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Abstract The knowledge of key vehicle states is

crucial to guarantee adequate safety levels for modern

passenger cars, for which active safety control systems

are lifesavers. In this regard, vehicle sideslip angle is a

pivotal state for the characterization of lateral vehicle

behavior. However, measuring sideslip angle is

expensive and unpractical, which has led to many

years of research on techniques to estimate it instead.

This paper presents a novel method to estimate vehicle

sideslip angle, with an innovative combination of a

kinematic-based approach and a dynamic-based

approach: part of the output of the kinematic-based

approach is fed as input to the dynamic-based

approach, and vice-versa. The dynamic-based

approach exploits an Unscented Kalman Filter

(UKF) with a double-track vehicle model and a

modified Dugoff tire model, that is simple yet ensures

accuracy similar to the well-known Magic Formula.

The proposed method is successfully assessed on a

large amount of experimental data obtained on

different race tracks, and compared with a traditional

approach presented in the literature. Results show that

the sideslip angle is estimated with an average error of

0.5 deg, and that the implemented cross-combination

allows to further improve the estimation of the vehicle

longitudinal velocity compared to current state-of-the-

art techniques, with interesting perspectives for future

onboard implementation.

Keywords Vehicle dynamics � Tire modeling �
Sideslip angle � Kalman filter � Experiments

Abbreviations

A Dynamic matrix

a Vehicle front semi-wheelbase

ax Longitudinal acceleration of the center of

mass

ay Lateral acceleration of the center of mass

ay,m,s Standard deviation of the measurement noise

on ay
B Control matrix

B Lateral load transfer coefficient

b Vehicle rear semi-wheelbase

C Axle cornering stiffness

Ca Tire model parameter

Cz Downforce aero coefficient

d Axle height of the roll center

Fx Longitudinal force

Fy Lateral force
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f Dynamic function

Ga Tire model parameter

H Measurement matrix

h Measurement function

I Identity matrix

Jz Vehicle moment of inertia (vertical axis)

K Kalman gain

Kr Axle roll stiffness

l Vehicle wheelbase

m Vehicle mass

N Number of states in x

n Number of time samples

P Covariance matrix of the estimated state

Pzk Measurement covariance matrix

Pxkzk Cross-covariance matrix

p Tire model function

Q Process noise covariance matrix

R Measurement noise covariance matrix

r Yaw rate

rm,s Standard deviation of the measurement noise

on r

rs Standard deviation of the process noise on r

Sa Vehicle frontal area

t Time

tw Axle track width

u Control input

V Measurement noise matrix

v Measurement noise

vM Measured wheel speed

vx Longitudinal velocity of the center of mass

vy Lateral velocity of the center of mass

vy,s Standard deviation of the process noise on vy
W Process noise matrix

w Process noise

wdyn Weight of the dynamic filter

wkin Weight of the kinematic filter

wr Noise on the measurement of r

wax Noise on the measurement of ax
way Noise on the measurement of ay
X Sigma-point

x System state vector

Z Measurement sigma-point

z Measurement vector

a Tire slip angle

b Vehicle sideslip angle

be Root mean square error on b̂
c UKF parameter

Dt Discretization (sample) time

d Wheel steering angle

j UKF parameter

k Tire model parameter

lmax Friction coefficient

q Air density

r UKF parameter

w UKF parameter

Subscripts

forBi;Czi ; di;Fyij ;Fzij ;Kri; twi; v̂x;ij; v̂M;ij; aij
� �

i Axle index: 1 = front, 2 = rear

j Side index: 1 = left, 2 = right

Superscripts/accents

^ Estimated value

- A-priori value

a Augmented

1 Introduction

In a modern social context requiring increasing possi-

bilities tomove fast and on longdistances, vehicle safety

is of vital importance to considerably reduce the number

of fatal accidents. To respond to these urgent societal

challenges, in 2011 the European Commission adopted

an ambitious Road Safety Programme aiming to halve

the chances of deaths in Europe in the following decade.

The programme set out a mix of initiatives, both at

European and national level, focusing on a considerable

improvement of active safety (onboard vehicle con-

trols), passive safety (structural and infrastructural

enhancements) and preventive safety (analysing and

detecting road users’ behavior) [1].

In the specific context of active safety, the future of

the mobility on wheels is going towards the develop-

ment of advanced control algorithms for enhancing

vehicle interaction both with the road and with the

vehicle network. A full and accurate knowledge of the

vehicle states is required for onboard control logics to

guarantee a correct and effective performance. Current

vehicle control systems of passenger cars rely on

available measurements such as longitudinal velocity,

lateral/longitudinal accelerations, yaw rate. That is the

case of, e.g., the Electronic Stability Control (ESC),

nowadays installed in all passenger cars.

The availability of additional vehicle states would

allow the development of more advanced active

vehicle controllers, further enhancing vehicle safety.

That is the case of vehicle sideslip angle, a vehicle
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state defined as the angle between the vehicle longi-

tudinal axis and the direction of the vehicle velocity at

the center of mass [2]. The availability of this state

would be dramatically helpful [3–5]. However, the

possibility to measure sideslip angle directly on board

is limited. Optical and GPS-based sensors, usually

employed to this purpose, are expensive and quite

uncomfortable for a large-scale adoption. Alterna-

tively, the sideslip angle can be estimated via real-time

software modeling techniques. Several observers have

been developed to this aim, yet sideslip angle estima-

tion is still an open issue in the automotive field [6, 7].

