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Decentralized Sliding Mode Control for Output Tracking of Large-Scale
Interconnected Systems*

Yueheng Ding1, Xing-Gang Yan1, Zehui Mao2, Bin Jiang2, Sarah K. Spurgeon3

Abstract— In this paper, a class of nonlinear interconnected
systems with matched and unmatched uncertainties is consid-
ered. The isolated subsystem dynamics are described by linear
systems and nonlinear part. The matched uncertainties and
unmatched unknown interconnection terms are assumed to be
bounded by known functions. Based on sliding mode techniques,
a state feedback decentralized control scheme is proposed such
that the outputs of controlled interconnected systems track
the given desired signals uniformly ultimately. The desired
reference signals are allowed to be time-varying. Using multiple
transformations, the considered system is transferred to a new
interconnected system with an appropriate structure to facili-
tate the design of sliding surface and decentralized controller.
A set of conditions is proposed to guarantee that the designed
controller drives the tracking errors onto the sliding surface and
the sliding mode of the error dynamics are uniformly ultimately
bounded. The developed results are applied to river quality
control. Simulation results show that the proposed decentralized
control strategies are effective and feasible.

I. INTRODUCTION

Large-scale systems are often mathematically modelled by
interconnections of a set of lower-dimensional subsystems.
One of the characteristics of such systems is that each
subsystem is usually affected by the others due to the inter-
reactions between these subsystems. It should be noted that
large-scale systems are usually distributed in space widely.
Thus the designed systems should have a higher tolerance
for the data-loss during data transformation, broken/unknown
interconnections as well as poor communications to guar-
antee that the controlled large-scale systems have higher
robustness. It is full of challenges to deal with large-scale
interconnected systems. However, compared with centralised
control, decentralized control needs local information only,
and thus the information or data transfer between subsystems
are not required. Specifically, when the network between
different subsystems are broken, or the data transformation
between subsystems are poor or unstable, the centralised
control scheme cannot be implemented. Therefore, decen-
tralized control has more advantages than centralized control
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and is the most popular choice in the control of large-scale
interconnected systems [17].

Recently, the study on large-scale systems with the in-
terconnected terms has made great progress, and many
interesting results have been obtained. In [6], a large-scale
fuzzy system with unknown interconnections was considered
by Kim, Park and Joo, where matched uncertainties or
disturbances are not included. There are also some results
for interconnected systems (see, e.g. [7], [5], [11]) which
require that interconnections are matched while unmatched
interconnections and/or uncertainties are not involved in the
systems. Moreover, some large-scale systems are considered
just in a simple or ideal dynamic model (see, e.g. [14],
[13], [4]). The structure of these considered systems lacks
generality because the input only exists in one of the first-
order dynamic equations. Decentralized sliding mode control
is developed in [16] where the considered system is fully
nonlinear with more general structure, but stabilization prob-
lem is considered while tracking problem is not involved.

Trajectory tracking and output tracking are a very impor-
tant topic in both control theory and control engineering.
Some tracking control results have been obtained in (see. [1],
[7]). But most of the research objects are restricted to systems
with a special structure (see [13], [4]). Decentralized tracking
control for large-scale systems is considered in [9] where
model reference control is investigated. Tracking control for
the interconnected system is considered based on adaptive
fuzzy techniques in [10]. It should be noted that in both [9]
and [10], it is required that the isolated subsystems are linear.

Sliding mode control is very popular in dealing with
complex systems with uncertainties due to its unique control
characteristics ([18], [19]). On one hand, the sliding mode
dynamics are a reduced-order system when compared with
the original system ([17], [2]), which may simplify the
corresponding system analysis and design. On the other
hand, sliding mode control is totally robust to matched
disturbances. Therefore, the sliding mode control method
has been widely applied to deal with tracking problems, and
many results have been achieved. Trajectory tracking control
schemes based on sliding mode techniques are proposed for
specific practical vehicles in (see. [20], [15]). The output
tracking sliding mode control is designed in [12] where the
considered system is linear. Although tracking control for
nonlinear systems with uncertainties is considered in [3]
where the event-triggered tracking is considered but only
matched disturbances are considered. In [21], tracking prob-
lem for a class of large-scale systems with interconnections
is considered using sliding mode control. However, it is



required that the reference signals are constant. It should
be emphasised that the results about output tracking for
large-scale nonlinear interconnected systems with unknown
interconnections are very few, specifically when the ideal
reference signals are time-varying.

