
Towards the 5/6-Density Conjecture
of Pinwheel Scheduling ∗

Leszek Gąsieniec† Benjamin Smith‡ Sebastian Wild§

November 3, 2021

Abstract
Pinwheel Scheduling aims to find a perpetual schedule
for unit-length tasks on a single machine subject to given
maximal time spans (a.k.a. frequencies) between any two
consecutive executions of the same task. The density of
a Pinwheel Scheduling instance is the sum of the inverses
of these task frequencies; the 5/6-Conjecture (Chan and
Chin, 1993) states that any Pinwheel Scheduling instance
with density at most 5/6 is schedulable. We formalize the
notion of Pareto surfaces for Pinwheel Scheduling and exploit
novel structural insights to engineer an efficient algorithm
for computing them. This allows us to (1) confirm the 5/6-
Conjecture for all Pinwheel Scheduling instances with at most
12 tasks and (2) to prove that a given list of only 23 schedules
solves all schedulable Pinwheel Scheduling instances with at
most 5 tasks.

1 Introduction
An instance of the Pinwheel Scheduling problem
is defined by k positive integer frequencies A =
(a1, a2, . . . , ak), a1 ≤ a2 ≤ · · · ≤ ak, and is solved by pro-
ducing a valid Pinwheel schedule (if one exists, i.e., if the
problem is schedulable), or by stating that no such sched-
ule exists. A (Pinwheel) schedule S∞ = s1s2 . . . is an in-
finite sequence over [k] = {1, . . . , k}; it is valid (for A) if
every task i is scheduled at least every ai days. Formally,
any contiguous subsequence st . . . st+ai−1 of length ai

contains at least one occurrence of i, for i = 1, . . . , k.
In general, deciding whether a schedule exists for

a Pinwheel Scheduling instance A is NP-hard; (see
Section 1.1 for a thorough discussion of the complexity
of the problem).

The density of a Pinwheel Scheduling instance
A = {a1, . . . , ak} is d = d(A) =

∑k
i=1 1/ai. It is easy to

see that d(A) ≤ 1 is a necessary condition for A to be
schedulable. Any A with d(A) ≤ 1/2 can be scheduled
by rounding all frequencies down to the nearest power of
2 and assigning days greedily. This “density threshold”,
i.e., a value d∗ so that every instance with d ≤ d∗ is
schedulable, was successively improved in a sequence

∗An extended version including proofs is available online:
https://arxiv.org/abs/2111.01784

†U. of Liverpool, UK, l.a.gasieniec @ liverpool.ac.uk
‡U. of Liverpool, UK, b.m.smith @ liverpool.ac.uk
§U. of Liverpool, UK, sebastian.wild @ liverpool.ac.uk

of papers from d∗ = 0.5 to d∗ = 0.6 [3], d∗ = 0.7 [4],
and finally d∗ = 0.75 in 2002 [8]. Since the Pinwheel
Scheduling instance (2, 3,M) is not schedulable for any
M , d∗ = 5/6 = 0.83 is the best we can hope for, and
Chan and Chin conjectured in 1993 that this is tight:

Conjecture 1.1. (5/6 Conjecture [3]) Every Pin-
wheel Scheduling instance with density d ≤ 5

6 is schedu-
lable.

No further progress on the gap between these general
upper and lower bounds has been made for almost two
decades.

We confirm Conjecture 1.1 for all Pinwheel Sched-
uling instances with k ≤ 12 tasks. This vastly expands
recent work by Ding [6], which achieved the same for up
to 5 tasks using exhaustive manual case analysis. The
larger number of tasks substantially strengthens the con-
fidence in the 5/6-conjecture since these instances are a
rich and diverse class of Pinwheel Scheduling problems,
and extending well beyond smaller, simpler cases.

Both [6] and this work are based on the observation
that the infinitely many Pinwheel Scheduling instances
with a fixed number k of tasks actually fall into only a
finite number of equivalence classes w.r.t. schedulability:
the Pareto surfaces introduced in Section 3. Our
works vastly differ in the methodology for finding these:
Ding manually evaluates all possibilities, justifying
independently for each possible case that it either has
density above 5

6 or admits a schedule. We instead devise
general algorithms to efficiently automate this task; our
main achievement here is to substantially reduce the
effort to verify the completeness of a Pareto surface: for
k = 11, from tens of thousands of calls to an oracle for
an NP-hard problem to just 37 such calls.

Our result draws on a combination of structural in-
sights about Pinwheel Scheduling and heavily engineered
implementations of algorithms. By systematically ex-
tending smaller instances to more tasks, an iterative
algorithm computes the Pareto surfaces for all instances
with up to k tasks with overall dramatically fewer oracle
calls than the method of [6] for a fixed value k.

Copyright © 2022
Copyright for this paper is retained by authors

https://arxiv.org/abs/2111.01784

We further extend Ding’s methodology to the set of
all Pinwheel Scheduling instances with k tasks (instead
those of density d ≤ 5

6). We show that for any k, there
is a finite set Ck of schedules, so that any instance
with k tasks can be solved if and only if it can be
solved by a schedule from Ck, and we give certifying
algorithms for computing Ck. Their running time grows
very rapidly with k, but we give Ck up to k = 5 (see
Table 1). The highly efficient backtracking algorithms
for general Pinwheel Scheduling instances developed as
part of this research are of independent interest, both
for Pinwheel Scheduling itself, as well as for the related
Bamboo Garden Trimming problem [9].

Outline. The remainder of this first section gives
a more comprehensive discussion of related work and
the rest of the paper is organized into a theory part and
an engineering part. We first introduce basic notions
about Pinwheel Scheduling in Section 2, followed by the
main theoretical results in Section 3. Section 4 describes
our engineered implemented oracles for single Pinwheel
Scheduling instances, which determine feasibility and
find schedules; Section 5 then describes our implemen-
tation of the Pareto-surface computation. In Section 6,
we report on a running-time study, comparing our al-
gorithms and analyzing their efficiency. We conclude
with a summary of results and future work in Section 7.
Some proofs are deferred to the appendix of the extended
online version.

1.1 Related Work. The Pinwheel Scheduling prob-
lem was originally proposed by Holte et al. [11] in 1989
in the context of assigning receiver time slots to satel-
lites with varying bandwidth requirements which share
a common ground station. They introduce the notion of
density, show that d > 1 implies infeasibility, and give
the algorithm to schedule any instance with d ≤ 1

2 . A
sequence of papers [3, 4, 8] extended this result to all
instances of density at most 3

4 .
A second line of research aims to confirm Conjec-

ture 1.1 for restricted classes of instances. Efficient
algorithms for computing schedules are sometimes also
considered; here the complication that exponentially
long periodic schedules can be necessary lead to the
introduction of “fast online schedulers” as output, i.e.,
a simple program that can produce the schedule on de-
mand [11]. Closest to our work is a recent article by
Ding [6], who confirmed Conjecture 1.1 for instances
with k ≤ 5 tasks through manually determining a Pareto
trie (in our terminology) of instances with d ≤ 5

6 .
An orthogonal line of work considered all Pinwheel

Scheduling instances with a fixed number of distinct
values for frequencies (but an arbitrary number of tasks):
first for 2 distinct frequencies [11, 12] and later for 3 [14].

In each case, the approaches taken seem unsuitable for
extension beyond the scenarios studied therein.

Various generalizations of Pinwheel Scheduling have
also been studied, for example dropping the requirement
of unit-length jobs [10, 7].

