O(|Li|).

Now, let T c
i−1 denote a total number of parallel rounds required for RecursiveCall on 2i

agents of the segment Si, which transforms into another straight line L′i. Given |Li| = 2i,
this recursion in phase i costs a total rounds bounded by:

T c
i ≤ i · (|Li| · |Li|) ≤ i · (2i)2

T c
i O(≤ i · n2).

Thus, we conclude that the call of RecursiveCall in the final phase i = log n requires a total
rounds T c

logn:

T c
logn ≤ n2 · log n

= O(n2 log n).

The same argument follows on the total number of movements T c
i−1 for a recursive call of

RecursiveCall, which costs at most:

Tm
i ≤ i · |Li| ≤ i · (2i)

Tm
i ≤ O(≤ i · n).

Finally, by the final phase i = log n, all agents in the system pushes a total number of
moves Tm

logn that bounded by:

Tm
logn ≤ n · log n

= O(n log n).

Overall, given a Hamiltonian path in an initial connected shape SI of individuals of limited

Chapter 5. Distributed transformations 145

knowledge and permissible line moves, the following lemma states that SI can be trans-
formed into a straight line SL in a number of moves that match the optimal centralised
transformation achieving the connectivity-preserving condition.

Lemma 43. Given an initial Hamiltonian shape SI of n agents, this strategy transforms SI
into a straight line SL of the same order in O(n log n) line moves and O(n2 log n) rounds,
while preserving connectivity during transformation.

Thus, we can finally provide the following theorem:

Theorem 11. The above distributed transformation solves HamiltonianLine and takes
at most O(n log2 n) line moves and O(n2 log2 n) rounds.

5.3 Further discussion

Overall, this distributed approach solves a number of the shape formation problems de-
fined in this thesis, including the DiagonalToLine and DiagonalToLineConnected

problems. Thus, there is still a chance to distribute other centralised transformations
of line moves, hopefully within the same asymptotic bound of O(n log n) line moves and
O(n2 log n) rounds. The HamiltonianConnected problem, for example, is an immediate
candidate which can transform any pairs of Hamiltonian shapes to each other while preserv-
ing connectivity throughout the transformation. If achieved, it is expected to contribute
to the development of more general transformations, such as the UniversalConnected

problem. However, those appear to be a much more complicated problem to solve based
on the current distributed setting. For example, in contrast to the centralised scenario,
reversibility does not apply in a straightforward way because the agents need to somehow
know an encoding of the shape to be constructed. Hence, it may be essential to make some
changes to the model in order to develop distributed counterparts.

Chapter 6

Conclusions

In this chapter, we summarise technical contributions of the thesis highlighting algorithmic
challenges for the shape formation problems. We also show an example and explore how
this work may be applied to other fields of theoretical computer science. Furthermore, we
present our view on the future research directions opening new perspectives for further
development in the area of algorithmic programmable matter.

6.1 Final discussion

Throughout this thesis, we introduced and investigated a new linear-strength transforma-
tion of line moves that was used for the problem of shape formation. In this new paradigm,
individuals can travel in parallel on a two-dimensional grid system by translating a line of
any length one position vertically or horizontally in a single time-step. Our main goal is
to examine the power of this mechanism and demonstrate what is theoretically feasible,
with the goal of designing universal transformations that can convert any pair of connected
shapes to each other. We were able to demonstrate some interesting facts about line moves
and produce more efficient and general transformations that work on both centralised and
distributed systems by utilising our linear-strength model. Below is a summary of our
findings, organised chronologically by chapter.

In Chapter 2, we assembled all of the definitions and basic facts that are required for
our formation algorithms. We started by introducing several families of discreet shapes,
followed by a formal definition of our centralised algorithmic framework. Next, a number
of key aspects of line moves were illustrated in order to establish effective technical tools

146

Chapter 6. Conclusions 147

that are used in the proposed transformations. For instance, it can be shown that this
model can simulate the individual rotation and sliding movements, that is, it generalises
the models of [64, 89] and also adopts all their transformability results (including universal
transformations). The remainder of this chapter is devoted to a consideration of lower
bounds, with a focus on some restricted variants of our line move creation problem where
we established the first lower bounds for this model that are matching the best known
O(n log n) upper bounds.