Three modeling categories can be identified in the

literature: kinematic models, dynamic models and

combined models. Most of the proposed methods to

estimate sideslip angle need only signals that are easily

measurable within the integrated set of sensors already

available in a standard passenger car.

The first category is based on kinematic relation-

ships involving yaw rate, lateral and longitudinal

velocities and their derivatives. No vehicle or tire

parameters are involved. However, kinematic-based

estimators become unobservable when the yaw rate

approaches zero, and usually provide noisier estima-

tions. Nevertheless, kinematic models are more suit-

able for transient maneuvers and they work well in the

nonlinear region of the tire [8]. Some examples of

kinematic models are shown in [9], where a simple yet

effective logic is adopted to correct the unobservabil-

ity and prevent possible sideslip angle drifting in

straight roads due to yaw rate and lateral acceleration

sensor offsets (which are unavoidable). Selmanaj et al.

[9] correct the approach presented in [8] with a

heuristically calculated term. An heuristic function is

evaluated through the use of bivariate Gaussian

distributions and a set of three signals (steering angle,

yaw rate and sideslip rate) with their derivatives.

Because of their disadvantages, it is infrequent to

come across estimators purely based on kinematic

models. Instead, either a dynamic model is used, or a

combination of kinematic and dynamic models.

The second category is very frequently adopted in

the literature, as it is based on the equilibrium

equations of the vehicle, often described by means

of a single-track model [8, 10–18]. However, exam-

ples with a four-wheel configuration vehicle model

can also be found [19–24]. Often an Extended Kalman

filter [25] is used, but in [22–24] the Unscented version

of the Kalman filter is applied when the model

becomes strongly nonlinear. Dynamic approaches

are very sensitive to the tire model adopted within

the estimator. Some papers choose a linear tire model

[10, 11, 13, 14], while others use Pacejka’s Magic

Formula [12, 15, 23] and a significant group adopt

even different tire models such as the Dugoff tire

model [19, 22, 24] and the Rational tire model [21, 26].

In [10], an extended adaptive Kalman filter is used,

integrated with an estimation/adaptation algorithm for

the tire parameters. On the other hand, [21] proposes a

dual extended Kalman filter, where two Kalman filters

are used in a recursive way. The first one estimates

vehicle parameters that are fed to the second Kalman

filter which estimates the vehicle state. In [13] another

interesting two-stage structure is investigated. The

first stage is an Extended Kalman filter which provides

information about the vehicle state, and the second one

employs the Extended Kalman filter results to obtain

an estimation of the tire parameters. In [23], a new

approach for the vehicle state estimation based on a

detailed vehicle model and an Unscented Kalman filter

is presented. The mathematical model relies on a

planar two-track model extended by an advanced

vertical tire force calculation method. Doumiati et al.

[22] and [24] also apply the Unscented version of the

Kalman filter, but [22] also employs a set of deflection

sensors installed on the suspension system, which is

not a common sensor set for a passenger vehicle. [24]

estimates the tire-road friction coefficient by intro-

ducing it in the state vector. The authors of [15]

employ the Magic Formula in an innovative way,

coupled with an Extended Kalman filter and with the

addition of new tuning parameters which control the

shape of lateral tire forces. Interestingly, [26] intro-

duces cornering stiffnesses directly in the state vector,

hence obtaining their real-time estimation. [27]

applies the same idea to the parameters of the Rational

tire model.

The third category features a mixed approach,

employing a well-thought combination of kinematic

and dynamic modeling. The study presented in [28]

combines a kinematic approach with a dynamic

formulation to overcome the problem of the unob-

servability when the yaw rate is around zero. In [29]

the kinematic and dynamic models are cleverly

combined to make the most of each formulation, and

a steady-state index is defined to properly weight the

outputs of the two models. Moreover, a simple

cornering stiffness identification method is proposed.
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The authors of [30] apply their model to an electric

vehicle featuring multi-sensing hub units, which are

sensor units able to provide a very accurate measure-

ment in terms of tire lateral forces. The authors also

estimate sideslip and roll angles with a coupled

approach including a Recursive Least Squares (RLS)

method and a Kalman filter. In [31] a mixed approach

is applied, with a mostly kinematic-based model: an

algorithm to estimate tire-road friction is presented,

that is activated only if the lateral velocity derivative

is sufficiently high and the yaw rate is above a

predefined threshold, or when the ESC is on.

This paper proposes a new method to estimate

vehicle sideslip angle, with the following novelties:

• the development of an innovative combination of

kinematic and dynamic modeling, denoted as

cross-combined approach, which introduces a

mutual influence between the two approaches;

• the development of an Unscented Kalman filter

framework based on the cross-combined approach

and a modified Dugoff tire model;

• the validation of the proposed approach on a large

set of experimental data acquired on a rear-wheel-

drive motorsport car equipped with an optical

sensor for the measurement of sideslip angle, along

with an Inertial Measurement Unit (IMU), wheel

speed sensors, and a steering wheel sensor;

• a comparison between the proposed method and a

traditional method for sideslip angle estimation.

The remainder of the paper is organized as follows.