In this paper, a class of nonlinear interconnected systems is
considered where both the unknown matched uncertainty and
the unmatched nonlinear interconnections are considered.
Suitable coordinate transformations are introduced to transfer
the nominal subsystems in the interconnected system to
systems with special structure. This makes each subsystem of
the transferred system to separate into two parts to facilitate
the system analysis and control design for output tracking.
Then the tracking error dynamic systems are developed,
and the sliding surface based on the tracking error system
is designed. A set of conditions is proposed to guarantee
the uniformly ultimately boundedness of the corresponding
sliding motion. A decentralized sliding mode control scheme
is proposed to drive the nonlinear interconnected systems to
the designed sliding surface. Finally, the obtained results are
applied to a river quality control to show the practicability
and feasibility of the proposed approach.

II. SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

Consider a nonlinear large-scale system formed by N
interconnected subsystems as follows:

ẋi = Aixi + fi(xi)+Bi(ui +∆gi(xi))+hi(x)

yi =Cixi i = 1,2, ...,N
(1)

where x = col(x1,x2, ...,xN), xi ∈ Rni , ui ∈ Rmi and yi ∈ Rmi

represent the states, inputs and outputs of the ith subsystem
respectively and mi < ni. The triple (Ai,Bi,Ci) represents
constant matrices of appropriate dimensions with Bi and Ci
of full rank. The function fi(xi) represents known nonlinear
term in the ith subsystem, and the matched uncertainty of the
ith isolated subsystem is denoted by ∆gi(xi). The terms hi(x)
represent system interconnections including all unmatched
uncertainties. All the nonlinear functions are assumed to be
continuous in their arguments to guarantee the existence of
solutions of the controlled system (1).

The object of this paper is, for a given desired signal yid(t),
to design a decentralized sliding mode control

ui = ui(t,xi(t),yid(t))

such that the system output yi(t) of controlled system (1) can
track the desired signal yid(t), i.e. the tracking errors yi(t)−
yid(t) are uniformly ultimately bounded for i = 1,2, ...,N,
while all the state variables of system (1) are bounded.
Remark 1. It should be noted that in this paper, it is
required that system (1) is square, that is, the dimension
of each subsystem output is equal to the dimension of
the corresponding subsystem input. However, the developed
results can be easily extended to the case when the dimension
of subsystem output is bigger than the dimension of the
subsystem input by slightly modification.

In order to deal with the tracking problem stated above,
some assumptions are required to impose on the considered
interconnected system (1).
Assumption 1. The pair (Ai,Bi) is controllable and
rank(CiBi) = mi for i = 1,2, ...,N.
It follows from the works in [17], [2]. Under Assumption 1,
there exists a coordinate transformation zi = Tixi such that
the triple (Ai,Bi,Ci) with respect to the new coordinates zi
has the following structure[

Ai11 Ai12
Ai21 Ai22

]
,

[
0

Bi2

]
,
[
0 Ci2

]
where Ai11 ∈ R(ni−mi)×(ni−mi), the square matrices Bi2 ∈
Rmi×mi and Ci2 ∈ Rmi×mi are nonsingular for i = 1,2, ...,N.
Assumption 2. Suppose that fi(xi) has the decomposition
fi(xi) = Γi(xi)xi, where Γi ∈ Rni×ni is a continuous function
matrix for i = 1,2, ...,N.
Remark 2. If fi(0) = 0 and fi is sufficiently smooth, then
the decomposition fi(xi) = Γi(xi)xi is guaranteed. Therefore,
the limitation to fi(xi) in Assumption 2 is not strict.
Assumption 3.There exist known continuous functions ρi(·)
such that
‖ ∆gi(xi) ‖≤ ρi(xi) for i = 1,2, ...,N.