Chapter 3 examines whether pushing lines could assist to achieve a significant perfor-
mance boost (compared to the Θ(n2)-time of individual moves). Even though it can be
immediately observed that there are instances in which this is the case (e.g., initial shapes
in which there are many long lines, thus, much initial parallelism to be exploited), it was
not obvious that this holds also for the worst case. By identifying the diagonal as a poten-
tially worst-case shape (essentially, because in it any parallelism to be exploited does not
come for free), we managed to first develop an O(n

√
n)-time unrestricted transformation for

transforming the diagonal into a line. Going a step further, we developed a universal trans-
formation that can transform any pair of connected shapes to each other within O(n

√
n)

moves, while connectivity of the shape is not necessarily preserved during its course.
Our attention was restricted in Chapter 4 on developing a set of efficient transforma-

tions that can additionally preserve connectivity throughout their course. Here, we were
interested in keeping the associated graphs of all configurations connected during the trans-
formation. Again, by focusing on the apparently hard instance of transforming a diagonal
into a straight line, we build upon the algorithmic idea of partitioning the diagonal into
segments in Chapter 3 to obtain two transformations of time O(n

√
n) that preserve the

connectivity of the shape during transformations: one is based on folding segments and
the other on extending them. Next, we further improved and gave very fast connectivity-
preserving transformations that work on the family of all Hamiltonian shapes – that is, the
associated graph of the shape contains a Hamiltonian line – is and matches the running
time of the best known O(n log n)-time transformation while additionally managing to keep
the shape connected during transformations. Our most general result is then a first univer-
sal connectivity preserving transformation for this model that can transform any pairs of
connected shapes within a sequence of O(n

√
n) moves and works on any pair of connected

shapes of the same order.
Finally, in Chapter 5, we presented a distributed algorithmic framework for the linear-

strength of line moves. In this model, the system consists of computationally limited

148 Abdullah A. Almethen

individuals, each of which has constant memory can only observe the states of nearby
agents in a Moore neighbourhood. Those individuals perform the LCM cycles through
a set of rules and interactions, similar to finite state automata. Our major contribution,
building upon our algorithmic investigations of centralised transformations, is then the first
distributed connectivity-preserving transformation that exploits line moves and can work
for all pairs of connected shape that belong to the family of Hamiltonian shapes. This
algorithm solves the line formation problem within a total of at most O(n log n) moves,
which is asymptotically equivalent to that of the best-known centralised transformations.

Overall, this research may offer some insights into other areas of theoretical computer
science. For example, the presented transformations and their underlying principle may be
applied to the combinatorial game theory of one-player games (e.g. puzzles). Their logic
resembles applying a global force to all entities in a swarm, which may be beneficial in
investigating complexity and decidability problems.

For example, a maze of several balls that are manoeuvring into target positions in a
board is a typical instance of a dexterity puzzle. This is a one-player game that raises
the question of how to find the minimum number of moves or decide whether a given
game is solvable. The recent work of Becker et al. [25] and others (e.g. [48, 81]) provides
some answers regarding complexity and highlights the underlying fundamental connections
between puzzles and other robotic systems. This is supported by a useful discussion of
some well-known puzzles, including sliding-block and block-pushing puzzles. Many puzzles
are placed on a two-dimensional square board (e.g. Nine Men’s Morris and the Fifteen
Puzzle) and hence may represent some special-case transformations. Moreover, several of
the technical tools described in this study may be adopted there for analysing complexity,
such as proving lower bounds.

Furthermore, Michail and Spirakis [90] recently introduced the network constructors
model, which is inspired by population protocols. It refers to a system containing a pop-
ulation of finite automata capable of stably forming several spanning shapes (e.g. line,
ring, star) via pairwise interactions of a simple set of rules that are guided by an adversary
scheduler. The formations were considered to converge in that study, and a uniform ran-
dom scheduler was used to scale their efficiency (convergence time). They also provided
a general protocol capable of forming a large set of shapes that could be represented by
a Turing machine (TM). Thus, some of our study’s algorithmic tools may be useful for
further investigating those protocols under a more realistic model of physical and geomet-
rical restrictions in order to achieve terminating procedures that can construct two- or

Chapter 6. Conclusions 149

three-dimensional shapes.

6.2 Future research directions

This thesis offered a number of interesting problems and research directions. The obvious
first target (and apparently intriguing) is to answer whether there is an o(n log n)-time
transformation (e.g. linear) or whether there is an Ω(n log n)-time lower bound matching
our best transformations (even when connectivity can be broken). We suspect the latter,
but do not have enough evidence to support or prove it. As a first step, it might be easier to
develop lower bounds for the connectivity-preserving case. The tree representation of the
problem that we discuss in Section 3.1.3 (see, for example Figure 3.4), might help in this
direction. Potential ways to establish the lower bound could be by partitioning executions
into ‘charging phases’ that no transformation can avoid (e.g. all nodes are initially in
cells and have to get out of them at some point in the execution, similar to what we have
discussed in Section 2.5.2).

