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25 Abstract

26 Purpose: High intensity interval training (HIIT) produces significant health benefits. However, 

27 the acute physiological responses to HIIT are poorly understood. Therefore, we aimed to 

28 measure the acute cardiac autonomic, haemodynamic, metabolic and left ventricular 

29 mechanical responses to a single HIIT session. 

30 Methods: Fifty young, healthy participants completed a single HIIT session, comprising of 

31 three 30-second maximal exercise intervals on a cycle ergometer, interspersed with 2-minutes 

32 active recovery. Cardiac autonomics, haemodynamics and metabolic variables were measured 

33 pre, during and post HIIT. Conventional and speckle tracking echocardiography was used to 

34 record standard and tissue doppler measures of left ventricular (LV) structure, function and 

35 mechanics pre and post HIIT. 

36 Results: Following a single HIIT session, there was significant post-exercise systolic 

37 hypotension (126±13mmHg to 111±10mmHg p<0.05), parallel to a significant reduction in 

38 total peripheral resistance (1640±365dyne⋅s⋅cm5 to 639±177dyne⋅s⋅cm5, p<0.001) and 

39 significant increases in baroreceptor reflex sensitivity and baroreceptor effectiveness index 

40 (9.2±11ms⋅mmHg-1 to 24.8±16.7ms⋅mmHg-1 and 41.8±28 to 68.8±16.2, respectively) during 

41 recovery compared to baseline. There was also a significant increase in the low to high 

42 frequency heart rate variability ratio in recovery (0.7±0.48 to 1.7±1, p<0.001) and significant 

43 improvements in left ventricular global longitudinal strain (-18.3±1.2% to -29.2±2.3%, 

44 p<0.001), and myocardial twist mechanics (1.27±0.72º·cm-1 to 1.98±0.72º·cm-1, p=0.028) post 

45 HIIT compared to baseline. 

46 Conclusion: A single HIIT session is associated with acute improvements in autonomic 

47 modulation, haemodynamic cardiovascular control and left ventricular function, structure and 
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48 mechanics. The acute responses to HIIT provide crucial mechanistic information, which may 

49 have significant acute and chronic clinical implications.

50

51 Key Words: High intensity interval training, cardiac autonomics, metabolism, cardiac 

52 mechanics.
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57 Blood pressure (BP)
58 Diastolic blood pressure (dBP)
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71 Total peripheral resistance (TPR)
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80 Introduction

81 Physical inactivity is associated with the progression of numerous chronic health conditions, 

82 which increases the risk of all-cause mortality (Ekelund et al. 2016). It is well-established that 

83 achieving the current physical activity guidelines improves health outcomes (World Health 

84 Organization 2015). Despite this, physical inactivity remains detrimentally high at an estimated 

85 27.5% globally (Guthold et al. 2018) and adherence to physical activity guidelines may be as 

86 low as 5% when measured objectively (Troiano et al. 2008). 

87

88 Behavioural psychology research has identified motivation and perceived lack of time as the 

89 most common barriers to physical activity, which are therefore targeted areas for behaviour 

90 change (Herazo-Beltrán et al. 2017). One proposed approach is to increase exercise efficiency 

91 through a reduction in duration while attempting to maintain similar health benefits. High-

92 intensity interval training (HIIT) is an exercise modality, which supports this approach through 

93 its combination of practicality and efficacy. HIIT is a convenient, time-efficient form of 

94 exercise which typically involves short bouts of high intensity work separated with appropriate 

95 active recovery periods. HIIT has seen significant empirical success in improving health 

96 measures with multiple meta-analyses supporting its role in weight loss, aerobic capacity and 

97 cardiometabolic health; as well as promoting positive psychological responses, which have 

98 implications for adherence (Batacan et al. 2017; Oliveira et al. 2018; Roy et al. 2018; Cao et 

99 al. 2019). 

100

101 Mechanistically, much of the reported benefits of HIIT are associated with chronic peripheral 

102 adaptations regarding mitochondrial content, capillary density, insulin sensitivity, glycaemic 

103 control, and vascular health (MacInnis and Gibala 2017). Our current understanding of any 
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104 myocardial adaptations associated with HIIT is based upon the work of O’Driscoll et 

105 al.,(O’Driscoll et al. 2018)  who reported significant improvements in left ventricular function 

106 and mechanics, as well as a significant increase in cardiac autonomic modulation following a 

107 2-week HIIT intervention. Whilst the training effects of HIIT have been previously 

108 documented, the acute responses are not well characterised and may provide important 

109 mechanistic information for the chronic adaptations reported following HIIT. 