Assumption 4. The desired output signal yid(t) is differen-
tiable and satisfies

(i). ‖ yid(t) ‖≤ Li1
(ii). ‖ ẏid(t) ‖≤ Li2

for t ∈ [0,∞), where Li1 and Li2 are known constants for
i = 1,2, ...,N.
Remark 3. Assumption 4 is the limitation to the desired
output signals yid(t). It is required that the desired output
signal yid(t) and its derivative ẏid(t) are bounded. This
assumption is quite standard and can be satisfied in most
cases of reality.

III. SYSTEM STRUCTURE ANALYSIS

Consider the nonlinear interconnected system in (1). Un-
der Assumption 1, there exists a nonsingular coordinate
transformation zi = Tixi such that in the new coordinate
z = col(z1,z2, ...,zN), system (1) has the following form

żi =

[
Ai11 Ai12
Ai21 Ai22

]
zi +

[
Fi1(zi)
Fi2(zi)

]
+

[
0

Bi2

]
(ui +∆Gi(zi))

+

[
Hi1(z)
Hi2(z)

]
yi =

[
0 Ii2

]
zi, i = 1,2, ...,N

(2)

where Ai11 is stable, the square sub-matrices Bi2 ∈Rmi×mi are
nonsingular. Ii2 ∈ Rmi×mi is an identity matrix, col(Fi1,Fi2) =
Ti fi(xi)|xi=T−1

i zi
and Fi1(zi)∈ Rni−mi , Fi2(zi)∈ Rmi . ∆Gi(zi) =

Ti∆gi(xi)|xi=T−1
i zi

, col(Hi1(z),Hi2(z)) = Tihi(x)|x=T−1z and
Hi1(z) ∈ Rni−mi , Hi2(z) ∈ Rmi . The coordinate transformation
T := col(T1,T2, ...,TN).

Since Ai11 is stable for i = 1,2, ...,N, for any Qi > 0, the
following Lyapunov equation has a unique solution Pi > 0
such that

AT
i11Pi +PiAi11 =−Qi, i = 1,2, ...,N. (3)



Now, in order to fully use the available structure characteris-
tics, partition zi = col(zi1,zi2) with zi1 ∈ Rni−mi and zi2 ∈ Rmi .
It follows that in the new coordinate z, system (2) has the
following form

żi1 = Ai11zi1 +Ai12yi +Fi1(zi1,yi)

+Hi1(z11,y1, ...,zN1,yN) (4)
ẏi = Ai21zi1 +Ai22yi +Fi2(zi1,yi)+Bi2(ui +∆Gi(zi))

+Hi2(z11,y1, ...,zN1,yN) i = 1,2, ...,N (5)

From system (2) and Assumption 2,

col(Fi1,Fi2) = Ti fi(xi)|xi=T−1
i zi

= TiΓi(xi)|xi=T−1
i zi

T−1
i col(z1i,yi) (6)

It follows from (6) that the functions Fi1(zi1,yi) in system
(4)-(5) can be described by

Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi = Fi1(zi1,yi) (7)

where Γi11(·) and Γi12(·) are defined by[
Γi11(·) Γi12(·)

? ?

]
= TiΓi(xi)|xi=T−1

i zi
T−1

i

and the ?s are the function matrices which do not need to
specify. Therefore, (4) can be described by

żi1 =Ai11zi1 +Ai12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi

+Hi1(z11,y1, ...,zN1,yN)
(8)

where Γi11(·) and Γi12(·) satisfy (7).

IV. SLIDING MODE TRACKING CONTROL DESIGN

A. Sliding Surface Design

Now, consider the desired output signal yid(t) satisfying
Assumption 4. Then for system (1), the output tracking errors
ei are defined by:

ei(t) = yi(t)− yid(t) i = 1,2, ...,N (9)

and their first-time derivative is:

ėi(t) = ẏi(t)− ẏid(t) i = 1,2, ...,N (10)

Combining with (4)-(5), a new system which consists of zi1
and ei can be considered:

żi1 = Ai11zi1 +Ai12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi

+Hi1(z11,y1, ...,zN1,yN) (11)
ėi = Ai21zi1 +Ai22(ei + yid)+Fi2(zi1,yi)+Bi2(ui +

∆Gi(zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid(t) (12)

for i = 1,2, ...,N.