The complexity status of Pinwheel Scheduling has
gained some notoriety in the literature. Holte et al. [11]
showed that the problem is in PSPACE; whether it is
in NP is not obvious since exponentially long periodic
schedules can be necessary, so a standard approach of
nondeterministically guessing a witness for feasibility
does not have polynomial runtime. Holte et al. further
stated that the problem is NP-hard in compact encoding,
i.e., when all tasks of the same frequency are encoded
as a pair of integers (the frequency and the number of
such tasks) but they postponed the proof to a follow-up
article that seems not to have been published.

Let Exact-Pinwheel Scheduling be the variant of
the Pinwheel Scheduling problem where a schedule is
only valid if two consecutive executions of task i are
exactly ai days apart. Bar-Noy et al. [1, Thm. 13] show
that this problem is NP-complete (they refer to it as
Periodic Maintenance Scheduling) by a reduction from
Graph Colouring. Later, Bar-Noy et al. [2] observe
that we can also reduce Exact-Pinwheel Scheduling
to the special case of standard Pinwheel Scheduling
of dense instances by filling up an instance A with
exact frequencies a1, . . . , ak with as many tasks of exact
frequency lcm(a1, . . . , ak) as needed to reach density 1.
Finally, on dense instances, exact and standard (upper-
bound) frequencies are equivalent. Together, this proves
that Pinwheel Scheduling in compact encoding is indeed
NP-hard.

In an arxiv preprint from 2014, Jacobs and
Longo [13] strengthened these results to prove NP-
hardness for Pinwheel Scheduling in standard represen-
tation, i.e., where the frequencies are simply encoded
as a sequence. They also claim a reduction to instances
with maximal period length in nO(log n log log n), indicat-
ing that even pseudo-polynomial algorithms for Pinwheel
Scheduling are unlikely to exist. These results do not
seem to appear in a peer-reviewed venue.

To our knowledge, known reductions only lead to
instances of density d = 1; whether Pinwheel Scheduling
remains NP-hard for instances with density d < 1 seems
yet to be determined.

2 Preliminaries
In this section, we define some core notation used
throughout this paper, and we collect some facts about
Pinwheel Scheduling. Most of these have appeared in
previous work, but the proofs are so short that we prefer
to give a self-contained presentation.

Copyright © 2022
Copyright for this paper is retained by authors

It will be convenient to slightly extend schedules to
also allow a special symbol “–”, which means that no
task is executed on that day. We refer to these days as
holidays or gaps in the schedule. Clearly, any holidays
in a valid schedule could be filled with an arbitrary task
without affecting its validity.

If a Pinwheel Scheduling instance A = (a1, . . . , ak)
satisfies ak = ak−1 = · · · = ak−`+1 6= ak−`, we call `,
the number of tasks of equal maximal frequency, the
symmetry of A.

We call A dense if its density is d = 1.
Let A = (a1, . . . , ak) be a Pinwheel Scheduling

instance with valid infinite schedule S∞. For any day
t in a schedule S∞, the state, X = X(t), of a Pinwheel
Scheduling instance is a vector X = (x1, . . . , xk), where
xi is the number of days in the schedule since the last
occurrence of i, xi = t −max{t′ ≤ t : si(t′) = i} ∪ {0}.
Note that since S∞ is valid, all states it reaches must
also be valid (0 ≤ xi < ai, for i ∈ [k]). This condition
also implies that there are only finitely many valid states.

This notion of states allows us to cast Pinwheel
Scheduling to a graph problem. Define the state graph
GA = (VA, EA) as the directed graph with all possible
states as vertices, i.e., VA = {(x1, . . . , xk) : ∀i ∈ [k] 0 ≤
xi < ai}, and an edge (X,Y) ∈ EA

1. if ∃j ∈ [k] :
(
yj = 0 ∧ ∀i ∈ [k] \ {j} : yi = xi + 1

)
(task edges),

2. if ∀i ∈ [k] : yi = xi + 1 (gap edges), or

3. if X = X0 6= Y where X0 = (0, . . . , 0) (start edges).

Then A is schedulable if and only if GA contains an
infinite walk starting at X0 = (0, . . . , 0). Since GA is
finite and we have the start edges, A is schedulable if
and only if GA contains a (directed) cycle. We call a
state sustainable if it can be revisited infinitely often by
some valid schedule (i.e., when it is part of a directed
cycle in GA).

It further follows from the state-graph representation
that if A is at all schedulable, it is so by a periodic
schedule, i.e., there is a schedule S = s1s2 . . . and
an integer p, so that for all t we have st = st + p.
Unless explicitly mentioned in the following we assume
schedules to be periodic and we represent them by the
finite periodic part, S = s1 . . . sp. Since p corresponds to
the length of a cycle in GA, we can always find S with
p = |S| ≤ |VA| =

∏k
i=1 ai (cf. [11]) if A is schedulable.

Given two Pinwheel Scheduling instances A =
(a1, . . . , ak) and B = (b1, . . . , bk) (with the same number
of tasks k), we say that A dominates B, written A ≤ B,
if ∀i ∈ [k] : ai ≤ bi. Obviously, any schedule that is
valid for A is also valid for B. Moreover, A ≤ B implies
d(A) ≥ d(B).

Instance Schedule

(1) (1)

(2, 2) (1, 2)

(2, 4, 4) (1, 2, 1, 3)
(3, 3, 3) (1, 2, 3)

(2, 4, 8, 8) (1, 2, 1, 3, 1, 2, 1, 4)
(2, 6, 6, 6) (1, 2, 1, 3, 1, 4)
(3, 3, 6, 6) (1, 2, 3, 1, 2, 4)
(3, 4, 5, 8) (1, 2, 4, 1, 3, 2, 1, 3)
(3, 5, 5, 5) (1, 2, 3, 1, 4, 2, 1, 3, 4)
(4, 4, 4, 4) (1, 2, 3, 4)

(2, 4, 8, 16, 16) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5)
(2, 4, 12, 12, 12) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 5)
(2, 6, 6, 12, 12) (1, 2, 1, 3, 1, 4, 1, 2, 1, 3, 1, 5)
(2, 6, 8, 10, 16) (1, 2, 1, 3, 1, 5, 1, 2, 1, 4, 1, 3, 1, 2, 1, 4)
(2, 6, 10, 10, 10) (1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 3, 1, 2, 1, 4, 1, 5)
(2, 8, 8, 8, 8) (1, 2, 1, 3, 1, 4, 1, 5)
(3, 3, 6, 12, 12) (1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 5)
(3, 3, 9, 9, 9) (1, 2, 3, 1, 2, 4, 1, 2, 5)
(3, 4, 5, 14, 14) (1, 2, 3, 1, 4, 2, 1, 3, 1, 2, 5, 1, 3, 2)
(3, 4, 6, 10, 16) (1, 2, 3, 1, 4, 2, 1, 3, 1, 2, 4, 1, 3, 2, 1, 5)
(3, 4, 6, 11, 11) (1, 2, 3, 1, 5, 2, 1, 3, 2, 1, 4)
(3, 4, 8, 8, 8) (1, 2, 4, 1, 5, 2, 1, 3)
(3, 5, 5, 9, 9) (1, 2, 5, 1, 3, 2, 1, 4, 3)
(3, 5, 6, 7, 12) (1, 2, 4, 1, 3, 2, 1, 4, 2, 1, 3, 5)
(3, 5, 7, 7, 9) (1, 2, 3, 1, 4, 2, 1, 5, 3, 1, 2, 4, 1, 3, 2, 1, 5, 4)
(3, 5, 7, 8, 8) (1, 2, 3, 1, 4, 2, 1, 5, 1, 3, 2, 1, 4, 5)
(3, 6, 6, 6, 6) (1, 2, 3, 1, 4, 5)
(4, 4, 4, 8, 8) (1, 2, 3, 4, 1, 2, 3, 5)
(4, 4, 5, 7, 12) (1, 2, 3, 4, 1, 2, 5, 3, 1, 2, 4, 3)
(4, 4, 6, 6, 6) (1, 3, 2, 4, 1, 5, 2, 3, 1, 4, 2, 5)
(4, 5, 5, 6, 10) (1, 2, 3, 5, 1, 4, 2, 3, 1, 4)
(4, 5, 5, 7, 7) (1, 2, 5, 3, 1, 4, 2, 1, 3, 5, 2, 1, 4, 3)
(5, 5, 5, 5, 5) (1, 2, 3, 4, 5)

Table 1: The Pareto surfaces Ck for k ≤ 5.