110

111 To our knowledge, no study to date has attempted to measure the combined cardiac autonomic, 

112 continuous haemodynamic, metabolic and myocardial functional, structural and mechanical 

113 responses to HIIT. With the combination of these measurements, the aim of this study is to 

114 clearly establish the acute physiological responses to a single session of HIIT in a cohort of 

115 physically inactive adults. We hypothesize acute improvements in cardiac autonomic and 

116 haemodynamic modulation, and myocardial mechanics following HIIT.

117
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126 Methodology

127

128 Ethical Approval

129 This research was approved by the Canterbury Christ Church University Ethics Committee and 

130 conformed to the Declaration of Helsinki principles (Ref: 17/SAS/47F). All participants 

131 completed and signed informed consent before testing. 

132

133 Participant characteristics 

134 Fifty (25 male and 25 female) young, healthy participants were recruited. All participants (age 

135 22.87 ± 2.58 years; height 171.3 ± 9.5 cm; weight 73.8 ± 14.9 kg; BMI 25.24 ± 4.47 kg/m2) 

136 had blood pressure within the normal range, were taking no medication, had no history of 

137 cardiac or metabolic disease, and with a normal clinical cardiovascular examination and 12-

138 lead electrocardiogram. All participants were physically inactive, as defined by not meeting 

139 the current global physical activity guidelines (World Health Organization 2010). 

140

141 Experimental procedures

142 Participants were required to visit the laboratory on a single occasion after fasting for 8 hours 

143 and refraining from alcohol and caffeine consumption for 24-hours prior to testing. On arrival, 

144 the participants height and weight were measured using a SECA 213 stadiometer and SECA 

145 700 mechanical column scales (SECA GmbH & Co., Hamburg, Germany) respectively. 

146 Resting blood pressure (BP) was measured according to the current guidelines (Whelton et al. 

147 2018) using an automated oscillometric blood pressure monitor (Dinamap Pro 200 Critikon; 

148 GE Medical Systems, Freiburg, Germany). 
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149 Cardiac autonomic and Haemodynamic assessment

150 Cardiac autonomic and haemodynamic variables were measured using the Task Force 

151 Monitor (TFM) which is a validated non-invasive beat-to-beat monitoring system providing 

152 automatic calculations of all outputs. The TFM continuously recorded heart rate and stroke 

153 volume through a six-channel electrocardiogram and impedance cardiography respectively. 

154 The impedance cardiography functioned via an electrode strip located at the nape of the neck 

155 and two electrodes on the torso in line with the xiphoid process. With the recording of these 

156 two values (HR and SV), cardiac output was automatically calculated. Additionally, total 

157 peripheral resistance was calculated in accordance with Ohm’s law. Continuous systolic, 

158 diastolic and mean blood pressure (sBP, dBP and mBP) measurements were obtained via the 

159 use of the vascular unloading technique at the proximal limb of the index or middle finger. 

160 These recordings were automatically corrected to oscillometric BP values obtained at the 

161 brachial artery of the opposite arm. With the sBP and heart rate recordings, the TFM 

162 calculated continuous rate pressure product measurements.

163

164 Through power spectral analysis and an autoregressive model, cardiac autonomic variables 

165 were obtained via assessment of the amplitude of R-R intervals and oscillating fluctuations in 

166 frequency (Akselrod et al. 1981). Using the TFM automatic QRS algorithm, high and low 

167 frequency parameters of heart rate variability were calculated and automatically expressed in 

168 both absolute (ms2) and normalised units (nu) (Pan and Tompkins 1985),(Li et al. 1995). As 

169 separate mechanistic measures, baroreceptor sensitivity and baroreflex effectiveness index 

170 were recorded via the sequence method which relies on the linear regression of continuous 

171 changes in sBP and the lengthening or shortening of the R-R interval (Taylor et al. 2017). 
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172 From all regressions, a mean slope of BRS was calculated and only sections with correlation 

173 coefficients of r> 0.95 were analysed. 

174 Intervention stages were used to distinguish and separate specific periods of measurement for 

175 appropriate data organisation. Using the intervention marks, cardiac autonomic and 

176 haemodynamic measurements were continuously recorded during a 5-minute pre-exercise 

177 rest period, which is presented as baseline. Recording then proceeded during the three 

178 separate 30-second exercise periods, which correspond to HIIT 1, HIIT 2 and HIIT 3, and the 

179 2-minute rest periods in between each exercise interval were also recorded. Finally, a 5-

180 minute recovery period was recorded immediately post-exercise with the participant in a 

181 supine position. 

