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Abstract Compound weather and climate events are combinations of climate drivers and/or 
hazards that contribute to societal or environmental risk. Studying compound events often requires a 
multidisciplinary approach combining domain knowledge of the underlying processes with, for example, 
statistical methods and climate model outputs. Recently, to aid the development of research on compound 
events, four compound event types were introduced, namely (a) preconditioned, (b) multivariate, (c) 
temporally compounding, and (d) spatially compounding events. However, guidelines on how to study 
these types of events are still lacking. Here, we consider four case studies, each associated with a specific 
event type and a research question, to illustrate how the key elements of compound events (e.g., analytical 
tools and relevant physical effects) can be identified. These case studies show that (a) impacts on crops 
from hot and dry summers can be exacerbated by preconditioning effects of dry and bright springs. 
(b) Assessing compound coastal flooding in Perth (Australia) requires considering the dynamics of a 
non-stationary multivariate process. For instance, future mean sea-level rise will lead to the emergence 
of concurrent coastal and fluvial extremes, enhancing compound flooding risk. (c) In Portugal, deep-
landslides are often caused by temporal clusters of moderate precipitation events. Finally, (d) crop yield 
failures in France and Germany are strongly correlated, threatening European food security through 
spatially compounding effects. These analyses allow for identifying general recommendations for studying 
compound events. Overall, our insights can serve as a blueprint for compound event analysis across 
disciplines and sectors.

Plain Language Summary Many societal and environmental impacts from events such as 
droughts and storms arise from a combination of weather and climate factors referred to as a compound 
event. Considering the complex nature of these high-impact events is crucial for an accurate assessment of 
climate-related risk, for example to develop adaptation and emergency preparedness strategies. However, 
compound event research has emerged only recently, therefore our ability to analyze these events is still 
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1. Introduction
Many high-impact weather and climate events arise from a combination of multiple drivers and/or hazards 
such as droughts, heatwaves, heavy precipitation, and storms (Zscheischler et al., 2018). Therefore, under-
standing and ultimately modeling the complex nature of such compound events is essential for accurately 
assessing weather- and climate-induced risks. However, although the inherently complex nature of the 
environmental system has always threatened societies via combined weather and climate processes, com-
pound-event-oriented research has emerged only recently. As a result, our ability to identify, understand, 
and model compound events is still in its infancy (Zscheischler et al., 2020).

Studying compound events is a complex task, which often requires a multidisciplinary approach involving 
the understanding of the underlying physical processes beyond the impact, climate, and weather elements, 
and advanced process-based and statistical modeling (Bevacqua et al., 2017). Consequently, for users, it is 
often difficult to identify the key elements (i.e., physical variables, relevant spatial and temporal scales as 
well as suitable analysis tools and datasets) necessary to address a given compound event-related research 
question. In this context, a common framework for compound event analysis could be very helpful to users. 
However, developing such a framework is challenging because the physical elements that constitute a com-
pound event can combine in a myriad of ways, for example across multiple spatiotemporal scales (Messori 
et al., 2021). In particular, these physical elements are (a) the societal or environmental impacts (e.g., dam-
ages to railway infrastructures or crop failure), (b) the climate-related hazards (e.g., a heatwave or flood), 
causing the impact itself, (c) the drivers of the hazards (e.g., a long-lasting atmospheric blocking causing a 
heatwave), and (d) the modulators of the drivers (e.g., an anomalous state of the atmospheric circulation 
during a season). Finally, (e) climate change can influence modulators, drivers and hazards (Zscheischler 
et al., 2020). The multiple possible combinations of these physical elements result in distinct event types 
whose physical understanding, modeling, and analysis require different approaches, methods, and datasets.

Recently, to aid the framing and development of new research on compound events, four distinct classes 
of event types were proposed (Zscheischler et al., 2020). (a) Preconditioned events refer to a situation where 
a climate or weather background precondition can enhance the impact triggered by one or more hazards; 
(b) Multivariate events can result in impacts due to concurrent drivers and/or hazards at about the same 
location; (c) Temporally compounding events, which can lead to impacts due to a sequence of hazards; (d) 
Spatially compounding events, which can lead to aggregated impacts as a result of hazards occurring in 
multiple connected locations. Importantly, this typology has the potential for enabling the development of 
user-friendly practical guidelines for compound event analysis, which would be tailored to specific com-
pound event types.

In this study, we contribute to the development of such user-friendly guidelines, focusing on the weather/
climate component of impacts, that is, we focus on hazards that can potentially cause impacts to vulnerable 
populations and assets. We illustrate how to address specific research questions for four case studies select-
ed to represent the four different compound event types. Such a pragmatic approach allows for illustrating 
and discussing how to identify the key elements of compound events in a context that is plausible for users. 
While the presented insights will be somewhat specific for the selected four case studies, considering four 
event types allows exploring a relatively wide range of methods and physical characteristics that will be 
used to provide general guidance for compound event analysis.

limited. In practice, studying compound events is a challenging task, which often requires interaction 
between experts across multiple disciplines. Recently, compound events were divided into four types to 
aid the framing of research on this topic, but guidelines on how to study these four types are missing. 
Here, we take a pragmatic approach and—focusing on case studies of different compound event types—
illustrate how to address specific research questions that could be of interest to users. The results allow 
identifying recommendations for compound event analyses. Furthermore, through the case studies, 
we highlight the relevance that compounding effects have for the occurrence of landslides, flooding, 
vegetation impacts, and crop failures. The guidelines emerged from this work will assist the development 
of compound event analysis across disciplines and sectors.
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The four considered compound events are summertime vegetation impacts from springtime weather (a pre-
conditioned event), projections of compound coastal flooding (multivariate), landslides from precipitation 
clustering (temporally compounding), and concurrent crop failures across different European countries 
(spatially compounding). In each of the following four subsections, we first introduce the case study and as-
sociated research question. We then identify the key elements of the compound events including tools that 
can be used to address the research question at hand. At the end of each subsection, we identify compound 
events that could be investigated with tools similar to those considered here. In a final section, we discuss 
common aspects and guidelines emerging from the four case studies.

2. Preconditioned Event: Springtime Weather Modulates Summertime 
Vegetation Impacts
2.1. Introduction and Research Question

The negative impact of hot and dry summers on vegetation productivity can be exacerbated by a pre-existing 
soil moisture deficit arising from meteorological drought and an early onset of the growing season in spring 
(Bastos et al., 2020; Lian et al., 2020; Zhang et al., 2021). As illustrated in Figure 1, a soil moisture defi-
cit, that is, the precondition, can result from high evaporation in spring (driven by high temperatures and 
shortwave radiation) and/or low precipitation. Furthermore, high radiation can favor vegetation growth in 
spring (when water is not limiting), increasing transpiration. Both effects increase evapotranspiration (ET), 
ultimately depleting soil moisture. Consequently, spring weather conditions can increase the vulnerability 
of vegetation to summer drought and heat. To investigate this effect, we ask: does accounting for spring 
weather conditions improve the prediction of summertime vegetation impacts?

