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Abstract—Semiconductor supply chain industry is spread
worldwide to reduce cost and to meet the electronic systems
high demand for ICs, and with the era of internet of things
(IoT), the estimated numbers of electronic devices will rise
over trillions. This drift in the semiconductor supply chain
produces high volume of e-waste, which affects integrated circuits
(ICs) security and reliability through counterfeiting, i.e., recycled
and remarked ICs. Utilising recycled IC as a new one or a
remarked IC to upgrade its level into critical infrastructure
such as defence or medical electronics may cause systems failure,
compromising human lives and financial loss. This paper harvests
aging degradation induced by BTI and HCI, observing frequency
and discharge time affected by changes in drain current and
sub-threshold leakage current over time, respectively. Such task
is undertaken by Cadence simulations, implementing a 51-stage
ring oscillator (51-RO) using 22nm CMOS technology library
and aging model provided by GlobalFoundries (GF). Machine
learning (ML) algorithm of support vector regression (SVR) is
adapted for this application, using a training process that involves
operating temperature, discharge time, frequency, and aging
time. The data sampling is performed over an emulated 12 years
period with four representative temperatures of 20◦C, 40◦C,
60◦C, and 80◦C with additional testing data from temperatures
of 25◦C and 50◦C. The results demonstrate a high accuracy
on aging estimation by SVR, reported as a normal distribution
with the mean (µ) equal to 0.01 years (3.6 days) and a standard
deviation (σ) of ±0.1 years (±36 days).

Index Terms—IC Age estimation, ML for IC age prediction,
counterfeit ICs, subthreshold leakage and drain current, bias
temperature instability (NBTI/PBTI), hot carrier injection (HCI),
green ICT.

I. INTRODUCTION

The distribution of semiconductor industry across the globe
jeopardises the security and reliability of electronic systems
due to counterfeiting, which is a growing threat for modern
ICs. The high demand on semiconductor supply chain to
produce billions of ICs, also generates high volume of e-waste.
If the e-waste is not recycled professionally and under trusted
recycling centre, it motivates recyclers to enter the IC market
with components violating electronic systems lifetime and
performance. This includes electronics such as smartphones,
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medical devices (pacemakers and devices used in ICU) to
space and defence sectors [1]. In particular, IC counterfeiting
incidents due to recycled and remarked components represent
80-90% of all counterfeits [1]. Among other types, it is
worth mentioning ICs being overproduced, cloned, out-of
spec/defective, tampered, and ICs with forged documentation
[1]. Utilising recycled IC as a new or a remarked to upgrade
its level in critical infrastructure such as defence or medical
electronics may cause systems failure leading to a disaster,
involving human lives and financial loss. As a result, detecting
and estimating ICs age is critical for security applications
to detect recycled and remarked ICs and age estimation
for reliability applications to assure circuit performance and
lifetime.

Detecting counterfeit ICs including recycled and remarked
ICs has been extensively studied in the literature based on
different techniques. These techniques vary in terms of imple-
mentation method as can be analysed as follow: physical and
electrical inspections using external tools to image IC package
and interior design architecture by a microscope scan [2], track
and trace methods by providing a unique fingerprint for each
IC such as physical unclonable function (PUF) to extract a
signature through the IC physical characteristics with process
variation [3].

Aging sensors can be used in recycled IC detection as
proposed in [4]–[6] using transistor sub-threshold leakage
current to measure discharge time (τdv) when a gate (tran-
sistor) is turned-OFF due to aging effects: bias temperature
instability (BTI: positive and negative PBTI/NBTI) and hot
carrier injection (HCI). Discharge time is defined as the time
for output voltage to reach 10% of the supply voltage when
the switching gate is turned-OFF [4]. Aging senors based on
frequency (f ) measurement were presented in [7] and [8]
to distinguish between a fresh and aged ring oscillators for
recycled ICs detection.