182

183 Metabolic measures

184 Gas exchange measures were acquired using the Oxycon Pro (Jaeger, Wurzburg, Germany) 

185 online gas analyser. Prior to testing, calibration of the gas cylinder was performed to 

186 appropriate concentrations (15% O2; 5% CO2). Additionally, flow was calibrated using a 3-L 

187 syringe (Cosmed, Rome, Italy). Participants were appropriately fitted with a Hans Rudolph 

188 mask, with an attached pneumotach flowmeter for measurement. Continuous recording of 

189 breath-by-breath gas analysis data was achieved throughout each intervention period. 

190

191 Conventional echocardiographic image acquisition

192 Transthoracic echocardiography was performed pre and immediately post HIIT, following 

193 methodology previously detailed (O’Driscoll et al. 2018). All images were acquired using a 

194 Vivid-q ultrasound system (GE Healthcare, Milwaukee, Wisconsin) with a 1.5-3.6 MHz 
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195 phased array transducer (M4S-RS Matrix cardiac ultrasound probe). All participants were 

196 measured in the left lateral decubitus position by one consistent sonographer. Cardiac 

197 measurements were recorded in accordance with the current guidelines (Lang et al. 2015) and 

198 stored for offline analysis using commercial software with the results averaged (EchoPAC, 

199 V.113.0.x, GE Healthcare). Images were captured in the parasternal short and long-axis and 

200 apical 2-, 3-, and 4-chamber views. Interventricular septal and posterior wall thickness, 

201 fractional shortening and left ventricle (LV) internal dimensions were measured, and relative 

202 wall thickness was calculated as (2 LV posterior wall thickness)/LV internal diameter. LV 

203 ejection fraction was determined via the modified biplane Simpson’s rule. Pulsed-wave 

204 Doppler measures were acquired to assess transmitral early (E) and late (A) diastolic-filling 

205 velocities from the apical 4-chamber view, with the sample volume placed at the tips of the 

206 mitral valve. Isovolumic relaxation time was measured from the start of aortic valve closure 

207 to mitral valve opening. Tissue Doppler imaging was captured at the lateral and septal mitral 

208 annulus to assess peak longitudinal (S’), peak early diastolic (E’), and peak late diastolic (A’) 

209 velocities, with values averaged. LV filling pressure was estimated from the mitral E/E= 

210 ratios (Ommen et al. 2000). Total peripheral resistance was calculated through Ohm’s law. 

211 Stroke volume was derived from LV end diastolic and LV end systolic volumes, with cardiac 

212 output achieved as the product of heart rate and stroke volume. 

213

214 Myocardial Mechanics

215 Speckle-tracking imaging was utilised pre and post HIIT to achieve the LV global 

216 longitudinal and time-derivative strain rate from the apical 2-, 3-, and 4-chamber views. The 

217 average value of peak systolic longitudinal strain and peak systolic strain rate from all three 

218 views was calculated as global strain and strain rate. Peak global strain rate during early and 
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219 late diastole and their ratio as indices of diastolic function was calculated as proposed in 

220 previous work (Wang et al. 2007). The parasternal short axis view from the LV base, level 

221 with the mitral valve (mitral valve leaflets on view) and apex (circular LV cavity with no 

222 papillary muscle visible) was used to acquire the LV radial and circumferential strain and 

223 strain rate, and LV rotation and rotational velocity; again as previously applied (Leitman et 

224 al. 2004; Notomi et al. 2005; van Dalen et al. 2008; Weiner et al. 2010). For effective 

225 speckle-tracking analysis, the highest quality images were used for tracing the endocardium 

226 and a full-thickness myocardial region of interest was selected. All images were reviewed to 

227 validate quality and those that did not achieve the required optimisation and standardization 

228 were excluded. Images were optimized for scan depth and sector width to obtain high frame 

229 rates (>60 Hz) and kept constant throughout each examination. The endocardial trace line 

230 and/or region-of-interest width was readjusted to ensure an adequate tracking score. Raw 

231 frame-by-frame rotation and rotation-rate data was normalized to the percentage duration of 

232 systole and diastole using cubic-spline interpolation to allow for between and within subjects 

233 comparison as basal and apical rotation are not acquired from the same cardiac cycle 

234 (GraphPad Prism 6 Software, La Jolla, CA) (Stembridge et al. 2014). LV twist and untwist 

235 parameters were acquired via subtraction of the basal data from the apical data at each time 

236 point, with LV torsion defined as LV twist per unit length and calculated by dividing the total 

237 twist by LV diastolic length (Stembridge et al. 2014). The sonographer’s reproducibility of 

238 speckle-tracking indices has been reported in previous work (O’Driscoll et al. 2017, 2018). 