Section 2 provides a description of the Kalman filter

and its main variants. Section 3 describes the pro-

posed estimator with specific focus on the kinematic

filter, the dynamic filter, and the concept of cross-

combination. Section 4 presents results based on

experimental tests in which the proposed approach

is compared to a traditional one. Section 5 draws the

main conclusions.

2 The Kalman filter (KF)

The Kalman filter is named after Rudolph E. Kalman,

who first described a new solution to the discrete-data

linear filtering problem in 1960 [25]. Theoretically,

the Kalman filter is an estimator for the linear

quadratic Gaussian problem, i.e. estimating the instan-

taneous state of a linear dynamic system perturbed by

Gaussian white noise, by using measurements linearly

related to the state, also corrupted by Gaussian white

noise. The resulting estimator is statistically optimal

with respect to any quadratic function of the estima-

tion error [32]. The name ‘‘filter’’ derives from the fact

that, practically, it allows to remove the known and

unknown noise components in the measurements and

in the description of the system. Several versions of

the KF exist. Some of the most important versions are

described here, including versions that allow to deal

with nonlinear systems, as is the case of vehicle

dynamics.

2.1 The basic Kalman filter (KF) for linear

systems

The original Kalman filter formulation is designed to

deal with linear systems, estimating the state x 2 RN

of the observed system. The generic linear process can

be described in discrete-time form by means of

process and measurement equations, respectively:

xk ¼ Axk�1 þ Buk þWwk�1

zk ¼ Hxk þ Vvk
ð1Þ

where xk and uk are respectively the state vector and

the input at the generic time step k, A the dynamic

matrix, B the control matrix, H the measurement

matrix, W the process noise matrix, V the measure-

ment noise matrix. xk is a column vector with N

elements. wk and vk represent the process and mea-

surement noise with Q and R being the correspondent

covariance matrices. The matrices A;B;H;W;V

allow to relate state, input, and noises to the

subsequent (propagated) state and to the measure-

ments. The equations of the recursive algorithm are

divided into time update equations and measurement

update equations. The time update equations describe

the evolution of the system a-priori, i.e., only based on

the model of the system:

x̂�k ¼ Ax̂k�1 þ Buk

P�
k ¼ APk�1A

T þWQWT
ð2Þ

where x̂�k indicates the a-priori estimated state at time

step k, Pk�1 the state covariance at time step (k � 1),

P�
k the a-priori state covariance at time step k.

The measurement update equations allow to correct

the a-priori estimation based on the gathered
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measurement, hence providing the a-posteriori esti-

mation of the state:

Kk ¼ P�
k H

T HP�
k H

T þ VRVT
� ��1

x̂k ¼ x̂�k þ Kk zk �Hx̂�k
� �

Pk ¼ I � KkHð ÞP�
k

ð3Þ

where x̂k is the estimated state at time step k, Pk the

covariance at time step k, and Kk is denoted as Kalman

gain. Note that covariance matrices P, W and V are

semi-positive definite.

2.2 Extended Kalman filter (EKF) and Unscented

Kalman filter (UKF)

The main drawback of the basic Kalman filter is its

suitability for the estimation of the state of a process

governed only by a linear set of stochastic difference

equations. Yet, it is well known that real processes are

often far from linear. For nonlinear systems, the so-

called Extended Kalman filter can be adopted

[25, 33, 34]. Equation (1) can be generalized as:

xk ¼ f xk�1; uk�1;wk�1ð Þ
zk ¼ h xk; vkð Þ

ð4Þ

which entails generic functions f and h. The key idea

of the EKF is to linearize the system, at each time step,

around the estimated state of the system at the previous

time step:

Ak i;j½ � ¼
of i½ �
ox j½ �

x̂k�1; uk�1; 0ð Þ

Wk i;j½ � ¼
of i½ �
ow j½ �

x̂k�1; uk�1; 0ð Þ

Hk i;j½ � ¼
oh i½ �
ox j½ �

x̂�k ; 0
� �

Vk i;j½ � ¼
oh i½ �
ov j½ �

x̂�k ; 0
� �

ð5Þ

where Ak i;j½ �, Wk i;j½ �, Hk i;j½ �, Vk i;j½ � represent the generic

element of, respectively, Ak,Wk,Hk, Vk, on row i and

column j, and f i½ �, h i½ �, x i½ �, v i½ �, w i½ � represent the i-th

element of, respectively, f , h, x, v, w. Essentially

Eq. (5) contains the Jacobian matrices of the partial

derivatives of the process and measurement functions

with respect to the state and the noise. As a result, the

following time update equations can be used for the a-

priori evolution of the EKF (note that in these

expressions the two covariance matrices are also

assumed non-constant, for more generality):

x̂�k ¼ f x̂k�1; uk�1; 0ð Þ
P�
k ¼ AkPk�1A

T
k þWkQk�1W

T
k

ð6Þ

and the a-posteriori equations are:

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ VkRkV

T
k

� ��1

x̂k ¼ x̂�k þ Kk zk � h x̂�k ; 0
� �� �

Pk ¼ I � KkHkð ÞP�
k

ð7Þ

Despite the EKF is an elegant, efficient and

recursive way to estimate the state of a nonlinear

system, it has important flaws:

• The calculation of Jacobian matrices may be

computationally expensive, especially in situations

where the partial derivatives are to be calculated

online at each time step.

• The linearized transformation provides good

results only when the error propagation can be

relatively well approximated by a linear model.

This problem is deeply discussed in [35, 36].