2.2. Case Study

We focus on forests and croplands in the northern mid-latitudes (30°–55°N), where we expect the effect 
of meteorological drought to be largest due to the close link between vegetation activity and spring onset 
(Bastos et al., 2020; Buermann et al., 2018; Lian et al., 2020; Zhang et al., 2021). The analysis is carried out 
separately for croplands and forests as we expect that rainfed croplands are more sensitive to springtime 
preconditioning effects than forests, which have deeper access to water and are more conservative in their 
water use over the growing season (Bastos et al., 2014; Flach et al., 2018; Teuling et al., 2010).

2.3. Data

We employ temperature (T), precipitation (P), and shortwave incoming solar radiation (SSRD) from the 
ERA5 reanalysis data set for the period 1981–2018 (Hersbach et al., 2020). Although ERA5 data should be 
used with caution for localized extreme events on daily timescales (Jiang et al., 2021; Rivoire et al., 2021), 

Figure 1. Physical elements of vegetation impacts arising from a combination of summertime hot and dry conditions 
and soil moisture precondition driven by springtime effects (see details in Section 2.1). Arrows indicate causal links. 
Note that while wind and humidity also modulate evapotranspiration (ET), they are not shown here for simplicity.
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seasonal/monthly values are more reliable and have been shown to be consistent with observations in space 
and time (Nogueira, 2020; Tarek et al., 2020). For vegetation data, we employ the Leaf Area Index (LAI) that 
is derived from Advanced Very High-Resolution Radiometer (AVHRR) satellite data (Claverie et al., 2016). 
The LAI provides an indication of plant development; high LAI values indicate more growth and healthier 
plants, and vice versa for low LAI. All variables are first regridded to a 0.5° lat-lon grid via conservative re-
mapping (Schulzweida et al., 2006) and then averaged over the spring (MAM: March, April, May) and sum-
mer (JJA: June, July, August) seasons. The categorization of grid cells in forest or crop grid cells (Figure 2a) 
is done using the European Space Agency Land Cover data set (Santoro et al., 2017); see supplementary 
material for details. We create two datasets for croplands and forest, respectively, by first standardizing all 
variables per grid cell (subtracting the mean and dividing by the standard deviation) and then pooling grid 
cells that have the same vegetation type.

Figure 2. (a) Geographical distribution of forest (green) and cropland (gold) grid cells. For (b) forests and (c) croplands: composites of spring (MAM) and 
summer (JJA) temperature (T), precipitation (P), and radiation (SSRD) in years with extremely low summer leaf area (������ < 5�ℎ percentile, red) and 
the remaining years (gray). Boxplots indicate the median (line), interquartile range (box) and 1.5 times the interquartile range (whiskers). Performance of the 
logistic regression model (based on ROC curves) fitted for (d) forests, and (e) croplands. ROC curves are plotted for two separate models, i.e., the reference 
model (black) and the model that includes spring radiation ������� (light blue), along with the corresponding area under the curve (AUC). Note, the larger 
the AUC, the better the model. The differences in AUC of the two models are statistically significant for croplands (p-val 𝐴𝐴 𝐴 0.01 ) and not significant for forests. 
(f) Predicted probabilities of extremely low (𝐴𝐴 𝐴 5𝑡𝑡𝑡 percentile) summer LAI given specified values of ���� (x-axis) and ������� (colors), while ���� is set to its 
mean value (i.e., ����  = 0).
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2.4. Tools

As a first step, we identify potential drivers of extremely low vegetation activity in summer by building 
composites of spring/summer meteorological variables corresponding to years with extremely low (𝐴𝐴 𝐴 5𝑡𝑡𝑡 
percentile) and not extremely low (𝐴𝐴 𝐴 5𝑡𝑡𝑡 percentile) ������ . Then, we use logistic regression to predict years 
with extremely low LAI. Specifically, we predict whether summer vegetation is extremely low based on a 
reference model considering only summertime meteorological conditions as predictors, and test whether 
the prediction accuracy significantly increases when including springtime meteorological conditions in the 
model (see Supporting Information S1 for details). We test the performance of the models using Receiver 
Operating Characteristic (ROC) curves (Mandrekar, 2010; Postance et al., 2018), as well as a summary met-
ric of the ROC known as the Area Under the Curve (AUC). A maximum AUC of 1 indicates a 100% hit rate 
with no false alarms; the higher the AUC is, the better the model.

2.5. Results and Discussion

In line with Figure 1, extremely low ������ in croplands are associated with precipitation, tempera-
ture, and radiation anomalies in both spring and summer (Figure 2c). For forests, these anomalies are 
much smaller, particularly in spring, and show opposite patterns compared to croplands in summer 
(Figure 2b).

Using a logistic regression model, we investigate if the prediction of extremely low ������ is improved by 
adding spring conditions to a reference model that considers only summertime hot and dry conditions (i.e., 
���� and ���� ). For forests, including spring radiation (������� ) does not improve the model's prediction 
(Figure 2d), while in contrast, a significant improvement (p-val 𝐴𝐴 𝐴 0.001 ) is found in croplands (Figure 2e). 
The fitted coefficients of the logistic regression model also reveal that the meteorological variables have a 
stronger influence on crops (������� : 0.44, ���� : 0.44, ���� : −0.31) than forests (������� : 0.17, ���� : 
−0.12, ���� : 0.18). Therefore, hereafter we focus on the effect of spring conditions on cropland only. Note 
that replacing ������� with ���� yields the same performance (whose consequence is discussed later), 
while adding ���� does not improve the performance.

For croplands, based on the logistic regression model, we estimate the contribution of ������� to the 
probability of a low ������ . For simplicity, probabilities of low ������ are predicted as a function of 
���� and ������� , while ���� is set to its mean value. The probability of low ������ increases with de-
creasing ���� and increasing ������� (Figure 2f). Hence, cropland impacts are highest when summer 
with low precipitation follows a spring with high radiation. For instance, the probability of an extremely 
low summer cropland LAI given a dry summer (����  = −2) and a normal spring (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑀𝑀𝐴𝐴𝑀𝑀  = 0) 
is 0.1, but increases to 0.3 for �������  = 4. Furthermore, for ����  = 2 and ����  = −2, indicative of a 
hot and dry summer, this probability increases to 0.5. Overall, the above indicates that spring weather 
conditions favoring low soil moisture can affect the vulnerability of vegetation to a hot and dry summer 
over croplands.