239

240 Exercise protocol

241 The HIIT exercise protocol consisted of a single Wingate session, characterised by three 30-

242 second periods of maximal intensity cycling. Using a WATT bike pro (Nottingham, England), 



11

243 the exercise periods were loaded with 7.5% of the participants body mass and separated with 

244 2-minutes of unloaded active recovery. Consistent and enthusiastic verbal encouragement was 

245 given during the exercise periods for intensity maintenance. Each participant performed a 2-

246 minute warm up with no active recovery post-exercise. Cardiac autonomic, haemodynamic and 

247 metabolic parameters were recorded continuously for 5-mins at baseline, during the 3-HIIT 

248 intervals and 5-minutes immediately post HIIT for the recovery period in the supine position. 

249 Cardiac imaging was performed at baseline and immediately following HIIT in the recovery 

250 period. 

251

252 Statistical analysis

253 All continuous variables are presented as mean ± standard deviation. Data analysis was 

254 performed using statistical package for social sciences (SPSS 26 release version for Windows; 

255 SPSS Inc., Chicago, IL). A one-way repeated measures ANOVA was performed with a 

256 Bonferroni post-hoc test to identify statistically significant differences. Correlation analyses 

257 was performed to ascertain any associations between BRS and BEI with LF and HF HRV 

258 parameters. Data was reported as statistically significant when p<0.05.

259

260

261

262

263

264
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265 Results

266 All fifty participants successfully completed the single HIIT session with no adverse events 

267 reported. 

268

269 Haemodynamics

270 Figure 1 presents the haemodynamic responses throughout each stage of the HIIT session. 

271 There was a significant increase in sBP from baseline (126±13 mmHg) compared to HIIT 1 

272 (152±38mmHg, p<0.001), HIIT 2 (154±19mmHg, p<0.001) and HIIT 3 (152±35mmHg, 

273 p<0.001), with a significant decrease in recovery post HIIT (111±10mmHg, p<0.001), which 

274 was significantly lower than baseline (p<0.05). mBP significantly increased from baseline 

275 (88±8mmHg) to HIIT 1 (111±36mmHg, p<0.001), HIIT 2 (109±24mmHg, p<0.05) and HIIT 

276 3 (108±34mmHg, p<0.05), and significantly decreased in recovery post HIIT (76±8 mmHg). 

277 dBP significantly increased from baseline (69±8mmHg) to HIIT 1 (93±35mmHg, p<0.001), 

278 HIIT 2 (89±24.8mmHg, p<0.05) and HIIT 3 (92±30mmHg, p<0.001), and significantly 

279 decreased post exercise in recovery post HIIT (59±9mmHg, p<0.001). 

280

281 Heart rate significantly increased from baseline (69±10b⋅min-1) to HIIT 1 (148±17b⋅min-1, 

282 p<0.001), HIIT 2 (157±16b⋅min-1, p<0.001), HIIT 3 (160±18b⋅min-1, p<0.001) and 

283 significantly decreased in recovery post HIIT (100±12b⋅min-1, p<0.001) when compared to 

284 HIIT 3, but remained significantly elevated post HIIT when compared to baseline (p<0.001). 

285 Stroke volume significantly increased from baseline (65.7±11.1ml) to HIIT 1 (97.6±24.4ml, 

286 p<0.001), HIIT 2 (102.2±25.8ml, p<0.001), HIIT 3 (102.2±23.3ml, p<0.001) and recovery post 

287 HIIT (103.8±32.2ml, p<0.001). As a result of these responses, cardiac output significant 
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288 increase from baseline (4.49±0.98L⋅min-1) to HIIT 1 (14.29±3.52L⋅min-1, p<0.001), HIIT 2 

289 (15.86±3.48L⋅min-1, p<0.001), HIIT 3 (16.18±3.57L⋅min-1, p<0.001) followed by a significant 

290 decrease post exercise in recovery (10.28±3.17L⋅min-1, p<0.001) when compared to HIIT 3, 

291 but remained significantly elevated post HIIT when compared to baseline (p<0.001). 

