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Abstract
In this thesis, a scene analysis mainly focusing on vision-based techniques

have been explored. The vision-based scene analysis techniques have a wide range
of applications from surveillance, security to agriculture. A vision sensor can
provide rich information about the environment such as colour, depth, shape, size
and much more. This information can be further processed to have an in-depth
knowledge of the scene such as type of environment, objects and distances. Hence,
this thesis covers initially the background on human detection in particular
pedestrian and crowd detection methods and introduces various vision-based
techniques used in human detection. Followed by a detailed analysis of the use of
synthetic data to improve the performance of state-of-the-art Deep Learning
techniques and a multi-purpose synthetic data generation tool is proposed.
The tool is a real-time graphics simulator which generates multiple types of
synthetic data applicable for pedestrian detection, crowd density estimation,
image segmentation, depth estimation, and 3D pose estimation. In the second
part of the thesis, a novel technique has been proposed to improve the quality
of the synthetic data. The inter-reflection also known as global illumination is a
naturally occurring phenomena and is a major problem for 3D scene generation
from an image. Thus, the proposed methods utilised a reverted ray-tracing
technique to reduce the effect of inter-reflection problem and increased the quality
of generated data. In addition, a method to improve the quality of the density
map is discussed in the following chapter. The density map is the most commonly
used technique to estimate crowds. However, the current procedure used to
generate the map is not content-aware i.e., density map does not highlight the
humans’ heads according to their size in the image. Thus, a novel method to
generate a content-aware density map was proposed and demonstrated that the
use of such maps can elevate the performance of an existing Deep Learning
architecture. In the final part, a Deep Learning architecture has been proposed to
estimate the crowd in the wild. The architecture tackled the challenging aspect
such as perspective distortion by implementing several techniques like pyramid
style inputs, scale aggregation method and self-attention mechanism to estimate
a crowd density map and achieved state-of-the-art results at the time.
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Abstract

In this thesis, a scene analysis mainly focusing on vision-based techniques have
been explored. The vision-based scene analysis techniques have a wide range of
applications from surveillance, security to agriculture. A vision sensor can provide
rich information about the environment such as colour, depth, shape, size and much
more. This information can be further processed to have an in-depth knowledge of
the scene such as type of environment, objects and distances. Hence, this thesis
covers initially the background on human detection in particular pedestrian and
crowd detection methods and introduces various vision-based techniques used in
human detection. Followed by a detailed analysis of the use of synthetic data to
improve the performance of state-of-the-art Deep Learning techniques and a multi-
purpose synthetic data generation tool is proposed. The tool is a real-time graphics
simulator which generates multiple types of synthetic data applicable for pedestrian
detection, crowd density estimation, image segmentation, depth estimation, and
3D pose estimation. In the second part of the thesis, a novel technique has been
proposed to improve the quality of the synthetic data. The inter-reflection also
known as global illumination is a naturally occurring phenomena and is a major
problem for 3D scene generation from an image. Thus, the proposed methods
utilised a reverted ray-tracing technique to reduce the effect of inter-reflection
problem and increased the quality of generated data. In addition, a method to
improve the quality of the density map is discussed in the following chapter. The
density map is the most commonly used technique to estimate crowds. However,
the current procedure used to generate the map is not content-aware i.e., density
map does not highlight the humans’ heads according to their size in the image.
Thus, a novel method to generate a content-aware density map was proposed and
demonstrated that the use of such maps can elevate the performance of an existing
Deep Learning architecture. In the final part, a Deep Learning architecture has
been proposed to estimate the crowd in the wild. The architecture tackled the
challenging aspect such as perspective distortion by implementing several techniques
like pyramid style inputs, scale aggregation method and self-attention mechanism
to estimate a crowd density map and achieved state-of-the-art results at the time.
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Go confidently in the direction of your dreams. Live
the life you have imagined.

— Henry David Thoreau
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As humans, we experience the world with the number of sensory organs;

however, the essential sensor indubitable is a vision sensor. The vision provides rich

information about the scene such as colour, depth, shape, size and much more. In

this thesis, we define scene analysis in terms of vision explicitly. In general, scene

analysis means to examine the content of a given scene or scenario and describe

it in meaningful ways. Scene analysis can be as simple task as describing the

content and as complex as deducing detailed information about it. Here, the term

"simple" is described as relative to the human experience. For example, the human

can easily describe the core elements of a figure 1.1 (i.e., people raising hands)

1



2 1.1. Impact and Application of Scene analysis

Figure 1.1: A photograph of people raising hands by Quintero (2019)

without any difficulty. However, the same is not right about Artificial Intelligence

(AI). Nevertheless, due to considerable progress made in the past decade, it is now

possible for machines to describe a simple picture (Vinyals et al. 2015).

1.1 Impact and Application of Scene analysis

The scene analysis has a broad range of applications and is already applied in

several scenarios. Following are some examples that demonstrate the benefit

of scene analysis:

• Surveillance and Security: Scene analysis is a crucial part of surveillance

and security. It provides useful information within a short period of time such

as crowd, pedestrian (S. Zhang et al. 2018), face (M. Zhu et al. 2019; Leo et al.

2020) and eye detection (Ancheta et al. 2018), human actions recognition

(Bloom, Argyriou, et al. 2017; Bilinski et al. 2016; Bloom, Makris, et al. 2014),

first person scene understanding (Rodin et al. 2020), fall detection (Z. Huang

et al. 2018; Fang et al. 2018) and abnormal behaviour (Xie et al. 2019).

