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Abstract
Purpose – This paper aims to examine containership routing and speed optimization for maritime liner
services. It focuses on a realistic case in which the transport demand, and consequently the collected revenue
from the visited ports depend on the sailing speed.
Design/methodology/approach – The authors present an integer non-linear programming model for
the containership routing and fleet sizing problem, in which the sailing speed of every leg, the ports to be
included in the service and their sequence are optimized based on the net line’s profit. The authors present a
heuristic approach that is based on speed discretization and a genetic algorithm to solve the problem for large
size instances. They present an application on a line provided by COSCO in 2017 between Asia and Europe.
Findings – The numerical results show that the proposed heuristic approach provides good quality
solutions after a reasonable computation time. In addition, the demand sensitivity has a great impact on the
selected route and therefore the profit function. Moreover, the more the demand is sensitive to the sailing
speed, the higher the sailing speed value.
Research limitations/implications – The vessel carrying capacity is not considered in an explicit way.
Originality/value – This paper focuses on an important aspect in liner shipping, i.e. demand sensitivity to
sailing speed. It brings a novel approach that is important in a context in which sailing speed strategies and
market volatility are to be considered together in network design. This perspective has not been addressed
previously.

Keywords Containership routing, Arc dependent sailing speed, Optimization, Sensitive demand,
Genetic algorithm, Europe–Asia trade

Paper type Research paper

1. Introduction
The demand for sea transport has continuously grown during the past few decades. Nearly
80% of worldwide trade is transported on water (UNCTAD, 2016). Moreover, maritime
transportation can be classified into one of three general modes: industrial, tramp and liner
operations. In particular, liner shipping operates according to a schedule on fixed routes
between specific ports based on timetables. It transports approximately 16% of the world’s
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goods loads in tons (Branchini et al., 2015). In addition, various decision levels, including
strategic, tactical and operational, exist in liner shipping. Strategic decisions include
network design, alliance strategy and fleet size and mix. Tactical decisions involve fleet
deployment, speed optimization, schedule construction and frequency determination, and
operational decisions include cargo booking, cargo routing and rescheduling (Meng et al.,
2014).

This paper addresses a combined strategic and tactical problem of integrated
containership routing, speed optimization and fleet sizing. We assume that the decisions
regarding the fleet mix and ships’ size are already made. Most liner companies guarantee
weekly service calls at each port included in the service (Cheaitou and Cariou, 2017). A single
vessel deployed in a liner service cannot serve long-distance routes while satisfying the
weekly service frequency of all the ports in the service, mainly because of the limitation in
sailing speeds (Cheaitou and Cariou, 2012). Reducing the number of vessels deployed in a
service can reduce operating costs. Consequently, containership routing, speed optimization
and fleet sizing decisions are related and have a significant impact on the operational
efficiency of liner companies. The containership routing problem, which consists in
choosing the ports of call and their sequence while considering the revenues that may be
collected from each visited port, is similar to the travelling salesman problem with profit
(TSPP) (Toth and Vigo, 2014), but with special liner transportation properties related to the
multiple vessels to be deployed in the service. One of the formulations of the TSPP that is
called the Profitable Tour Problem (PTP) is the closest to the one adopted in this paper.

In the literature of maritime transportation, several studies focus on containership
routing (Christiansen et al., 2013; Meng et al., 2014). For example, Liu et al. (2011) address
both container routing and ship deployment and cargo routing problems at a tactical level.
The authors propose a joint optimization model and sequential model formulations for
comparison with an objective to maximize the shipping capacity utilization considering
empty container repositioning. More generally, most of the works on liner shipping service
modelling and optimization consider a fixed sailing speed (Gelareh et al., 2010; Meng and
Wang 2011a, 2011b;Wang et al., 2011; Wang andMeng, 2011; Song and Xu, 2012).

Moreover, many papers have investigated the optimization of the vessels’ sailing speed.
For example, Wang and Meng’s (2012b) show that the third power relationship between the
bunker consumption and the sailing speed can be used if not enough historical data are
available. Cheaitou and Cariou (2012) develop a direct liner service model for a slow-
steaming strategy between two ranges of ports to identify the optimal speed for cases in
which perishable products are affected by time while frozen and dry products are not.
Others investigated exact solutions approaches (Hvattum et al., 2013) or heuristic
approaches (Castillo-Villar et al., 2014). However, the literature on sailing speed has been
developing with may related works in the last few years (Cariou and Cheaitou, 2014;
Andersson et al., 2015; Wang and Meng, 2015; Aydin et al., 2017; Cheaitou and Cariou, 2017;
AlMarar and Cheaitou, 2018; Cheaitou et al., 2018; Brahimi et al., 2020). More specifically,
some researchers considered leg specific speed level while optimizing the liner shipping
network design with the speed as a decision variable (Wang andMeng, 2012b; Guericke and
Tierney, 2015). In particular, Karsten et al. (2017) consider variable speed on each leg of the
network. The individual leg speeds are calculated using a mixed integer linear
programming with the objective of minimizing a piece-wise linear approximation of a non-
linear fuel consumption function. Finally, Psaraftis and Kontovas (2015) review the speed
models for maritime transportation with a focus on energy efficiency.