We call a schedulable Pinwheel Scheduling instance
A loosely schedulable if it admits a periodic schedule with
a gap (i.e., when GA has a cycle containing a gap edge);
otherwise A is tight / tightly feasible. For example, (2, 4)
is loosely schedulable by (1, 2, 1,−), whereas (2, 3) is
tightly feasible despite having density 5/6 < 1; observe
that (2, 3, ∗) is not schedulable for any value of ∗.

Proposition 2.1. Given a Pinwheel Scheduling in-
stance A = (a1, . . . , ak), it can be decided whether A
is infeasible, tightly schedulable or loosely schedulable us-
ing O(k

∏k
i=1 ai) time and space. Moreover, if it exists,

a corresponding schedule can be computed with the same
complexity and has length at most

∏k
i=1 ai.

Copyright © 2022
Copyright for this paper is retained by authors

Proof. We construct the state graph GA and compute
the strongly connected components of GA. Note that GA

contains a directed cycle iff there is a strong component
containing at least two vertices; moreover, GA contains
a directed cycle containing a gap edge iff there is a gap
edge with both endpoints in the same strong component.
Both the computation of strong components and testing
these two conditions can be done in time linear in the
size of GA. We have |VA| =

∏k
i=1 ai vertices in GA.

Since each vertex apart from X0 in GA has at most k
outgoing edges and X0 has at most |VA| outgoing edges,
|EA| ≤ (k + 1)|VA|. A schedule can be found using
another depth-first search.

We point out that the algorithm sketched in the
proof above is mostly of theoretical interest due to its
prohibitive space cost. We present several alternatives
in Section 4.

2.1 Small Frequency Conjecture. We propose be-
low two new conjectures about the structure of schedu-
lable Pinwheel Scheduling instances. These arose from
observations made while engineering our algorithms, but
are of independent interest. We list evidence in their
support in Section 5.2.

Conjecture 2.2. (2k Conjecture)
Let A = (a1, . . . , ak) be a loosely schedulable Pinwheel
Scheduling instance. Then A admits a schedule S with
a holiday at least every 2k days.

Conjecture 2.3. (Kernel Conjecture)
Let A = (a1, . . . , ak) be a schedulable Pinwheel Schedul-
ing instance. Then there exists another Pinwheel Sched-
uling instance A′ = (a′1, . . . , a′k) such that:

(a) A′ is also schedulable,

(b) A′ dominates A, A′ ≤ A, and

(c) a′k ≤ 2k−1.

We show that these two conjectures are indeed equivalent.

Proposition 2.4. (Equivalent conjectures)
Conjecture 2.2 and Conjecture 2.3 are equivalent.

Proof. First assume Conjecture 2.2 holds true. Let A =
(a1, . . . , ak) be an arbitrary schedulable instance. If ak ≤
2k−1, we can set A′ = A; so assume that the last ` ≥ 1
frequencies are ak, ak−1, . . . , ak−`+1 > 2k−1. Define
B = (a1, . . . , ak−`). B is loosely schedulable since we can
use the same schedule as for A and replace all occurrences
of i > k − ` by “–”. By Conjecture 2.2, B then admits a
gapped schedule S with a gap every 2k−` days. We claim

that we can now set A′ = (a1, . . . , ak−`, 2k−1, . . . , 2k−1),
i.e., truncate all frequencies exceeding 2k−1 at 2k−1 and
remain schedulable. We use S and assign the ` tasks
k − `+ 1, . . . , k in a Round-Robin fashion to the gap in
S. This achieves frequency at most ` · 2k−`, for each of
these tasks. We check indeed ` · · · 2k−` ≤ 2k−1, for all k
and ` ∈ N.

Now conversely assume that Conjecture 2.3 holds
true. Let A = (a1, . . . , ak) be loosely schedulable. Let S
be a gapped schedule for A and set g to the frequency
of the gap in S. Define B = (b1, . . . , bk+1) with bi = ai

for i ∈ [k] and bk+1 = max{g, ak}. B is schedulable
since we can replace the gap in S by k + 1 and obtain
a schedule for B. Hence by Conjecture 2.3, there is a
schedulable instance B′ = (b′1, . . . , b′k+1) with b′i ≤ bi

and b′i ≤ 2k. Let S′ be a schedule for B′. By replacing
k + 1 in S′ by “–”, we obtain a valid gapped schedule
for A and since b′k+1 ≤ 2k, the gap frequency in this
schedule is at most 2k.

In light of this, the evidence in support of Con-
jecture 2.3 that we provide in in Section 5.2 equally
supports Conjecture 2.2.

3 The Pareto Surface
We now derive our main new structural tool for analyzing
Pinwheel Scheduling: the notion of Pareto surfaces. A
special case of such a Pareto surface is (implicitly) used
in [6] (without developing its general applicability).

To this end, we need some more vocabulary. It
is often helpful to reduce Pinwheel schedules to their
recurrence vectors – the Pinwheel Scheduling instance
solved by the schedule which minimizes ai for all i. To
this end, we call a tuple consisting of a schedule and
its recurrence vector a scheduled Pinwheel Scheduling
problem. Let A be a (finite or infinite) set of Pinwheel
Scheduling instances. We say that a (finite or infinite)
set of scheduled Pinwheel Scheduling problems S solves
A if, for every problem A ∈ A, there is some S ∈ S so
that S includes a valid schedule for A. This is equivalent
to saying that every problem in A is dominated by
some problem in S. A Pareto surface C = C(A) for a
set of Pinwheel Scheduling instances A is an inclusion
minimal set of scheduled Pinwheel Scheduling problems
that solves A, i.e., for every A ∈ A there is C ∈ C
with C ≤ A. We use inclusion minimal to mean that
no member of a set can be be removed from that set
without violating its defining property, i.e., for every C
in C there most be some A that is not solved by any other
member of C. Note that while we consider only finite
values of C(A), A need not be finite, per Theorem 3.1.

Copyright © 2022
Copyright for this paper is retained by authors

Figure 1: The portion of the Pareto trie T4 for k = 4 that is explored by the traversal from Section 3.1. Nodes
show the corresponding Pinwheel Scheduling instance or instances. The black root node is the empty Pinwheel
Scheduling problem; blue nodes are tightly schedulable; orange nodes are loosely schedulable; red nodes are
unschedulable and green nodes are schedulable, complete and form the Pareto surface. Solutions to the green
nodes are shown in Table 1.

The Pareto surfaces of two families of sets of
Pinwheel Scheduling instances are of particular interest:
Pk, by which we denote the class of all Pinwheel
Scheduling instances with k tasks, and Pk,d, by which we
denote the Pinwheel Scheduling instances with k tasks
and density at most d. The main result of this section
is the following theorem.