• Autonomous vehicles: For the purpose of autonomous vehicles, diverse

scene analysis techniques are employed. For example, Automatic parking

system (Heimberger et al. 2017), object detection (Takumi et al. 2017), road

lane detection (Hoang et al. 2016), traffic sign detection (Z. Zhu et al. 2016),

and much more.
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• Road and Traffic Safety: Another useful application of scene analysis can

be seen in road and traffic sign management. The techniques can be applied

to improve traffic flow (Lira et al. 2016), detection of roadside occupant (Ho

et al. 2019), automatic licence plate recognition (Laroca et al. 2018), and road

weather condition estimation (Ozcan et al. 2020). Other applications can be

detecting road cracks, anomaly detection (Santhosh et al. 2020) and traffic

counting (J.-P. Lin et al. 2018).

• Entertainment: Sports in the entertainment field is one of the most analysed

topics. Hence, automatic scene analysis in sports has seen increased research

in recent days. Some core technology such as multi camera tracking (R. Zhang

et al. 2020), player detection and tracking (Y. Yang et al. 2017), ball tracking

(Kamble et al. 2019), sport specific action recognition (Cust et al. 2019)

applies scene analysis techniques to extract information. In addition, the

scene analysis technique is also extensively utilised in the computer game such

as action recognition using Kinect (Gang Li et al. 2020), cheat detection in

games (Witschel et al. 2020) and much more (M. Li, G. Xu, et al. 2018).

• Agriculture: Another field that can benefit from scene analysis is an

agriculture field. In several situation the techniques can be employed for better

agriculture such as smart agricultural farming (Chang et al. 2018; Patrício

et al. 2018), food quality grading system (Arakeri et al. 2016), precision

agricultural using UAV (Unmanned Aerial Vehicles) (Alsalam et al. 2017),

plant disease detection using leaves (Kuricheti et al. 2019), smart farming

(Guo et al. 2020) and sustainable agriculture (Tombe 2020) using satellite

images.

• Natural emergencies: Scene analysis methods can be applied in many ways

as an early warning system in the circumstances such as flood (Bhola et al.

2019) and tsunami detection. In another case, for rescue and search operation

(Gotovac et al. 2016), crowd disaster avoidance system (Yogameena et al.
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2017), and after disaster analysis and monitoring (Kamilaris et al. 2018) the

scene analysis can be a vital tool.

• Other: There are countless other examples where scene analysis can be useful.

Such as, in the medical field (Kuvaev et al. 2020), Smart library book sorting

(X. Shi et al. 2020), 3D Conceptual design (Z. Yang et al. 2020), and much

more.

This thesis will carry out a scene analysis using Machine Learning (ML)

techniques known as Deep Learning (DL). Nevertheless, before we jump into details

on how scene analysis can be achieved, we must first distinguish what we mean

by Artificial Intelligence, Machine Learning and Deep Learning.

1.2 Introduction to Artificial Intelligence

Artificial Intelligence (AI) has been around for decades. The general concept of

AI is to achieve a truly intelligent machine. Here, the term truly intelligent can

be understood as a system with characteristics of intelligence, like, we observe in

human behaviour (Russell 1997). The field can be defined as "the effort to automate

the intellectual task normally performed by humans" (Chollet 2018).

In the early phase of AI, numerous experts believed that human-level intelligence

can be handcrafted with a large set of rules and was known as symbolic AI (Chollet

2018). Although symbolic AI worked well for logical problems such as chess, its

limitation on defining rules for complex problems in image, speech and language led

to the invention of the Machine Learning field. The figure 1.2 shows the hierarchical

relationship between AI, ML and DL fields. We can observe that AI is a general

field that incorporates Machine learning, Deep Learning, and many other techniques

that do not involve learning, such as symbolic AI.
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Deep Learning

Machine Learning

Artificial Intelligence

Figure 1.2: Artificial intelligence and its relationship with Machine learning and Deep
Learning.

1.2.1 Machine Learning (ML)

Machine Learning is a subfield within AI. However, it also interacts with other

fields such as statistics and computer science and is also known as predictive

analytics or statistical learning. The core concept of ML is about extracting

knowledge from data (Müller et al. 2018). Unlike symbolic AI which requires

explicit programming, the ML system is trained to produce appropriate responses.

When presented with a considerable number of relevant examples to the task,

it discovers statistical representation1 of them and produces a set of rules to

automate such tasks (Chollet 2018).

In recent years, Machine Learning has gained popularity within the research

community. Subsequently, wide ranges of fields have benefited from such research.

In fact, we are already using Machine Learning daily from an automatic recom-

mendation of which product to buy, to which film to watch and recognition of

friends and family in the picture you have just uploaded on the websites. Numerous

widely popular websites use Machine Learning as their core user experience2. The

applications such as image detection and classification (Lan et al. 2018), video
1Representation is defined as a way of observing data differently. A simplistic example would

be to look at image data; It can be viewed as Red, Green and Blue (RGB) or in Hue, Saturation
and Value (HSV) format, either way, it is the same data but different Representation.

2Websites such as Facebook utilises Machine Learning techniques to achieve highly accurate
face detection (Khan et al. 2018)
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analysis (Nishani et al. 2017) and recommendation (Gao et al. 2017), security

intrusion detection (Yin et al. 2017) and so forth are a fraction of examples where

ML has been utilised (Pouyanfar et al. 2018).