A different approach was proposed in [9] by introducing
a real-time prediction ML model to predict IC age using
path-delay. The proposed ML in [9] was validated with three
scenarios of configurations and with age time of 8 years
and at 10◦C, 25◦C, 50◦C, and 75◦C, and at different time
intervals from 0 to 8 years. Each scenario was tested under
a specific time-variant operating condition and five different
ISCAS’89 benchmarks were utilised to extract only critical



paths delay (paths degraded by 20%) during 8 year of aging
on a 45-nm CMOS technology [9]. The root mean square error
(RMSE) was used to evaluate the proposed model prediction
accuracy based on path delays and the average value for
the RMSE is less than a 2% for all critical paths for each
benchmark utilised in the three implemented scenarios [9].In
[10], a statistical method to detect recycled IC using a one-
class support vector machine (SVM) is proposed to measure
the electrical parameters during fabrication based on process
variations (PVs) distribution of brand new devices without
gathering actual aging degradation information over usage
time.

Techniques used in [7] and [8] have a lower detection rate
as the frequency is the only transistor parameter utilised to
detect IC age compared to a more sensitive age detector that is
utilised in [4] and [6] by measuring the sub-threshold leakage
current changes over short usage time to detect the IC age.
Moreover, the ML models to estimate ICs age in [9] suffer
from a lower detection rate as the path-delay is deployed to
estimate IC age, and the method in [10] does not represent
a real-time aging degradation over usage time as the data
is extracted during fabrication process only based on Early
Failure Rate (EFR) from an industrial design.

The focus of this paper is to provide a cost-effective
and accurate real-time age estimation on-chip based on a
comprehensive supervised machine learning (ML) model that
considers two transistors’ parameters: sub-threshold leakage
current and drain current, and operating conditions such as
temperature to overcome limitation of the above techniques
[7]–[10] to increase estimation rate. The advantage of com-
bining the two parameters is explained in section III. This
proposal can be used in a variety of security and reliability
applications. Possible applications to deploy and adopt the
proposed model include: 1) detect counterfeit recycled and
remarked ICs, 2) boost the process of legalising recycled ICs
market to reduce e-waste, and 3) use the proposed model
for ICs age estimation to create quality assurance profiles of
individual IC [11].

This comprehensive ML model is investigated based on the
main transistors aging effects: BTI and HCI. The ML model
deploys two critical transistors’ parameters, namely- sub-
threshold leakage current and drain current changes induced
by BTI and HCI, to detect discharge time (τdv) increase and
frequency (f ) degradation over usage time depending on time-
variant (age time) and operating conditions (e.g., temperature
variations).

The rest of this paper is organised as follows. Section 2
presents transistor aging background. Section 3 focuses on
related work that utilises the sub-threshold leakage and drain
currents and explains the reason for combining the discharge
time (τdv) and frequency (f ) parameters in the proposed ML
model. Section 4 proposes the research methodology and the
proposal for a ML model for ICs age estimation for detecting
a short period of usage in the field. Next, simulations and the
proposed ML model results are discussed in Section 5. Finally,
conclusions are drawn with the future work for the research.

II. BACKGROUND

The aging phenomenon in ICs has existed for almost five
decades; it has developed over time due to the materials used in
ICs and the supply voltages scaling. This paper study the most
affected aging mechanism to ICs, PBTI/NBTI and HCI but
NBTI is the critical aging mechanism in the recent nanometre
CMOS technologies [6] for PMOS transistors, whereas PBTI
and HCI can be negligible and only impact NMOS transistors.
Leveraging aging effects of BTI and HCI has been studied
in [11], [13], [14]. NBTI occurs at elevated temperature and
under negative gate bias, positive oxide charge and interface
states traps are generated in the structure of metal-oxide-
silicon (MOS) [12], [15]. This operation caused by the NBTI
results shift in Vth and it becomes harder for the transistor
to turn-ON with aging [12], [15]. NBTI not only shifts the
device Vth but also decreases the drain current gradient over
aging time due to positive charge creation and at the same
time more interface states are created [15], [16]. The creation
of interface states cause the carrier mobility (µ) to become
smaller with aging [15].