Most of the existing studies on containership routing problems have considered fixed
demand that is independent of the transit time while stressing that short transit time is a
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competitive factor for liner shipping companies, especially when the goods transported are
time sensitive, such as fashion and computers and medical goods during emergency cases
and crisis. Gelareh et al. (2010) were among the first researchers to introduce transit-time
sensitive demand in containership scheduling models using a step-function of the transport
demand in function of transit time. Other sensitive demand works have been proposed in the
literature (Wang et al., 2013; Wang et al., 2014; Wang et al., 2016). More specifically, some
researchers have investigated the impact of slow steaming, and therefore the vessels’ sailing
speed in liner shipping on shippers and therefore their potential demand (Finnsgård et al.,
2020; Maitra et al., 2020). For instance, Carson (2016) studied the implications of slow
steaming for shippers and reported that these shippers suffered mainly via increased transit
times. Cheaitou and Cariou (2017) modelled the correlation between the transit time and the
shipping demand in a two-stage maritime supply chain framework. In practice, given a
historical data set about the shipping market with the transported volumes, their point of
origin and destination, a Machine Learning based approach can be used to characterize the
relationships among the variety of inputs, outputs and decisions in an analytical fashion for
liner shipping companies (Barua et al., 2020). Alternatively, a regression analysis can also be
used to identify a correlation between historical demand and corresponding transit times.

Two papers would be of major relevance to the problem addressed in this work. The
model of Xia et al. (2015) in which a joint planning of the fleet deployment problem, speed
optimization and cargo allocation for liner shipping is addressed. However, this model forces
all commodities to be accepted while proposing different service routes. Moreover, this
approach uses an approximation scheme that discretizes time into steps of one-day which
leads the ship to sale a multiple number of days and spend one day at any visited port.
Moreover, the work of Cariou et al. (2018) propose a multi-commodity pickup and delivery
arc-flow formulation for the liner shipping problem with speed optimization. However, the
authors propose a bi-objective framework in which they investigate the trade-off between
profit and CO2 emissions and do not consider the sensitivity of the transport demands to the
sailing speed.

To the best of our knowledge, no prior studies addressed the containership routing and
fleet sizing problem considering demand sensitivity to transit time along with arc-based
speed optimization. Although, as mentioned earlier, some researchers studied speed
optimization in liner shipping while considering different speeds on different legs of the
network (Wang andMeng 2012b; Guericke and Tierney, 2015; Karsten et al., 2017) and some
others considered transit time sensitive demand (Wang et al., 2016; Cheaitou and Cariou,
2017), no previous studies considered these two aspects in a combined way. As the demand
would be sensitive to the transit time in practice, then considering this correlation makes the
modelling approach more realistic; however, considering both aspects together makes the
problem more complex. Therefore, this paper brings a novel approach that is important in a
context in which sailing speed strategies and market volatility are to be considered together
in network design.

Therefore, the contribution of this paper is fourfold. First, we present a profit
maximization mathematical model for the fleet sizing, routing, and speed optimization
problem. The model selects the ports to include in the service based on their profit. Second,
the model accounts for the shipping demand sensitivity, and therefore the generated revenue
sensitivity, to the sailing speed. We note that the simultaneous routing, fleet sizing and
speed optimization problem is a non-linear NP-hard optimization problem. Third, to
overcome the problem complexity, we propose a genetic algorithm-based approach that
allows obtaining heuristic solutions. Fourth, we implement the proposed model and solution

Liner shipping
network
design

295



approach on a liner service operated between Asia and Europe in 2017 in addition to another
case study with larger problem size.

The remainder of this paper proceeds as follows. We develop the mathematical model in
Section 2. We present a proposed heuristic solution approach in Section 3. In Section 4,
numerical applications, analysis and results are discussed. Finally, in Section 5, we provide
some concluding remarks and identify future research directions.

2. Mathematical model
This work proposes a mathematical model in which the same sailing speed is used for the
vessels sailing between each two ports in the service and is considered as a decision
variable. The mathematical model is a TSPP-based model for maritime liner services that
relies on the literature for an accurate formulation of the bunker and fixed-vessel-related
costs (Cheaitou and Cariou, 2012) and for the TSPP formulation (Toth and Vigo, 2014). In
addition, it uses a formulation inspired from travelling purchaser problem based
formulations in which the speed may be different for every arc (Demir et al., 2014; Cheaitou
et al., 2020). The proposed model assumes that the ports that may be included in the service
are known and called at weekly. Moreover, the fleet is assumed to be homogeneous, to follow
the same route, and to have a capacity that is greater than the transport demand.

The next sections provide the model notations, and formulation.

2.1 Parameters
Themodel parameters are as follows:

� X = set of all preselected ports to be included in the service, with cardinality n.
� A = set of arcs, where arc (i,j) [ A for i [ X and j [ X.
� Dij = distance between ports i and j [nautical mile].
� VR = average vessel sailing speed in the proximity of any port including the sailing

time in the proximity of the port and the port time. It is the same for all vessels
[knot].

� VDS = vessel design speed considered the best sailing speed by the ship
manufacturer [knot].

� RTi = total average time spent in port i per call, including the sailing time in the
proximity of the port and the time required for port operations [days].

� tSij = standard transit time spent between ports i and j, and that may correspond to
the current status of the market for a reference service calling at both ports, or the
sailing time of a direct service between both ports [days].

� RdS
ij = total standard revenue that can be collected from the dry containers

transported from port i [ X to port j [ X if both ports i and j are called at and for a
transit time equal to the standard transit time tSij [USD].

� qzSij = standard number of transported reefer containers with origin in port i [ X and
destination in port j [ X that corresponds to the standard transit time tSij [TEU].

� r z
ij = freight rate per reefer containers transported from port i [ X to port j [ X

[USD/TEU].
� PSE, PSAux = vessel main and auxiliary engines power, respectively [kW].
� ELE, ELAux = vessel main and auxiliary engines load, respectively [%].
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� SFOCE, SFOCAux = main and auxiliary engines’ specific fuel oil consumption,
respectively [g/kWh].