The proposed approach in Section 5.2 is essentially a distributed implementation of
the centralised Hamiltonian transformation in Section 4.2. We show that it preserves the
asymptotic bound of O(n log n) line moves (which is still the best-known centralised bound),
while keeping the whole shape connected throughout its course. This is the first step towards
distributed transformations between any pair of Hamiltonian shapes. The inverse of this
transformation (SL into SI) appears to be a much more complicated problem to solve as
the agents need to somehow know an encoding of the shape to be constructed and that
in contrast to the centralised case, reversibility does not apply in a straightforward way.
Hence, the reverse of this transformation (SL into SI) is left as a future research direction.

Universal transformations. We restrict attention to the class of Hamiltonian shapes.
This class, apart from being a reasonable first step in the direction of distributed trans-
formations in the given setting, might give insight to the future development of universal
distributed transformations, that is, distributed transformations working for any possible
pair of initial and target shapes. This is because geometric shapes tend to have long simple
paths, provably at least

√
n. We here focus on developing efficient distributed transfor-

mations for the extreme case in which the longest path is a Hamiltonian path. However,
one might be able to apply our Hamiltonian transformation to any pair of shapes, by, for
example, running a different or similar transformation along branches of the longest path
and then running our transformation on the longest path. We leave how to exploit the

150 Abdullah A. Almethen

longest path in the general case (i.e. when initial and target shapes are not necessarily
Hamiltonian) as an interesting open problem.

Optimal transformations. There are also a number of interesting variants of the
present model. One is a centralised parallel version in which more than one line can be
moved concurrently in a single time-step. Thus, there are variants of our transformations
(or alternative ones) that further reduce the running time? In other words, are there paral-
lelisable transformations in this model? In particular, it would be interesting to investigate
whether the present model permits an O(log n) parallel time (universal) transformation –
that is, matching the best transformation in the model of Aloupis et al. [18].

Extension to other regular grids. It would also be worth studying in more depth
the case in which connectivity has to be preserved during the transformations. For exam-
ple, a direct direction of developing an O(n log n)-time centralised universal transformation
that can preserve connectivity and work for any pairs of connected shapes with the same
order. In the relevant literature, a number of alternative types of grids have been consid-
ered, like triangular (e.g. in [51]) and hexagonal (e.g. in [117]), and it would be interesting
to investigate how our results translate there. Another direction is to extend the transfor-
mations to work on a three-dimensional grid (e.g. some of the ideas in [125] might prove
useful for this extension). Moreover, an immediate next goal is to attempt to develop a
more general distributed algorithmic framework of line moves that could function in more
restricted systems of huge number of simple devices.

Fault-tolerant transformations. Furthermore, the transformations considered in
this thesis are assumed to operate flawlessly at all times throughout their courses. Thus,
it will be intriguing to bring them closer to a realistic setting where failures are possible.
Hence, a fault tolerance is another desirable requirement through which a transformation
can correctly handle any potential failures in the system. This, of course, includes the two
main faults: crash faults – one or a set of faulty robots suddenly stop working in the system
(e.g. collision, dead) or Byzantine faults – more general and harder in which faulty robots
behave unusually or incorrectly (e.g. corruption, malicious). Then, one might think about
designing a solution that allows non-faulty robots to carry out the transformation without
the need of any faulty parts, see for example a recent line recovery in [57] for programmable
matter.

Non-uniform environment. Another possible extension of the proposed model is to
deal with the presence of obstacles. Assume a collection of robots placed on a grid with
fixed obstacles, can we design such a solution that brings all robots to their final positions

Chapter 6. Conclusions 151

without a global control that reaches all of them uniformly? Fekete [69] mentioned that
this question is still under development, though emphasised that some configurations in
this problem tend to be computationally difficult. On the positive side, it is still possible to
rearrange a collection of robots moving on two-dimensional artificial obstacles. Moreover, he
also provided a good overview of the studies conducted on the limitations and universality
of the computational internal capability of entities transforming in a robotic system.

Finally, the above are not exclusive, as looking at the concept from a wide perspective
reveals a vast spectrum of new algorithmic challenges that must be addressed in order to
bring those innovative robotic systems, e.g. programmable matter, closer to reality. More-
over, the ongoing physical advancements in robotic systems do have an influence on their
theoretical foundations and vice versa. Thus, this emphasises the importance of continuous
progress in establishing solid mathematical solutions, motivating new versatile frameworks,
and providing provable guarantee for the practical implementations of programmable mat-
ter.