1.2.1.1 Traditional Machine Learning (TML)

The traditional Machine Learning techniques are based on conventional methods

and cannot process the data in raw form. TML techniques require extensive domain

expertise as well as a meticulously engineered system (Pouyanfar et al. 2018).

Usually, the architecture involves a feature extractor which transforms the raw data

such as image pixel values into appropriate format or feature vector from which

a learning subsystem could detect or classify patterns in the input.

The downside of using TML is that the technique relies highly on the input

data’s Representation. Hence, feature engineering has been the leading research

direction in ML for an extended period, where much focus was given in building

features and extraction methods from the raw data. A further disadvantage of using

TML is that feature extractor does not generalise well in cross-domain problems

(i.e., the extractor is limited to their designed domain). There have been numerous

attempts in proposing a good feature extractor such as Histogram of Oriented

Gradients (HOG) (Dalal et al. 2005), Haar-like features (P. Viola et al. 2001),

Scale Invariant Feature Transform (SIFT) (Lowe 1999). More details about feature

extractor are discussed under section 2.2

1.2.1.2 Deep Learning (DL)

Among numerous ML algorithms, Deep Learning (DL) also known as representation

learning (Deng 2014) is used in modern day applications3. The main reason behind

the Deep Learning trend is due to its performance. In some cases, Hekler et al. (2019)

stated that the Deep Learning model surpasses even the human expert performance.

In comparison with TML techniques, Deep Learning methods accomplish the

feature extraction in an automated manner and require minimal domain expertise
3Lan et al. 2018; Nishani et al. 2017; Gao et al. 2017; Yin et al. 2017.
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and human intervention. Deep Learning has three significant advantages over

TML techniques, and they are;

• Deep Learning architecture offers a simple solution to any given problem

without requiring problem-specific tweaks and tricks.

• Deep Learning methods are easily scalable and can handle large datasets

without running into computational problems.

• Deep Learning models once trained in specific data can also be used in

other related datasets, and learned features are general enough to handle such

situations. For example, in recent years it is widely common to use pre-trained

Deep Learning models (e.g. trained on ImageNet dataset (Russakovsky et al.

2015)) in various other context (Weng et al. 2020).

Deep Learning is the outcome of a certain number of core techniques, and novel

approaches are added constantly. Some primary enablers of Deep Learning approach

are Convolutional Neural Networks (CNN), pooling and activation functions4.

1.3 Motivation of Thesis

In this thesis, we further narrow down the scene analysis topic to pedestrian

and crowd analysis. We focus on human detection in small and large groups.

Besides, we also concentrate on the data generation process to elevate the lack

of data in large groups detection.

1.3.1 Importance of Human Detection

The world has seen a dramatic increase in the human population in the past

century. The growth has made crowd phenomena increasingly common. Large

gatherings can be seen in indoor areas such as airports, building halls, shopping

centres, and outdoor areas such as parks, riversides, sports events, and public

demonstrations. The purpose of such a gathering can provide vital information
4see section 2.4 for detailed discussion
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to analyse the behaviour and properties of the crowd. As a result, research in

the subject has a great interest in the scientific field, such as computer vision,

public service, statistical physics, psychology, and behaviour (Grant et al. 2017).

Such studies’ significance becomes even more apparent when we investigate crowd

turbulence, which is the primary reason for crowd disasters resulting in mass-panic,

stampede, and overall loss of control (Saleh et al. 2015).

There are plenty of recorded events related to crowd tragedy (J. Wang et al.

2013; Illiyas et al. 2013; Krausz et al. 2012) as such it is crucial to have a rigorous

understanding of the crowd to prevent such accidents. Crowd analysis can be

applied in various interdisciplinary fields, and a handful of useful applications

are discussed below.

• Disaster management: Plenty of scenarios include gathering crowds such

as musical events, political rallies, public demonstration, and sports events.

These events have a high chance of crowd related tragedy, as mentioned above.

Hence, crowd analysis can play a critical role in the effective management of

crowds and avoid overcrowding and reduce such risk (Abdelghany et al. 2014).

• Public space design: Study of crowds in public space can provide an insight

into the design flaw of the public space such as train stations, airports, and

other public places (Chow et al. 2008). Considering recent events such as

COVID-19, it is apparent that space design is even more crucial than before.

The social distancing phenomena highlights that public and private space are

not designed well to accommodate it adequately. Hence, scene analysis can

provide useful information to improve the design of the architecture and the

public space’s usability.

• Information gathering and analysis: Diverse type of intelligence can be

generated from crowd analysis approaches such as total number visitors in a

shop at a given time, which can be used to allocate staff numbers efficiently.

A similar method can be used to identify the pedestrian flow and manage the

signal-wait time (Vishwanath A. Sindagi et al. 2018).
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(a) Perspective distortion (b) Non-uniform distribution

(c) Occlusion (d) Complex Background

Figure 1.3: Some sample images found in the ShanghaiTech dataset (Yingying Zhang
et al. 2016) show the challenges that lie in the crowd analysis field. Perspective distortion,
non-uniform distribution, Occlusion, complex background are some examples of difficulties
in crowd analysis.

• Virtual crowd modelling: The crowd analysis provides us with a much

more in-depth understanding of the crowd behaviour, in turn, such infor-

mation can be used to establish an improved mathematical model, thereby

improving the virtual crowd modelling. It helps generate realistic crowds in

the application such as computer games, films and designing the emergency

evacuation schemes (Perez et al. 2016).