� CE
b ;C

Aux
b = IFO 380 cst (intermediate fuel oil) and MDO (marine diesel oil), used for

the main and auxiliary engines, respectively, bunker price [USD/ton].
� Cv = daily fixed cost of a vessel excluding port dues [USD/day].
� Fz = average daily fuel consumption of the auxiliary engine per reefer container

[ton/day/TEU]. Fz depends on the transported products (frozen or fresh).
� vrij = Possible discrete value of the average vessel sailing speed between port i and

port j, V(i,j) [ A, i= j and r = 1,. . ., R [knot]. Vm# vrij#VM ,V(i,j) [ A, r = 1,. . ., R. It
is the same for all vessels. Vm and VM being the minimum and maximum sailing
speeds, respectively.

2.2 Decision variables
� yi = binary variable defined for every port i [ X. yi equals 1, if the solution includes

port i (the vessel calls at port i); otherwise, it equals zero. y1=1where i = 1represents
the main port (base port) in the service that must be called at.

� zrij = A binary variable with zrij ¼ 1 if the vessel uses the speed vrij on arc (i,j) and
zrij ¼ 0 otherwise, V i, j [ X, i= j and r = 1,. . .,R.

� fsi = continuous variable representing the total cumulative sailing time from port 1
till entering port i [ X. [US$].

� fpi = continuous variable representing the total cumulative port time from port 1
until port i [ X. [US$].

� M = total number of ports included in the service, withM ¼
Xn

i¼1
yi.

� ui = integer variable that represents the order of calls at port i, if it is included in the
solution (if yi = 1) with u1 = 1 that corresponds to y1 = 1 is the main port (base port)
that should be called at.

2.3 Aggregator functions
In this section, we define parameters or functions that depend on the decision variables.

� srij = direct sailing time between ports i and j if port j is called at immediately after
port i at a sailing speed of vrij [days].

� Sij = total sailing time between any two ports i and j included in the solution,
including the sailing time between the intermediate ports [days].

� PTij = total average port time spent by a vessel sailing between ports i and j,
including the port times of the intermediate ports if any, including the sailing time
in the proximity of the ports and the time required for port operations [days].

� tij = total average time spent between ports i and j, if both ports (i and j) are included
in the solution, including sailing and port times of the intermediate ports [days].

� T = total cycle time, including sailing and port times [days].
� W = total cycle time, including sailing and port times [weeks].
� NV = number of vessels to include in the service. NV is an integer.
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� CBE
ij = bunker fuel cost for the main engine of one vessel sailing directly between

ports i and j [US$].
� CBAux = auxiliary engine bunker fuel cost per cycle of one vessel [US$].
� CV

ij = total fixed cost of one vessel sailing directly between port i [ X to port j [ X if
both ports are called at [TEU].

� qzij = number of reefer containers that can be potentially transported weekly from port
i [X to port j [X if both ports are called at [TEU]. It is a function of the sailing speed.

� qij = actual number of reefer containers that is transported weekly from port i [ X to
port j [ X if both ports are called at [TEU]. It is function of the sailing speed.

� Rd
ij = total weekly revenue collected from the dry containers transported from port i

[ X to port j [ X if both ports i and j are called at and for a transit time equal to tij
[US$]. It is a function of the sailing speed.

� Rij = total actual weekly revenue collected from the dry containers transported from
port i [ X to port j [ X [US$]. It is a function of the vessel sailing speed.

It is worth noting that for modelling purposes, we assume a dummy node 0 as the starting
port with fsi= 0, fpi= 0 andD0i=Di0 = 0 for each port i [X.

2.4 Total time between ports i and j and total cycle time calculation
The total average time spent by a vessel sailing between any two ports i,j [ X, tij, if both
ports (i and j) are included in the solution (if yi = yj = 1), is equal to the sum of the sailing
times between port i and port j, including all the intermediate ports if any, half of the average
port time of ports i and j, and the port times of all the ports that are called at between i and j.
The reason for halving the port times of ports i and j is that every port is included in the
solution in two arcs. Therefore, half its port time belongs to the first arc, and the other half
belongs to the second arc.

The direct sailing time between any two ports i= 1,. . .,M and j= 1,. . .M, with zrij ¼ 1 is:

srij ¼
Dij

24� vrij
(1)

Therefore, the total sailing time, Sij, between ports i = 1,. . .,M and j = 1,. . .M including the
sailing time between the intermediate ports (if any) is:

Sij ¼ fsj � fsi (2)

where:

fsi ¼
XR
r¼1

XM
k¼1

srki þ fsk
� �� zrki (3)

The total port time spent between ports i = 1,. . .,M and j = 1,. . .M including the port times
of the intermediate ports if any is:

PTij ¼ fpj � fpi � RTi

2
yi � RTj

2
yj (4)
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where

fpi ¼
XR
r¼1

XM
k¼1

RTi þ fpkð Þ � zrki (5)

The total time spent between any two ports i = 1,. . .,M and j = 1,. . .M if both ports (i and j)
are included in the solution is then given by:

tij ¼ Sij þ PTij (6)

The total cycle time for a given solution is therefore equal to:

T ¼
XR
r¼1

X
i2X

X
j2X

tijzrij (7)

The total cycle time (sailing and port times) in weeks, W is equal to the total cycle time in
days,T, divided by 7:

W ¼ T
7

: (8)

Note that because of the weekly service constraint, W should be equal to the number of
vessels operating in the service, NV. As NV is an integer, W should be rounded up to the
next integer.