Theorem 3.1. (Finite Pareto surfaces)
For every k ∈ N, there is a finite set of periodic schedules
such that every Pinwheel Scheduling instance with k tasks
has a solution if and only if it has a solution in that
set. Moreover, there is a unique inclusion-minimal such
set Ck.

Before proceeding with the proof of this theorem in
the following two subsections, let us note a complexity-
theoretic consequence of this result.

Corollary 3.2. (Pinwheel is FPT)
Pinwheel Scheduling is fixed-parameter tractable with
respect to the number of tasks k.

Note that the input size N of a Pinwheel Scheduling
instance can be substantially larger than k since it has
to encode the frequencies (say, in binary); frequencies
at least exponential in k are necessary even for just the
instances in Ck, and in general N is not bounded in
terms of k.

Proof. [Corollary 3.2] We give an algorithm deciding
any instance A ∈ Pk in time O(N + f(k)) for N the
encoding length of A and f some computable function;
this implies the claim. By Theorem 3.1, all of Pk is solved
by Ck. Let m(k) be the maximum over all distances
between consecutive occurrences of all task in any of
these solutions. We first compute Ck and m(k); as Ck

only depends on k, the cost to do so is bounded by
some function g(k). Read the input A = (a1, . . . , ak) (at

cost O(N)), and replace any frequency ai > m(k) with
m(k), producing a new Pinwheel Scheduling instance
A′ = κ(A) of (encoding) size N ′ = O(k logm(k)). Now
A′ is schedulable iff A is schedulable, because any S ∈ Ck

solves A′ iff it solves A. Comparing A′ with all S ∈ Ck

for some cost h(k) determines whether there exists a
schedule to A, so the schedulability of any input A can
be determined for a cost O(g(k) +N + h(k)).

Remark 3.3. (Kernel size) The construction above
indeed shows that Pinwheel Scheduling has an FPT-
kernel of size O(k log(m(k))); assuming Conjecture 2.3,
this reduces to O(k2).

3.1 The Pareto Trie. Towards the proof of the first
claim of Theorem 3.1, we describe an algorithm to
compute the Pareto surface Ck for a given k, based
on an oracle for deciding whether a given Pinwheel
Scheduling instance is infeasible, tightly schedulable or
loosely schedulable (cf. Proposition 2.1). We describe
our implementation of such an oracle in Section 4.

This algorithm conceptually explores an (infinite)
trie Tk for Pk, where each node is the Pinwheel Sched-
uling instance that is a prefix of all of its descendants:
the root of Tk corresponds to the empty instance with
no tasks at all. It has infinitely many children, reached
through edges labeled 1, 2, 3, In general, every node
v at depth less than k has infinitely many children; if
v is reached from its parent by an edge labeled a, v
has children a, a + 1, a + 2, We identify a node v
in the trie with the sequence of edge labels on the path
from the root to v. In this way, each node v at depth
` corresponds to a Pinwheel Scheduling instance on `
tasks.

Our algorithm explores Tk using a depth-first search.
Since Tk has depth k, we can only descend in the
tree k times; however, we have to show that we only
need to explore finitely many children of any node.
Suppose we are currently visiting a node v at depth

Copyright © 2022
Copyright for this paper is retained by authors

` < k, corresponding to a Pinwheel Scheduling instance
A = (a1, . . . , a`). If A is infeasible or tightly schedulable,
all of v’s descendants are infeasible; in particular, none of
the descendants at depth k – corresponding to extensions
of A to instances in Pk – is schedulable. So we need not
visit any of them.

If A is loosely schedulable, some descendant at
depth k is guaranteed to be feasible: Let S be a
gapped schedule for A with some gap frequency g.
Then B = (a1, . . . , a`, (k − `)g, . . . , (k − `)g) – i.e., A
with k − ` copies of (k − `)g appended – is solved by
aschedule S′ obtained from k − ` copies of S, with the
gap replaced by ` + 1, . . . , k, respectively. Hence, we
need not visit any child of v with label larger than
(k − `)g (they are all feasible and dominated by B),
and in particular, we only visit finitely many children
of v. For later reference, we call the smallest frequency
f so that (a1, . . . , a`, f, . . . , f) ∈ Pk is schedulable the
Round Robin frequency of A with respect to k. The
root can be treated as a loosely schedulable node with
a gap frequency g = 1, depth ` = 0, and Round Robin
frequency k. An example for the Pareto trie for k = 4 is
shown in Figure 1.

As the Pareto trie is searched, an inclusion minimal
subset of its leaves is maintained – after the search is
complete, this will be Ck.

Remark 3.4. (Periodic solution length) We can
prove a bound on m(k), the largest frequency in any
instance of Ck, using the trie and Proposition 2.1. For
a loosely feasible instance A = (a1, . . . , a`), we can
always find a schedule of length ≤∏`

i=1 ai with at least
one gap, so g ≤ ∏`

i=1 ai. Hence, A’s Round Robin
frequency f is f ≤ (k− `)∏`

i=1 ai, which gives an upper
bound for all expansions a`+1 to A that can occur in Ck.
We hence always have m(k) ≤ mk, where m1 = 1,
m`+1 = (k − `)

∏`
i=1 mi. Since mk = Ω(22k), this

proven upper bound for m(k) is doubly exponential in k,
whereas Conjecture 2.2 suggests the singly exponential
bound m(k) ≤ 2k−1 is sufficient. m(k) ≥ 2k−1 is also
clearly necessary, so assuming Conjecture 2.2 would
completely settle the question of the worst-case periodic
solution length.

3.2 Uniqueness. Next we prove that Ck is unique.

Lemma 3.5. (Characterization Pareto surface)
A ∈ C(Pk) iff A is schedulable and decreasing any one
component of A by 1 makes the instance infeasible.

Proof. Let A ∈ C(Pk) – it is then schedulable by defi-
nition. Define Ai− = (a1, . . . , ai−1, ai − 1, ai+1, . . . , ak).
Assume towards a contradiction that there is a task i ∈

[k] so that Ai− is also schedulable. Since Ai− is schedu-
lable there must be some B ∈ C(Pk) with B ≤ Ai− and
B schedulable. But then also B ≤ Ai− ≤ A, so anything
dominated by A is also dominated by B and we can
remove A from the Pareto surface; a contradiction.

Let conversely A be schedulable and for all i ∈ [k],
Ai− is infeasible. By definition of C(Pk), there is a
schedulable instance B = (b1, . . . , bk) ∈ C(Pk) with
B ≤ A. Assume towards a contradiction that there is an
index i ∈ [k] with bi < ai; then we have B ≤ Ai−. Since
Ai− is already infeasible, so must B be; a contradiction.

The uniqueness claim from Theorem 3.1 now follows
immediately from Lemma 3.5: C(Pk) consists of exactly
those instances that satisfy the condition of that lemma.

Note that Pk,d does not in general have a unique
Pareto surface; for example, P2,2/3 has Pareto surfaces
{(2, 2)} and {(2, 6), (3, 3)}. Both dominate all instances
with density at most 2/3 but fail to do so after deleting
any one element of the sets, meeting the definition for
C(Pk,d). In this instance, the former (C2) dominates the
latter but that does not disqualify it as a Pareto surface.
Clearly Ck is also a Pareto surface for Pk,d, so finite
C(Pk,d) always exist.

4 Engineering Pinwheel Scheduling
In this section, we introduce our backtracking algorithm
for general Pinwheel Scheduling instances, with three
consecutive stages building on each other: the Naïve
algorithm, the Optimised algorithm, and finally the
Foresight algorithm. The effects of each optimisation
are discussed in Section 6. Some correctness proofs are
deferred to the appendix of extended online version, and
the code is available online [15].