Bibliography

[1] Ocado shops its way to a robotics platform for groceries and beyond.
https://venturebeat.com/2020/11/13/ocado-shops-its-way-to-a-robotics-

platform-for-groceries-and-beyond/. Accessed: 11 August 2021.

[2] The Ocado smart platform (OSP). https://www.ocadogroup.com/our-solutions/
what-is-osp. Accessed: 22 July 2021.

[3] The programmable matter project. https://www.programmable-matter.com. Ac-
cessed: 23 July 2021.

[4] Teams of the programmable matter project. https://www.programmable-matter.

com/consortium. Accessed: 23 July 2021.

[5] Thousands of orders cancelled after Ocado robot fire. https://www.bbc.co.uk/news/
business-57883332. Accessed: 11 August 2021.

[6] Leonard M Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266(5187):1021–1024, 1994.

[7] Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronicolas. A dis-
tributed algorithm for gathering many fat mobile robots in the plane. In Proceedings
of the 2013 ACM symposium on Principles of distributed computing, pages 250–259,
2013.

[8] Hugo A Akitaya, Esther M Arkin, Mirela Damian, Erik D Demaine, Vida Dujmović,
Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen,
et al. Universal reconfiguration of facet-connected modular robots by pivots: the
O(1) musketeers. Algorithmica, 83(5):1316–1351, 2021.

152

https://venturebeat.com/2020/11/13/ocado-shops-its-way-to-a-robotics-platform-for-groceries-and-beyond/
https://venturebeat.com/2020/11/13/ocado-shops-its-way-to-a-robotics-platform-for-groceries-and-beyond/
https://www.ocadogroup.com/our-solutions/what-is-osp
https://www.ocadogroup.com/our-solutions/what-is-osp
https://www.programmable-matter.com
https://www.programmable-matter.com/consortium
https://www.programmable-matter.com/consortium
https://www.bbc.co.uk/news/business-57883332
https://www.bbc.co.uk/news/business-57883332

Bibliography 153

[9] Abdullah Almethen, Othon Michail, and Igor Potapov. On efficient connectivity-
preserving transformations in a grid. To appear in: Theoretical Computer Science.

[10] Abdullah Almethen, Othon Michail, and Igor Potapov. Pushing lines helps: Efficient
universal centralised transformations for programmable matter. In International Sym-
posium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics, ALGOSENSORS, pages 41–59. Springer, 2019.

[11] Abdullah Almethen, Othon Michail, and Igor Potapov. Pushing lines helps: Effi-
cient universal centralised transformations for programmable matter. arXiv preprint
arXiv:1904.12777, 2019.

[12] Abdullah Almethen, Othon Michail, and Igor Potapov. On efficient connectivity-
preserving transformations in a grid. In Algorithms for Sensor Systems - 16th Inter-
national Symposium on Algorithms and Experiments for Wireless Sensor Networks,
ALGOSENSORS, volume 12503, pages 76–91, 2020.

[13] Abdullah Almethen, Othon Michail, and Igor Potapov. On efficient connectivity-
preserving transformations in a grid. arXiv preprint arXiv:2005.08351, 2020.

[14] Abdullah Almethen, Othon Michail, and Igor Potapov. Pushing lines helps: Efficient
universal centralised transformations for programmable matter. Theoretical Computer
Science, 830-831:43 – 59, 2020.

[15] Abdullah Almethen, Othon Michail, and Igor Potapov. Distributed transformations
of Hamiltonian shapes based on line moves. In Algorithms for Sensor Systems -
17th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks, ALGOSENSORS, volume 12961, pages 1–16. Springer, 2021.

[16] Abdullah Almethen, Othon Michail, and Igor Potapov. Distributed transformations
of hamiltonian shapes based on line moves. arXiv preprint arXiv:2108.08953, 2021.

[17] Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik Demaine, Robin Flatland,
John Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular
robots. Computational geometry, 46(8):917–928, 2013.

[18] Greg Aloupis, Sébastien Collette, Erik Demaine, Stefan Langerman, Vera Sacristán,
and Stefanie Wuhrer. Reconfiguration of cube-style modular robots using O(logn)

154 Abdullah A. Almethen

parallel moves. In International Symposium on Algorithms and Computation, pages
342–353. Springer, 2008.

[19] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

[20] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, November
2007.

[21] DJ Arbuckle and Aristides AG Requicha. Self-assembly and self-repair of arbitrary
shapes by a swarm of reactive robots: algorithms and simulations. Autonomous
Robots, 28(2):197–211, 2010.

[22] Philip Ball. Make your own world with programmable matter. IEEE Spectrum, 27,
2014.

[23] Levent Bayındır. A review of swarm robotics tasks. Neurocomputing, 172:292–321,
2016.