Assumption 5. It is easy to find a function γi(·) such that
the following inequalities

‖Hi1(z11,y1, ...,zN1,yN) ‖

≤ γi1(T−1(z11,y1, ...,zN1,yN))(
N

∑
j=1
‖ z j1 ‖+

N

∑
j=1
‖ y j ‖)

(13)
‖Hi2(z11,y1, ...,zN1,yN) ‖

≤ γi2(T−1(z11,y1, ...,zN1,yN))(
N

∑
j=1
‖ z j1 ‖+

N

∑
j=1
‖ y j ‖)

(14)

hold for i = 1,2, ...,N.
For systems (11)-(12), define the following sliding surface

col(e1,e2, ...,eN) = 0 (15)

Then, the sliding mode dynamics have the following form
according to the structure of (11)-(12):

żi1 = Ai11zi1 +Ai12yid +Γi11(zi1,yid)zi1

+Γi12(zi1,yid)yid +Hi1(z11,y1d , ...,zN1,yNd)
(16)

for i = 1,2, ...,N.
Remark 4. From (13) in Assumption 5, when the states
reached on the sliding surface, we could get

‖Hi1(z11,y1d , ...,zN1,yNd) ‖

≤ γi1(T−1(z11,y1d , ...,zN1,yNd))(
N

∑
j=1
‖ z j1 ‖+

N

∑
j=1
‖ y jd ‖)

(17)

hold for i = 1,2, ...,N.
Obviously, the sliding surface (16) is a reduced-order

interconnected system composed of N subsystems whose
dimension is ni−mi.

Theorem 1: Consider the sliding mode dynamics given in
(16). Under Assumptions 1-5, the sliding mode is uniformly
ultimately bounded if there exists a domain

Ω = {(z11,z21, ...,zN1)| ‖ zi1 ‖≤ ci, i = 1,2, ...,N}

for some constants ci > 0 such that MT+M > 0 in Ω\{0}
where M := (mi j)N×N and

mi j =

{
λmin(Qi)− ‖ Ri(·) ‖ −2 ‖ Pi ‖ γi1(·), i = j
−2 ‖ Pi ‖ γi1(·), i 6= j

(18)

with Pi and Qi satisfying (3), and

Ri(·) := Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid)

where Γi11(zi1,yi) is given by (2) and γi1(·) is determined by
(17).

Proof: From the analysis above, what needs to be
proved is that system (16) is uniformly ultimately bounded.
For system (16), consider the following Lyapunov function
candidate

V (z11,z21, ...,zN1) =
N

∑
i=1

(zi1)
TPizi1 (19)



where Pi satisfies (3).
Then, the time derivative of V (z11,z21, ...,zN1) along the

trajectories of system (16) is given by

V̇ (z11,z21, ...,zN1)

=
N

∑
i=1

[(żi1)
TPizi1 + zTi1Piżi1]

=
N

∑
i=1

[zTi1AT
i11Pizi1 + yTidAT

i12Pizi1 + zTi1Γi11(zi1,yid)
TPizi1

+ yTidΓi12(zi1,yid)
TPizi1 +Hi1(z11,y1d , ...,zN1,yNd)

TPizi1

+ zTi1PiAi11zi1 + zTi1PiAi12yid + zTi1PiΓi11(zi1,yid)zi1

+ zTi1PiΓi12(zi1,yid)yid + zTi1PiHi1(z11,y1d , ...,zN1,yNd)]

=
N

∑
i=1
{−zTi1Qizi1 + zTi1[Γi11(zi1,yid)

TPi +PiΓi11(zi1,yid)]zi1

+2zTi1PiAi12yid +2zTi1PiΓi12(zi1,yid)yid

+2zTi1PiHi1(z11,y1d , ...,zN1,yNd)}
(20)

where (3) is used to establish the above. By (17) and (i) in
Assumption 4, it follows that

V̇ (z11,z21, ...,zN1)

≤
N

∑
i=1
{−λmin(Qi) ‖ zi1 ‖2 + ‖ Γi11(zi1,yid)