To overcome the drawbacks related to the lin-

earization process, many studies have been carried

out. Attempts include the development of high-order

Kalman filters [37] and more sophisticated versions of

the EKF [38]. A widely appreciated solution is the

Unscented Kalman filter (UKF), which provides a

relatively simple and immediate way to propagate

mean and covariance variables of random signals

through a nonlinear transformation, without the need

for linearization. The UKF is founded on the intuition

that it is easier to approximate a probability distribu-

tion than it is to approximate an arbitrary nonlinear

function or transformation [39]. The state distribution

is represented with a set of deterministically chosen

sample points, denoted as ‘‘sigma-points’’. The sigma-

points are a set of 2N þ 1 potential guesses of the state

of the system, with a given mean and covariance

reflecting the same characteristics of the state to be

estimated. In case of additive process and measure-

ment noise, the 2N þ 1 sigma-points can be obtained

as:
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X
0ð Þ
k�1 ¼ x̂k�1

X
ið Þ
k�1 ¼ x̂k�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþwð ÞPk�1

p� �

i
for i¼ 1;2; . . .;N

X
ið Þ
k�1 ¼ x̂k�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþwð ÞPk�1

p� �

i�N
for i¼Nþ1;Nþ2; . . .;2N

ð8Þ

where in general X
ið Þ
k represents the i-th sigma-point

(i¼ 0;1;2; . . .;2N) at time step k, which is a column

vector with N elements—just as the state vector, for

which a sigma-point is a potential guess. The notationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþwð ÞPk�1

p� �
i
stands for the i-th column of the

argument, which is calculated through the Cholesky

decomposition. The UKF parameter w is defined as

w¼ r2 Nþjð Þ�N where r and j are further UKF

parameters, discussed below. At each time step, every

sigma-point is propagated through the nonlinear

dynamic function f :

X̂
ið Þ�
k ¼ f X

ið Þ
k�1; uk�1; 0

� �
for i ¼ 0; 1; 2; . . .; 2N

ð9Þ

where X̂
ið Þ�
k is the i-th a-priori propagated sigma-point,

so it is also a column vector withN elements. Thus, the

a-priori estimated mean and covariance can be com-

puted as [40–42]:

x̂�k ¼
X2N

i¼0

W ið Þ
m X̂

ið Þ�
k

P�
k ¼

X2N

i¼0

W ið Þ
c X̂

ið Þ�
k � x̂�k

n o
X̂

ið Þ�
k � x̂�k

n oT

þ Q

ð10Þ

based on the appropriate weights

W 0ð Þ
m ¼ w

wþ N

W 0ð Þ
c ¼ w

wþ N
þ 1� r2 þ c
� �

W ið Þ
m ¼ W ið Þ

c ¼ 1

2 wþ Nð Þ for i ¼ 1; 2; . . .; 2N

ð11Þ

For the calibration phase of the filter:

• j represents the tailedness of the probability

distribution, a default starting point can be j ¼ 0

[43];

• 0\r\1;

• c[ 0 (for a Gaussian distribution the optimal

value is c ¼ 2 [41]).

The measurement update equation set is:

Ẑ
ið Þ�
k ¼ h X̂

ið Þ�
k ; 0

� �
for i ¼ 0; 1; 2; . . .; 2N

ẑ�k ¼
X2N

i¼0

W ið Þ
m Ẑ

ið Þ�
k

Pzk ¼
X2N

i¼0

W ið Þ
c Ẑ

ið Þ�
k � ẑ�k

n o
Ẑ

ið Þ�
k � ẑ�k

n oT

þ R

Pxkzk ¼
X2N

i¼0

W ið Þ
c X̂

ið Þ�
k � x̂�k

n o
Ẑ�
k � ẑ�k

� �T

Kk ¼ PxkzkP
�1
zk

x̂k ¼ x̂�k þ Kk zk � ẑ�k
� �

Pk ¼ P�
k � KkPzkK

T
k

ð12Þ

where Ẑ
ið Þ�
k is the i-th a-priori measurement vector

corresponding to the i-th a-priori propagated sigma-

point X̂
ið Þ�
k , and Pzk and Pxkzk are the measurement

covariance matrix and the cross-covariance matrix,

respectively. The above version of the UKF is

exploited in this paper. However, for completeness,

it is worth noting that in the general case of non-

additive process and measurement noise, the UKF

entails an augmented state vector xak and covariance

matrix Pa
k, defined as:

xak ¼
xk

wk

vk

2

64

3

75

Pa
k ¼

Pk 0 0

0 Q 0

0 0 R

2

64

3

75

ð13Þ

The corresponding state update and measurement

update equations are reported in [44].

3 Design of the estimator

The proposed estimator is based on an innovative

combination of a standard kinematic filter and a novel

dynamic filter. The following subsections describe in

detail: (1) the kinematic filter; (2) the dynamic filter;
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(3) the cross-combined method to merge kinematic

and dynamic filters.