[24] Rida A Bazzi and Joseph L Briones. Stationary and deterministic leader election in
self-organizing particle systems. In International Symposium on Stabilizing, Safety,
and Security of Distributed Systems, pages 22–37. Springer, 2019.

[25] Aaron T Becker, Erik D Demaine, Sándor Fekete, Jarrett Lonsford, and Rose Morris-
Wright. Particle computation: complexity, algorithms, and logic. Natural Computing,
18(1):181–201, 2019.

[26] Dan Boneh, Christopher Dunworth, Richard J Lipton, and Jiri Sgall. On the com-
putational power of DNA. Discrete Applied Mathematics, 71(1-3):79–94, 1996.

[27] Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can compute short-
est paths. Journal of theoretical biology, 309:121–133, 2012.

[28] Julien Bourgeois and Seth Goldstein. Distributed intelligent MEMS: progresses and
perspective. IEEE Systems Journal, 9(3):1057–1068, 2015.

Bibliography 155

[29] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm
robotics: a review from the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[30] Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized con-
trol for lattice-based self-reconfigurable robots. The International Journal of Robotics
Research, 23(9):919–937, 2004.

[31] Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew
Winslow, and Tim Wylie. Freezing simulates non-freezing tile automata. In Interna-
tional Conference on DNA Computing and Molecular Programming, pages 155–172.
Springer, 2018.

[32] Arturo Chavoya and Yves Duthen. Using a genetic algorithm to evolve cellular au-
tomata for 2D/3D computational development. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 231–232, 2006.

[33] Fengqi Chen, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Locomo-
tion of metamorphic robotic system based on local information. In 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems Workshops, pages 40–45.
IEEE, 2014.

[34] Ho-Lin Chen, David Doty, Dhiraj Holden, Chris Thachuk, Damien Woods, and Chun-
Tao Yang. Fast algorithmic self-assembly of simple shapes using random agitation.
In International Workshop on DNA-Based Computers, pages 20–36. Springer, 2014.

[35] G.S. Chirikjian. Kinematics of a metamorphic robotic system. In Proceedings of
the 1994 IEEE International Conference on Robotics and Automation, pages 449–455
vol.1, 1994.

[36] Pavel Chvykov, Thomas A Berrueta, Akash Vardhan, William Savoie, Alexander
Samland, Todd D Murphey, Kurt Wiesenfeld, Daniel I Goldman, and Jeremy L Eng-
land. Low rattling: A predictive principle for self-organization in active collectives.
Science, 371(6524):90–95, 2021.

[37] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
computing by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–
879, 2012.

156 Abdullah A. Almethen

[38] Arthur C Clarke. Extra-terrestrial relays. Wireless World, page 305–308, 1945.

[39] Edgar F Codd. Cellular automata. Academic press, 2014.

[40] Carlos Hernández Corbato, Mukunda Bharatheesha, Jeff Van Egmond, Jihong Ju,
and Martijn Wisse. Integrating different levels of automation: Lessons from winning
the Amazon robotics challenge 2016. IEEE Transactions on Industrial Informatics,
14(11):4916–4926, 2018.

[41] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[42] Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mo-
bile robot swarms connected. In Proceedings of the 23rd international conference on
Distributed computing, DISC’09, pages 496–511, Berlin, Heidelberg, 2009. Springer-
Verlag.

[43] Jurek Czyzowicz, Dariusz Dereniowski, and Andrzej Pelc. Building a nest by an
automaton. Algorithmica, 83(1):144–176, 2021.

[44] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. On the
computational power of oblivious robots: forming a series of geometric patterns.
In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of dis-
tributed computing, pages 267–276, 2010.

[45] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming
sequences of geometric patterns with oblivious mobile robots. Distributed Computing,
28(2):131–145, April 2015.

[46] Joshua Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal
coating for programmable matter. Natural Computing, 17(1):81–96, 2018.

[47] Joshua J Daymude. Collaborating in Motion: Distributed and Stochastic Algorithms
for Emergent Behavior in Programmable Matter. PhD thesis, Arizona State Univer-
sity, 2021.

Bibliography 157

[48] Erik D Demaine. Playing games with algorithms: Algorithmic combinatorial game
theory. In International Symposium on Mathematical Foundations of Computer Sci-
ence, pages 18–33. Springer, 2001.

[49] Erik D Demaine, Matthew J Patitz, Robert T Schweller, and Scott M Summers. Self-
assembly of arbitrary shapes using rnase enzymes: Meeting the kolmogorov bound
with small scale factor. In 28th International Symposium on Theoretical Aspects of
Computer Science (STACS 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2011.