2.5 Revenue calculation for one vessel
We consider that the weekly transport demand, and consequently the quantities of weekly
transported containers and the corresponding collected revenue between any two ports
included in the service depend on the sailing speed (Cheaitou and Cariou, 2017). We consider
that the collected revenue for the dry containers transported between every two ports i and
j [ X changes (increases or decreases) as function of the deviation aij, of the transit time,
from the standard transit time tSij . aij represents the maximum additional transit time above
tSij beyond which the weekly transport demand and consequently the revenue collected by
one vessel sailing between these two ports is equal to zero. The value of aij depends on the
market, the nature of the transported goods and on the competition. Therefore, the weekly
revenue that can be collected by one vessel for the dry containers transported from port i to
port j if both ports are called at is:

Rd
ij ¼ Min b ijR

dS
ij ;

tSij þ aij � tij
aij

 !þ

� RdS
ij

0
@

1
A (9)

where b ij � 1 is the maximum increase in the number of transported containers and
consequently in the collected revenue that can be generated because of a total shorter transit
time between port i and j.

The total actual revenue collected from the transported dry containers between ports i
and j if both ports are called at is:
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Rij ¼
Rd
ij if both ports are called at

0 otherwise

(
(10)

The same principle applies on the number of weekly reefer containers that can be
transported from any port i to any port jwith:

qzij ¼ Min b ijq
zS
ij ;

tSij þ aij � tij
aij

 !þ

� qzSij

0
@

1
A (11)

Moreover, qij is equal to qzij only if both ports, i and j, are called at. Otherwise, it is equal to
zero.

2.6 Cost calculations for one vessel
The bunker fuel cost of the main engine of one vessel sailing directly between ports i and j if
the corresponding arc is traversed at speed vrij, C

BE
ij , and the bunker fuel cost for the auxiliary

engine per cycle for one vessel, CBAux, are given in the following equations, as formulated in
Cheaitou and Cariou (2012):

CBE
ij ¼ CE

b � SFOCEELEPSEð Þ � 24

106
vrij
VDS

� �3

� srij þ
VR

VDS

� �3

� RTi þ RTj

2

� � !

(12)

CBAux ¼ CAux
b � T � SFOCAuxELAuxPSAuxð Þ � 24

106
þ Fz �

X
i;jð Þ2A

qij � tij

 !
(13)

The total fixed cost for one vessel sailing directly between ports i and j at speed vrij, C
V
ij , is

given by:

CV
ij ¼ Cv � srij þ

RTi þ RTj

2

� �
: (14)

2.7 Optimization model
The optimization model is based on the fact that NV vessels are required to operate the
service. The objective function and constraints are defined as follows:

Max Z ¼ NV �
X
i;jð Þ2A

Rij þ r z
ijqij

� � � CBAux �
XR
r¼1

X
i;jð Þ2A

CBE
ij þ CV

ij

� �
� zrij

0
@

1
A;

(15)

Subject to:

XR
r¼1

Xn
i¼1

zrij ¼ yj 8j 2 X; (16)
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XR
r¼1

Xn
j¼1

zrij ¼ yi 8i 2 X; (17)

NV ¼
&XR

r¼1

X
i;jð Þ2Atij: zrij
7

’
; (18)

tij ¼ Sij þ PTij 8i 2 X; 8j 2 X; (19)

Sij ¼ fsj � fsi 8i 2 X; 8j 2 X; (20)

fsi ¼
XR
r¼1

XM
k¼1

srki þ fsk
� �� zrki 8i 2 X; (21)

PTij ¼ fpj � fpi � RTi

2
yi � RTj

2
yj 8i 2 X; 8j 2 X; (22)

fpi ¼
XR
r¼1

XM
k¼1

RTi þ fpkð Þ � zrki 8i 2 X; (23)

Rij#Rd
ij � yi 8 i 2 X; 8 j 2 X; (24)

Rij#Rd
ij � yj 8 i 2 X;8 j 2 X; (25)

Rij � Rd
ij � yi þ yj � 1

� � 8 i 2 X; 8 j 2 X; (26)

qij#qzij � yi 8 i 2 X;8 j 2 X; (27)

qij# qzij � yj 8 i 2 X;8 j 2 X; (28)

qij � qzij � yi þ yj � 1
� � 8 i 2 X;8 j 2 X; (29)

ui � uj þ 1# n� 1ð Þ 1�
XR
r¼1

zrij

 !
; 8i 2 X; 8j 2 X; i 6¼ 1; j 6¼ 1; i 6¼ j;

(30)
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2#ui #n 8 i 2 X; i 6¼ 1; (31)

u1 ¼ 1; (32)

zrij 2 0; 1f g 8 i 2 X; 8 j 2 X and 8 r ¼ 1; . . . ;R (33)

yi 2 0; 1f g 8 i 2 X; (34)

NV 2 N; (35)

ui 2 N 8 i 2 X; (36)

The objective function (15) is equal to the total cycle profit for all vessels deployed in the
service, which results from the difference between the total revenue of the dry and reefer
container and the total cost including the fixed and variable costs and depends on the sailing
speed. Constraint (16) ensures that the ship enters every port i only once if port i is called at
while constraints (17) ensure that the ship leaves every port i once if yi = 1. Constraint (18)
ensures that the number of vessels in the service is equal to the number of weeks in the cycle.
This constraint is necessary because of the weekly call at every port in the service.
Constraint (19) guarantees that the total time spent between any two ports consist of the total
port time and the total sailing time. Constraint (20)–(21) represent the total sailing time
between any two ports while constraints (22)–(23) represent the total port time spent between
any two ports. Constraints (24)–(26) ensure that the collected revenue related to the flows of
dry containers between port i and port j is equal to zero if either port i or port j is not called at.
Constraints (27)–(29) ensure that the quantities of reefer containers qij transported from port i
to port j is equal to zero if either port i or port j is not called at. Constraints (30)–(32) ensure
that no sub-tours are included in the optimal solution; a sub-tour is a circular tour that
includes only a subset of the set of ports instead of all the ports. Constraints (33) and (34)
guarantee that the decision variables are binary for zrij and yi. Finally, constraints (35) and (36)
ensure the integrality ofNV, and ui respectively.