3.1 Kinematic filter

The kinematic filter only exploits kinematic quantities

related to vehicle motion, so that no tire model is

needed to estimate the lateral velocity, hence the

sideslip angle. By simply manipulating the expres-

sions of longitudinal and lateral acceleration as

functions of longitudinal velocity, lateral velocity,

and yaw rate, and by choosing the state as

x ¼ vx vy
	 
T

, the ideal (noise-free) process is

described by [7]:

_vx
_vy

� �
¼ 0 r

�r 0

� �
vx
vy

� �
þ 1 0

0 1

� �
ax
ay

� �
ð14Þ

Regarding the description of the noise, the insight-

ful yet simple approach described in [28] was chosen

since it allows to include directly (in Q) the measure-

ment noise covariances of yaw rate, lateral and

longitudinal acceleration. As a result, the process is

described by:

_vx
_vy

� �
¼ 0 r

�r 0

� �
vx
vy

� �
þ 1 0

0 1

� �
ax
ay

� �

þ �vy �1 0

vx 0 �1

� � wr

wax

way

2

4

3

5 ð15Þ

which uses the measurement of yaw rate directly in the

dynamic matrix, and the measurements of longitudinal

and lateral accelerations as inputs. The actual mea-

surement equation of the filter is straightforward:

z ¼ Hx ¼ 1 0½ � vx
vy

� �
ð16Þ

Because both the process and the measurement

equations are linear, the state can be estimated with the

basic KF (2–3) using the matrices:

A ¼
0 r

�r 0

� �

B ¼
1 0

0 1

� �

H ¼ 1 0½ �

W ¼
�vy �1 0

vz 0 �1

� �

ð17Þ

The forward Euler method is applied to perform the

calculation in discrete time. As already assessed in [8],

kinematic approaches are unobservable when the yaw

rate is close to zero. A simple reset logic is applied to

correct lateral velocity estimation, by forcing vy to

zero when the magnitude of r is sufficiently small.

Finally, at each time step, the sideslip angle is

calculated, by definition, as b ¼ arctan vy=vx
� �

.

3.2 Dynamic filter

A dynamic filter is based on the equilibrium equations

of the vehicle, which need a constitutive law (tire

model) to explicitly express the tire forces as functions

of relevant parameters. The subsequent paragraphs

describe respectively: i) vehicle model and tire model;

ii) the UKF implementation of the filter.

3.2.1 Vehicle model and tire model

A double-track vehicle model is adopted, as shown in

Fig. 1. The lateral equilibrium equation and the yaw

balance equation for this model are:

may ¼ m _vy þ vxr
� �

¼ Fy11 cos dð Þ þ Fy12 cos dð Þ
þ Fy21 þ Fy22

Jz _r ¼ Fy11 cos dð Þaþ Fy11 sin dð Þ tw1
2

þ Fy12 cos dð Þa

� Fy12 sin dð Þ tw1
2

� Fy21b� Fy22b

ð18Þ

Note that the steering angles of the front left and

front right wheels are assumed to be the same (d) and
that because longitudinal interactions typically have

small effects, these are neglected in the lateral

dynamics equations. On the other hand, the proposed

double-track schematization allows to consider effects

such as individual wheel slip angles and lateral load

transfers. These effects help grasping a fairly accurate

vehicle behavior, benefiting the estimator accuracy,

unlike the single-track vehicle model adopted in many

other estimators.

The lateral forces are expressed by a nonlinear tire

model, considering key aspects of tire behavior such as

nonlinearity, saturation, and dependency on the ver-

tical load. In particular, the version of the Dugoff tire

model presented in [45] is chosen, as it presents a very

similar behavior to the well-known—yet more
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complex—Magic Formula. For a single wheel, the tire

lateral force can be expressed as:

Fy ¼ Caðtan aÞp kð ÞGa ð19Þ

where p kð Þ is a nonlinear function defined as:

p kð Þ ¼
2� kð Þk k\1

1 k� 1



with k ¼ lmaxFz

2 Ca tan aj j

ð20Þ

and Ga is a correction term, function of the wheel slip

angle and the tire-road friction coefficient:

Ga ¼ lmax � 1:6ð Þ tan aþ 1:155 ð21Þ

However, with this formulation of Ga [45], same

values of a but with opposite signs would not result in
the same magnitude of lateral force (note that this

formulation does not account for camber). To correct

that, in this paper Eq. (21) is modified as follows:

Ga ¼ lmax � 1:6ð Þj tan aj þ 1:155 ð22Þ

which ensures a symmetrical behavior for positive and

negative values of a:
The selected tire model also requires the vertical

load on each tire:

Fz11 ¼
mgb

2l
� maxh

2l
� mB1ay þ

1

4
qv2xCz1Sa

Fz12 ¼
mgb

2l
� maxh

2l
þ mB1ay þ

1

4
qv2xCz1Sa

Fz21 ¼
mga

2l
þ maxh

2l
� mB2ay þ

1

4
qv2xCz2Sa

Fz22 ¼
mga

2l
þ maxh

2l
þ mB2ay þ

1

4
qv2xCz2Sa

ð23Þ

Each expression in Eq. (23) includes, in order:

static load contribution; longitudinal load transfer

contribution; lateral load transfer contribution; down-

force contribution. For the lateral load transfer,

according to [46], it is:

B1 ¼
1

tw1

b

l
d1þ

Kr1

Kr1þKr2
h� d1þ

d2�d1ð Þa
l

� �� �� �

B2 ¼
1

tw2

a

l
d2þ

Kr2

Kr1þKr2
h� d1þ

d2�d1ð Þa
l

� �� �� �

ð24Þ

where Kr1 and Kr2 are the roll stiffness values of,

respectively, the front and rear axle, and d1 and d2 are

the heights of the roll centers of, respectively, the front

and rear axle.