The NBTI exhibits two phases during the ICs lifetime, stress
and recovery and that impact the threshold voltage (Vth) shift
[10], [15]. The stress phase happens when the transistor is
ON when the NBTI at the gate expose to a negative voltage,
whereas the recovery phase occurs when the voltage stress
is removed and the transistor is OFF [10]. The degradation
effect induced by the NBTI during the stress time may recover
partially [10], [15].Thus, considering these two phases during
simulations is important and it has a better age detection rate.

Hot carriers are composed of holes and electrons that have
been exposed to a high energy by local electrical fields. If a
carrier gains a kinetic energy, it could overcome the silicon-
insulator barrier height and gate oxide and it may collide with
atoms due to the ionization process effect in the pinch-off
region and the electron-hole pairs are produced [17]. After
the carrier surmount the barrier and reside in the insulator,
the electron and hole are trapped into the gate oxide. Due
to high energy carriers, the interface states are generated in
the gate oxide. Two changes occur, 1) the device threshold
voltage shift due to the accumulated trapped charges, and 2)
a reduction in device drain current, a degradation in the sub-
threshold slope and an increase in the device leakage due to
the accumulated interface states. The HCI in recent CMOS
technology is negligible. Although, in this work BTI and HCI
are investigated to mimic the impact of aging degradation.

III. RELATED WORK

A. Transistor Parameters

A reduction in the sub-threshold leakage current (Isubth)
occurs by the NBTI aging effects. This reduction in the Isubth
is beneficial for static power consumption [13], [14]. The
Isubth reduction takes place due to the exponential increase
induced by the NBTI between the Isubth and threshold voltage
(Vth). This correlation with aging is an advantage for a sensor
that underpins that change over time, referred as discharge



time (τdv) in literature and it increases over time as derived
by (1) [6]:
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Where W is the channel width, L is the channel length, Cox

is the gate oxide capacitance, µ is the carrier mobility, T is
the temperature, K is the Boltzmann constant, q is the electron
charge and n is a parameter for the device fabrication. The n
parameter contributes to the drain current gradient reduction
along with the interface states creation with aging.

Based on the facts explained above, an exponential cor-
relation between the decrease in the Isubth and the increase
in the threshold voltage (Vth), as derived by (1). Therefore,
the dischagre time (τdv) increases over the IC age time as
the Isubth decreases. In contrast, drain current (ID) has an
approximate linear correlation between the decrease in the ID
and the increase in the Vth due to BTI-induced degradation,
which is represented by (2 and 3); thus, the drain current in
CMOS technologies [6] is shown as:

ID(t) ' Kact[Vgs − (Vth0 + ∆Vth(t))], (2)

ID(t) = ID0 −Kact∆Vth(t), (3)

Where Kact is a constant that depends on the technology
parameters and the design, Vth(t) is the threshold voltage drift
over a period of time that is caused by the aging effects and
Vth0 is the fresh device threshold voltage.

Due to aging effect caused by BTI, the drain current is
greater in a new IC than in an aged IC; this is due to
the aforementioned linear correlation. Thus, the frequency
of a ring oscillator (RO) is expected to be lower in the
aged IC because it depends on drain current. Based on the
correlations explained about sub-threshold leakage current and
drain current, we can confirm that the discharge time (τdv)
is more sensitive than the frequency degradation. Moreover,
the Isubth is unstable with temperature, whereas the drain
current is stable with temperature. This has an impact on the
proposed ML model measurements when both parameters are
combined. Towards that end, deploying the Isubth and f of a
ring oscillator for the proposed ML model will help to explore
these two transistor parameters with temperature variations
based on the physical characteristics of each parameter. Thus,
the investigation will lead to the development of the proposed
ML IC age estimation model to accurately estimate the age of
an IC and mitigate the risk of IC counterfeiting and provide
lifetime quality assurance.