[50] Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo Navarra. Char-
acterizing the computational power of mobile robots on graphs and implications for
the euclidean plane. Information and Computation, 263:57–74, 2018.

[51] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian
Scheideler, and Thim Strothmann. Brief announcement: amoebot–a new model for
programmable matter. In Proceedings of the 26th ACM symposium on Parallelism in
algorithms and architectures (SPAA), pages 220–222. ACM, 2014.

[52] Zahra Derakhshandeh, Robert Gmyr, Andréa Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-
organizing particle systems. In Proceedings of the Second Annual International Con-
ference on Nanoscale Computing and Communication, page 21. ACM, 2015.

[53] Zahra Derakhshandeh, Robert Gmyr, Andréa Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, pages
289–299. ACM, 2016.

[54] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W
Richa, and Christian Scheideler. Leader election and shape formation with self-
organizing programmable matter. In International Workshop on DNA-Based Com-
puters, pages 117–132. Springer, 2015.

[55] A. Deutsch and S. Dormann. Cellular Automaton Modeling of Biological Pattern
Formation: Characterization, Examples, and Analysis. Modeling and Simulation in
Science, Engineering and Technology. Birkhäuser Boston, 2018.

158 Abdullah A. Almethen

[56] Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, Mar
2019.

[57] Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and
Giovanni Viglietta. Line recovery by programmable particles. In Proceedings of the
19th International Conference on Distributed Computing and Networking, ICDCN’18,
pages 4:1–4:10, New York, NY, USA, 2018. ACM.

[58] Keisuke Doi, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Exploration
of finite 2D square grid by a metamorphic robotic system. In International Symposium
on Stabilizing, Safety, and Security of Distributed Systems, pages 96–110. Springer,
2018.

[59] Marco Dorigo, Guy Theraulaz, and Vito Trianni. Reflections on the future of swarm
robotics. Science Robotics, 5(49), 2020.

[60] David Doty. Theory of algorithmic self-assembly. Communications of the ACM,
55:78–88, 2012.

[61] David Doty. Timing in chemical reaction networks. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 772–784. SIAM, 2014.

[62] Shawn Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, and
William Shih. Self-assembly of DNAinto nanoscale three-dimensional shapes. Na-
ture, 459(7245):414, 2009.

[63] Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. Efficient deterministic
leader election for programmable matter. PODC’21, page 103–113, New York, NY,
USA, 2021. Association for Computing Machinery.

[64] Adrian Dumitrescu and János Pach. Pushing squares around. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 116–123. ACM, 2004.

[65] Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast
locomotion of metamorphic robotic systems. The International Journal of Robotics
Research, 23(6):583–593, 2004.

Bibliography 159

[66] Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for
metamorphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE
Transactions on Robotics and Automation, 20(3):409–418, 2004.

[67] Karthik Elamvazhuthi and Spring Berman. Mean-field models in swarm robotics: A
survey. Bioinspiration & Biomimetics, 15(1):015001, 2019.

[68] Sándor Fekete, Andréa Richa, Kay Römer, and Christian Scheideler. Algorithmic
foundations of programmable matter (Dagstuhl Seminar 16271). 6(7), 2016. Also in
ACM SIGACT News, 48.2:87-94, 2017.

[69] Sándor P Fekete. Geometric aspects of robot navigation: From individual robots to
massive particle swarms. In Distributed Computing by Mobile Entities, pages 587–614.
Springer, 2019.

[70] Sándor P Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Christian Scheffer,
and Arne Schmidt. Cadbots: Algorithmic aspects of manipulating programmable
matter with finite automata. Algorithmica, 83(1):387–412, 2021.

[71] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Computing with-
out communicating: Ring exploration by asynchronous oblivious robots. Algorith-
mica, 65(3):562–583, 2013.

[72] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by
mobile entities. Current Research in Moving and Computing, 11340, 2019.

[73] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbi-
trary pattern formation by asynchronous, anonymous, oblivious robots. Theoretical
Computer Science, 407(1-3):412–447, 2008.

[74] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masafumi Ya-
mashita. Pattern formation by oblivious asynchronous mobile robots. SIAM Journal
on Computing, 44(3):740–785, 2015.

[75] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organizing robots based on
cell structures - ckbot. In IEEE International Workshop on Intelligent Robots, pages
145–150, 1988.

160 Abdullah A. Almethen

[76] Toshio Fukuda. Self organizing robots based on cell structures-cebot. In Proc. IEEE
Int. Workshop on Intelligent Robots and Systems (IROS’88), pages 145–150, 1988.