• Cross domain applications: Due to the versatile nature of the learning in

crowd analysis, numerous other domains have extended the crowd counting

techniques to nonhuman related fields such as counting microscopic cells

(Lempitsky et al. 2010), vehicle counting (Y. Li et al. 2018), environmental

survey (French et al. 2015; Zhan et al. 2008) and much more.
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1.3.2 Challenges of Crowd Estimation and Counting

Crowd estimation and counting are challenging topics due to severe Occlusion,

perspective distortion, varied, complex background and diverse crowd scenario

(C. Zhang, K. Kang, et al. 2016). Figure 1.3, shows the problem that exists in the

crowd analysis field. Most of the early research on crowd analyses were focused on

scene-specific and were not generalised enough to be used in other scenarios. Some

research (Antoni B Chan, Liang, et al. 2008; Antoni B. Chan et al. 2008) used

for crowd counting required a manual annotation of a handful of frames from the

target scenes for training purposes. Though some problems have improved below,

we discuss difficulties that still exist in crowd analysis.

• Complexity present in diverse crowd scenes: As shown in figure 1.3,

it is particularly challenging to design and develop an algorithm which can

handle all the complex scenarios where crowds can exist. The figure 1.3

shows that the crowd analysis approaches needs to accommodate complicated

background and also need to solve the problem of occlusion5 which hides the

useful features to locate heads in the scene; perspective distortion6 where a

couple of pixels can represent groups of heads at one place of image and a

lot more to represent a single head. In the past, crowd analysis used head or

body detection techniques to analyse the crowd, and the diversion from such

an approach occurred in the last decade. In recent years, the crowd analysis

used direct regression of crowd count rather than counting heads or people’s

bodies.

• Inadequate crowd dataset: One of the main driving forces in the crowd

analysis field is the availability of the public crowd dataset (C. Zhang, K. Kang,

et al. 2016). While there are range of publicly available dataset such as

Shanghaitech dataset (Yingying Zhang et al. 2016), UCF-CC-50 dataset

(Idrees, Saleemi, et al. 2013), Mall dataset (K. Chen et al. 2012), Venice
5Occlusion is the constant source of headache in computer vision field (M. Zhu et al. 2019).
6Perspective distortion changes the size of head appearance based on the distance with the

camera. Head appears larger nearer to the camera and smaller away from it.
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dataset (Weizhe Liu et al. 2019), UCSD dataset (Antoni B Chan, Liang, et al.

2008) at present. However, due to the nature of Deep Learning7 which requires

enormous amounts of data, these datasets do not contain a high number of

samples for the algorithm to generalise well over multi-scene. For example,

while the UCF-CC-50 (Idrees, Saleemi, et al. 2013) dataset presents a wide

range of head counting annotation in their samples, it only contains 50 images

(hence, 50 in their dataset name too). In section 2.6.1 we discuss in detail

about the available datasets.

• Density map generation with flaw technique: As crowd analysis is

carried out using density map. The density map must present the correct in-

formation. However, the common crowd counting dataset provides annotation

in the form of head centred pixel location instead of masking the entire head

region. Further, apply a two-dimensional (2D) Gaussian filter or a dynamic

2D Gaussian based on K nearest neighbour to generate the density map. Due

to this nature, the generated map is not content-aware and incorporates a

significant amount of false information into the ground truth map (Idrees,

Tayyab, et al. 2018; Yingying Zhang et al. 2016).

• Accurate training data for crowd estimation and counting: The

real reason behind an inadequate number of crowd data sets available is

the difficulties involved in generating such data. Annotating thousands of

heads in a single image is an extremely labour-intensive task and on top of

that, annotating correctly is another more significant challenge. Due to the

perspective distortion in images, some heads can be as small as a single pixel

value, annotating such heads is almost impossible for humans. Hence, it is

common to find the inaccuracy in most publicly available datasets such as in

Shanghaitech dataset (Yingying Zhang et al. 2016) and UCF-CC-50 (Idrees,

Saleemi, et al. 2013) dataset.
7In this thesis, we focus on Deep Learning techniques for crowd analysis purposes
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1.4 Our contributions

The contribution of this thesis can be summarised in the following:

1. To solve the problem with a small number of crowd datasets, we put forward a

multi-purpose synthetic data generation tool that utilises a real-time graphics

engine to generate copious quantities of data necessary for Deep Learning

problems. The tool is adaptable to the user’s needs and can generate data

real-time for crowd analysis, pedestrian detection, 3D pose estimation, image

segmentation and depth map. Chapter 3 goes in detail about the tools and

shows that it is possible to improve the state-of-the-art results by merely

retraining the network with a synthetic dataset and fine-tuning with a real

dataset.

2. We proposed to use a reverted ray tracing mechanism to reduce the effect

of inter-reflection and enhance the appearance of generated data in chapter

4. Inter-reflection is a major problem in generating 3D synthetic data from

images. We proposed to employ a traditional method called Photometric stereo

and reverse engineer the ray-tracing approach to extract the environment

noise caused by inter-reflection and reduce it from the final synthetic data

generation process. We showed that our approach improved the existing 3D

generation process and might be useful for crowd domain problems which

suffer from inter-reflection.