TPi

+PiΓi11(zi1,yid) ‖‖ zi1 ‖2 +2 ‖ zi1 ‖‖ Pi ‖‖ Ai12yid ‖
+2 ‖ zi1 ‖‖ Pi ‖‖ Γi12(zi1,yid)yid ‖
+2 ‖ zi1 ‖‖ Pi ‖‖ Hi1(z11,y1d , ...,zN1,yNd) ‖}

=−
N

∑
i=1

{
λmin(Qi)− ‖ Ri(·) ‖ −2 ‖ Pi ‖ γi1(·)

}
‖ zi1 ‖2

+2
N

∑
i=1

N

∑
j=1
j 6=i

‖ Pi ‖‖ zi1 ‖ γi1(·)(‖ z j1 ‖+Li1)

+2
N

∑
i=1

(‖ Ai12yid ‖+ ‖ Γi12(zi1,yid)yid ‖)· ‖ Pi ‖‖ zi1 ‖

≤− 1
2

λmin(MT+M)
N

∑
i=1
‖ zi1 ‖2 +2

N

∑
i=1

(‖ Ai12yid ‖

+ ‖ Γi12(zi1,yid)yid ‖+γi1(·)Li1)· ‖ Pi ‖‖ zi1 ‖

=− 1
2

N

∑
i=1
{λmin(MT+M) ‖ zi1 ‖ −4(‖ Ai12yid ‖

+ ‖ Γi12(zi1,yid)yid ‖+γi1(·)Li1) ‖ Pi ‖} ‖ zi1 ‖
(21)

where the matrix M is defined in (18). Under Assumption 4,
‖ yid(t) ‖≤ Li1. It is clear to check V̇ ≤ 0, if

‖ zi1 ‖≥
4(‖ Ai12Li1 ‖+ ‖ Γi12(zi1,yi)Li1 ‖+γi1(·)Li1) ‖ Pi ‖

λmin(MT+M)

for i = 1,2, ..,N. Hence, the conclusion follows.

V. DECENTRALIZED SLIDING MODE CONTROL

For the interconnected system (1), the reachability condi-
tion [17], [16] is described by

N

∑
i=1

eTi (t)ėi(t)
‖ ei(t) ‖

< 0 (22)

Then, the following control law is proposed

ui = −B−1
i2

ei

‖ ei ‖
{‖ Ai21zi1 ‖+ ‖ Ai22yi ‖+ ‖ Fi2(zi1,yi) ‖

+ ‖ Bi2 ‖ ρi(zi1,yi)+ ki(zi1,yi)+Li2} (23)

for i = 1,2, ...,N, where ei and Li2 are defined by (9) and
Assumption 4, respectively. ki(zi1,yi) is the control gain to
be designed later.

Theorem 2: Consider the nonlinear interconnected system
(11)–(12). Under Assumptions 2-5, the controller (23) drives
the system (11)–(12) to the composite sliding surface (16)
and maintains a sliding motion on it if the controller gains
ki(zi1,yi) satisfy

N

∑
i=1

ki(zi1,yi)>
N

∑
i=1

γi2(·)
N

∑
j=1

(‖ z j1 ‖+ ‖ yi ‖) (24)

where γi2 are defined by Assumption 5.
Proof: From the analysis above, all that needs to be

proved is the reachability condition (22) is satisfied. From
(12) and Assumption 2,

ėi = Ai21zi1 +Ai22yi +Fi2(zi1,yi)+Bi2(ui

+∆Gi(zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid
(25)

for i = 1,2, ...,N. From (23)-(25), it follows

eTi ėi

‖ ei ‖
=

eTi
‖ ei ‖

{Ai21zi1 +Ai22yi +Fi2(zi1,yi)

+Bi2∆Gi((zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid}
− ‖ Ai21zi1 ‖ − ‖ Ai22yi ‖ − ‖ Fi2(zi1,yi) ‖
− ‖ Bi2 ‖ ρi(zi1,yi)− ki(zi1,yi)−Li2

(26)

It is clear to see

‖ Ai21zi1 +Ai22yi +Fi2(zi1,yi) ‖
≤‖ Ai21zi1 ‖+ ‖ Ai22yi ‖+ ‖ Fi2(zi1,yi) ‖

(27)