Finally, the congruence equations [2] provide the

relationship between kinematic quantities and slip

angles:

a11 ¼ d� arctan
vy þ ra

vx � rtw1=2

� �

a12 ¼ d� arctan
vy þ ra

vx þ rtw1=2

� �

a21 ¼ � arctan
vy � rb

vx � rtw2=2

� �

a22 ¼ � arctan
vy � rb

vx þ rtw2=2

� �

ð25Þ

From the above equations, it is clear that the vehicle

longitudinal velocity is required. That is estimated

based on measurements including wheel speed sensors

and accelerometers, as discussed in Sect. 4.

Fig. 1 Double track vehicle model (adapted from [2])
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3.2.2 UKF filter implementation

Based on the vehicle model in Eq. (18), the state

vector is chosen as x ¼ vy r
	 
T

, so N ¼ 2. The input

vector is u ¼ d½ � and the measurement vector is z ¼
r ay
	 
T

(both variables can be easily measured with

standard sensors). By discretizing Eq. (18) with the

forward Euler method, the system dynamics is

expressed as:

together with Eqs. (19–25). Regarding the relation-

ships between z and x, r is straightforward because it

appears directly both in z and x, while ay can be related

to the vehicle state at each time step through:

ayk ¼
1

m
Fy21k

þ Fy22k
þ Fy11k

þ Fy12k

� �
cos dkð Þ

h i

ð27Þ

together with Eqs. (19–25). The matricesQ and R are:

Q ¼ v2y;s 0

0 r2s

� �
ð28Þ

R ¼ r2m;s 0

0 a2y;m;s

� �
ð29Þ

where vy;s is the standard deviation of the process noise

on vy, rs is the standard deviation of the process noise

on r, rm;s is the standard deviation of the measurement

noise on r, and ay;m;s is the standard deviation of the

measurement noise on ay.

Based on Eq. (8), the 2N þ 1 ¼ 5 sigma-points are:

X
0ð Þ
k�1 ¼ x̂k�1

X
1ð Þ
k�1 ¼ x̂k�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ wð ÞPk�1

p� �

1

X
2ð Þ
k�1 ¼ x̂k�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ wð ÞPk�1

p� �

2

X
3ð Þ
k�1 ¼ x̂k�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ wð ÞPk�1

p� �

3

X
4ð Þ
k�1 ¼ x̂k�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ wð ÞPk�1

p� �

4

ð30Þ

where the square root of a matrix can be calculated

with the Cholesky factorization. The estimated state

vector at each time step can then be obtained using

Eqs. (9–12), noting that for each sigma-point Eq. (9)

is Eq. (26), while Eq. (27) is used in the first of

Eq. (12). Finally, at each time step, again

b ¼ arctan vy=vx
� �

.

3.3 Cross-combination

The described kinematic filter and dynamic filter run at

the same time. The final estimate of the sideslip angle

is calculated as a weighted average of the sideslip

angle obtained through the two filters according to the

following procedure (Fig. 2): (1) the measured value

of ay is stored in a 0.1 s buffer; (2) a steady-state index

is calculated, mainly depending on the Root Mean

Square (RMS) of the stored samples of ay; (3) the

steady-state index is used to compute a weight for the

kinematic contribution, wkin, and a weight for the

dynamic contribution, wdyn, with wkin þ wdyn ¼ 1. The

rationale is that, as suggested in [29], kinematic and

dynamic models are better suited for, respectively,

transient and steady-state conditions.

For ay
�� ��� 1, the root mean square (RMS) value of

the lateral acceleration is computed over the 0.1 s

buffer (e.g., 10 samples for a frequency of 100 Hz). A

membership function is used to calculate the value of

the steady-state index: if the computed RMS value is

lower than 0.4 m/s2, meaning that ay does not vary

vykþ1
¼ vyk þ

Fy11k þ Fy12k

� �
cos dkð Þ þ Fy21k þ Fy22k

m
� vxk rk

� �
Dt

rkþ1 ¼ rk þ Fy11k þ Fy12k

� �
cos dkð Þaþ Fy11k � Fy12k

� �
sin dkð Þ tw1

2
� Fy21k þ Fy22k

� �
b

h iDt
Jz

ð26Þ
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significantly, the steady-state index is set equal to 1;

between 0.4 m/s2 and 0.6 m/s2 the membership func-

tion produces a linearly variable output from 1 to 0; for

values larger than 0.6 m/s2 the maneuver is assumed to

be in transient conditions, thus the steady-state index

is set to 0. Instead, if ay is within ± 1 m/s2, the steady-

state index is set to 1, to prevent possible fluctuations

of the sideslip angle estimation in nearly straight-line

conditions due to the kinematic filter. wdyn is 1 when

the steady-state index is 1, while it varies linearly from

1 to 0.7 corresponding to values of the steady-state

index from 1 to 0.

This paper also proposes, for the first time, to cross-

combine the variables in common between the output

of one filter and the input of the other. Precisely the

variables in common are r and vx, in that:

• the kinematic filter needs r as input and produces vx
as output;

• the dynamic filter needs vx as input and produces r

as output.

Normally, for the kinematic filter, r is taken directly

from a sensor, and for the dynamic filter, vx is

calculated as a function of the measured wheel speeds.