292

293 Rate pressure product significantly increased from baseline (8642±1414) to HIIT 1 

294 (22541±6308, p<0.001), HIIT 2 (24202±4142, p<0.001) and HIIT 3 (23983±6225, p<0.001), 

295 with a significant decrease in recovery post HIIT (11054±1798, p<0.001). Total peripheral 

296 resistance significantly decreased from baseline (1640±365dyne⋅s⋅cm5) to HIIT 1 

297 (638±231dyne⋅s⋅cm5, p<0.001), HIIT 2 (576±158dyne⋅s⋅cm5, p<0.001), HIIT 3 

298 (586±213dyne⋅s⋅cm5, p<0.001) and in recovery post HIIT (639±177dyne⋅s⋅cm5, p<0.001).

299  

300 Cardiac autonomic and metabolic parameters

301 As presented in Figure 2A, there was a significant decrease in HRV expressed as R-R power 

302 spectral density from baseline (3101.7±3571.6m2) to HIIT 1 (927.2±934.6m2, p<0.001), HIIT 

303 2 (565±1194.9m2 p<0.001), HIIT 3 (381.6±521.7m2, p<0.001) and in recovery post HIIT 

304 (578.1±1317.9m2, p<0.001). Figure 2B shows a significant decrease in low frequency 

305 (normalized units) from baseline (47.7±15.5%) compared to HIIT 1 (38±13.7, p<0.05), HIIT 

306 2 (35.5±11.3, p<0.001) and HIIT 3 (32.3±11.5%, p<0.001), with a paradoxical significant 

307 increase in recovery post HIIT (62.3±15.5%), which was significantly greater than baseline 

308 and HIIT 3 (both p<0.001). Accordingly, high frequency (normalized units) significantly 

309 increased from baseline (52.3±15.5%) to HIIT 1 (62.2±13.2%, p<0.05), HIIT 2 (64.5±11.3%, 

310 p<0.001) and HIIT 3 (67.7±11.5%, p<0.001), with a significant decrease in recovery post HIIT 

311 (37.7±15.5%), which was significantly lower than baseline and HIIT 3 (both p<0.001). As a 
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312 result of these inverse changes, there was no significant change in low frequency/high 

313 frequency (LF/HF) ratio from baseline (1±0.59) to HIIT 1 (0.9±0.43) and HIIT 2 (0.85±0.45), 

314 with a significant decrease from baseline to HIIT 3 (0.7±0.48, p<0.05). However, there was a 

315 significant increase in recovery post HIIT, which was significantly greater than baseline (1.7±1, 

316 p<0.001) (Figure 2C). The absolute frequency domain responses are shown in Table 1. 

317

318 As shown in Figure 2D, there was no significant change in BRS from baseline 

319 (9.2±11ms⋅mmHg-1) compared to HIIT 1 (7.1±7.4ms⋅mmHg-1), HIIT 2 (9±11.3ms⋅mmHg-1) 

320 and HIIT 3 (6.7±9.3ms⋅mmHg-1). However, there was a significant increase in recovery post 

321 HIIT (24.8±16.7ms⋅mmHg-1) from HIIT 3, which was significantly greater than baseline (both 

322 p<0.001). Figure 2D also shows no significant difference in BEI from baseline (41.8±28) to 

323 HIIT 1 (41±22.2), but a significant decrease from baseline to HIIT 2 (24.3±23.5, p<0.05) and 

324 HIIT 3 (16.2±17.3, p<0.001); followed by a significant increase post exercise in recovery 

325 (68.8±16.2) from HIIT 3, which was also significantly greater than baseline (both p<0.001). 

326

327 Correlation analyses demonstrated a significant association between BRS and LF (r. = 0.7; 

328 p<0.001) and BRS and HF (r. = 0.66; p<0.001), during HIIT 1; BRS and LF (r. = 0.86; p<0.001) 

329 and BRS and HF (r. = 0.93; p<0.001) during HIIT 2, and BEI and LF (r. = 0.5; p=0.004) and 

330 BEI and HF (r. = 0.59; p=0.001) during HIIT 3. In recovery, there was a significant correlation 

331 between the LF/HF ratio and BRS (r. = 0.4; p=0.014).

332

333 As illustrated in Table 1, aerobic capacity (V̇O2), carbon dioxide production (V̇CO2) and 

334 breathing frequency (L⋅min-1) significantly increased from baseline compared to all 3 HIIT 
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335 stages and recovery post HIIT (all p<0.05). Minute ventilation (V̇E) and a-vO2 difference 

336 (mLO2⋅100mL-1) both significantly increased from baseline compared to the 3 HIIT stages (all 

337 p<0.001), with a significant decrease from HIIT 3 to recovery post HIIT (p<0.001). Respiratory 

338 exchange ratio (RER) significantly increased from baseline compared to HIIT 1 (p<0.001), 

339 HIIT 2 stages (p<0.001) and recovery (p<0.05), but there was no significant difference between 

340 HIIT 3 and recovery post HIIT (p<0.001).

341

342 Cardiac structure and function

343 Baseline and post HIIT echocardiographic structural, functional and LV tissue doppler 

344 parameters are presented in Table 2. There was a significant decrease in LV internal diameter 

345 systole (p=0.002) and left ventricular end-diastolic posterior wall thickness (p=0.037). 