4.1 The Naïve Algorithm. Each of the three al-
gorithms presented here use a backtracking procedure
to assess the schedulability of Pinwheel Scheduling in-
stances. They form all possible solutions into a trie of
candidate solution prefixes (Sc), which they explore using
four basic operations:

1. Push, which appends the next unexplored letter
to Sc.

2. Pop, which deletes the last letter from Sc.

3. Failure testing, which tests whether the current
state is valid.

4. Success testing, which tests whether the current
state is known to be sustainable.

Copyright © 2022
Copyright for this paper is retained by authors

Whenever a node is reached, they test each for
failure, then for success. If a node is invalid, the pop
operation is employed until there is an unexplored letter
to push. Nodes pass the success test if their state is
the same as some ancestral node – the path from that
node to this node is a solution S. If a node is valid,
but not known to be sustainable the push operation is
again employed. A diagram of this procedure is shown
in the appendix of the extended online version, along
with several worked examples.

In the naïve algorithm, tasks are pushed in descend-
ing frequency order. In schedulable cases, this reduces
the observed length of failed candidate solutions at-
tempted before finding a viable schedule, thus reducing
success testing cost. This seemed to reduce overall cost
in many cases, probably because success testing is O(n2)
(where n is the length of the testable solution fragment –
naively length (Sc), but optimised in Section 4.2.3) and
failure testing is O(k). An example of this difference is
described in the appendix of the extended online ver-
sion. Note that the first move can be freely chosen, as
ultimately all tasks must be a part of the final schedule.

4.2 The Optimised Algorithm. The Optimised
algorithm expands the Naïve algorithm described above
with three improvements that remove repetitive and
symmetric sections of the search space and reduce the
cost of success testing.

4.2.1 Repetition. We first establish two simple prop-
erties when comparing different states. If we consider
two states of the system, X and X ′, then X is worse
than X ′ if no xi is less than the corresponding x′i and
some xi is greater than the corresponding x′i. Formally:
∀i : xi ≥ x′i and ∃i such that xi > x′i. X ′ is then
considered to be better than X.

Lemma 4.1. If some state X in a Pinwheel Scheduling
instance A is worse than another state X ′ in the same
instance, then any valid schedule for A starting in state
X is also a valid schedule for A starting in state X ′.

Lemma 4.2. If some state X is worse than another state
X ′ and there exists no valid schedule that starts at X ′
then there exists no valid schedule that starts at X.

Avoiding immediate repetitions which are not them-
selves solutions shrinks the search space without chang-
ing the schedulability of Pinwheel Scheduling problems.
This optimisation is based on the following observation.

Proposition 4.3. (Repetition) If an instance of
Pinwheel Scheduling A has a solution that contains an
immediately repeated strict subsequence (i.e., for some

sequence of letters r, a repetitive solution Sr exists, such
that Sr = . . . , r, r, . . . ∈ S and r is not a solution to A)
then there also exists a solution that does not contain
that immediately repeated strict subsequence.

The simplest exploitation of Proposition 4.3 consid-
ers the simplest possible repeated subsequence – single
character repetitions. Forbidding these has a small ben-
efit in unschedulable instances, namely reducing the
effective alphabet size by 1 as the last letter played
cannot be repeated.

In schedulable instances the observed effect was
larger, because of the order in which the trie is explored.
Due to fixed order conventions, immediately repetitive
additions to candidate solution prefixes are often the
first to be tried. If we divide the search space around
the first schedule found (S1), repetitive candidate
solution prefixes are over-represented before S1 and
thus removing them has a stronger effect on schedulable
instances.

4.2.2 Frequency Duplication. We call tasks in a
Pinwheel Scheduling instance A with the same values
of ai duplicates, as they are indistinguishable until
either task is performed (after this point they can be
distinguished by their xi values, which can never again
be identical). Naïvely, duplicate tasks are distinguished
by their order of appearance in A, but an alternative
method exists which exploits frequency duplication by
pruning identical subtrees.

Proposition 4.4. (Duplicates) If a Pinwheel Sched-
uling instance contains two tasks i 6= i′ with ai = a′i,
then it is schedulable when i is performed before i′ iff it
is schedulable when i′ is performed before i.

As having the same frequency is a transitive relation,
Proposition 4.4 obviously applies to instances with
more than two duplicate tasks. The algorithm can be
optimised by choosing one ordering of all duplicate tasks,
instead of naively exploring all orderings. While this
effect is limited in scope (many Pinwheel Scheduling
instances have no duplicates), it has a large effect on
instances which have many duplicates.

4.2.3 Minimum Solution Length. Each candidate
solution prefix Sc has a composition formula R, with
k components – each component ri representing the
number of instances of i in Sc. Let L be the length of
the candidate solution prefix, L is given by L =

∑n
i=1 ri.

For a candidate solution prefix to be sustainable, each
letter i must appear at least every ai letters, so over
the whole solution ri ≥ d L

ai
e. To calculate the minimum

value of L, Lmin, we start by setting ri = 1 for all i,

Copyright © 2022
Copyright for this paper is retained by authors

then increment ri for each i value until this condition is
simultaneously met for all i.

Lmin can be used to avoid unnecessary comparisons
in success testing in 2 ways:

1. Only comparing states which are Lmin apart, be-
cause no closer states can be identical.

2. Only performing success testing when length (S) ≥
Lmin.

The former reduces the cost of success testing
each node, while the latter reduces the number of
nodes which perform success testing. This effect is
significant because the cost of testing for success grows as
(length (S))2 while all other costs remain constant over
length (S). For a discussion of minimum solution lengths
in Pinwheel Scheduling instances with two distinct
numbers, including several minimum solution length
algorithms, see [12].

4.3 The Foresight Algorithm. This optimisation
modifies the Naïve failure testing process to gain more
information from a similar amount of work. Instead of
tracking state X(t), consider urgency U(t):

(4.1) ∀i, t : ui(t) = ai − xi(t)− 1

This requires a different procedure when a task
is performed (to perform task i, set ui = ai − 1)
and a different growing procedure (to grow V , set
ui(t + 1) = ui(t) − 1 for all i). The Naïve failure
testing procedure would test that ∀i : ui ≥ 0 but an
alternative failure testing procedure is now possible if
the urgency values of tasks are stored in ascending order
(∀i : ui ≤ ui+1):

Proposition 4.5. (Urgency) If an urgency state U
is schedulable, ∀i : ui ≥ i.

This can be used to detect failure up to to k days in
advance for little additional cost over the Naïve failure
testing method, reducing tree height. It can also be used
to force the execution of certain tasks on certain days:

Proposition 4.6. (Forcing) If a schedulable urgency
state U exists such that ∃i′ : ui′ = i′, then the task at
position i′ and all preceding tasks must be executed in
the next i′ days.

This can be used to greatly restrict branching and
hence tree breadth; if ∃i′ such that ui′ = i′ then the next
move must have i ≤ i′. This optimisation is compatible
with all three changes described in Section 4.2, and all
three are included in the final Foresight implementation.

4.4 Deciding Tight Feasibility. As introduced in
Section 2, the tightness of Pinwheel Scheduling instances
can be determined by testing for the existence of a sched-
ule containing at least one gap. This was implemented
using the Optimised algorithm in Section 4.2, by making
the default action from every position a holiday and
adding an extra testing step after a sustainable state
was found – searching the schedule that produced this
state for a holiday. If no gap is found in that schedule,
the search continued until a loose schedule was found or
it was demonstrated that no loose schedule can exist. In
principle, it would be possible to implement the Foresight
algorithm from Section 4.3 with gaps, but this would
have required a full re-implementation of Foresight – a
substantial time investment.