While both values are affected by sensor noise, the

values for the same quantities obtained as output of

each filter are expected to be more accurate. The

kinematic filter should produce a better estimation of

vx than the value calculated through wheel speed

sensors, and the dynamic filter should produce a better

estimation of r than the measured value obtained

through the sensor – note that unmodeled effects, such

as pitch and roll motion, do affect the accuracy of the

yaw rate measurement. So, these values of vx and r can

be used as inputs of the kinematic and dynamic filter,

respectively. This new idea, denoted as cross-combi-

nation and shown in Fig. 3, has the potential to

improve the accuracy of the estimation of vy and thus

of the sideslip angle.

4 Results

The proposed cross-combined filter was tested on a

large set of data obtained through a performance-

oriented rear-wheel-drive car, mounting front tires

Fig. 2 (top) Schematic of the methodology used to calculate the weights of the kinematic and the dynamic filter; (bottom) Detail of the

membership functions
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30/68 (tread band width in cm/external tire diameter in

cm) on an R18 (radius in inches) rim, and rear tires

31/71 mounted on an R18 rim. The vehicle (Fig. 4)

was equipped with:

• an Inertial Measurement Unit (IMU) OXTS 3000

[48], providing longitudinal acceleration, lateral

acceleration, yaw rate, with the following main

specifications: accelerometer, bias stability 2 lg,
Servo technology, range 10 g; gyroscope, bias

stability 2�/h, MEMS technology, range 100�/s;
• four wheel speed sensors Bosch HA-M [49] with

the following main specifications: max frequency

4.2 kHz, accuracy repeatability of the falling edge

of tooth\ 4%;

• a steering angle sensor Bosch LWS [50] with the

following main specifications: range � 780�,
absolute physical resolution 0.1�;

• a Correvit S-Motion Type 2055A sensor [51],

providing vehicle longitudinal velocity and side-

slip angle, with the following main specifications:

range 400 km/h, linear velocity measurement

accuracy\|0.2%| (%FSO—Full Span Output),

angle resolution\ 0.01�.

The main vehicle parameters are reported in

Table 1.

Starting from the wheel speed sensor data, two

options were considered to calculate the longitudinal

vehicle velocity. A simple and straightforward option

was to calculate the average speed of the front wheels,

because for a rear-wheel-drive car the front wheels

undergo lower slip values than the rear wheels. Amore

sophisticated solution was actually implemented.

Denoting with vM;ij the measured speed at wheel ij,

estimates of the vehicle longitudinal velocity, v̂x;ij, can

Fig. 3 Schematic of the proposed filtering approach with cross-combination

Fig. 4 Test vehicle
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be obtained from each wheel based on rigid body

kinematics [47] as follows:

v̂x;11 ¼ vM;11 cos dþ
rtw1
2

v̂x;12 ¼ vM;12 cos d�
rtw1
2

v̂x;21 ¼ vM;21 þ
rtw2
2

v̂x;22 ¼ vM;22 �
rtw2
2

ð31Þ

Compared to the calculation of the average of v̂x;ij,

this allows to depurate: (1) the yaw rate effect due to

the wheels being located with a lateral offset with

respect to the vehicle longitudinal axis; (2) the steering

angle effect, as the measured wheel speed is aligned

with the wheel and not necessarily the vehicle

longitudinal axis. Then, the following logic is imple-

mented to identify, among the four wheels, the one

with the lowest slip, based on the measurement of ax:

• if ax [ 0:5 m/s2, i.e. the vehicle accelerates, wheel

speeds are larger than the longitudinal vehicle

speed so the lowest value is the closest to the actual

vehicle speed: the vehicle longitudinal speed is

estimated as min v̂x;11; v̂x;12; v̂x;21; v̂x;22
� �

• if ax\� 0:5 m/s2, i.e. the vehicle decelerates,

wheel speeds are smaller than the longitudinal

vehicle speed so the largest value is the closest to

the actual vehicle speed: the vehicle longitudinal

speed is estimated as max v̂x;11; v̂x;12; v̂x;21; v̂x;22
� �

• for low values of acceleration, i.e. if axj j � 0:5 m/

s2, the vehicle longitudinal speed is estimated

through a weighted average of v̂x;ij., with weights

calculated according to [9].

Thanks to the availability of the sideslip angle

measurement, the root mean square error (RMSE)

method was selected as the performance index for

assessing the quality of the estimation:

be ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

b̂k � bk
� �2

s

ð32Þ

where n is the number of time samples. The proposed

filtering technique was also compared to a traditional

technique using a linear dynamic model, for which

equations are reported in the Appendix. In the

following figures, the two techniques are referred to

as, respectively, KF (Kalman filter, linear dynamic)

and UKF-CC (Cross-combined kinematic and UKF

dynamic).