IV. PROPOSED ML MODEL FOR IC AGE ESTIMATION

A. Measuring Transistor Parameters

The discharge time (τdv) and output frequency (f ) is
measured from a 51 stage ring oscillator (51-RO) by an
emulated period of 12 years in Cadence. This time is based
on the lifetime expectancy of ICs for industrial, automotive
and aerospace applications [23], [24]. During the aging time

(12 years), transient analysis is performed for the 51-RO,
generating a total of forty samples of τdv and f . The f is
probed directly from the output of the RO, whereas the τdv is
captured using a cycle-counter sensor described in [25]. Fig. 1
shows the adapted version of the sensor diagram that operates
as time to digital converter, which is low cost and typically
present in the infrastructure of electronic chips [25]. The
sensor is formed by a logic AND gate, buffer and counter. The
calculation is undertaken by counting the rising edges of the
clock until the output of 51-RO drops to logic-0, considered
when the voltage reaches 10% of Vdd. The counter value is
then multiplied by the clock period to obtain the discharge
time in units of time (ns).

Fig. 1. Frequency and discharge time sensor.

Algorithm 1 Proposed age estimation model steps
1: Offline
2: Data pre-processing: Data collection from selected ICs

on Cadence and labelling (discharge time and frequency,
temperature and age time)

3: ML: Data processing: Selection of estimator and target
data for SVR training

4: ML: Training and optimisation of SVR estimator
5: Online
6: ML: Testing of SVR estimator with random input data

B. Support Vector Machine Regression Model (SVR)

The machine learning algorithm of support vector regression
(SVR) is known to have a reliable performance in predicting
time-series data [21], [26]. An important characteristic of a
supervised SVR is the capability to classify data which is
not linearly separable. This algorithm introduces the kernel
transformation which is a data manipulation that maps the
input to a higher dimension space to solve the regression
problem and reduces computational complexity [22]. The pro-
posed algorithm for the generation of an aging estimator model
has mainly two sections, offline and online (Algorithm 1).
In general, the first section includes data collection from
the integrated circuit (IC) using the Cadence tools such as
the Virtuoso Analog Design Environment. In this case the
collection of τdv , output f , working temperature and aging
time of a 51 stage RO (51-RO). Then, data pre-processing
and sorting is carried out. The next step is data processing,
where labelling is undertaken to define the set of estimators
and response values, in this case the target is aging. In addition,
a suitable arrangement is chosen for the data, for instance an



array of four columns is built, including all data collected.
The last step performed offline is the generation of a machine
learning model for aging estimation. The result is a full,
trained support vector machine regression model (SVR) that
is able to estimate aging trend of individual ICs with its own
working conditions. Finally, the SVR is tested online, where
trained model receives random data of τdv , f and temperature,
delivering the aging estimation. From this stage, the SVR can
be portable and placed on-chip for real-time monitoring and
aging estimation.

V. RESULTS AND DISCUSSION

A. Simulation Results
The RelXpert tool provided by Cadence is used to simulate

the 51-stage RO aging simulations, which is configured as
follows: the supply voltage is (Vdd) = 0.9V, age time 12 years,
the working temperature variation includes four temperatures,
i.e. 20◦C, 40◦C, 60◦C, and 80◦C, with a RO output load
capacitance of 250fF. The utilised CMOS technology and
aging model is a 22nm provided by GlobalFoundries (22nm
GF). The aging effects: NBTI, PBTI and HCI are selected for
all simulation runs to measure aging for the circuit under test
(51 RO) with each one of the four simulated temperatures to
accurately build the proposed ML for ICs age estimation.

Fig. 2. 51-stage RO discharge time over 12 years.

Another critical aspect is included in the simulations to
reduce the NBTI recovery effect when measuring the dis-
charge time and frequency, and avoid misreading these two
parameters. As can be seen from Fig. 2 and Fig. 3 that most
of the aging occurs at early time of the RO and after that
period a gradual increase is observed over the years for the
51 RO, τdv and f as the NBTI is saturated for longer stress
time. These two trends are well-known and confirmed by the
scientific research as discussed in [18]. Fig. 2 shows the 51
RO discharge time (τdv) results over 12 years lifetime, at 20◦C
the ∆τdv after 2 years is 36.51%, 4 years is 49.74%, 6 years
is 56.76%, 8 years is 64.62%, 10 years is 69.58%, and 12
years is 75.12%, whereas at 80◦C the ∆τdv after 2 years is
100.04%, 4 years is 133.20%, 6 years is 157.13%, 8 years is
188.14%, 10 years is 205.30%, and 12 years is 229.98% based
on (4).