3. In chapter 5, we proposed a method that addresses the limitation in density

map generation through a content-aware annotation technique that applies a

combination of the nearest neighbour algorithm and unsupervised segmenta-

tion to generate the density map head masks. Furthermore, we demonstrate

that with simply changing the way we generate the data, the existing state-

of-the-art network can achieve higher accuracy.

4. Finally in chapter 6, we explore the problem of perspective distortion in the

crowd counting and estimation field and propose a Deep Learning architecture
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with an effective way to capture multi-scale feature using pyramid contextual

module in combination with scale aggregation and self-attention mechanism.

We also proposed a novel loss function Switch loss function to maximise the

quality of the predicted density map and accuracy. The loss function utilises

multiple methods such as PSNR, SSIM, and Root, which means square error

to achieve a higher quality density map and accuracy. We also illustrate that

by using a variation of the above method, we can achieve state-of-the-art

results.

1.5 Constraints applied to the proposed method

The research in this thesis primarily focuses on scene analysis and in particular

crowd analysis. Following are the few assumptions and limitations that were

made in this thesis.

For the proposed synthetic data generation method in chapter 3, the primary

limitation was the diversity of synthetic avatars. We mainly focused on the

demonstrable application instead of the diversity in the avatar used for data

generation. Hence, the generated data is limited in terms of variety and diversity

such as equal representation of gender, inclusion of less able people such as people

in wheelchairs, different ethnicity and ages. We assumed that despite the lack of

balance representation of various groups, the synthetic dataset is still useful in

combating the problem of lack of datasets in the crowd counting field. Our core

focused on the expected outcomes of the application instead of the usability of the

synthetic data in the Deep Learning field and the problem of tackling the lack of

data in the crowd counting field. Also to demonstrate that synthetic datasets can

still improve the trained models and generalise well to real scenes.

In terms of the proposed inter-reflection removable method described in chapter

4, while we considered the wider range of possibilities of using the method, we

limited our experiments in a specific and controlled environment. Hence, while

it might be theoretically possible to apply the method in other scenaiours, more
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experiments are required to validate it. Our primary goal was to demonstrate the

use of the proposed method as well as the benefit of using our method.

For the case of density map generation in chapter 5, we focused on the brute-force

method which can be limiting in many scenarios. We primarily concentrated our

efforts on solving the existing problem. However, the approach could have been

researched more to have a general purpose solution.

Finally, although we achieved state-of-the-art results on crowd counting with

the new proposed deep learning architecture discussed in chapter 6, the architecture

has quite limited lifespans. Every month new approaches are proposed which

produce state-of-the-art results. Although the proposed method is limited, the

various techniques that were applied in the architecture itself can be useful in

various other applications.

1.6 Thesis outline

The remainder of the thesis is in the following order: Chapter 2, presents the

background on the topics related to pedestrian and other information associated

with Deep Learning and crowd analysis. The chapter 3 explored the necessity of

large amounts of data for the scene analysis field in particular on human activity and

a multi-purposed synthetic data generation tool is proposed as a possible solution for

the problem. Chapter 4 examined the inter-reflection problem in the 3D generation

from images and proposed iterative 3D reconstruction using ray-tracing to improve

the quality of synthetic data. In chapter 5, the current problem with density map

generation is investigated and proposed a novel method for generating content-aware

density maps. Chapter 6, a Deep Learning architecture called ASVnet is proposed

to solve scale variation in a crowd due to perspective distortion. Finally, chapter

7 summarised the thesis and discussed future research.
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In chapter 2, we dive into the essential aspect of Machine Learning techniques

initially focusing on essential methods involved in pedestrian and crowd detection

approaches, followed by the exploratory background knowledge which looks into the

evolution of crowd detection to estimation approach. Deep Learning components

are discussed after that. Finally, we present publicly available datasets that are

commonly used for training purposes in crowd analysis.

2.1 Pedestrian detection and Crowd Analysis

Pedestrian detection and crowd analysis come under the human activity recognition

field (Grant et al. 2017). Early human recognition research focused on single human

activities such as hand gesture recognition, action recognition such as walking,

kicking, and a combination of such recognition to perform more complex actions

detection such as baseball throwing.

Generally, crowd analysis is carried out in two major approaches; direct (also

known as detection-based) and indirect (also known as map-based or measurement-

based) crowd estimation (Conte et al. 2010). The direct approach applies the

techniques used in pedestrian detection methods where individuals are first detected

and counted. Whereas for the indirect approach, the counting is performed by

measuring some features which do not require separate detection of individuals in

the scene. The key point to note here is that crowd analysis focusing on estimation

and counting has evolved from using detection-based approach to a map-based

approach, also known as density map. The benefit of using a density map is that it

preserves much more information than just a headcount estimation. In contrast to

counting, density map provides the crowd’s spatial distribution and more significant

insights of crowd behaviour (Yingying Zhang et al. 2016). In figure 2.1, we can

see that instead of just head counting, the density map can visualise the dense

and less dense area in the image. These kinds of information are also applicable in

identifying abnormal behaviour in the crowd (Yingying Zhang et al. 2016).
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Figure 2.1: Sample image from Shanghaitech (Yingying Zhang et al. 2016) dataset (left)
with density map of the crowd on the right image.

2.2 Features for pedestrian and crowd detection

Feature extraction is transforming arbitrary data such as image into derived values

(i.e., features) (Errami et al. 2016) which can be useful for improving learning

performance and better generalisation. In the following, we examine a couple of

feature extraction techniques in pedestrian and crowd detection methods.