It is clear that the optimization model defined in (15)–(36) is a mixed integer non-linear
programming model. The non-linear nature results from the objective function, which
contains the multiplication of decision variables, and from some constraints such as
constraint (18), which calculates the number of vessels to be deployed. In addition, the
formulation is NP-hard, which makes solving the proposed problem for realistic instances
using a commercial solver very difficult. To overcome this difficulty, we propose instead a
heuristic approach based on genetic algorithm.

3. Proposed algorithm
The following genetic algorithm-based heuristic has been proposed to solve the problem
(15)–(36). It consists of a main heuristic algorithm and two subroutines. The algorithm
discretizes the sailing speed value betweenVm andVMwith a step ofVinc.

Algorithm 1: Main heuristic
Input: Network related parameters (Dij,RTi. . .), vessel related
parameters (VR, VDS. . .), economic parameters (CE

b ,C
Aux
b ,Cv[. . .]), d:

max number of iterations,W: number of individuals in the heuristic
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population, and Rmax: number of iterations without improvement in
Zopt
G or Zopt

L .
Output: Heuristic solution including the selected ports, the path
(sequence), the vessel sailing speed V, the number of vessels to
deploy NV, and the best profit and the corresponding revenue and
cost.
Objective: Maximize the total profit.

Begin algorithm
GeneratePopulation(C)
Set Zopt

G ¼ �1, Zopt
L ¼ �1, r = 0;

for t/ 1 to d
for f / 1 toC
For each (i,j) [ Route_/
Calculate Sij using Eq.(2), PTij using Eq.(4), tij using Eq.(6);
CalculateRd

ij Vð Þ,qzij Vð Þ using Eqs.(9) and (11);

Calculate CBE
ij Vð Þ; CBAux Vð Þ; CV

ij Vð Þ using Eqs. (12)–(14);

endfor
Calculate Wf using Eq.(8) and NVf using Eq. (18);
Calculate Zf using Eq. (15);

endfor
Zmax ¼ max

f 2 W
Zf ;

if Zmax > Zopt
L do

Set r = 0;
Set Zopt

L ¼ Zmax;
endif
if Zmax > Zopt

G do
Set r = 0;
Set Zopt

G ¼ Zmax;
Store best solution;
else

r = rþ 1;
endif
for k/1 toW/10
Select randomly ten individuals with Zsubset

Identify Zbest = max(Zsubset) and its corresponding chromosomes
Routebest and Speedbest

Perform the following operators on Routebest and Speedbest to
produce new 11 individuals

(1) Do nothing;
(2) Flip Routebest;
(3) Swap Routebest;
(4) Slide Routebest;
(5) Add one port to Routebest;
(6) Add n ports to Routebest;
(7) Flip Speedbest;
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(8) Swap Speedbest;
(9) Slide Speedbest;
(10) Change Speedbest randomly;
(11) Increase Speedbest;
(12) Decrease Speedbest;
(13) Remove one port from Routebest;

endfor
if r < Rmax do
Replace the old individuals with the new mutated ones;
else
Discard the old individuals;
GeneratePopulation(C);
Set Zopt

L ¼ �1;
endif
endfor

Return heuristic best solution;
end algorithm

Algorithm 1 starts by uploading the input data using a data file (MS Excel). It generates
then the initial population using the subroutine Algorithm 2. Algorithm 2 generates
randomly W feasible individuals where W is a pre-set multiple of the number of genetic
operators used in Algorithm 1, i.e. a multiple of 13. For each individual f [W, Algorithm 2
generates two chromosomes: Routef which indicates the selected ports and their sequence
and Speedf that defines a speed value for each arc in chromosome Routef . Algorithm 1
calculates Zopt

G , the best global profit from all the individuals of all the finished iterations,
and Zopt

L the best profit of all the iterations starting from the time of the generation of a new
population (because of the non-improvement). In every iteration of Algorithm 1, for every
individual, the cost of the solution, the revenue, and the profit are calculated. All the
individuals in the population are compared based on their corresponding profit, and the
maximum profit individual is selected (Zmax). Based on the best profit of the current
population, Zopt

L and Zopt
G are updated. In case the Zopt

L or Zopt
G are improved, then the index r

(number of iterations without improvements) is set to zero. Whenever Zopt
G is improved, then

the current best solution is stored. Moreover, in every iteration, the population is divided
randomly into subsets of 13 individuals. For every subset, the best individual is selected and
goes through 13 genetic operators. If the index r is less than a pre-set maximum valueRmax,
then the new individuals replace the old ones, in every subset. Otherwise, a new population
is generated. It is worth noting that these genetic operators are based on the ones presented
in Cariou et al. (2018) and Cheaitou et al. (2020).