%τdv=
Agedτdv − Freshτdv

Freshτdv
× 100 (4)

This range of simulated temperature values between 20◦C
and 80◦C prove that the τdv can be detected even with
temperature variation and as expected, it is more sensitive to
higher temperature. From Fig. 2, we can observe the following:
1) the fresh τdv period is smaller and even more smaller
with higher temperature due to the high Isubth current in new
ICs (leaks faster), 2) the aged τdv period is bigger for all
temperatures because the Isubth in aged ICs is low (less leaky),
3) the ∆τdv is bigger at higher temperatures and age time. The
τdv trends with temperature variation for fresh and age times
are also captured by [4] and [6] using different temperature
configurations. Fig. 3 shows frequency degradation data for
the 51 RO with the same simulated temperatures as in Fig. 2,
at 20◦C the f after 2 years is 17.33%, 4 years is 21.35%, 6
years is 23.62%, 8 years is 26.02%, 10 years is 27.33%, and
12 years is 28.65%, whereas at 80◦C the f after 2 years is
28.04%, 4 years is 33.91%, 6 years is 37.24%, 8 years is 41%,
10 years is 43.17%, and 12 years is 45.48% based on (5).

Fig. 3. 51-stage RO frequency degradation over 12 years.

%f=
Freshf −Agedf

Freshf
× 100 (5)

It can be seen clearly that the τdv is more sensitive to
temperature and provides higher ∆τdv compared with the f ,
and therefore, a better aging detector. For example, after 12
years at 20◦C, ∆f is 28.65% and ∆τdv is 75.12% almost
2.62 times increase, whereas at 80◦C, ∆f is 45.48% and
∆τdv is 229.98% almost 5.06 times increase. Before pro-
ceeding with the ML aging estimation model, Monte Carlo
(MC) simulations were also performed to account for process
variation (PV) when measuring the discharge time within RO
(intra-die PV) and between ROs (inter-die) to avoid age mis-
prediction when the ML model is deployed at the advance
stages as detailed in Algorithm 1 steps. The PV simulations
were configured for intra-die and inter-die PVs using 800
MC permutations for each individual temperature of the three
representative temperature 20◦C, 40◦C, and 60◦C with a total



of 4800 MC permutations. Results are reported in the scatter
samples as can be seen from Fig. 4 and Fig. 5 for the 51-
stage RO Gaussian distribution with standard deviations (σ),
±3 process variations.

Fig. 4. 51-stage RO τdv inter-die process variation results at 20◦C to 60◦C.

In Fig. 4, at 20◦C, the mean (µ) is 10.67ns, the standard
deviations (σ) is 810.6ps and with a deviation of 7.60%, 40◦C
µ is 9.40ns, σ is 1.19ns and with a deviation of 12.66%, and at
60◦C µ is 7.67ns, σ is 1.31ns and with a deviation of 17.08%.
In contrast, in Fig. 5, at 20◦C, the µ is 10.81ns, σ is 385ps
and with a deviation of 3.56%, 40◦C µ is 9.42ns, σ is 539.1ps
and with a deviation of 5.72%, and at 60◦C µ is 7.72ns, σ is
596.8ps and with a deviation of 7.73%. Computing PVs impact
on device parameters along with operating conditions (i.e.
temperature) before using the data set to train the ML model
should improve the model age estimation accuracy because
different versions of IC will behave differently.

Fig. 5. 51-stage RO τdv intra-die process variation results at 20◦C to 60◦C.