2.2.1 Histograms of Oriented Gradients (HOG)

Histograms of oriented gradients (HOG) are among the most widely used feature

extraction methods in object detection. Freeman et al. (1995) introduced orientation

histogram as a feature vector for hand gesture classification and interpolation.

Followed by Dalal et al. (2005) who carried out a detailed analysis of HOG in human

detection. The work done by Dalal et al. (2005) is widely cited in HOG pedestrian

detection methods. The HOG is also used together with different methods such as

Ada-Boost (Jin et al. 2012), Support Vector Regression (SVR)(Errami et al. 2016).

Jin et al. (2012) applied HOG and tracking-by-detection (Ada-Boost classifier)

integrated with crowd simulation to improve crowd tracking. In Errami et al.

(2016), applied HOG jointly with SVR was used for pedestrian detection. Dee

et al. (2010) used HOG in combination with KLT feature tracker to analyse crowd

behaviours. Ge, Robert T. Collins, et al. (2012) presented a study on pedestrian

crowds which automatically detect small to medium groups of individuals using a

full-body HOG detector combined with correlation tracker for localising pedestrians’
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in-crowd. M. Li, Z. Zhang, et al. (2008) also utilised HOG based head-shoulder

detection alongside Mosaic Image Difference (MID) based foreground segmentation

to estimate people in-crowd.

The typical procedure for generating HOG descriptors can be divided into three

stages. Firstly, we calculate the horizontal and vertical gradients of a given image.

It is accomplished by using the following kernels as masks at each pixel of the image.

Kx =
[
−1 0 1

]
, Ky =

−1
0
1

 (2.1)

As shown in the figure 2.2, after applying Kx and Ky to the input image (a),

we get Gx (b) and Gy (c) respectively. In second stage, we estimate the magnitude

m and orientation θ with following equation:

m =
√
G2
x +G2

y (2.2)

θ = arctan
(
Gy

Gx

)
, where θ ∈ [0, π] (2.3)

Lastly, the input image is divided into small cells (usually 8× 8 pixel). Then

HOG is calculated for each of them based on orientation in the range [0, π) and

equally divided into nine bins corresponding to angle (0, 20, 40. . . 160).

2.2.2 Haar-like Features

P. Viola et al. (2001) introduced Haar-like features and implemented the first real-

time face detection. The features were driven by the study (Oren et al. 1997), which

showed that while the absolute intensity values of different regions in images changed

drastically under different lighting conditions, the overall relationship among regions

remained unaffected. P. Viola et al. (2001) also showed that features are scalable and

compute efficiently in regular periods. The key edge of Haar-like features over other

methods is its computational speed. These features are rectangle filters in shape as

shown in figure 2.3. Yongzhi Wang et al. (2010) applied Haar-like features with the

Ada-Boost classifier for pedestrian detection. Similar techniques have been applied
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(a) Input image (b) Horizontal
gradient computation

(c) Vertical gradient
computation

(d) Gradients
Orientations

Figure 2.2: Generation of HOG feature vector. Sample Image used from Penn-Fudan
dataset (L. Wang et al. 2007).

Figure 2.3: Left) Different types of Haar-like features. Right) two vital features used in
face detection (Dey 2018).

in (H. Sun et al. 2011; Cerri et al. 2010), for pedestrian detection focusing on different

types of cameras (i.e., RGB, infrared). Sim et al. (2008) exploited Haar-like features

as well as boosted classifiers to detect individuals within the crowded environment.

Nevertheless, like pedestrian detection features, extractor Haar-like features are not

as good as HOG. The main reason behind it is the absence of gradients based on

Haar-like features that could barely extract pedestrians’ contour characteristics.
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2.2.3 Deep Neural Network Features

As discussed earlier in chapter 1, Deep Learning extracts the features automatically.

Deep Learning is a set of approaches that can take in raw data and automatically

learn the representations (LeCun et al. 2015). DL falls in the representations ML

methods which apply multiple levels of representations to extract the information.

Several non-linear but straightforward modules transform the representation from

the previous level into a higher abstract level (Hosseini et al. 2020). The transforms

start with the raw input and with the composition of enough such transformations,

complex features and inferences can be learned. The term Deep in Deep Learning

does not represent the meaning of deeper understanding acquired by the method;

instead, it describes the number of layers used in the architecture.

The figure 2.4 illustrates the architecture of a Deep Learning network used

for handwritten number recognition and shows the multiple successive layers and

features extracted in each layer. At present, it is common to see the Deep Learning

structure to have tens to hundreds of layers. Simultaneously, there are other

approaches where learning is focused on using the small number of layers and

sometimes known as shallow learning (Chollet 2018).

2.3 Classifiers

The classification involves taking a task and mapping function f(x) to discrete value

y, where x is an input variable, and y is an output variable. For example, a dog

and cat classifier, where y ∈ {dog = 1, cat = 2}, when presented with dog image

xdog, the function f(xdog) should give us y = 1. A classifier learns the mapping by

the training data to assign the input to certain output values. In the following, we

will discuss some of the widely used classifiers in the crowd analysis field.