5 Engineering the 5/6 Surfaces
Our principal application of the algorithms from Sec-
tion 4 is the investigation of the 5

6 conjecture for low
k values. This section describes our algorithm for com-
puting a Pareto surface for C(Pk,5/6), code for which is
available online [15].

5.1 Core algorithm. We search the trie of Pinwheel
Scheduling problems introduced in Section 3.1 using the
depth first search procedure outlined in that section. The
search from a node at depth h begins by creating a child
with the smallest possible added frequency, then proceeds
until the subtrie of the new node is fully explored. If
a node has density d = 5

6 , it can have no descendants
and is fully explored – otherwise the depth first search
proceeds by fully exploring all children until each has a
descendent with a symmetry of k+1−h. This descendent
necessarily dominates all siblings seen after it in a depth
first search. As only nodes with a density d ≤ 5

6 need
be considered, denser nodes are ignored by this process.

We will outline several optimisations which introduce
denser problems that may be used to dominate problems
found by this search. To show that the 5

6 conjecture is
true for a certain value of k, we need to show that
no unschedulable Pinwheel Scheduling systems with
a density ≤ 5

6 exist for that value of k. That is, we
need to show that the set of all unschedulable Pinwheel
Scheduling systems with d ≤ 5

6 found when constructing
C(Pk,5/6) is the empty set.

5.2 Constructing the Pareto Surface. We could
consider the density restricted Pareto surface comprised
exclusively of members of Pk,5/6, but this would prevent
many useful optimisations. Instead, we require any
density restricted Pareto surface, consisting of a set of
solutions which solve all Pinwheel Scheduling systems
with a density ≤ 5

6 – that is, we allow our surface

Copyright © 2022
Copyright for this paper is retained by authors

to contain denser instances, so long as it remains
complete and no unschedulable Pinwheel Scheduling
systems with density ≤ 5

6 are found. This allows for
optimisations which use easily schedulable Pinwheel
Scheduling systems to dominate large classes of non-
trivially schedulable Pinwheel Scheduling systems with
density below 5

6 .

5.2.1 Frequency Capping. This optimisation
builds on Conjecture 2.3, which we eagerly assume to be
true here but then immediately check the validity of for
each instance generated. We cap the maximum ai value
of considered Pinwheel Scheduling instances at 2k−1.
This only lowers frequencies, so the capped Pinwheel
Scheduling instance dominates both the instance it
was created from and often many similar instances –
particularly when multiple frequencies are capped.

Because capping reduces frequencies, it raises den-
sities. To avoid a potential issue where the density of
a problem is below 5

6 before capping but above 5
6 after

capping, we replace Pk,5/6 with the similar and domi-
nant P∗k,5/6. This set includes all problems where either
d ≤ 5

6 and ∀i : ai < 2k−1 or which consist of a prefix
with density d ≤ 5

6 and a suffix where ∀i : ai = 2k−1.
Any unschedulable members of P∗k,5/6 would be coun-

terexamples to either Conjecture 1.1 or Conjecture 2.3;
which one would require future investigation. Both con-
jectures have proved true in all presently considered
instances.

5.2.2 Folding. This optimisation uses a pair of sim-
ple operations on Pinwheel Scheduling instances: fold-
ing and unfolding. The c-task folding of a Pinwheel
Scheduling instance A = (a1, . . . , ak) is the instance
B = (b1, . . . , bk−c+1) with k − c tasks with respec-
tive frequencies a1, . . . , ak−c and one task of frequency
bak−c+1/cc, i.e., B is obtained from A by replac-
ing the last c tasks by a single one with frequency
bak−c+1/cc. The c-wise unfolding of a Pinwheel Sched-
uling instance A = (a1, . . . , ak) at task i is the instance
B = (b1, . . . , bk+c−1), where B has k − 1 tasks of fre-
quencies a1, . . . , ai−1, ai+1, . . . , ak plus c tasks each with
frequency cai.

Note that unfolding does not alter density, whereas
folding never lowers density (but can substantially
increase it). Moreover, any schedule for A can be turned
into a schedule for a c-wise unfolding of A by repeating
the schedule c times, replacing i each time by a different
copy in B. Likewise, any schedule for a c-task folding of
A can be used to generate a schedule for A itself by the
same process.

We use this as follows. Whenever a Pinwheel
Scheduling instance needs to be solved, we try to find
schedules for all viable foldings of that instance in
parallel. If any c-task folding is schedulable, we find
the strictest Pinwheel Scheduling instance solved by its
schedule and unfold the folded task back into c tasks. If
c > 1, this unfolded instance will dominate the original
instance A – it will usually have higher symmetry than
A. It will often be faster to solve than A, because it has
both fewer tasks and smaller task separations.

No challenge to the 5
6 conjecture has been found

unless the original instance A is unschedulable, so
all foldings can be considered in parallel and any
unschedulable instances with c > 1 discarded. As some
Pinwheel Scheduling instances can be dramatically more
challenging to solve than others (for our tools), a very
substantial speedup was achieved by running all foldings
in parallel and terminating all threads as soon as the
first schedulable folding was found.

5.2.3 Initializing the Pareto Surface.
While the core algorithm constructs C(Pk,5/6) from
scratch, we can speed this up substantially by starting
with some scheduled Pinwheel Scheduling problems,
which may then be used to dominate problems in need
of a solution.

Unfolding a schedulable smaller instance to k tasks
is an easy way to generate many scheduled Pinwheel
Scheduling problems.

We pump prime our computations by using an
unfolding surface: Consider the example of the one-
task instance (1). We recursively unfold this problem in
each way that obtains k tasks. All resulting instances
are both dense and schedulable. If we want instances of
k = 3 tasks, we first unfold (1) to (3, 3, 3) directly, then
to (2, 2) and unfold that to (2, 4, 4).

The first version of this optimisation (P (1)) uses
this unfolding of the single task instance (1) as sketched
above; the second (P (5)) unfolds C5, the Pareto surface
for k = 5 and the third (P (k − 1)) adds all elements of
the previous Pareto trie. These developmental stages
are evaluated in Section 6.2.2.

5.3 Searching the Pareto Surface. With the
above approximations, most Pinwheel Scheduling prob-
lems considered at any k value have known solutions at
any time (99.8% of problems in the Pareto surface for
k = 11 were made by unfolding the k = 10 surface). In
this case, the challenge is to search for a viable schedule
in the known portion of the Pareto surface. This is large
at high k values (per Table 2), so searching this surface
efficiently is crucial. This task is effectively a dominance
query over a dynamic set of points in Rk.

Copyright © 2022
Copyright for this paper is retained by authors

k Foresight Optimised Naïve Opt/FS Naïve/Opt Surface Size
6 2.36 ± 0.02 3.30 ± 0.07 4.97 ± 0.06 1.40 ± 0.03 1.51 ± 0.04 23
7 6.65 ± 0.04 18.80 ± 0.07 39.5 ± 0.3 2.83 ± 0.02 2.10 ± 0.02 78
8 16.3 ± 0.2 487 ± 3 895 ± 6 29.8 ± 0.3 1.84 ± 0.02 214
9 105.0 ± 0.8 367 ± 3 645 ± 3 3.50 ± 0.04 1.76 ± 0.02 638
10 869 ± 5 944 ± 2 3130 ± 30 1.086 ± 0.006 3.31 ± 0.04 5347
11 4300 ± 20 4670 ± 10 9860 ± 60 1.015 ± 0.006 2.26 ± 0.02 15265

Table 2: Total time in seconds and relative speedup to generate the 5/6 Pareto surface using three Pinwheel
Scheduling oracles and all optimisations from Section 5.2; the last column shows the size of the Pareto surface
found by Foresight, taken from a representative run because errors are too small to adequately estimate. Data for
k = 12 is not shown, as different hardware was used to generate that surface and this data.