In our model, replacing ������� with ���� yields the same performance, indicating that soil moisture 
deficits can be modulated by either or both high radiation and low precipitation (which often coincide) 
through the two mechanisms illustrated in Figure  1. Here, it is not possible to disentangle the relative 
contributions of the two mechanisms, though the depletion of soil moisture in spring via crop growth is 
supported by the fact that dry soils in summer are often preceded by increased springtime vegetation growth 
resulting from an early spring onset (Lian et al., 2020) that would allow for high radiation throughout the 
spring season. The relative difference in model improvements between forests and crops (Figures 2d and 2e) 
due to the inclusion of spring conditions, may suggest a role of vegetation type in developing a soil moisture 
deficit. However, due to their deep root systems that provide greater access to moisture, forests are generally 
more vulnerable to consecutive than single drought events (Anderegg et al., 2020), therefore the results 
may simply highlight that forests are less vulnerable during single droughts than crops. In future analyses, 
it would be interesting to take into account the memory held in an ecosystem of previous drought events in 
order to understand its influence on the impact from the precondition and hazards, which remains a chal-
lenging undertaking (e.g., Chauhan & Ghosh, 2020). Furthermore, here we combined data from different 
locations which has the advantage of increasing the sample size and obtaining more robust statistics, but 
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the disadvantage of not allowing for disentangling spatial variations in the vegetation responses to weather 
conditions. As a result, the differences found between cropland and forest may arise from the fact that in our 
data set there are more cropland than forest grid cells below 40°N, that is, regions where evapotranspiration 
is not limited by energy constraints (Zscheischler et al., 2015). Removing these grid cells reduces the model 
improvement achieved by adding spring radiation, suggesting that its influence is not uniform across the 
studied domain.

Process-based vegetation models, simulating the response of vegetation to atmospheric variables based on 
underlying physiological processes, could allow for disentangling the effects of a precondition in follow-up 
studies. These models provide an advantage over statistical models as they would allow for disentangling 
the direct role of vegetation in exacerbating springtime soil moisture deficits using counterfactual simula-
tions (Bastos et al., 2020). Importantly, process-based vegetation models are expensive to run and require 
carefully designed spin-up and simulation protocols as well as multi-model ensembles to properly account 
for uncertainties. Our results highlight the need of including vegetation dynamics in simulations of future 
climate in order to account for the influence of the discussed vegetation feedbacks to projected longer and 
warmer growing seasons in spring (Lian et al., 2020).

2.6. Link to Other Preconditioned Events

The approach outlined here can be used as a guideline to assess other preconditioned events. Each event 
type will require its own specific considerations (e.g., definition of hazards, identification of potential pre-
conditions) but the structure of the conceptual model and its components will be similar. For instance, 
Gudmundsson et al. (2014) used logistic regression to predict increased wildfire activity after a meteorolog-
ical drought. In fact, wildfires occurrences can be enhanced by previous-year surface moisture conditions 
(Forkel et al., 2012). In another example, either or both soil moisture and extensive snow cover can enhance 
river floods triggered by storm-driven precipitation extremes (Berghuijs et al., 2016, 2019).

3. Multivariate Event: Future Changes in Compound Coastal Flooding
3.1. Introduction and Research Question

A typical example of multivariate compound events is compound coastal flooding (CF), which occurs 
when high sea levels obstruct the gravity-driven flow of pluvial/fluvial water into the ocean (Couasnon 
et al., 2020; Eilander et al., 2020; Ganguli et al., 2020; Wahl et al., 2015). Recent large-scale studies indicate 
that CF drivers such as precipitation, river discharge, or sea-level extremes will change in a warmer climate 
(Bevacqua, Vousdoukas, Zappa, et al., 2020; Moftakhari et al., 2017; Winsemius et al., 2016), which may 
have a significant impact on flooding at the local scale. In this context, we ask: how will climate change 
affect the CF hazard at the local scale?

3.2. Case Study

The above question is considered for the Swan River estuary (catchment area 124,000 𝐴𝐴 km2 ), which flows 
through the densely populated city of Perth, in the state of Western Australia, Australia. Here we focus on 
the climate-driven component of the flooding risk, however note that urbanization is important to ultimate-
ly determine flooding impacts.

3.3. Data

We use observed daily maxima obtained from hourly or sub-hourly time series (1990–2015) of: water levels 
at the Barrack station near Perth City (about 20 km inland and influenced by compound effects), upstream 
river discharge at the Walyunga stream gauge, and sea water levels at the coast at Fremantle. We focus on 
the period of May-August, when both water levels and discharge are the highest. Prior to extracting daily 
maxima, the sea-level data is decomposed into the astronomical tide and non-tidal residuals (i.e., mainly 
storm surge driven by meteorological fluctuations). To characterize the underlying process leading to CF, 
we also use daily accumulated precipitation and mean sea-level pressure fields from the ERA5 reanalysis 
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data set (Hersbach et al., 2020). For future projections, we discuss plausible changes in the compound flood-
ing drivers that are extracted from the available literature (see references within the text).

3.4. Tools

We use a multivariate non-linear regression model (James et al., 2013) to quantify the present-day influence 
of the river discharge (𝐴𝐴 𝐴𝐴 ), astronomical tide (����� ), and non-tidal residuals (𝐴𝐴 𝐴𝐴 ) on the compound water level 
at the Barrack station (𝐴𝐴 𝐴𝐴 ), that is,

� = �1 � + �2 (����� + �) + �3 � (����� + �) + �(�, �), (1)

where �� are the regression coefficient and 𝐴𝐴 𝐴𝐴(𝑐𝑐𝑐 𝑐𝑐) is the error term. Composite maps (i.e., average weather 
conditions), and lagged correlations are used to investigate CF drivers (Klerk et al., 2015; Ward et al., 2018).

3.5. Results and Discussion

To assess CF changes in a warmer climate, it is important to first understand the processes shaping pres-
ent-day flooding (Figure 3). The multivariate regression model (Equation 1; 𝐴𝐴 𝐴𝐴2 = 0.997 ) indicates that the 
water levels in Barrack are compounded by sea levels and river discharges, however mainly influenced by 
the sea levels (gray isolines in Figure 4b). (Note that all parameters in Equation 1 are significantly different 
from zero and that, based on the Akaike information criterion (AIC), the two models considering an indi-
vidual predictor, that is, Q only or (Tastr + S) only, have a lower quality than the model in Equation 1.) More 
upstream in the estuary the sea's influence diminishes (Bilskie & Hagen, 2018; Gori et al., 2020), hence we 
expect more pronounced compound effects, that is, discharge and sea levels to have a similar impact on the 
water levels (orange isolines in Figure 4b) (Eliot, 2012; Helaire et al., 2020; Wu et al., 2021).