Algorithm 2: Initial population generation subroutine [GeneratePopulation(W)]
Input: Network related parameters (Dij,RTi. . .), vessel related
parameters (VR, VDS. . .), economic parameters (CE

b ,C
Aux
b , Cv[. . .]),

T: max number of iterations,W: number of individuals in the
heuristic population.
Output: a feasible population ofW individuals
for f /1 toC

In the port chromosome (Routef):
Select randomly number of ports to be included in the service.
Select the ports to be included randomly
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Generate the ports sequence randomly.
In the speed chromosome (Speedf):
For each (i,j) [ Route/

Select a random speed value between Vm and VM with an increment of
Vinc

endfor
endfor

As mentioned earlier, Algorithm 2 uses two chromosomes to generate every feasible
individual f in the population:

(1) Routef : first, a random integer between 2 and the total number of the ports is
generated. Second, based on the obtained random integer, a corresponding number
of ports is selected from the set of ports, which include port 1. The sequence of
these ports is also selected randomly.

(2) Speedf : the range [Vm; VM] is discretized with a step of Vinc. For each arc in
Routef , a discrete value is selected randomly from these possible values to be the
sailing speed. For the numerical application in this paper, Vinc = 0.2 kt

Algorithm 3: Change Speedbest subroutine
Input: Speed (V)
Output: Updated speed (V)
if Vm< V< VM do

Change V randomly [Vm, VM]
elseif V = Vm

V =Vþ dVinc;
elseif V = VM

V =V� dVinc;
endif

Algorithm 3 is used to randomly change the speed value of a solution. Based on the current
value of the speed, the new value is generated as follows:

� If the current value is between Vm and VM then, a random speed value is chosen.
� If the current value is equal to Vm then, the speed value is increased by a multiple

(d ) of 0.2, where d is selected randomly and its upper bound is defined as VM�V
0:2 .

� If the current value is equal to Vm then, the speed value is decreased by a multiple
(d ) of 0.2, where d is selected randomly and its upper bound is defined as V�Vm

0:2 .

Algorithms 1, 2 and 3 have been implemented in Matlab R2015 on a computer equipped with
Intel(R) Core(TM) i7-8700 CPU@ 3.2 GHZ – 3.19 GHZ, 16 GB RAM, and Windows 10 64-bit
operating system. The approach has been tested on a liner service offered in 2017 and the
results are reported in the following section.

4. Numerical application
4.1 Input data
The approach described in Sections 2 and 3 has been implemented on a liner service
provided by COSCO, the Asia-Europe Express Service Loop2 (AEU2), operated in 2017
(Cariou et al., 2018). The service calls at the following ports: P1: Xingang, P2: Pusan, P3:
Qingdao, P4: Shanghai, P5: Ningbo, P6: Yantian, P7: Singapore, P8: Algeciras, P9:
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Southampton, P10: Dunkirk, P11: Hamburg, P12: Rotterdam, P13: Zeebrugge, P14: Le Havre,
P15: Khor Fakkan, P16: Port Klang, and P17: Xiamen. The vessels operating on this line
have an average nominal capacity of 14,000 TEU out of which 10% was assumed to be
dedicated to reefer containers. The sailing distances between the ports have been obtained
from Sea Distance (2018), and they are available, as well as the port time values, RTi, for the
line ports, from the authors upon request.

The standard times between the ports, tSij , have been calculated based on a standard
direct sailing speed of 16 knots in addition to half the port times. The total standard
revenues RdS

ij between the ports have been obtained from Cariou and Cheaitou (2012). The
expected standard reefer quantities, qzSij , and the corresponding freight rates, r z

ij, are
available from the authors upon request. It is worth noting that the reefer freight rates have
been obtained bymultiplying the freight rates used in Cariou et al. (2018) by 2.

Moreover, the other parameters are as follows: VR = 7.5 kt, VDS = 25 kt, PSE = 89700 kW,
PSAux = 14000 kW, ELE = 0.9, ELAux = 0.5, SFOCE =195 g/kWh, SFOCAux = 221 g/kWh, ,
CAux
b ¼ 590 USD=ton, Cv = 89000 USD/day, Fz = 0.034224 ton/day/TEU, Vm =12 kt and

VM =24 kt. In addition, the discretization step for the sailing speed was equal to 0.2 kt.
Moreover, for the demand elasticity, we assumed that b ij = 1.1 for all origins and
destinations, andaij ¼ 0:3� tSij 8 i; jð Þ 2 A.

To use the genetic algorithm developed in Section 3, two population sizes have been
tested withW = 39 andW = 130 individuals. Moreover, the number of iterations, d , has been
varied as follows: 10k, 20k, 30k, 40k, 50k, 75k, 100k, 120k, 150k iterations.

These numerical input data will be named “Case 1” hereafter.

4.2 Heuristic results of Case 1
The results of the heuristic approach for Case 1 are shown in Figure 1.

As it can be seen from Figure 1, the genetic algorithms converge after around 20k
iterations to a stable solution for both population sizes. The convergence is faster with a
larger population size. Moreover, the computation time is an increasing linear function of the

Figure 1.
Objective function
value (profit) and
computation time of
Case 1 as function of
the number of
iterations
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number of iterations with a larger slope for the larger population size case. The solution is
provided in Table 1. The only excluded port from the service is P15: Khor Fakkan. The
optimal sailing speed of 24 kt witnesses the choice of a high speed level to have the
maximum positive impact on the collected revenues.