While we could employ a standard data structure for
orthogonal range searching here, the specific structure
of our point set (the Pinwheel instances) suggests a
bespoke trie-based solution: We maintain all members
of the known portion of the Pareto surface in a set of tries,
separated according to their symmetries (each a subset of
the Pareto trie, and using the same ordering conventions).
These tries are searched in descending order of symmetry
with depth first dominance queries, to find the highest
symmetry solution to each solved problem. This data
structure minimises repeated comparisons of the same
value, but also exploits the structure of solvable Pinwheel
Scheduling problems.

When searching for a problem with a low value of
a0, high a0 problems are excluded immediately. When
searching for a problem with a higher a0 value, low
a0 problems are initially considered, but eliminated
quickly because they must escalate rapidly due to density
constraints. The latter parts of problems are far less
predictable, while also having a much larger range of
possible values, and thus the dimensions which must be
searched are highly asymmetric.

6 Performance Evaluation
In this section, we report on an extensive running-time
study for various aspects of our tools.

6.1 Pinwheel Schedulers. We begin by evaluating
the relative performance of an implementation of the
state-graph based algorithm (Graph), as well as our
backtracking algorithms (Naïve, Optimised and Fore-
sight) using synthetic data. We then further evaluate
the Naïve, Optimised and Foresight algorithms on the
computation of Pareto surfaces.

6.1.1 Randomly Generated Data. The four sched-
ulers introduced in Sections 2 and 4 were evaluated using
Pinwheel Scheduling instances generated using the fol-

lowing random process: Let a real number b be a density
budget, initially 1. Generate a random real number
0 < r ≤ b, and from it a candidate task ac = b 1

r c. While
b − 1

ac
> 0, continue adding new tasks to an initially

empty Pinwheel Scheduling problem A, updating b each
time (b → 1

ac
). Once a task is rejected, if b 6= 0 add

a final task ak = d 1
b e. Finally, sort A and replace any

tasks where ai > 2k−1 with ai = 2k−1.
Problems generated this way have high densities and

a mixture of low and high ai values, which makes them
challenging to schedule. Capping by 2k−1 is done in light
of Conjecture 2.2 to makes instances more representative
of the problems our algorithms were designed for.

A running-time study using these problems is shown
in Figure 2, which demonstrates that each algorithm
improves on its predecessor. Here, we repeatedly draw
instances from above distribution, but if an instance
had already been drawn earlier, it is rejected and
a new instance is drawn. Since instances with few
tasks are more likely to arise in the above random
process, non-rejected instances tend to get increasingly
challenging over time. The correlation between instance
difficulty for different algorithms is noteworthy. This
suggests the existence of an intrinsic “difficulty” for
Pinwheel Scheduling instances, at least w.r.t. our studied
algorithms. We leave a further exploration of this
observation for future work.

6.1.2 The 5/6 Surface. A secondary evaluation
used the solved time C(Pk,5/6) with each method (see
Table 2). This evaluation showed more variability
between the performance of the Optimised and Foresight
algorithms than seen in the previous section – with the
Optimised algorithm taking 29.8± 0.3 times as long at
k = 8 but 1.015± 0.006 times as long at k = 11 as the
Foresight algorithm. This is likely due to the dominance
of search time at high k values – at k = 11, Foresight and
Optimised respectively spent 96.2± 0.6% resp. 87± 4%
of their time matching problems with known solutions.

Copyright © 2022
Copyright for this paper is retained by authors

100 101 102 103 104
10−1

100

101

102

103

104

tim
e

(s
)

Foresight
Optimized
Naive
Graph

100 101 102 103 104

total time per instance (s)

Foresight
Optimized
Naive

100 101 102 103 104
10−1

100

101

102

103

104

tim
e

(s
)

Foresight
Optimized

Figure 2: Results of a tournament between the four Pinwheel Scheduling solvers introduced in Section 2 and
Section 4, using the randomly generated Pinwheel Scheduling problems introduced in Section 6.1.1. After each
round, the slowest method was eliminated: first the Graph method, then the Naïve method, and finally the
Optimised method. The x-axes show the total time all methods took to solve each instance, a measure of overall
complexity due to the apparent correlation between solve times for different methods. The y-axis shows the
individual running time of the compared algorithms.

As such, the size of the P (k − 1) approximation of
the Pareto surface was the determining factor in these
times – a complex effect of the properties of the specific
solutions found by each method. Future algorithms will
aim to produce solutions more capable of dominating
many problems and less costly search procedures for the
Pareto surface.

6.2 Constructing the 5/6 Pareto Surface. This
section evaluates the methods used to generate C(Pk,5/6)
which introduced in Section 5.2.

6.2.1 Frequency capping. The Kernel optimisation
improved performance in two key ways: Firstly, it
increased the symmetry of problems, thus reducing
the number of problems that needed to be considered.
Secondly, it reduced the largest ai values, which was
particularly helpful for the deadline driven Foresight
algorithm, which often ignores tasks with large ai values
for long periods of time. Reducing the maximum ai

value combated this, but our ongoing work will produce a
version of Foresight more capable of handling arbitrarily
large ai values.

6.2.2 Folding. While folding had several benefits,
the principal one was in exploiting the large variance
between the cost of solving different Pinwheel Scheduling
problems. Problems with smaller k values, smaller
maximum ai values and schedulable A values are
substantially faster then the converse – solving only the
fastest of a set of problems that differ in these respects
thus saves very considerable amounts of time. While

starting all problems in the folded set increases overall
work, these problems are solved in parallel so this does
not translate to a substantial additional time cost.

In addition to often being faster to solve, problems
which have been folded, solved and then unfolded usually
have higher symmetries and lower ai values than the
problems used to generate them and are therefore better
at dominating other instances.

6.2.3 Initializing the Pareto Surface.
Approximating the Pareto surface had significant effects
on solve times. In addition to being very cheap to
generate, schedules produced by approximation tend to
solve problems with very high densities (as all unfoldings
of a problem share the density of that problem) and
high symmetries – they are thus ideal for dominating
problems and reducing the size of the search space.

As shown in Figure 3, each of the three approx-
imations we considered substantially improves on its
predecessor. With the introduction of the P(k − 1) ap-
proximation, the cost of searching the partial Pareto
surface began to dominate the cost of producing useful
schedules, limiting the observed performance of P(k−1) –
though we plan to address this with our future work.

6.3 Searching the Pareto Surface. Both trie-
based searching and naive searching were implemented,
with Trie-based searching running 8.80±0.05 times faster
at k = 11, a substantial speed increase (though the per-
formance gain was less substantial at smaller k values,
probably due to their smaller Pareto surfaces and the
overheads inherent in a more complex data structure).

Copyright © 2022
Copyright for this paper is retained by authors

7 Conclusion
We presented new evidence for the 5/6-density conjecture
in Pinwheel Scheduling (Conjecture 1.1) by engineering
algorithms to compute a finite set of schedules that solves
any of the infinitely many solvable instances with at most
12 tasks and d ≤ 5

6 . This substantially strengthens the
confidence in the conjecture and has led to new tools
(theoretical and software) of independent interest for
studying Pinwheel Scheduling.