Since water levels at Barrack are largely driven by sea levels, extremes (here, annual maxima) in both com-
pound water levels and non-tidal residuals are driven by similar atmospheric configurations (Figures 5a 
and 5b). Non-tidal residual extremes (annual maxima) are favored by an elongated region of low atmos-
pheric pressure, that is, stormy weather, via winds pushing toward the coast and low barometric pressure 
effect (Bevacqua et  al.,  2017). Such atmospheric configuration is associated with wet conditions on the 
river catchment, however, in line with the time needed by the accumulated rainfall to reach the discharge 
gauge through the large catchment (Figure 5c) (Bevacqua, Vousdoukas, Shepherd, & Vrac, 2020; Hendry 
et al., 2019), high river discharges at the outlet tend to occur 3–4 days after high non-tidal residuals (Fig-
ure 5d). This lag time can vary per event and is dependent not only on catchment size, but also on effective 
flow path, vegetation cover, and land use.

Figure 3. Physical elements of compound coastal flooding damages in Perth, Australia, caused by the extreme 
compound water level due to interacting flood drivers. Weather systems such as storms modulate the intensity of the 
drivers via processes such as winds, pushing the oceanic water toward the coast, and rainfall. Note that rainfall from 
more than one storm and also evaporation can modulate river discharge. Climate change can affect compound flooding 
via sea-level rise, changes in storm intensity and duration, associated rainfall, and evaporation. Arrows indicate causal 
links.
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By the end of the century, changes in river discharge, sea levels, and their interplay can largely affect flood-
ing dynamics. However, flooding projections remain unclear due to uncertainties in anthropogenic forcing 
scenarios, internal climate variability, and climate model differences. While we detected rare concurrent 
river discharge and sea-level extremes in the present, sea-level rise could increase CF risk (Moftakhari 
et al., 2017). For example, under a plausible sea-level rise of 0.5 m (Figure 4a), which is in line with Hope 
et al. (2015) and Vousdoukas et al. (2018), present-day river discharge extremes and mild sea levels would 
become concurrent extremes (dashed area in Figure  4b) (Bevacqua et  al.,  2019). However, climate pro-
jections point toward a reduction in discharge extremes by 20%–50% (Figure  4c) (in line with Evans & 
Schreider, 2002; Hirabayashi et al., 2013; Swan River Trust, 2007), which could decrease CF risk (Figure 4d). 
Changes in storminess are uncertain and could lead to an increase or decrease (Figure  4e) in non-tidal 
residuals (Hope et al., 2015; Vousdoukas et al., 2018) and consequently in CF risk (Figure 4f). Changes 
in the dependence between non-tidal residual and river discharge (Figure 4g) may affect flooding as well 

Figure 4. (a) Observed (black) and a plausible future (red) distribution of sea levels, where mean sea level increases by 0.5 m. (b) Corresponding observed and 
plausible future pairs of sea levels and discharge Q, where the future sea level distribution is taken from (a) and Q distribution is the observed. The other rows 
are the same as in (a and b), but consider: (c and d) a plausible future decrease (blue) in Q by 30%; (e and f) plausible future increase (red) and decrease (blue) in 
positive non-tidal residuals, that is, S, by 20%; (g and h) a potential future increase in the dependence between Q and S (g and h). In (g), black isolines represent 
the parametric copula density derived from data (a survival Clayton copula, selected based on the AIC among a pool of copulas available in the VineCopula 
package [Schepsmeier et al., 2016]); red isolines show a potential future copula with higher dependencies (i.e., copula parameters were modified increasing 
Kendall's tau from 0.04 to 0.3 and the upper tail dependence coefficient from 0.0001 to 0.15). Gray isolines in the right-hand panels show the average compound 
water level in Barrack predicted by the multilinear regression model. In (b), orange isolines show how the compound water level may be influenced by sea level 
and Q in a hypothetical location upstream (water levels increasing from bottom-left to top-right); and the green dashed area indicates concurring sea level and Q 
extremes (𝐴𝐴 𝐴 observed 99th percentiles). Plausible future changes in flood drivers are based on literature (see main text).

Figure 5. Composite maps of sea-level pressure (hPa; blue contours) and daily accumulated precipitation (shading) during days characterized by the top eight 
(out of 16) annual maxima of (a) compound water level in Barrack and (b) non-tidal residuals at the coast. The rectangle in magenta indicates the outlet of the 
river catchment and estuary. (c) Pearson correlation between the daily discharge on day t and the precipitation aggregated on the river catchment on day t-N 
(on the x-axis), where the lag maximizing the correlation provides a first-order estimate of the time needed by the precipitation to reach the discharge gauge. (d) 
Lagged correlation similar to (c), that is, between daily river discharge and non-tidal residual on day t-N indicating that a higher river discharge tends to follow 
a higher non-tidal residual with a delay of about 3–4 days.
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(Figure 4h), however these changes remain uncertain and understudied (Bevacqua, Vousdoukas, Zappa, 
et al., 2020). We move to discuss different tools/approaches for assessing the effect of the changes above on 
local CF.

Statistical models for estimating compound water levels, such as the multivariate regression model em-
ployed here (Bermúdez et al., 2019; Santos et al., 2021), are often derived from (short) observational re-
cords. This can affect model accuracy under climate change, when information needs to be extrapolated 
far beyond the observed range. High-resolution hydrodynamic models, which include the non-linear inter-
action between hydraulic processes, topography, and human interventions (Kumbier et al., 2018; Mohanty 
et al., 2020; Wu et al., 2021), can provide a valid alternative for a thorough CF analysis. Hydrodynamic 
modeling can provide a detailed spatial mapping of water levels in the estuary, for example, it can be used 
to quantify the relative contribution of flood drivers (Mohanty et al., 2020) and the spatial variability of 
socio-economic impacts of flooding depending on the level of urbanization within the estuary, which can 
influence runoff characteristics (Olbert et al., 2017; Sebastian et al., 2019). Furthermore, hydrodynamic 
simulations can highlight peculiar features of the hydrological system (Khojasteh et al., 2021), for exam-
ple, directly accounting for a potential shift in the area affected by compound effects from future sea-level 
rise (Bilskie & Hagen, 2018; Helaire et al., 2020). Probabilistic approaches can be applied to assess future 
flood return levels using simulated multi-year water-level time-series via high-resolution hydrodynamic 
modeling forced by an ensemble of climate models. However, running these simulations is computation-
ally expensive, though approaches to circumvent this have been suggested (Parker et al., 2019; Sopelana 
et al., 2018; Wu et al., 2021). Nevertheless, applying a probabilistic approach for local future risk assess-
ment remains challenging since no probability is attached to anthropogenic forcing scenarios. Notably, 
even focusing on a given anthropogenic forcing scenario, multimodel ensembles cannot be interpreted 
probabilistically (Zappa & Shepherd, 2017).