B. Machine Learning Aging Estimation Results

The machine learning model used in this work is trained
with a specific 22-nm CMOS technology provided by Glob-
alFoundries. However, this can be ported to any technology
node and circuitry design by following the steps depicted in
Algorithm 1. The data is collected from 51-RO based on
GF 22-nm, working continuously over the simulation time
of 12 years with a total of 252 data points. The RO size
was chosen as proposed in [4], [5] and it can be selected
from the manufacturing process monitors in modern circuits

[8]. The simulation provides the aging numbers under six
temperatures, where four are used as the training data: 20◦C,
40◦C, 60◦C, and 80◦C, whereas 25◦C and 50◦C are used
as the testing data for the proposed machine learning. The
generation of an estimator model is carried out by support
vector regression (SVR), known to have a good performance
in local minima [19], [20]. The Gaussian Kernel is used for the
training of SVR, which has demonstrated to perform well for
similar data set, employing the standard optimisation method
of hyper-parameters described in [26], the values used are: Box
Constraint = 294.27, Kernel Scale = 1.87 and Epsilon = 0.003.
The training data for the SVR is an array constructed with
temperature, RO output discharge time, RO output frequency
and aging, where the aging is considered as the target to
estimate.

Fig. 6. Estimation surface and training Data.

The results can be observed in Fig. 6, where the estimation
surface is constructed with response values generated by the
trained SVR, which practically encloses all training and testing
data points. This means that estimator model is capable to
cover any neighbour data around the provided input. The figure
reports the aging numbers for each combination of discharge
time and output frequency from the 51-stage ring oscillator.
The training data is presented as a reference for four repre-
sentative temperatures, starting with 20◦C in green colour, and
varying these colours towards the red until 80◦C. The testing
data is shown in light blue colour for two temperatures, 25◦C
and 50◦C. These data points demonstrate the decreasing trend
of the frequency in Fig. 3 and the increment of the discharge
time reported in Fig. 2. In addition the estimated data of aging
is presented in a surface, which is the estimation provided by
SVR, when using all training data. This surface has colours
from blue to yellow, with the former representing the fresh
time and the yellow part being the aging time of 12 years.

Furthermore, Fig. 7 presents the accuracy of aging estima-
tions with given testing data (25◦C and 50◦C), demonstrating
a high accuracy with the mean (µ) equal to 0.01 years (3.6
days) and a standard deviation (σ) of ±0.10 years (±36
days). Therefore, based on the 3 sigma rule for a normal
distribution, when any randomly selected set of testing data
point (temperature, discharge time, and frequency) is used as
input of the aging estimator model, there is a probability of
68% (1-σ) that the deviation will be as small as ±36 days,



with the rest of cases falling into ±108 days (3-σ) of deviation.
Our future work will use additional data to further validate our
proposed SVR model to increase aging estimation accuracy
and cover the impact of process variation as shown in Fig. 4
and Fig. 5.

Fig. 7. Normal distribution results of aging estimation deviation.

VI. CONCLUSION

The semiconductor industry faces the challenge of recycled
and remarked ICs, which threatens the security and reliability
of electronic devices. Legalising and re-utilising recycled ICs
with lifetime assurance under operating conditions should
reduce recent global chips shortage. This paper proposes a
technique to estimate aging of CMOS ICs, using a machine
learning (ML) algorithm. The training data of the ML is the
working temperature, τdv and f induced by BTI and HCI.
This data is obtained from Cadence tools implementing 51
stage ring oscillator, using 22-nm CMOS technology library
and aging model provided by GlobalFoundries. The selected
ML algorithm is the support vector regression (SVR), known
to have a reliable performance in estimating time-series data.
The training process of SVR is undertaken over a 12 years
period with four representative temperatures of 20◦C, 40◦C,
60◦C, and 80◦C. The testing of the trained model is conducted
with two temperatures, i.e. 25◦C and 50◦C. The results show
the aging estimation as a normal distribution with the mean
(µ) equal to 0.01 years (3.6 days) and a standard deviation (σ)
of ±0.1 years (±36 days). This proposal paves the way for a
cost-effective on-chip solution to estimate IC age for security
and reliability applications.
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