2.3.1 Support Vector Machine (SVM)

Support Vector Machines (SVM)1 in its modern form was proposed by Cortes

et al. (1995) and is one of the most widely used and effective statistical supervised
1Also known as Support Vector Network (SVN)
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Figure 2.4: Visualisation of the layers of Deep Learning model which shows the
transformation of input image ( number five ) into higher more abstract form to produce
the result (A Classification model which is able to recognise the handwritten characters)

machine learning method. The SVM leverages the support vectors and hyperplane

to transform the input vectors into higher dimensional features. Simply put, the

core principle of SVM is to identify the pair of parallel hyperplanes that results in

the maximum boundaries between two classes (M. Zhu et al. 2019).

There are a number of examples that applied SVM and other techniques for

crowd analysis purposes (Manfredi et al. 2014; Solera et al. 2013; Xiaohua et al. 2006).

Manfredi et al. (2014) took advantage of SVM to classify the static crowd detection

and localisation. In (Solera et al. 2013), SVM based learning mechanism was applied

in combination with annotation dataset to detect groups and calculate distance.

min
w,b,ζ

1
2w

Tw + C
k∑
i=1

ζ i

subject to yi(wTxi + b) ≥ 1− ζ i and ζ i ≥ 0
(2.4)

As mentioned above, the primary goal of SVM is to identify the support vectors

with maximum distance. When a vector x which belongs to two classes A and B

and vector y ∈ {1,−1}, SVM for soft margin classifier is calculated with equation ()

(2.5). The main objective is to find weight vector w and bias term b by maximizing

Images removed for copyright reasons
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the margin between the classes and penalising when a sample is within the margin

boundary or misclassified. In ideal scenarios, yi(wTxi + b) would be 0 for all the

samples (i.e. 100% prediction). However, problems which are not perfectly separable

with hyperplane, ζ i ≥ 0 distance is introduced to some samples to allow it to be

at a certain distance from the margin boundary. Furthermore C is a penalty term

which controls the strength of the penalty.

In addition, the biases b are generally calculated based on the support vectors

that lie on the margins (i.e. 0 < xi < C ). The main reason behind is due to

yi(wTxi + b) = 1. When y2
i = 1, bias b can be calculated as follow:

b = yi − wTxi (2.5)

2.3.2 Adaptive Boosting (AdaBoost)

Adaptive boosting (AdaBoost) is an ensemble boosting classifier which is jointly

used with weak classifier2 to improve the overall performance.

Many researchers have employed AdaBoost techniques for crowd estimation

and counting. D. Kim et al. (2012) used multi-class AdaBoost with spectral

texture features to estimate the crowd density. In (Qiming et al. 2017), they used

Haar-like features and AdaBoost algorithms to detect faces and identify crowd

attention. Other research (Jin et al. 2012; Dee et al. 2010), applied HOG and

AdaBoost together for crowd analysis.

In AdaBoost, a set of weak binary classifiers is trained at the beginning. Further

training is then carried out with the weighted version of the training points where

weights are increased for misclassified points and decreased for the correctly classified

points. Once training is completed, the sum of N individuals classifiers results

into final classifier output.

FM =
N∑
m=1

fm(x) (2.6)

2Weak classifier is defined as a classifier which shows poor performance when used alone
(Sugiyama 2016)
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Figure 2.5: Visualisation of n-dimension perceptron linear classifier, where xi represents
input vector and wi as weights. The figure shows a single block of artificial neural network.

In the equation 2.6, FM is the final classifier output, where fm(x) is a weak

classifier in the range of {m = 1, ..., N}. x is the training samples.

2.3.3 Neural Network Perceptron Linear Classifier

Rosenblatt (1957) first introduced perceptron as a generalised computational

framework for solving linear problems (Joshi 2020). Perceptron is a fundamental

framework of Artificial Neural Network (ANN) and figure 2.5, shows a single building

block of ANN. In perceptrons, weights and bias are learned from the equation 2.7

where weights expose the strength of the particular neuron and bias makes it

possible for activation function curves to go up-down.

In n-dimensional space, a single layered perceptron with linear mapping repre-

sents a linear plane. For input vector {x1, x2, ..., xn} and the weights {w1, w2, ..., wn}

in n-dimensions we can represent perceptron as following.

f(X,W ) = φ(
n∑
i=1

(wi · xi)) (2.7)

In the equation 2.7, X and W represents input and weights of the neuron. i

is a number of weights and inputs. Here, multiplication of x and w is summed

and fed into the activation function φ.

Images removed for copyright reasons
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Figure 2.6: Overview of VGG-16 (Simonyan et al. 2015) architecture. All the layers of
VGG-16 from input image to output layers.

2.4 Deep Learning components

Deep Learning is composed of numerous technologies, and some core technologies

are discussed in the following.

2.4.1 Convolutional Neural Network (CNN)

The concept of Convolutional Neural Network (CNN) was first introduced by

Fukushima (1980) and was later Lecun et al. (1998) improved it immensely

and proposed the LeNet-5 neural network architecture to recognise handwritten

characters. Initially proposed for computer vision problems, the Convolutional

Neural Network has gained popularity virtually in every sub-field of Deep Learning.

In figure 2.6, we can see one of the simple but widely popular deep convolutional

neural networks called VGG-16. VGG-16 was proposed by Simonyan et al. (2015).

The neural network achieved top-5 test accuracy in ImageNet (Russakovsky et al.

2015) in ILSVRC-2014 (ImageNet Large Scale Visual Recognition Challenge 2014).