From Assumptions 3-5,

‖ Bi2∆Gi(zi1,yi) ‖ ≤‖ Bi2 ‖ ρi(zi1,yi) (28)

‖ Hi2(z11,y1, ...,zN1,yN) ‖ ≤ γi2(·)
N

∑
j=1

(‖ z j1 ‖+ ‖ yi ‖) (29)

‖ ẏid ‖ ≤ Li2 (30)

Substituting the above four inequalities (27)-(30) into (26),
it follows

N

∑
i=1

eTi (t)ėi(t)
‖ ei(t) ‖

<−
N

∑
i=1

ki(zi1,yi)+
N

∑
i=1

γi2(·)
N

∑
j=1
‖ z j1 ‖

If ki(zi1,yi) is chosen to satisfy (24), then the reachability
condition (22) is satisfied.

Hence, the result follows.



Remark 5. Theorem 1 shows that the sliding mode (16)
which is an interconnected system, is uniformly ultimately
bounded. Theorem 2 shows that the designed control (23) can
drive the considered system (11)–(12) to the sliding surface
(15). According to the sliding mode theory, Theorems 1 and
2 show that the controlled systems (11)–(12) are uniformly
ultimately bounded.

From Remark 7, it follows that the closed-loop systems
formed by applying the control (24) to the systems (11)–(12)
are uniformly ultimately bounded, which implies that the
variables ‖zi1(t)‖ and ‖ei(t)‖ are bounded for i = 1,2, . . . ,N.
Further, from ei(t) = yi(t)− yid(t) and the Assumption 4
that yid(t) is bounded, it is straightforward to see that yi(t)
are bounded due to yi(t) = ei(t)+ yid(t), for i = 1,2, . . . ,N.
Therefore, all the state variables of the system (4)–(5) are
bounded. This shows that the designed decentralized control
(24) can not only make the system outputs track the desired
reference signals but also keep all the state variables of the
system (4)–(5) bounded.

VI. APPLICATION TO WATER QUALITY CONTROL

In this section, the decentralized control scheme developed
in this paper will be applied to a river pollution problem
[8]. The water quality of a river is mainly described by the
concentrations of oxygen and pollutants. In a simplified way,
this problem can be stated as the task to control the sewage
discharge at different places along the river in such a way that
the river pollution remains within a given band of tolerance.

Assume that the river has two regions and each region
has a sewage station. Then, the river pollution system can
be described by a nonlinear interconnected system as follows
(see, [17])

ẋ1 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A1

x1 +

[
1
0

]
︸︷︷︸

B1

(u1 +∆g1(·))

+

[
sin(x21)

0

]
︸ ︷︷ ︸

h1

y1 =
[
1 0

]︸ ︷︷ ︸
C1

x1 (31)

ẋ2 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A2

x2 +

[
1
0

]
︸︷︷︸

B2

(u2 +∆g2(·))

+

[
−0.9x11

0

]
︸ ︷︷ ︸

h2

y2 =
[
1 0

]︸ ︷︷ ︸
C2

x2 (32)

where x1 := col(x11,x12) and x2 := col(x21,x22). The vari-
ables xi1 and xi2 for i = 1,2. represent the concentration of
biochemical oxygen demand (BOD) and the concentration
of dissolved oxygen respectively, the controllers ui are the
BOD of the effluent discharge into the river, ∆gi represent
the matched uncertainties added by us which is not the
inherent property of the system, hi represent interconnections
respectively for i = 1,2. It is assumed that the concentrations
of BOD for the two regions are measurable.

In this example, according to (1) the nonlinear term
fi(x1) = 0, so the Assumption 2 can be ignored here. The
matched uncertainties ∆g1(·) and ∆g2(·) are assumed to
satisfy

∆g1(·) =−13.2x11 ∆g2(·) = cos2(x21) (33)

According to (31)-(32), the interconnections satisfy

‖ h1 ‖≤ 1 · |x21| ‖ h2 ‖≤ |0.9 · x11| (34)

Combining with (33)-(34), it is clear that the Assumption 3
is satisfied.