346 Separately, there were significant decreases in both Peak E/A ratio (p<0.001), isovolumetric 

347 relaxation time (p=0.032), and a significant increase in Peak A velocity (p=0.001). There were 

348 also several significant changes in global LV systolic function, with significant decreases in 

349 LV end-diastolic volume (p=0.033), LV end-systolic volume (p=0.004), and significant 

350 increases in LV ejection fraction (p=0.002), fractional shortening (p=0.006) and lateral and 

351 septal peak S' (both p=0.001). There were no significant changes in estimated LV filling 

352 pressures from pre to post HIIT.

353

354 Left ventricular mechanics

355 Pre and Post HIIT myocardial mechanics are displayed in Table 3. Peak global longitudinal 

356 strain (p<0.001), strain rate (p=0.001) and global longitudinal strain rate in early diastole 

357 (p=0.004) significantly increased in recovery immediately following HIIT. There was a 
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358 significant increase in basal systolic (p=0.001) and diastolic (p=0.001) rotational velocity, and 

359 significant decreases in basal radial strain (p=0.009) and strain rate (p<0.001), but no 

360 significant change in basal rotation, circumferential strain or strain rate. Apical rotation 

361 (p=0.025) and apical systolic (p<0.001) and diastolic (p=0.016) rotational velocity all 

362 significantly increased, as well as significant increases in apical circumferential strain 

363 (p=0.003) and strain rate (p<0.001), but no significant change in apical radial strain or strain 

364 rate. These mechanical changes produced significant increases in all LV twist parameters, 

365 including LV twist (p=0.034), systolic twist velocity (p=0.001), untwist velocity (p=0.001) and 

366 LV torsion (p=0.028). 

367

368

369

370

371

372

373

374

375

376

377

378

379
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380 Discussion

381

382 As the first study to investigate the combined physiological responses to a single HIIT 

383 session, we found significant improvements in cardiac autonomic modulation and 

384 haemodynamic regulation, as well as improvements in LV systolic and diastolic function and 

385 cardiac mechanics. As illustrated in Figure 3, the physiological responses following HIIT 

386 occur through a complex interplay of numerous mechanistic pathways, some of which are not 

387 conclusively understood.

388

389 Cardiac autonomics

390 This is the first study to investigate the acute cardiac autonomic, haemodynamic, metabolic 

391 and myocardial responses to a single HIIT session. HIIT induced a significant step wise 

392 reduction in HRV and associated absolute low and high frequency domains. A greater 

393 proportion of the HRV frequency remained in the HF domain, which is supported by the HFnu 

394 response and significant reduction in LF/HF ratio. During recovery post HIIT, all absolute 

395 HRV parameters remained significantly depressed compared to baseline; however, there was 

396 a significant increase in the proportion of HRV within the LF domain, represented by LFnu, 

397 which is supported by the significant increase in LF/HF ratio and indicates a relative 

398 sympathetic predominance in recovery. These responses are similar to those reported following 

399 aerobic exercise (Kaikkonen et al. 2008); however, they are opposite to those previously 

400 reported following isometric exercise (Taylor et al. 2017). Compared to baseline, our results 

401 demonstrate a decline in BRS and significant reduction in BEI during HIIT. This suggests 

402 active resetting of the baroreceptors, which is associated with increasing HR and BP, and is 

403 similar to responses reported during other forms of exercise (Hartwich et al. 2011). However, 
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404 of mechanistic importance, BRS and BEI significantly increased in recovery immediately post 

405 HIIT, which was significantly greater than baseline. The 2.7- and 1.7-fold increase in BRS and 

406 BEI, respectively, is similar to that reported following alternative short duration exercise 

407 (Taylor et al. 2017), which may be associated with the BP responses seen in the recovery period 

408 following HIIT. However, these results are in contrast to responses following both aerobic and 

409 dynamic resistance training, which commonly produce a post-exercise reduction in 

410 baroreceptor reflex modulation (Somers et al. 1985; Niemelä et al. 2008). 