In this context, we suggest employing hydrodynamic models to study event-based storylines which explore 
in detail low-likelihood, high-impact future plausible events, with an emphasis on plausibility rather than 
probability (Hazeleger et al., 2015; Shepherd, 2019). Event-based storylines can be built based on expert 
knowledge, major past floods (Helaire et al., 2020; Khanam et al., 2021), or near-misses (Woo, 2021). One 
could investigate: what would be the societal impact of past fluvial flooding combined with the projected 
sea-level rise? Which consequences would a past storm have under a projected scenario with sea-level rise, 
high astronomical tide and reduced streamflow? What if a sequence of storms, the first causing high river 
discharge at the outlet and the last a concurring storm surge, had to hit Perth? Initial-condition large ensem-
ble simulations and seasonal-hindcasts can help identify plausible threatening combinations of drivers that 
could lead to unseen extreme impacts (Thompson et al., 2017; Van der Wiel et al., 2021). Storylines fit well 
within common practices in disaster risk management, which consider event-based scenarios for emergen-
cy preparedness (Sillmann et al., 2021), and also allow for interaction with local stakeholders to evaluate the 
effectiveness of selected measures, for example, dam installations and use.

3.6. Links to Other Multivariate Compound Events

The methods above can be used to study other multivariate compound events. Composite maps can help 
to identify the atmospheric drivers of, for example, wildfires, crop failures, tree mortality, which are often 
associated with hot and dry conditions (Hoerling et al., 2013; Hao et al., 2019; Zscheischler et al., 2020). 
Combined with large ensemble climate model simulations (Deser et  al.,  2020), composites can help 
to identify drivers of, for example, extremely low renewable energy production (Van der Wiel, Stoop, 
et al., 2019). The knowledge acquired from composites can, for example, also allow for assessing how ex-
treme events conditional to identified impact-driving weather patterns may evolve in the future (Jézéquel 
et al., 2020). Regression and more sophisticated models can help studying landslides (from precipitation, 
evaporation, and snowmelt), avalanche risk (enhanced by wet and warm conditions), and impacts from 
concurrent wind and precipitation extremes (Martius et al., 2016). In general, event-based storylines can 
provide practical information targeted to users’ needs, for example, for planning adaptation to plausible 
extreme events.
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4. Temporally Compounding Event: Precipitation Clustering Favors Landslide 
Occurrences
4.1. Introduction and Research Question

Landslides are a localized natural hazard that can result in fatalities and severe socio-economic losses 
(Froude & Petley, 2018; Petley, 2012). From a geological perspective, landslides are classified as shallow 
or deep based on the depth of the soil sliding surface. For both landslide types, accumulated precipitation 
that saturates the soil, therefore reducing its shear strength, is one of the most important drivers (Figure 6) 
(Guzzetti et  al.,  2007). Shallow landslides are typically triggered by one or several intense precipitation 
events falling within 1–15 days before the landslide, while deep landslides generally occur as a result of rain-
fall accumulated over weeks to about three months (Zêzere et al., 2015). Previous studies have quantified 
the critical accumulated precipitation amounts that can trigger landslides (Brunetti et al., 2010; Guzzetti 
et al., 2007; Peruccacci et al., 2017; Zêzere et al., 2015). Given that accumulated precipitation extremes are 
often caused by clusters of precipitation events from multiple storms (Bevacqua, Zappa, & Shepherd, 2020; 
Dacre & Pinto, 2020; Priestley et al.,  2017) sometimes in association with individual atmospheric rivers 
(Hénin et al., 2021; Ramos et al., 2015), here we investigate whether a clear relationship between precipi-
tation clustering and landslides can be identified. Specifically, we ask: are deep- and/or shallow-landslides 
preceded by temporal clustering of moderate to extreme rainfall events?

4.2. Case Study

We focus on the region north of Lisbon (Portugal), which has a high landslide risk (de Brum Ferreira & 
Zêzere, 1997; Pereira et al., 2020). The region is part of the Western Meso-Cenozoic borderland, which has 
the highest number of disastrous landslides in Portugal (about 10 cases per 𝐴𝐴 103 km2 during 1865–2010) 
(Zêzere et al., 2014).

4.3. Data

We analyze the period 1956–2008, for which 23 landslides events were recorded in the data set (Zêzere 
et  al.,  2015). A landslide event is identified when a minimum of five individual landslides occurred on 
natural slopes on a given date (Zêzere & Trigo, 2011). Following Zêzere and Trigo (2011), a landslide event 
was classified as shallow if more than 50% of the landslide area has a slip surface depth 𝐴𝐴 ≤ 1.5 m and as 
deep otherwise. For precipitation, we employ the daily high-resolution (0.2° lat-lon grid) IBERIA02 data 
set (Belo-Pereira et al., 2011; Ramos et al., 2014) selecting a single grid-point, the nearest to the location of 
the landslides.

Figure 6. Physical elements of landslides and associated impacts in Portugal arising from extreme soil moisture, which is driven by clusters of moderate to 
extreme rainfall events. Arrows indicate causal links. Note that evaporation also influences soil moisture, but such a relationship is not represented here given 
the focus of the research question on precipitation clustering.
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4.4. Tools

In a four-step procedure, we quantify whether landslides are systematically preceded (within a certain tem-
poral window before the landslides) by a cluster of moderate to extreme precipitation events.

1.  We identified the occurrence of precipitation events, here daily precipitation amounts above 9.25 mm 
(i.e., the year-round 𝐴𝐴 85𝑡𝑡𝑡 percentile of daily amounts; such threshold allow for considering moderate to 
extreme events, potentially relevant for landslides). To disentangle occurrences arising from different 
weather systems, we filtered high-frequency clustered events, that is, groups of daily events less than 
3 days apart were categorized as a unique precipitation event (dated as the earliest event in the group), 
which satisfy the iid condition for frequency analysis (Barton et al., 2016; Ferro & Segers, 2003).

2.  We quantified the typical number of precipitation events occurring in any given temporal window �� , 
noticing that the number of events ��� within �� is Binomially distributed (�(��, �) ; 𝐴𝐴 𝐴𝐴 is the probability 
of a precipitation event on any given day).