4.3 Effect of the bunker price combined with the demand sensitivity
To assess the effect of the bunker price and of the demand sensitivity on the obtained
solution, the problem has been solved using the same input data as for Case 1, except the
bunker price and the demand sensitivity to the sailing speed. The following combinations
have been tested:

� Case 2: CE
b ¼ 500 USD=ton, CAux

b ¼ 1000 USD=ton; and aij ¼ 0:3� tSij
� Case 3: CE

b ¼ 650 USD=ton, CAux
b ¼ 1300 USD=ton; and aij ¼ 1:5� tSij

� Case 4: CE
b ¼ 1300 USD=ton, CAux

b ¼ 2600 USD=ton; and aij ¼ 1:5� tSij

The results are shown in Table 1.
The obtained results confirm that the proposed algorithm converges towards a heuristic

solution, and that the convergence is faster, in general, with the smallest population size, i.e.
39 individuals. Moreover, the convergence happens generally after 100k iterations.
Moreover, the computation time is a linear function of the number of iterations and that it is
longer for the case with larger population size. The difference increases with the number of
iterations.

Table 1 shows clearly the effect of the bunker price on the heuristic solution. When the
bunker price increases, as in Case 2, the heuristic profit decreases, while in this case, the
corresponding solution, including the selected ports and the vessel sailing speed do not
change. This is mainly due to the demand sensitivity to the sailing speed. However, when
the bunker price increases further, as in Case 3 and Case 4, the sailing speeds decrease
further. This decrease is not the same for all arcs and this is due to the demand value
between the different ports. In Case 3, however, the profit increases slightly compared to
Case 1 due to the fact that in this solution, P15 is included. The average sailing speed of Case
3 is 21.57 kt while the average sailing speed of Case 4 is 20.90 kt. The difference is due to
bunker price. However, the number of vessels of both cases is 11.

Table 1.
Heuristic solution of

the 17-port cases

Cases
Z (US$
per cycle) Selected speed (kt) NV Selected route

Case 1 128 630 583 24 for all arcs 9 P1, P5, P4, P17, P6, P7, P16, P8, P9,
P14, P10, P13, P12, P11, P2, P3, P1

Case 2 95 405 651 24 for all arcs 9 P1, P5, P4, P17, P6, P7, P16, P8, P9,
P14, P10, P13, P12, P11, P2, P3, P1

Case 3 134 000 821 18.4, 22, 24, 22.2, 22, 24, 23.6, 24, 24,
22.6, 24, 21.6, 20.2, 18.2, 16, 20, 20

11 P1, P5, P4, P17, P6, P7, P16, P15,
P8, P14, P10, P13, P12, P11, P9, P2,
P3, P1

Case 4 24 956 791 21, 21.6, 21.6, 21.8, 21, 22.2, 21.2, 22,
22, 22.4, 22.4, 21.6, 20.2, 18.2, 17.2,
18.4, 20.6

11 P1, P5, P4, P17, P6, P7, P16, P15,
P8, P14, P10, P13, P12, P11, P9, P2,
P3, P1

Case 5 62 338 724 24 for all arcs 9 P1, P5, P4, P17, P6, P7, P16, P8, P9,
P14, P10, P13, P12, P11, P2, P3, P1

Liner shipping
network
design

307



It can be noted that, when the obtained heuristic best speed is the same for all legs, the
convergence of the algorithm seems to be faster.

4.4 Impact of the vessel size
To assess the impact of the vessel size on the results, we consider for the same service
described earlier, a new vessel size (Woo, 2012):

� 10000 TEU out of which 10% is dedicated to reefer containers with: PSE = 74000
kW, PSAux = 12000 kW, ELE = 0.9, ELAux =0.5, SFOCE = 307 g/kWh, SFOCAux =
221 g/kWh, Cv = 74658 US$/day.

All the other parameters detailed in Section 4.1 remain unchanged. However, the standard
revenues generated and the reefer demand considered in Section 4.1 were multiplied by a
factor of 0.71, to account for the smaller vessel capacity. This case is called Case 5.

The results confirmed that the algorithm performance is similar to Case 1 in terms of
convergence and computation time. It can also be noted that the heuristic profit obtained is
almost half the profit collected by Case 1. This is due to the vessel size and to the demand
that is smaller in this case than in Case 1.

4.5 Large size cases
In addition to the previous results, we discuss here a larger size problem, in which 25 ports
are included: P1: Tokyo, P2: Busan, P3: Dalian, P4: Shanghai, P5: Ningbo, P6: Xiamen, P7:
Shenzhen, P8: Vung Tau, P9: Port Klang, P10: Tanjung Pelepas, P11: Colombo, P12:
Mundra, P13: Karachi, P14: Jabel Ali, P15: Jeddah, P16: Piraeus, P17: Gioia Tauro, P18:
Malta, P19: Algeciras, P20: Le Havre, P21: Southampton, P22: Felixstowe, P23: Rotterdam,
P24: Bremerhaven, P25: Hamburg.

We considered the same vessel size used in Section 4.1, i.e. an average nominal capacity
of 14,000 TEU out of which 10% of reefer slots. The sailing distances between the ports
have been obtained from Sea Distance (2018). The port time values, for all the ports were
assumed to be equal to one dayRTi= 1day.

The standard times between the ports, tSij , have been calculated based on a standard
direct sailing speed of 16 knots in addition to half the port times. The total standard
revenues RdS

ij between the ports have been obtained from World Freight Rate (2018). The
expected standard reefer quantities, qzSij , and the corresponding freight rates, r z

ij, are
available from the authors upon request. It is worth noting that the reefer freight rates have
been obtained by multiplying the freight rates obtained from World Freight Rate (2018) by
2. Moreover, the heuristic parameters, i.e. the population size, the number of iterations and
the sailing speed discretization step are the same as the ones described in Section 4.1. This
case is referred to as Case 6.