411

412 The cardiac autonomic results are of interest, since the improved BRS and BEI and increased 

413 LF and LF/HF ratio immediately post-HIIT is contradictory, compared to previous research. 

414 Cote et al., (2015) reported similar results with a significant increase in LF/HF post HIIT, but 

415 reported a significant decrease in BRS. Despite methodological differences, such as timing of 

416 post exercise measures (30-mins vs immediately post HIIT), the mechanistic underpinning of 

417 this post-exercise sympathetic dominance accompanied by an increase in baroreflex 

418 functioning is unclear and certainly requires future research. Although is not always the case, 

419 the withdrawal of sympathetic autonomic activity may often occur following such maximal 

420 exercise, which in combination with venous pooling, can result in reduced cerebral blood flow 

421 and consequently induce vasovagal post-exercise syncope. Since our HRV results indicate the 

422 contrary, one mechanistic hypothesis is a sympathetic response induced as a direct preventative 

423 mechanism of this common syncope; as supported through previous work identifying increases 

424 in LF/HF and normalised LF power during orthostasis, especially in young cohorts 

425 homogenous to the present study (Kawaguchi et al.; Sato et al. 2007). Conversely, perhaps such 

426 a response is not a result of complex neural-physiological mechanistic interactions, but rather 

427 reflects methodological complications with the application of HRV indices. Specifically, 

428 research from Goldstein et al., (Goldstein et al. 2011)  suggested that the LF parameter of HRV 
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429 provides an index of baroreflex function rather than sympathetic tone based on various lines of 

430 evidence (Goldstein et al. 2011). As an example, LF power has often been shown not to 

431 increase during exercise (as exhibited in our findings), despite evident increases in cardiac and 

432 extracardiac sympathetic outflows (Warren et al. 1997; Goldstein et al. 2011). Furthermore, 

433 patients following bilateral thoracic sympathectomies have normal baroreflex function and LF 

434 power, despite partial cardiac sympathetic denervation (Moak et al. 2005). Since this 

435 hypothesis appears to align well with our findings, perhaps the HRV results are actually 

436 representing the changes in baroreflex function as opposed to sympathetic tone. Our correlation 

437 analysis supports this concept.

438

439 Haemodynamics

440 Compared to baseline, HIIT induced a significant increase in sBP, mBP and dBP, which 

441 remained relatively stable over each interval. During post exercise recovery, there was a 

442 significant decrease in sBP, which was significantly lower than baseline. This is similar to 

443 previously reported acute evidence (Cote et al. 2015), while generally aligning with the training 

444 effects typically observed (O’Driscoll et al. 2018). Since cardiac output remained elevated 

445 post-HIIT, this reduction can be directly attributed to changes in peripheral vascular resistance, 

446 as supported by the significant reductions in TPR, which remained in the recovery period. HIIT 

447 has been linked to the promotion of greater sheer stress-induced nitric oxide bioavailability 

448 through an increased flow mediated dilation response compared to lower intensity modalities 

449 (Ramírez-Vélez et al. 2019). This increase in endothelial derived-nitric oxide may act on 

450 vascular smooth muscle cells to induce vasodilation through increasing cyclic guanosine 

451 monophosphate production via the activation of soluble guanylate cyclase; thus explaining the 

452 reduced TPR and hypotension (MacInnis and Gibala 2017). In addition, the arterial baroreflex 
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453 is a fundamental regulator of short and long-term BP with compelling evidence for its role in 

454 post exercise hypotension. 

455

456 Myocardial responses

457 Our results show significant acute cardiac responses to HIIT with improved LV function and 

458 cardiac mechanics. Specifically, we found significant improvements in peak global LV 

459 longitudinal strain and strain rate, which were not observed following a 2-week HIIT 

460 intervention (O’Driscoll et al. 2018). Global longitudinal strain and strain rate, have been 

461 proposed as strong indicators of measuring myocardial function; thus, the results from the 

462 present study may provide important clinical implications (Karlsen et al. 2019). Additionally, 

463 we found significant reductions in LV end-diastolic posterior wall thickness and end-systolic 

464 internal diameter. These parameters independently provide implications regarding structural 

465 health and clinical outcomes; and thus, although these changes are not always observed in 

466 chronic interventions, these acute responses may be of clinical importance (Quiñones et al. 

467 2000; O’Driscoll et al. 2018).