[77] Melvin Gauci, Jianing Chen, Wei Li, Tony J Dodd, and Roderich Groß. Self-organized
aggregation without computation. The International Journal of Robotics Research,
33(8):1145–1161, 2014.

[78] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter mod-
ules for programmable matter through self-disassembly. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 2485–2492. IEEE, 2010.

[79] Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph,
Christian Scheideler, and Thim Strothmann. Forming tile shapes with simple robots.
Natural Computing, 19:375–390, 2020.

[80] Heiko Hamann. Swarm robotics: A formal approach. Springer, 2018.

[81] Robert A Hearn and Erik D Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science, 343(1-2):72–96, 2005.

[82] Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Dis-
tributed reconfiguration of 2D lattice-based modular robotic systems. Autonomous
Robots, 38(4):383–413, 2015.

[83] Andrew Ilachinski. Cellular automata: a discrete universe. World Scientific Publish-
ing Company, 2001.

[84] Alon Itai, Christos Papadimitriou, and Jayme Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[85] Ara Knaian, Kenneth Cheung, Maxim Lobovsky, Asa Oines, Peter Schmidt-Neilsen,
and Neil Gershenfeld. The milli-motein: A self-folding chain of programmable matter
with a one centimeter module pitch. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1447–1453. IEEE, 2012.

[86] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. A scalable
pipeline for designing reconfigurable organisms. Proceedings of the National Academy
of Sciences, 117(4):1853–1859, 2020.

Bibliography 161

[87] Shuguang Li, Richa Batra, David Brown, Hyun-Dong Chang, Nikhil Ranganathan,
Chuck Hoberman, Daniela Rus, and Hod Lipson. Particle robotics based on statistical
mechanics of loosely coupled components. Nature, 567(7748):361–365, 2019.

[88] Othon Michail. Terminating distributed construction of shapes and patterns in a fair
solution of automata. Distributed Computing, 31(5):343–365, 2018.

[89] Othon Michail, George Skretas, and Paul Spirakis. On the transformation capability
of feasible mechanisms for programmable matter. Journal of Computer and System
Sciences, 102:18–39, 2019.

[90] Othon Michail and Paul Spirakis. Simple and efficient local codes for distributed
stable network construction. Distributed Computing, 29(3):207–237, 2016.

[91] Othon Michail and Paul Spirakis. Elements of the theory of dynamic networks.
Commun. ACM, 61(2):72–81, 2018.

[92] Marvin Lee Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.

[93] An Nguyen, Leonidas J Guibas, and Mark Yim. Controlled module density helps
reconfiguration planning. New Directions in Algorithmic and Computational Robotics,
pages 23–36, 2001.

[94] Thomas Nickson and Igor Potapov. Broadcasting automata and patterns on Z2. In
Automata, Universality, Computation, pages 297–340. Springer, 2015.

[95] Norman H Packard and Stephen Wolfram. Two-dimensional cellular automata. Jour-
nal of Statistical physics, 38(5):901–946, 1985.

[96] Matthew J Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing, 13(2):195–224, 2014.

[97] Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge
modular robot to create programmable matter. Autonomous Robots, 42(8):1619–1633,
2018.

[98] V Prem Prakash, C Patvardhan, and Anand Srivastav. Effective heuristics for the
bi-objective euclidean bounded diameter minimum spanning tree problem. In In-
ternational Conference on Next Generation Computing Technologies, pages 580–589.
Springer, 2017.

162 Abdullah A. Almethen

[99] Chris R Reid and Tanya Latty. Collective behaviour and swarm intelligence in slime
moulds. FEMS microbiology reviews, 40(6):798–806, 2016.

[100] Paul Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

[101] Paul Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the 32nd annual ACM symposium on Theory of computing
(STOC), pages 459–468. ACM, 2000.

[102] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[103] Michael Rubenstein and Wei-Min Shen. Automatic scalable size selection for the
shape of a distributed robotic collective. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 508–513. IEEE, 2010.

[104] Hans Sagan. Space-filling curves. Springer Science & Business Media, 2012.

[105] William Savoie, Thomas A Berrueta, Zachary Jackson, Ana Pervan, Ross Warkentin,
Shengkai Li, Todd D Murphey, Kurt Wiesenfeld, and Daniel I Goldman. A robot
made of robots: Emergent transport and control of a smarticle ensemble. Science
Robotics, 4(34), 2019.

[106] Nicholas Schiefer and Erik Winfree. Universal computation and optimal construction
in the chemical reaction network-controlled tile assembly model. In International
Workshop on DNA-Based Computers, pages 34–54. Springer, 2015.

[107] Joel L Schiff. Cellular automata: a discrete view of the world, volume 45. John Wiley
& Sons, 2011.