Moreover, it can be verified that rank(CiBi) = 1 = mi for
i = 1,2. So the Assumption 1 is satisfied.

Some suitable coordinate transformation matrices Ti are
introduced as below: (zi = Tixi)

T1 = T2 =

[
0 1
1 0

]
.

Then, the system (31)-(32) in z coordinates can be given by

ż1 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â1

z1 +

[
0
1

]
︸︷︷︸

B̂1

(u1−13.2z12)

+

[
0

sin(z22)

]
︸ ︷︷ ︸

H1

y1 =
[
0 1

]︸ ︷︷ ︸
Ĉ1

z1 (35)

ż2 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â2

z2 +

[
0
1

]
︸︷︷︸

B̂2

(u2 + cos2(z22))

+

[
0

−0.9z12

]
︸ ︷︷ ︸

H2

y2 =
[
0 1

]︸ ︷︷ ︸
Ĉ2

z2 (36)

and the sliding surfaces Si are: żi1 = −1.2zi1− 0.32zi2, i =
1,2.

For simulation purposes, the initial states are chosen as
z1(0)= col(0,1) and z2(0)= col(0,0), and the desired output
signals yid are chosen as: y1d = 2 · e−t , y2d = sin(0.5t)+1.

It is clear that the Assumption 4 is satisfied. Let L12 = 2,
L22 = 0.5.

From (23), the proposed sliding mode controllers are as
follows:

u1 = − y1− y1d

|y1− y1d |
(|1.32z12|+ |13.2z12|+3) (37)

u2 = − y2− y2d

|y2− y2d |
(|1.32z22|+ |cos2(z22)|+2.3) (38)

According to (3), choose Q1 = Q2 = 1. Combining with
(31)-(32), Ai11 = −1.2 for i = 1,2. Then P1 = P2 = 0.416.
And by direct calculation, it follows from (18) that

M>+M =

[
−1.664γ11 +2 −0.832(γ11 + γ21)
−0.832(γ11 + γ21) −1.664γ21 +2

]
According to (17), (35) and (36), γ11 = 6 · sin(z11), γ21 =
3 ·cos(z21)−2. And by direct verification, it is easy to check
that M>+M > 0, if |z11| ≤ d1 = 5.2, |z21| ≤ d2 = 3.9.



According to (21) for this example: V̇ (z11,z21) ≤ 0, if
|z11| ≥ 0.3 and |z21| ≥ 0.25. Therefore, the system (31)-(32)
is uniformly ultimately bounded.

The tracking results are shown in Fig. 1. The concentration
of biochemical oxygen demand (BOD) of each subsystem
yi can track the ideal reference yid with the inputs of the
designed controller in (37)-(38), even in the presence of
uncertainties. The time responses of the states of the system
(31)-(32) are shown in Fig. 2 which indicates that the system
states are bounded. Simulation results demonstrate that the
developed method in this paper is effective.
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Fig. 1. Time responses of system outputs and desired outputs.
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Fig. 2. Time responses of system state variables.

VII. CONCLUSIONS

This paper has presented a sliding mode control strategy
to deal with the output tracking problem of a class of large-
scale systems with unmatched unknown nonlinear intercon-
nections. The desired reference signals are allowed to be
time-varying. A decentralized sliding mode control scheme
has been proposed to satisfy the reachability condition driv-
ing the interconnected system onto the pre-designed sliding
surface. A set of conditions is developed to guarantee that
the output tracking errors are uniformly ultimately bounded
while all the state variables of the interconnected system are
bounded. The application of the developed result to the river

pollution control system have demonstrated that the proposed
approaches are effective and practicable.

REFERENCES

[1] H. Cai and G. Hu. Distributed tracking control of an interconnected
leaderfollower multiagent system. IEEE Transactions on Automatic
Control, 62(7):3494–3501, 2017.

[2] C. Edwards and S. K. Spurgeon. Sliding Mode Control: Theory and
Applications. Taylor and Francis Ltd, London, 1998.

[3] Z. Farzad and S. Mohammad Hossein. On event-triggered tracking
for non-linear SISO systems via sliding mode control. IMA Journal
of Mathematical Control and Information, 37(1):105–119, 2018.