3.  For a window �� before any given landslide of interest, we identified a precipitation cluster when the 
number of precipitation events ��� was above the 𝐴𝐴 95𝑡𝑡𝑡 percentile of the Binomial distribution (at 5% sig-
nificance level). To prevent making strong assumptions on the width of the window �� , we sequentially 
looked for clustered events in all of the 87 backward windows �� starting on the day of the landslide 
and ending 4–90 days before the landslide (a correction for multiple tests was applied, see Supporting 
Information S1).

4.  After repeating the procedure above for each landslide, we quantified the fraction (%) of landslides that 
were preceded by precipitation clustering (we employed bootstrap to assess whether such a fraction is 
significantly higher than expected under independence between landslides and precipitation clustering).

See Supporting Information S1 for details on the methods.

4.5. Results and Discussion

In the Lisbon region, all of the 23 registered landslides occurred during the period November-March, of 
which 11 were classified as deep and 12 as shallow (in blue and red in Figure 7a, respectively). This period of 
the year is characterized by the highest frequency of 3-day accumulated precipitation extremes (Bevacqua, 
Vousdoukas, Zappa, et al., 2020), indicating precipitation's relevant role for landslide occurrences. In addi-
tion, here we demonstrate that most (deep) landslides were preceded by clustering of precipitation events.

Figure 7a shows whether clusters of precipitation events were detected in the windows [-n, 0] days preced-
ing any landslide. For example, for the shallow landslide in 1983, the brown rectangle 23 days before the 
landslide indicates that an anomalously high number of precipitation events occurred in the window [-23, 
0] days before the landslide. Altogether, we detected precipitation clustering (at least one marked rectan-
gle) before 83% (19/23) of landslides. Notably, this fraction is larger than 30%, which is the 𝐴𝐴 95𝑡𝑡𝑡 percentile 
of the value expected under no association between landslides and precipitation. However, while all deep 
landslides (11/11%, 100%) were associated with clustered precipitation events, the association is weaker for 
shallow landslides (8/12%, 67%). This difference indicates that multiple consecutive precipitation events 
are a crucial driver of deep-landslides, while—in line with previous studies (e.g., Zêzere et al., 2015)—shal-
low-landslides can also be triggered by single precipitation events.

Given the different geological nature of deep and shallow landslides (Zêzere et al., 2015), we investigate 
whether clustered precipitation events preceding deep and shallow landslides have different temporal char-
acteristics. That is, for deep- and shallow-landslide events separately, we quantify the fraction of events that 
are preceded by precipitation clustering over different time windows. In line with the above, the results 
indicate that precipitation clustering may favor both landslide types. Still, major differences between the 
two landslide types are identified (Figure 7b). In fact, about 70%–83% of deep landslides are significantly 
preceded by precipitation clustering over long temporal windows of 23–90 days, in line with multiple pre-
cipitation events rising groundwater level of deep soil and rock layers (e.g., Iverson, 2000). In contrast, only 
about 7%–9% of shallow landslides are significantly preceded by clustered precipitation events, which occur 
4–25 days before the landslides.
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Precipitation clustering are associated with the passage of multiple storms and intensified westerly flow, 
leading to continuous pulses of moist air masses approaching the Iberian Peninsula (Hénin et al., 2021). 
Our results indicate a causal relationship between precipitation clustering and landslides, especially for 
deep landslides, which is in line with physical understanding (Figure  6). In line with previous studies, 
shallow-landslides can be caused by individual precipitation events exceeding critical thresholds (Gariano 
et al., 2015; Guzzetti et al., 2007). Notably, given that the classification of deep and shallow landslides is 

Figure 7. (a) Temporal clustering of moderate to extreme rainfall events before the 23 studied landslide events. Blue 
dots indicate the deep landslides, red dots the shallow landslides. The brown bar indicates the start date of the temporal 
window (�� ) ending the day before the landslide event, when the temporal clustering of rainfall was detected. Note 
that August is not shown because no clustering was detected in windows starting within this month. (b) Percentage of 
deep (blue) and shallow (red) landslides preceded by precipitation clustering in each temporal window between 4 and 
90 days. The gray shading illustrates the 95% confidence interval (i.e., the 𝐴𝐴 95𝑡𝑡𝑡 percentile) of the number of landslides 
preceded by precipitation clustering under the assumption of no association between precipitation clustering and 
landslide events (obtained via shuffling the data, see Supporting Information S1). Counts are first obtained for each 
temporal window, then curves are obtained via a Locally Weighted Scatterplot Smoothing (LOWESS) with a smoothing 
parameter equal to 1/3.
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based on geological features, the contrasting results found for the two landslide types are directly attributa-
ble to differences in the meteorological processes causing the landslides. Here, we focused on low-frequency 
precipitation clustering, hence we do not exclude that also high-frequency clustering, for example, from 
multiple convective precipitation events occurring within a few (𝐴𝐴 𝐴 3 ) days, is a relevant driver of shal-
low-landslides. Further analyses based on a combination of physically based modeling with analyses of me-
teorological conditions and counterfactual experiments could allow investigating more in-depth questions 
related to the cause-effect relations of landslides.

4.6. Link to Other Temporally Compounding Events

An approach similar to the one developed here could be employed to investigate the relevance of event 
clustering for other types of natural hazards or impacts. For example, it could allow for identifying areas 
where temporal clustering of precipitation extreme events causes lake and river flooding, as well as high 
accumulated precipitation extremes (Barton et al., 2016; Bevacqua, Zappa, & Shepherd, 2020). Similarly, 
it could be possible to investigate whether sequential multi-year droughts have an impact on, e.g., forests 
(Anderegg et al., 2020) and how losses to the insurance industry are affected by consecutive storms (Priest-
ley et al., 2018). It would also be possible to consider clustering of multiple hazard types, e.g., to study the 
negative effects of consecutive precipitation and temperature extremes on societies (Baldwin et al., 2019; 
Matthews et al., 2019; Ruiter et al., 2020; Zhang & Villarini, 2020).

5. Spatially Compounding Event: Synchronous Wheat Failure Across 
European Countries
5.1. Introduction and Research Question

Synchronous crop failures across multiple countries can pose a high risk to international food security and 
supply chains (Anderson et al., 2019; Gaupp et al., 2019) as exemplified by the European crop failure in 2018 
(Beillouin et al., 2020; Toreti et al., 2019). Therefore, for society to be resilient to large-scale crop failures, it is 
important to reliably assess the probability that crop failure can be caused by spatially compounding events 
and also understand the drivers of behind these failure events. In this context, we ask: does the interplay 
between crop failures in different European countries affect aggregated continental crop yields? What are 
the climate drivers of such continental crop failures?

