

Validation of a method to assess offside technologies in dynamic movement

DUNN, Marcus http://orcid.org/0000-0003-3368-8131 and ALLEN, Tom Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/29245/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

DUNN, Marcus and ALLEN, Tom (2021). Validation of a method to assess offside technologies in dynamic movement. In: 2021 FIFA Research Synergy Workshop, 11 Oct 2021. Federation Internationale de Football Association. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Validation of a method to assess offside technologies in dynamic movement

Dr Marcus Dunn

Research Fellow (Sports Engineering and Biomechanics)

Sports Engineering Research Group, Sheffield Hallam University, UK

Background

Proposed approach

Kick camera

- Accessible, high-speed video (HSV) approach to determine:
 - Instant of offside event.
 - Position of offside event during dynamic movement.

- Assessments:
 - Number of identifiable events.
 - Three-dimensional body marker accuracy.

- **Considerations:**
 - Large (20 m³) player volume, camera pairings (LC, CR and LR).

- Instant of offside event:
 - HSV and high-refresh rate LED timing system demonstrates ability to accurately identify offside instant and corresponding broadcast image.
 - Body markers visible in paired images:
 - LC: 77%, CR: 71%, LR: 75%.

Three-dimensional position: pitch calibration

- Three-dimensional position: pitch calibration
 - Accuracy (RMSE) of player volume definition (e.g., O, X and Y locations resp.):
 - TotalStation: 52, 50 and 23 mm.
 - HSV cameras: 45, 84 and 10 mm.

Total Station vs optical motion capture to assess pitch calibration

HSV cameras vs optical motion capture to assess pitch calibration

- Three-dimensional position: body markers
 - Reliability (SEM) of body markers in HSV camera coordinate system:
 - LC: 0.23 mm, CR: 0.53 mm, LR: 0.23 mm.
 - Accuracy (RMSE) of body markers transformed to pitch coordinate system (each camera pair):

Marker	LC	CR	LR
Head (mm)	53	109	44
R Shoulder (mm)	45	98	29
L Shoulder (mm)	53	111	39
R Knee (mm)	66	100	45
L Knee (mm)	68	111	45
Mean (mm)	57	106	40

Interpretation

- Body markers identified with good precision (~40 mm) for majority (75%) of offside events captured.
- Offside measures transformed to goal line were problematic owing to need for accurately defined three-dimensional pitch transformation.
- Transformation error sources included TotalStation surveying and HSV camera definitions of player volume.
- Recommended to include goal line in capture volumes, to avoid data transformation until this aspect of approach is explored further.

Future applications

- HSV cameras represent a flexible approach to assess semi-automated offside technologies (e.g., accessible, scalable, applicable to pattern clothing).
- Offside measures where goal line not incorporated into capture volume problematic; however, measures incorporating other markings (e.g., 18 yd, 6 yd lines) hold merit.
- Future work should explore use of patterned clothing and include other pitch markings and their orientation (e.g., wide-view of pitch), to minimise errors associated with goal line-based player measurements.

Sheffield | Sports | Engineering | Research

Thank you

m.dunn@shu.ac.uk

@MarcusDunnPhD

www.shu.ac.uk/cser