Table 1 Vehicle

parameters
Quantity Symbol Value Unit

Mass m 1345 kg

Wheelbase l 2.713 m

Front semi-wheelbase a 1.250 m

Front track width tw1 1.726 m

Rear track width tw2 1.710 m

Height of the center of mass h 0.380 m

Front roll center height d1 0.01 m

Rear roll center height d2 0.015 m

Yaw moment of inertia Jz 1869.4 kg m2

Front downforce coefficient Cz1 0.35 –

Rear downforce coefficient Cz2 0.75 –

Frontal area Sa 2.05 m2

Front axle relative roll stiffness Kr1/(Kr1 ? Kr2) 0.5287 –

Rear axle relative roll stiffness Kr2/(Kr1 ? Kr2) 0.4713 –

Dugoff tire parameter – front axle Ca1 60,000 N

Dugoff tire parameter – rear axle Ca2 105,000 N

Dugoff friction coefficient lmax 1.4 –
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Figures 5 and 6 depict the measured and estimated

sideslip angle along four race tracks. Each figure cor-

responds to a single lap, which is representative of the

corresponding track since each filter behaved consis-

tently along all laps. These experimental tests include

a variety of testing conditions: multiple runs were

carried out, with the same vehicle, tires, and

equipment, in European and Asian race tracks, in

different seasons of the year, on dry tarmac. For all of

the tracks, the KF is able to follow the general trend

but with significant discrepancies all round, up to

around 5 deg. Instead, the UKF ? CC provides a

much more reliable and smooth tracking. In terms of

RMSE, the KF is normally above 1 deg, while the

Fig. 5 Measured and estimated sideslip angle for one lap of: (left) Track 1; (right) Track 2

Fig. 6 Measured and estimated sideslip angle for one lap of: (left) Track 3; (right) Track 4

Table 2 Performance comparison of a traditional filter (linear dynamic) and the proposed filter

Filter be (deg)

Track 1 Track 2 Track 3 Track 4 Average

Kalman filter, linear dynamic (KF) 1.08 1.14 0.98 1.27 1.12

Cross-combined kinematic and UKF dynamic (UKF-CC) 0.47 0.64 0.48 0.54 0.53
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UKF ? CC settles on an average value of 0.53 deg,

with an improvement of around 50% with respect to

the KF (Table 2).

Figure 7 compares different methods to estimate vx,

against the measured value. While all of the methods

perform fairly well—because wheel speeds are rather

informative measurements anyway—important

remarks can be made. For the method using the

average speed of the front wheels, the rationale was to

pick the wheels with lower slips for a rear-wheel-drive

car. However, that is no longer ideal in braking

scenarios, when the front wheels undergo significant

slips, even more than for the rear wheels. This is

evident in Fig. 7 just before 296 s. On the other hand,

the method using all of the wheel speeds and ax
provides a more reliable result, though sometimes

affected by discontinuities due to the rule-based nature

of the method. The vx output of the kinematic filter,

instead, is the smoothest signal and is the closest to the

measured profile. This further supports the idea of the

cross-combination, because a better vx is given as

input to the dynamic filter, contributing to the quality

of the estimation of the sideslip angle.

5 Conclusion

This paper presented a novel approach for the

estimation of vehicle sideslip angle. The analyses

presented in this paper lead to the following main

conclusions:

• the kinematic and dynamic models for the estima-

tion of sideslip angle can be cross-combined, by

feeding part of the output of each filter as input to

the other filter;

• the cross-combination allows to further improve

the estimation of the vehicle longitudinal velocity

compared to current state-of-the-art techniques, in

turn benefiting the precision of the sideslip angle

estimation;

• the modified Dugoff tire model is a simple yet

effective constitutive model and produces the same

lateral force—slip angle behavior regardless of the

sign of the slip angle;

• the proposed cross-combined kinematic and UKF

dynamic filter allows to estimate the vehicle

sideslip angle with an average RMSE of around

0.5 deg on experimental data.

Future developments will deal with: (1) tire longi-

tudinal dynamics and combined interactions; (2)

effects of roll and bank angles; (3) effects of tire

temperature; (4) the potential investigation of method-

ologies for coping with variable road friction condi-

tions; (5) further experimental tests with possible real-

time implementation of the filter.

Funding Open access funding provided by Università degli

Studi di Padova within the CRUI-CARE Agreement.

Fig. 7 Comparison of longitudinal vehicle speed estimation

methods, Track 4: measured speed through optical sensor (blue),

average of the front wheel speeds (red), technique inspired to [9]

explained at the beginning of Sect. 4 (yellow), kinematic filter

used in the proposed method (purple). Left: entire lap; Right:

detail
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Appendix 1

The traditional KF approach used as a comparison in

this paper is a dynamic model. It uses a single-track

vehicle model and a linear tire model, similar to

[26, 29, 30]. The state vector, input vector, and

measurement vectors are the same as for the proposed

dynamic model, i.e. x ¼ vy r
	 
T

, u ¼ d,

z ¼ r ay
	 
T

. The filter equations in discrete time

are the following:

vykþ1
¼ 1� Dt

mvxk
C1þC2ð Þ

� �
vyk þ � Dt

mvxk
C1a�C2bð Þ�Dtvxk

� �
rkþ

DtC1

m
dk

rkþ1¼ � Dt
Jzvxk

C1a�C2bð Þ
� �

vyk þ 1� Dt
Jzvxk

C1a
2þC2b

2
� �� �

rkþ
DtC1a

Jz
dk

8
>>><

>>>:

zk¼
rk¼ rk

ayk ¼�C1þC2

mvxk
�C1aþC2b

mvxk
rkþ

C1

m
dk

8
<

:

ð33Þ

Because of the adopted tire model, the system is

linear, hence the basic Kalman filter may be used.

The values for C1 and C2 are respectively

110,000 N/rad and 192,500 N/rad. Finally, the

expression of the matrices Q and R are the same seen

in Eqs. (28) and (29).
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