[4] Y. Q. Han and H. S. Yan. Observer-based multi-dimensional taylor
network decentralised adaptive tracking control of large-scale stochas-
tic nonlinear systems. International Journal of Control, 93:1605–1618,
2020.

[5] H. Huerta, A. G. Loukianov, and J. M. Caedo. Passivity sliding mode
control of large-scale power systems. IEEE Transactions on Control
Systems Technology, 27(3):1219–1227, 2019.

[6] H. S. Kim, J. B. Park, and Y. H. Joo. Decentralized sampled-data
tracking control of large-scale fuzzy systems: An exact discretization
approach. IEEE Access, 5:12668–12681, 2017.

[7] C. Liu, H. G. Zhang, G. Y. Xiao, and S. X. Sun. Integral reinforcement
learning based decentralized optimal tracking control of unknown
nonlinear large-scale interconnected systems with constrained-input.
Neurocomputing, 323:1–11, 2019.

[8] J. Lunze. Feedback Control of Large-Scale Systems. Bookmundo
Direct, 2020.

[9] P. R. Pagilla, R. V. Dwivedula, and N. B. Siraskar. A decen-
tralized model reference adaptive controller for large-scale systems.
IEEE/ASME Transactions on Mechatronics, 12(2):154–163, 2007.

[10] X. Ren, G. Yang, and X. Li. Global adaptive fuzzy distributed tracking
control for interconnected nonlinear systems with communication
constraints. IEEE Transactions on Fuzzy Systems, 28(2):333–345,
2020.

[11] G. Rinaldi, P. P. Menon, C. Edwards, and A. Ferrara. Variable gains
decentralized super-twisting sliding mode controllers for large-scale
modular systems. In 2019 18th European Control Conference (ECC),
pages 3577–3582, 2019.

[12] J. E. Ruiz-Duarte and A. G. Loukianov. Approximate causal output
tracking for linear perturbed systems via sliding mode control. Inter-
national Journal of Control 93, page 9931004, 2020.

[13] L. N. Tan. Distributed h optimal tracking control for strict-feedback
nonlinear large-scale systems with disturbances and saturating actua-
tors. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
50(11):4719–4731, 2020.

[14] M. Wan and Y. Yin. Adaptive decentralized output feedback tracking
control for large-scale interconnected systems with time-varying out-
put constraints. Mathematical Problems in Engineering, pages 1–14,
2020.

[15] Y. Wei, Z. Zheng, Q. Li, Z. Jiang, and P. Yang. Robust tracking
control of an underwater vehicle and manipulator system based on
double closed-loop integral sliding mode. International Journal of
Advanced Robotic Systems 17, 2020.

[16] X. G. Yan, C. Edwards, and S. K. Spurgeon. Decentralised robust
sliding mode control for a class of nonlinear interconnected systems
by static output feedback. Automatica, 40(4):613–620, 2004.

[17] X. G. Yan and C. Edwards S. K. Spurgeon. Variable structure control
of complex systems : analysis and design. Cham: Springer, 2017.

[18] X. G. Yan, S. K. Spurgeon, and C. Edwards. Memoryless static output
feedback sliding mode control for nonlinear systems with delayed
disturbances. IEEE Transactions on Automatic Control, 59(7):1906–
1912, 2014.

[19] D. Yao, H. Li, R. Lu, and Y. Shi. Distributed sliding-mode tracking
control of second-order nonlinear multiagent systems: An event-
triggered approach. IEEE Transactions on Cybernetics, 50(9):3892–
3902, 2020.

[20] Y. Zhao, X. Sun, G. Wang, and Y. Fan. Adaptive backstepping sliding
mode tracking control for underactuated unmanned surface vehicle
with disturbances and input saturation. IEEE Access, 9:1304–1312,
2021.

[21] Guoqiang Zhu, Linlin Nie, Zhe Lv, Lingfang Sun, Xiuyu Zhang,
and Chenliang Wang. Adaptive fuzzy dynamic surface sliding mode
control of large-scale power systems with prescribe output tracking
performance. ISA Transactions, 99:305–321, 2020.