Moreover, we have constructed the full Pareto
surfaces of Pinwheel Scheduling problems for k ≤ 5,
shown in Table 1, i.e., any Pinwheel Scheduling instance
with at most 5 tasks is schedulable if and only if one of
the schedules listed in Table 1 is valid for it.

There are several avenues for future work. Apart
from settling the longstanding 5/6-density conjecture,
confirming (or refuting) our new 2k and kernel conjec-
tures (Conjecture 2.2 and Conjecture 2.3) about the
largest “effective” frequencies would have interesting
structural consequences for Pinwheel Scheduling. Set-
tling the complexity status of Pinwheel Scheduling for
non-dense instances is another intriguing direction.

On the practical side, the Bamboo Garden Trimming
problem introduced in [9] has recently received attention
in an extensive experimental work [5] in the context
of approximation algorithms. Our Pareto surfaces
for Pinwheel Scheduling immediately imply similar
equivalence classes for Bamboo Garden Trimming; our
corresponding results have been omitted due to space
constraints. The consequences of these results for
approximate algorithms in Bamboo Garden Trimming
deserve further exploration and are the subject of ongoing
work.

References

[1] Amotz Bar-Noy, Randeep Bhatia, Joseph Naor, and
Baruch Schieber. Minimizing service and operation
costs of periodic scheduling. Mathematics of Operations
Research, 27(3):518–544, 2002. doi:10.1287/moor.27.
3.518.314.

[2] Amotz Bar-Noy, Richard E Ladner, and Tami Tamir.
Windows scheduling as a restricted version of bin
packing. ACM Transactions on Algorithms, 3(3):28–
es, 2007. doi:10.1145/1273340.1273344.

[3] Mee Yee Chan and Francis Chin. Schedulers for larger
classes of pinwheel instances. Algorithmica, 9(5):425–
462, 1993. doi:10.1007/BF01187034.

[4] Mee Yee Chan and Francis Y. L. Chin. General
schedulers for the pinwheel problem based on double-
integer reduction. IEEE Trans. Computers, 41(6):755–
768, 1992. doi:10.1109/12.144627.

[5] Mattia D’Emidio, Gabriele Di Stefano, and Alfredo
Navarra. Bamboo garden trimming problem: Priority

101

102

103

104

105

to
ta

ls
ol

ve
tim

e
(s

)

P(0)
P(1)
P(5)
P(k − 1)

5 6 7 8 9 10 11

101

102

103

104

k
nu

m
be

r
of

up
da

te
s

Figure 3: Running time (top) and total updates to each
approximation required to generate a complete density-
restricted Pareto surface (bottom) with no approxima-
tion, and with all three approximations introduced in
Section 5.2. The top figure demonstrates that while all
costs are exponential with respect to k, P(k−1) improves
on P(5), which improves on P(1), which improves on the
algorithm using no approximation. The bottom figure
shows why – the approximation of the Pareto surface is
significantly better for the later methods.

schedulings. Algorithms, 12(4):74, April 2019. doi:
10.3390/a12040074.

[6] Wei Ding. A branch-and-cut approach to exam-
ining the maximum density guarantee for pinwheel
schedulability of low-dimensional vectors. Real-
Time Systems, 56(3):293–314, 2020. doi:10.1007/
s11241-020-09349-w.

[7] Eugene A. Feinberg and Michael T. Curry. Generalized
pinwheel problem. Math. Methods Oper. Res., 62(1):99–
122, 2005. doi:10.1007/s00186-005-0443-4.

[8] Peter C Fishburn and Jeffrey C Lagarias. Pin-
wheel scheduling: Achievable densities. Algorithmica,
34(1):14–38, 2002. doi:10.1007/s00453-002-0938-9.

[9] Leszek Gąsieniec, Ralf Klasing, Christos Levcopoulos,
Andrzej Lingas, Min Jie, and Tomasz Radzik. Bamboo
Garden Trimming Problem, volume 10139 of Lecture
Notes in Computer Science. Springer, 2017. doi:
10.1007/978-3-319-51963-0.

[10] C.-C. Han and K.-J. Lin. Scheduling distance-
constrained real-time tasks. In Proceedings Real-Time
Systems Symposium. IEEE Comput. Soc. Press, 1992.
doi:10.1109/REAL.1992.242649.

Copyright © 2022
Copyright for this paper is retained by authors

https://doi.org/10.1287/moor.27.3.518.314
https://doi.org/10.1287/moor.27.3.518.314
https://doi.org/10.1145/1273340.1273344
https://doi.org/10.1007/BF01187034
https://doi.org/10.1109/12.144627
https://doi.org/10.3390/a12040074
https://doi.org/10.3390/a12040074
https://doi.org/10.1007/s11241-020-09349-w
https://doi.org/10.1007/s11241-020-09349-w
https://doi.org/10.1007/s00186-005-0443-4
https://doi.org/10.1007/s00453-002-0938-9
https://doi.org/10.1007/978-3-319-51963-0
https://doi.org/10.1007/978-3-319-51963-0
https://doi.org/10.1109/REAL.1992.242649

[11] Robert Holte, Al Mok, Al Rosier, Igor Tulchinsky, and
Igor Varvel. The pinwheel: a real-time scheduling
problem. In Proceedings of the Twenty-Second Annual
Hawaii International Conference on System Sciences.
Volume II: Software Track, volume 2, pages 693–702
vol.2, 1989. doi:10.1109/HICSS.1989.48075.

[12] Robert Holte, Louis Rosier, Igor Tulchinsky, and Donald
Varvel. Pinwheel scheduling with two distinct numbers.
Theoretical Computer Science, 100(1):105–135, 1992.
doi:10.1016/0304-3975(92)90365-M.

[13] Tobias Jacobs and Salvatore Longo. A new perspective
on the windows scheduling problem. coRR, 2014.
arXiv:1410.7237.

[14] Shun-Shii Lin and Kwei-Jay Lin. A pinwheel scheduler
for three distinct numbers with a tight schedulability
bound. Algorithmica, 19(4):411–426, 1997. doi:10.
1007/PL00009181.

[15] Ben Smith. Towards the 5/6-Density Conjecture in
Pinwheel Scheduling code, October 2021. doi:10.5281/
zenodo.5636327.

Copyright © 2022
Copyright for this paper is retained by authors

https://doi.org/10.1109/HICSS.1989.48075
https://doi.org/10.1016/0304-3975(92)90365-M
http://arxiv.org/abs/1410.7237
https://doi.org/10.1007/PL00009181
https://doi.org/10.1007/PL00009181
https://doi.org/10.5281/zenodo.5636327
https://doi.org/10.5281/zenodo.5636327

	1 Introduction
	1.1 Related Work.

	2 Preliminaries
	2.1 Small Frequency Conjecture.

	3 The Pareto Surface
	3.1 The Pareto Trie.
	3.2 Uniqueness.

	4 Engineering Pinwheel Scheduling
	4.1 The Naïve Algorithm.
	4.2 The Optimised Algorithm.
	4.3 The Foresight Algorithm.
	4.4 Deciding Tight Feasibility.

	5 Engineering the 5/6 Surfaces
	5.1 Core algorithm.
	5.2 Constructing the Pareto Surface.
	5.3 Searching the Pareto Surface.

	6 Performance Evaluation
	6.1 Pinwheel Schedulers.
	6.2 Constructing the 5/6 Pareto Surface.
	6.3 Searching the Pareto Surface.

	7 Conclusion
	References