[108] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation
with finite stochastic chemical reaction networks. natural computing, 7(4):615–633,
2008.

[109] David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM
Journal on Computing, 36(6):1544–1569, 2007.

Bibliography 163

[110] Thim Frederik Strothmann. Self-* algorithms for distributed systems: programmable
matter & overlay networks. PhD thesis, Universität Paderborn, 2017.

[111] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

[112] Atsushi Tero, Ryo Kobayashi, and Toshiyuki Nakagaki. A mathematical model for
adaptive transport network in path finding by true slime mold. Journal of theoretical
biology, 244(4):553–564, 2007.

[113] Tommaso Toffoli and Norman Margolus. Programmable matter: concepts and real-
ization. Physica. D, Nonlinear phenomena, 47(1-2):263–272, 1991.

[114] Stanislaw Ulam et al. Random processes and transformations. In Proceedings of the
International Congress on Mathematics, volume 2, pages 264–275. Citeseer, 1952.

[115] Jules Verne. Vingt mille lieues sous les mers. Pierre-Jules Hetzel, 1870.

[116] John Von Neumann. The general and logical theory of automata. Cerebral mecha-
nisms in behavior, 1:41, 1951.

[117] Jennifer Walter, Jennifer Welch, and Nancy Amato. Distributed reconfiguration of
metamorphic robot chains. Distributed Computing, 17(2):171–189, 2004.

[118] Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, 1998.

[119] Stephen Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL,
2002.

[120] Stephen Wolfram. Cellular automata and complexity: collected papers. CRC Press,
2018.

[121] Damien Woods, H Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time.
In Proceedings of the 4th conference on Innovations in Theoretical Computer Science,
pages 353–354. ACM, 2013.

164 Abdullah A. Almethen

[122] Hui Xie, Mengmeng Sun, Xinjian Fan, Zhihua Lin, Weinan Chen, Lei Wang, Lixin
Dong, and Qiang He. Reconfigurable magnetic microrobot swarm: Multimode trans-
formation, locomotion, and manipulation. Science robotics, 4(28), 2019.

[123] Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous networks.
i. characterizing the solvable cases. IEEE Transactions on parallel and distributed
systems, 7(1):69–89, 1996.

[124] Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable
by oblivious anonymous mobile robots. Theoretical Computer Science, 411(26-
28):2433–2453, 2010.

[125] Yukiko Yamauchi. Symmetry of anonymous robots. In Distributed Computing by
Mobile Entities, pages 109–133. Springer, 2019.

[126] Mark Yim, WeiMin Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory Chirikjian. Modular self-reconfigurable robot systems [grand
challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

[127] Dan Zhang, LG Pee, and Lili Cui. Artificial intelligence in E-commerce fulfillment:
A case study of resource orchestration at Alibaba’s smart warehouse. International
Journal of Information Management, 57:102304, 2021.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	Introduction
	Overview and Motivation
	State of the art
	Relevant models and results
	More peripheral related topics

	Thesis outline
	Technical contributions
	Author’s publications

	Discrete Shape Formation
	Discrete shapes
	Family of shapes

	The shape formation model
	The linear-strength model
	The sliding and rotation model

	Shape formation problem
	The linear-strength transformation properties
	Lower bounds on line moves
	An (n logn) lower bound for the 2-HOP tree
	A conditional (n logn) lower bound - one way transformation

	Unrestricted transformations
	The Diagonal-To-Line transformation
	DL-Partitioning: An O(nn) -time Transformation
	DL-Doubling: An O(n logn) -time Transformation
	An O(n logn) -time Transformation Based on Recursion

	Universal Transformations
	U-Box-Partitioning: An O(nn) -time Transformation
	U-Box-Doubling: An O(n logn) -time Transformation

	Connectivity-Preserving transformations
	The Diagonal-To-Line transformation
	Folding: An O(nn) -time Transformation
	Extending: An O(nn) -time Transformation

	Walk-Through-Path: An O(n logn) -time Hamiltonian shapes transformation
	Transforming diagonal shape into line shape
	Transforming Hamiltonian shapes into a straight line
	Correctness and runtime analysis

	Compression: An O(n n) -time universal transformation
	Universal transformation by compression approach
	Correctness and runtime analysis

	Distributed transformations
	The distributed model of line moves
	The distributed Hamiltonian transformation
	Defining the next segment Si
	Checking the next segment Si
	Drawing a route map
	Pushing the next segment Si
	Recursive call on the segment Si into a line Li
	Merging the two lines Li and Li

	Further discussion

	Conclusions
	Final discussion
	Future research directions

	References