The results are shown in Table 2. The results show that the only two excluded ports
from the service are P16: Piraeus and P18: Malta. The justification may be related to their
revenues versus the additional sailing and port times spent to call at these ports. It is
obvious that the computation time is slightly higher in this large size instance compared to
the previous cases. Moreover, the convergence seems also slower than in the smaller cases.

4.6 Impact of fuel price and demand sensitivity on large size cases
In addition, the same three fuel price and demand sensitivity scenarios defined in Section 4.3
have been also used for the large size problem with 25 ports in addition to forth scenario
(Case 8). All the model parameters defined in Section 4.5 have been used except the fuel price
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and the demand sensitivity that are given hereafter which results in four new cases referred
to as:

� Case 7: CE
b ¼ 500 USD=ton, CAux

b ¼ 1000 USD=ton; and aij ¼ 0:3� tSij
� Case 8: CE

b ¼ 650 USD=ton, CAux
b ¼ 1300 USD=ton; and aij ¼ 0:3� tSij

� Case 9: CE
b ¼ 650 USD=ton, CAux

b ¼ 1300 USD=ton; and aij ¼ 1:5� tSij
� Case 10: CE

b ¼ 1300 USD=ton, CAux
b ¼ 2600 USD=ton; and aij ¼ 1:5� tSij

The results are shown in Table 2.
The results confirm that it takes longer time for the algorithm to converge with the larger

size problems, compared to the smaller size ones. However, the larger population size seems
to converge faster than the case with smaller population size. The main findings would be
the following:

� Comparing Case 6 with Case 7, one can see that when the bunker price increases the
sailing speeds decrease, the number of included ports decrease as well as the
generated profit. At the same time, the needed number of vessels decreased because
of the drop of ports from the service.

� Comparing Case 7 with Case 8, one can see that the number of selected ports
decreases further due to the increase of the bunker price. In addition, the required
number of vessels decreases to 11 as well as the generated profit. However the
average sailing speed in Case 8 is 23.08 kt while for Case 7 it is 21.97 kt. Therefore,
although the bunker price increased in Case 8, due to the decrease of the number of
vessels, the sailing speed increased to compensate and not to affect the collected
revenues.

� Comparing Case 8 with Case 9, that have the same bunker price but different
demand sensitivities, Case 9 being less sensitive to the transit time, one can notice
that Case 9 generates much more profit. Moreover, the selected number of ports
increased in Case 9 when the demand sensitivity decreased. In addition, the average
sailing speed in Case 8 is 23.08 kt, while it is equal to 22.58 kt in Case 9, while the

Table 2.
Heuristic solution for
the large size cases

Cases Z V NV Selected route

Case 6 219 698 600 24 for all arcs 16 P1, P3, P2, P4, P5, P6, P7, P8, P19,
P20, P22, P23, P24, P25, P21, P17,
P15, P13, P12, P11, P9, P10, P14, P1

Case 7 155 234 202 10, 16.8, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
13.8, 10.8

12 P1, P3, P2, P4, P5, P6, P7, P8, P20,
P22, P24, P25, P23, P21, P19, P17,
P15, P13, P12, P11, P9, P10, P1

Case 8 120 936 968 12.4, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
23.2, 16.2

11 P1, P2, P3, P4, P5, P6, P7, P8, P19,
P20, P22, P23, P24, P25, P21, P17,
P15, P13, P12, P11, P9, P10, P1

Case 9 230 838 366 20.8, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 22, 22, 24,
15.6, 21, 19.2, 20, 16

12 P1, P2, P3, P4, P5, P6, P7, P8, P9,
P12, P13, P14, P21, P22, P24, P25,
P23, P20, P19, P17, P18, P16, P15,
P11, P10, P1

Case 10 93 878 643 18, 19.6, 20.4, 21, 22.2, 22.2, 23.6,
23.2, 22.4, 23.8, 22.4, 22.4, 23.6, 22.8,
21.6, 21, 20, 19.4, 18, 16.4, 17.6, 17.2,
17.4

12 P1, P2, P3, P4, P5, P6, P7, P8, P9,
P12, P13, P15, P21, P23, P25, P24,
P22, P20, P19, P17, P16, P11, P10, P1
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number of vessels in Case 9 is one more than for Case 8. This is natural since when
the demand sensitivity decreases, the sailing speed decreases to reduce the bunker
cost, while the number of vessels increases to compensate.

� Comparing Case 9 and Case 10 confirms clearly the impact of the bunker price on
the profit, the sailing speed and the included ports in the service.

5. Conclusion
This paper proposes a mathematical model for liner shipping service. The model is based on
a multi-vessel TSP with profit formulation and on an accurate estimation of the total liner
service cost. The model considers an important aspect of the market in which the transport
demand, and therefore, the corresponding revenue is sensitive to the sailing speed.
Moreover, a heuristic optimization procedure based on a genetic algorithm is proposed. A
numerical application is conducted based on a liner service that was operated in 2017 by
COSCO between Asia and Europe. Two other cases with different vessel size or different
number of ports have also been analysed. We implemented the heuristic in Matlab R2015
and obtained the heuristic solution for this basic case as well as for some cases in which the
effect of the bunker price and the demand sensitivity have been investigated. The results
show that the heuristic solutions of the model are sensitive to the bunker price as well as to
the sensitivity level of the transport demand. The proposed model and the solution approach
can provide container shipping companies with a simple decision-making tool to determine
the best route for their liner services, find the corresponding optimal profits and,
consequently, design their networks. Considering the capacity limitations in the model can
be an avenue for future research.
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