468

469 A single HIIT session elicited significant improvements in LV twist, systolic twist velocity, 

470 untwist velocity and torsion. In addition to providing prognostic implications, increased LV 

471 twist enhances potential energy during the ejection phase with recoil of this systolic 

472 deformation and release of elastic energy contributing to pressure decay, enhancing LV 

473 diastolic suction and thus filling (Sengupta et al. 2008; O’Driscoll et al. 2017). Despite this 

474 increase in diastolic function, LV end-diastolic volume (EDV) decreased post HIIT, potentially 

475 as a consequence of the sustained elevation in heart rate and a pooling-induced decrease in 

476 venous return. This post HIIT reduction in EDV combined with the increased stroke volume 
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477 resulted in a greater ejection fraction. It may be postulated that increases in stroke volume and 

478 ejection fraction post HIIT are attributed to the LV mechanical and functional improvements, 

479 as supported through the enhancements of contractility parameters such as end-systolic internal 

480 diameter and fractional shortening. These observed LV mechanical changes may be explained 

481 via the same mechanistic pathway responsible for decreased peripheral vascular resistance, 

482 which induced post HIIT systolic hypotension, resulting in a decreased afterload and thus 

483 improved LV systolic function. This mechanistic explanation is supported through the 

484 significant increases in systolic tissue doppler parameters and the non-significant decreases in 

485 LV filling pressures post HIIT; as well as being endorsed in the chronic HIIT literature 

486 (O’Driscoll et al. 2018).

487

488 Metabolic responses

489 Interest in HIIT interventions has been predominantly based upon its ability to produce 

490 significant improvements in aerobic capacity, comparable to that observed following 

491 traditional moderate-intensity continuous training (MICT), despite being an anaerobic 

492 modality in nature (Milanović et al. 2015; MacInnis and Gibala 2017). While the acute results 

493 of the present study support this anaerobic predominance, there also appears to be some aerobic 

494 contribution to HIIT, particularly in the final interval, with a respiratory exchange ratio (RER) 

495 below the threshold of 1, predominantly facilitated by an increase in oxygen uptake. This 

496 transfer in primary energy metabolism towards the later stages of the HIIT session highlights 

497 the potential to manipulate acute programme variables (such as exercise bout duration) of this 

498 modality to favour either aerobic or anaerobic metabolic pathways and may be an important 

499 mechanism for improvements in aerobic capacity (MacInnis and Gibala 2017). This response 

500 however, may reflect anaerobic endurance and/or fatigue. 
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501 Limitations

502 Our study investigated healthy and young participants and therefore may have limited 

503 application to ageing and clinical populations, suggesting the need for future research using 

504 participants from specific demographics. The primary limitation of this study lies within the 

505 application of HRV measurement in this setting. Indeed, the short duration of recording and 

506 changes in respiration induced via acute maximal exercise may affect HRV recordings and is 

507 a limitation regarding interpretation. However, given the novelty of this study, we considered 

508 cardiac autonomic measurements integral to provide a comprehensive non-invasive assessment 

509 of the combined physiological responses to HIIT. Further, these results should be interpreted 

510 in the context of the short-duration HIIT protocol employed, and thus the relative applicability 

511 of these findings to differing HIIT protocols of longer durations is unknown. Finally, cycle 

512 wattage was not recorded during HIIT and as such, we are unable to report on power output at 

513 each stage of HIIT.

514

515 Conclusion

516 A single HIIT session is associated with significant improvements in cardiac autonomic 

517 modulation and haemodynamic regulation, as well as improvements in LV systolic and 

518 diastolic function, mechanics and cardiac remodelling. In general, the acute responses detailed 

519 support the established chronic adaptations following a programme of HIIT, which may have 

520 independent clinical implications. 

521

522

523
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686 Figure legends

687

688 Figure 1: Hemodynamic responses to high intensity interval training. Values are presented as 

689 mean±SEM. A) systolic, mean and diastolic blood pressure responses. B) heart rate and rate 

690 pressure product responses. C) total peripheral resistance response. D) stroke volume and 

691 cardiac output responses. *p<0.05, **p<0.001 between baseline and all stages. §§p<0.001 

692 between HIIT 3 and recovery.

693

694 Figure 2: Autonomic responses to high intensity interval training. Values are presented as 

695 mean±SEM. A) R-R power spectral density (heart rate variability) response. B) R-R 

696 normalized units low-frequency and high-frequency responses. C) R-R LF:HF ratio response. 

697 D) baroreceptor reflex sensitivity and baroreceptor effectiveness index response *p<0.05, 

698 **p<0.001 between baseline and all stages. §§p<0.001 between HIIT 3 and recovery.

699

700 Figure 3: Central illustration of the acute mechanistic responses to HIIT.