5.2. Case Study

We analyze the concurrent failure of wintertime wheat across Europe (wintertime wheat is planted at the 
beginning of the winter and typically harvested in summer around July). We mainly focus on France and 
Germany (Figure 8), which are the two largest European wheat producers and therefore strongly influence 
continental food security (FAOSTAT, 2021).

5.3. Data

We use large-ensemble simulations that consist of 1600 growing seasons and associated annual wintertime 
wheat yields from Vogel et al. (2021). Wheat yields were simulated with the APSIM-Wheat model (version 
7.10) (Zheng et al., 2014) driven by meteorological data from the EC-Earth global climate model (Hazeleger 
et al.,  2010; Van der Wiel, Wanders, et al.,  2019) under present-day (2011–2015) climate conditions. We 
consider yields aggregated at the country level (Ribeiro et al., 2021), at this country scale the simulated 
annual wintertime yields compare well with observed yields (Vogel et al., 2021). To investigate drivers of 
crop failure, we consider mean monthly precipitation, vapor pressure deficit, and maximum temperature 
fields (Ray et al., 2015).

5.4. Tools

To quantify the effect of the dependence between yields of individual countries, we compare continent-wide 
aggregated yields from the original data set with those obtained after randomly shuffling annual yields in all 
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countries in time. We assess the relationship between crop yields in France and Germany through correla-
tions and rates of co-occurring extremes. We estimate the probability of the total loss in a year exceeding a 
given loss amount via Aggregate Exceedance Probability (AEP) curves, which are standard insurance sector 
plots (Hillier et al., 2015; Hillier & Dixon, 2020; Mitchell-Wallace et al., 2017). To identify meteorological 
anomalies associated with crop failures, we compare composites (i.e., averages) of both meteorological time 
series and spatial fields during years with extremely low and normal yield (e.g., Vogel et al., 2021).

5.5. Results and Discussion

At the European scale, the spatial correlation of wheat yields between countries strongly increases the 
likelihood of years characterized by high and low extreme aggregated yields, compared to the case where 
national yields are independent (Figure 9a). Accordingly, the wheat production of the two leading Europe-
an producers, that is, France and Germany, show a positive dependence (�������� ∼ 0.5 ; p-val 𝐴𝐴 𝐴 0.01 ). Such a 
relationship also appears for the largest crop failures of the two countries, which tend to co-occur about four 
times more often than expected under independence (binomial test, p-val 𝐴𝐴 𝐴 0.01 , Figure 9b). Notably, the 
dependencies described above can influence European food security. This is illustrated by the AEP curve, 
indicating that aggregated yield losses of France and Germany with a return period larger than 10-year are 
about 20% larger than expected under independence (Figure 9c; note that the contribution of the two coun-
tries to the aggregated yield differ by only 𝐴𝐴 ∼ 10%).

Given the dependence of European wheat yield on Germany and France, we aim to identify the physical 
processes (Figure 8) associated with concurrent crop failure in both countries. Figure 10 shows that seasons 
resulting in the lowest 5% aggregated crop yields of Germany and France (“bad” seasons) are associated 
with high maximum temperature, low precipitation, and high vapor pressure deficit during the growing 
season in May-July (Figures 10a, 10c, and 10e). We note that during this growing stage, when the vegetation 
is photosynthetically most active, crops’ health is particularly susceptible to the effects of compound warm 
and dry conditions, inducing vegetation stress that limits the quantity and quality of the harvests (CO-
GECA, 2003; Ribeiro et al., 2020; Vogel et al., 2021). Finally, the composites show that during May-July, bad 
seasons are characterized by spatially homogeneous anomalies in the weather conditions across Germany 
and France (Figures 10b, 10d, and 10f), indicating that large-scale weather patterns, such as high-pressure 
systems, favor aggregated crop failures.

The above highlights that both preconditioning effects during May-July and multivariate contributions 
from different drivers shape the spatially compounding European wheat failures (in line with the results of 
Section 2). Preconditioning effects have also been identified as a key driver of the record-breaking 2016 crop 
failure in France (Ben-Ari et al., 2018).

Figure 8. Physical elements of spatially compounding, that is, simultaneous, winter-wheat losses in France and 
Germany caused by hazardous drought and heat stress during a key period of the growing season (spring and early 
summer, gray box). The drivers of the hazard, here high temperature, dry conditions, and high vapor pressure deficit, 
are favored by modulators such as high-pressure systems. Arrows indicate causal links.
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5.6. Link to Other Spatially Compounding Events

Spatially compounding events can challenge the ability of (re-)insurance companies and governments to 
respond to emergencies (Falco et al., 2014; Hillier et al., 2020; Jongman, 2018; Raymond et al., 2020). An 
increasing need for adapting to climate change in many sectors such as agriculture, energy, industry, build-
ings, and transport (Hoegh-Guldberg et al., 2018), further highlights the relevance of studying these events. 
Our approach can be extended to investigate crop yields at the global scale and to analyze other major crop 
types such as maize and soy (Mehrabi & Ramankutty, 2019). For example, composites would allow for iden-
tifying typical atmospheric configurations associated with concurrent low agricultural production across 
the main “breadbasket” regions worldwide (Gaupp et al., 2019; Kornhuber et al., 2019). Similar analyses 
would help to deepen the understanding of extreme impacts from spatially dependent river floods (Ber-
ghuijs et al., 2019; Jongman et al., 2014; Kemter et al., 2020), which may intensify in the future due to the 
larger spatial-footprints of rainfall extremes (Bevacqua et al., 2021), or continental scale renewable energy 
shortages driven by large scale high pressure systems (Van der Wiel, Stoop, et al., 2019). At the regional 
scale, relevant events include widespread storm surges (Enríquez et al., 2020) and multiple wildfires (Porti-
er et al., 2017) such as those in California in 2017 (Balch et al., 2020), which can deplete response capacity, 
resulting in extreme losses.

Figure 9. (a) Probability density function (pdf) of the simulated aggregated wheat yield of 20 European countries 
(blue), against the same obtained computing the aggregated wheat yield after removing the inter-country wheat yield 
dependencies (green). (b) Bivariate pdf of crop yield of France and Germany. Dashed lines show the empirical 𝐴𝐴 10𝑡𝑡𝑡 
percentile for each country. We detect 63 co-occurring extremes, which is about four times larger than 16, that is, the 
values expected under independence (𝐴𝐴 0.12 ⋅ 1600 , where 1600 are the number of simulated seasons). (c) Aggregate 
Exceedance Probability (AEP) plot of the deficit (i.e., level below mean) of simulated aggregated crop yield of France 
and Germany (red), and when assuming inter-country independence (blue); labeled at selected return periods. 
All differences between simulated and independent cases are statistically significant (p-val 𝐴𝐴 𝐴 0.01 ). One hundred 
permutations and a t-test were used to compute 𝐴𝐴 𝐴𝐴 -values in (c).
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6. Discussion and Conclusions
Building on the recently introduced typology of compound events (Zscheischler et al., 2020), in this work 
we provide guidelines for the study of a set of highly heterogeneous compound events. These guidelines 
are applicable to events that might differ from the ones analyzed here (e.g., belonging to very different 
impact domains, such as geological system and insurance industries), but have similar causal structure. 
For example, the approaches that were presented to study clustering and associated impacts can be useful 
for analyzing both landslides and insurance losses, where the former may be caused by clustered heavy 
precipitation events and the latter by clustered windstorms. Using our typology-based selection of case 
studies we highlight six recommendations that are common to the study of the four different types of 
compound events.

Figure 10. Temporal and spatial composites of potential meteorological drivers of growing seasons leading to concurrent crop failure in Germany and France 
(bad seasons, orange) and all other seasons (green). (a and b) maximum temperature; (c and d) precipitation; (e and f) vapor-pressure deficit (VPD). Shading 
in (a, c and e) highlight the 𝐴𝐴 80𝑡𝑡𝑡 percentile range of the considered growing seasons. Blue and purple horizontal bars indicate the range of sown and harvest 
dates over the considered area. Gray shading indicates the period May-July considered for the composite on the right panels. Stippling in (b, d and f) indicates 
statistically significant differences at the 5% significance level based on a t-test.
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1.  Causal diagrams (e.g., Figure  1) provide a simple but rigorous tool (Pearl & Mackenzie,  2018) that 
offers a common language to meet the challenges of representing, discussing, and communicating 
relevant compounding mechanisms among experts of different disciplines (Leonard et al., 2014; Lloyd 
& Shepherd, 2020).

2.  From a methodological point of view, our results highlight the relevance of considering univariate im-
pact indicators in compound event studies (here, the Leaf Area Index (LAI) for the vegetation impacts, 
water level for flooding, landslide occurrences, and aggregated crop yields). Such an impact-centric ap-
proach allows for a backward analysis to identify relevant hazards and drivers of the considered impacts, 
hence guaranteeing a focused analysis on impactful combinations of drivers (Bevacqua et al., 2017; Van 
der Wiel et al., 2020; Zscheischler et al., 2014). When impact data are not available, expert knowledge is 
required to define impact proxies or potentially impactful multivariate drivers.

3.  Composites of climatic conditions (Figures 2, 5 and 10) associated with impacts provide a simple but 
useful tool to gain a first-hand understanding of the potential drivers of impacts. Nevertheless, to avoid 
running the risk of associating spurious correlations with causation, composites should be interpreted 
carefully based on expert knowledge and/or combined with advanced process-based modeling to test 
causal hypothesizes via, for example, counterfactual experiments or causal inference (Bastos et al., 2020; 
Runge, Bathiany, et al., 2019). For example, anomalies in the composites of time series in Figure 10 are 
correlated, hence disentangling causal effects on crop yields requires additional modeling, e.g., based on 
advanced statistical methods (Runge, Nowack, et al., 2019).

4.  Advanced physically based models, such as crop and hydrodynamical flooding models, are important for 
studying the dynamics of many compound events, especially under climate change conditions. In fact, 
simple statistical models, such as regression, may not provide accurate information about future changes 
that are outside the observational range, and more sophisticated approaches from extreme value theory 
are required (Engelke & Ivanovs, 2021).

5.  Compound event occurrence probabilities and their future changes can be highly uncertain due to 
combined uncertainties in multiple drivers and associated interplay (Bevacqua, Vousdoukas, Zappa, 
et al., 2020; Santos et al., 2021; Villalobos-Herrera et al., 2021). In this context, event-based storylines, 
which explore consequences of high-impact plausible events either or both under present and future 
climates putting emphasis on plausibility rather than probability, can provide very effective information 
for improving emergency preparedness to compound events (Sillmann et al., 2021).

6.  The separation between compound event types is not clear-cut and soft boundaries exist between them 
(Zscheischler et al., 2020). For example, multivariate compound coastal flooding may be affected by tem-
porally compounding features since high river discharge can be caused by precipitation from multiple 
storms in a quick succession (Bevacqua, Vousdoukas, Shepherd, & Vrac, 2020; Ward et al., 2018) (Fig-
ure 3). Hence, methods specifically useful for studying different types of compound events can some-
times be combined. Importantly, our case studies highlight that, depending on the research question of 
interest, a user will typically focus on a specific compound feature, for example the multivariate feature 
of compound flooding from ocean and riverine processes, and therefore ultimately employ tools that are 
useful for the compound feature of interest.

Given the complexity and diversity of compound events, each event is different and therefore our rec-
ommendations are somewhat dependent on the selected case studies. Follow-up work could expand and 
generalize the presented guidelines, for instance by considering different compound events and different 
research questions (e.g., attributing compound events to anthropogenic climate change, Zscheischler and 
Lehner, 2021) and in this way provide additional insights to advance the analysis of different compound 
event types. Furthermore, creating an inventory of methods that are useful for analyzing different types of 
compound events would be particularly helpful to users in order to identify appropriate analysis tools that 
can address specific research questions of interest. Given the extreme impacts often caused by different 
types of compound events, this study is a step toward the development of fundamental guidelines for incor-
porating a compound event perspective across disciplines and sectors for improved process understanding 
and risk assessments.
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Data Availability Statement
Leaf Area Index (LAI) data is available at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/
iso?id=gov.noaa.ncdc:C00898. The ESA-CCI Land cover data set is available through the copernicus C3S at 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview. ERA5 reanalysis is 
available through Hersbach et al. (2020) at https://climate.copernicus.eu/climate-reanalysis. Water levels 
used in the compound flooding analysis are available on request from the Australian Bureau of Meteorol-
ogy (http://www.bom.gov.au/), the Department of Transport (https://www.transport.wa.gov.au/) and the 
Department of Water and Environmental Regulation (https://www.der.wa.gov.au/) in Western Australia. 
The landslide data set is provided in Zêzere et  al.  (2015). The IBERIA02 precipitation data set is avail-
able through Belo-Pereira et  al.  (2011) at https://www.ipma.pt/pt/produtoseservicos/index.jsp?page=-
dataset.pt02.xml&print=true. The climate and associated crop simulations are available through Ribeiro 
et al. (2021) at http://doi.org/10.5281/zenodo.5113280.
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