The network is well-known due to its simplistic network architecture. It uses a simple

3× 3 convolutional layer stack, on top of each other in increasing depth. Here, the

number 16 in the name denotes the total layer present in the network. The network

consists of 16 layers, where 13 are convolutional layers, and 3 are dense layers. VGG-

16 is also widely used in the crowd analysis field as pre-trained front-end architecture.

Due to its implementation as front-end architecture in CSRNet (Y. Li et al. 2018),

It was able to achieve state-of-the-art results in crowd estimation and counting.

– Convolutional Layers
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Figure 2.7: Simple example of Convolutional Operation within the convolutional layers.

The core target of the convolutional layer is to extract useful features

from the image such as edges, lines, blobs of colour and other visual

elements (Heaton 2015).

∗ Convolutional operation3: When two function I and K produces

a new third integral function C which shows the amount of level

of overlap of function K as it shifted over the I function then it is

called convolutional operation (Haohan Wang et al. 2017).

C(x, y) = (I ·K)(x, y) =
∑
M

∑
n

I(x+m, y + n)K(m,n) (2.8)

In figure 2.7, the leftmost matrix is an input matrix. The middle is

kernel4 matrix. When convolutional operation is applied with the

left and middle matrix, we get the rightmost matrix. The operation

is an element-wise product followed by sum.

2.4.2 Activation function

All the convolutional layers are linked with activation functions. In figure 2.5,

we show that weighted sum is fed to activation for a single block of ANN.

The activation function is the key component in the convolutional layer which

enables it to approximate the non-linear or complex functions. Without the

activation function, neural network outputs would be a simple linear function

(Sharma 2017). One of the key activation functions in Deep Learning are

Sigmoid and ReLU.
3Also known as kernels
4Also called a convolutional filters

Images removed for copyright reasons
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– Sigmoid activation function: Sigmoid is a most common activation

function that is used in Deep Learning networks. Sigmoid is a nonlinear

function and transforms the input value in the range of φ(x) ∈ {0, . . . , 1}.

φ(x) = 1
1 + e−x

(2.9)

In general, Sigmoid functions are used at the last layer of convolutional

networks. When used in other layers, it tends to suffer from the“vanishing

gradients” problem where the gradient values are too low, and the network

seems to stop learning.

– Rectified Linear Unit (ReLU): Rectified linear unit (ReLU) was

proposed by Nair et al. (2010) and is another widely used activation

function. The ReLU function has a range of φ(x) ∈ {0, ...,∞}

φ(x) = max(0, x) (2.10)

In the ReLU function, only positive input values are kept, and the

rest are set to zero. It is noted that the ReLU function is much more

computationally efficient than Sigmoid. Hence, faster training can be

achieved with ReLU.

2.4.3 Pooling

It is a common technique to reduce data size with some local aggregate

functions (Hope et al. 2017). As shown in figure 2.6, multiple max-pooling

layers have been utilised in VGG-16 architecture. The pooling reduces the size

of the data to be processed in the back-end. As a result, it can dramatically

decrease the number of overall parameters in the model. In theory, pooling

should also make the model robust to the small changes in the network (Hope

et al. 2017).

In figure 2.6, VGG-16 applies 5 max-pool layers. The max-pool layer uses

a stride of size 2 which means reduction in the dimension width and height
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of features maps in half size. For example, the input image has resolution

224× 224× 3 after max-pool will be 112× 112× 128.

2.4.4 Optimisation

In order to evaluate the performance of CNN learned parameters, a loss

function is used. It tells “how good” the model is at making predictions.

Likewise, to minimise the loss function, optimisation is applied. One of the

most common algorithms for optimisation is gradient descent. It is an iterative

process which finds the minima of a function. In this case, minima of the loss

function.

Let the equation 2.11 be a loss function;

f(m, b) = 1
N

n∑
i=1

(yi − (mxi + b))2 (2.11)

Then we can calculate Gradient as:

f
′(m, b) =

[
dm

db

]
=
[

1
N

∑−2xi(yi − (mxi + b))
1
N

∑−2(yi − (mxi + b))

]
(2.12)

An iterative process solves the gradient. The iteration takes place on the data

points using the new m and b values and partial derivatives are computed.

The gradient dictates the next move to update the parameters. It provides

a slope for the loss function at current position/direction, and updates are

applied based on the learning rate.

2.5 Evolution of Crowd estimation and count-
ing

This section explores diverse crowd estimation methods and counting tech-

niques, starting from detection-based approaches, which were the primary
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research topic in the early phase of crowd estimation—followed by a regression-

based approach where the crowd analysis topic moved from counting to map-

based estimation also known as density map regression. Finally, a newer

convolutional neural network-based approach which mainly focuses on density

map based methods are discussed.

2.5.1 Detection-based approaches

Methods in this category use pedestrian detection algorithms to locate people

in images. Assuming a correct localisation of each person in the scene, crowd

counting becomes trivial, and an accurate estimate of the crowd density. In

this category of methods, either part of a pedestrian or the person’s full body is

used. Early approaches of crowd estimation often focused on detection-based

approaches with hand-crafted features, and leverage pedestrian or body-part

detectors to identify objects and count their number (M. Li, Z. Zhang, et al.

2008; Felzenszwalb et al. 2009; Dollar et al. 2011; Ge and Robert T Collins

2009). The significant aspect of the detection-based methods is a sliding

window-based approach applied to images. These approaches require a well-

trained classifier to extract low-level features from the human body, such

as the Histogram Oriented Gradients (HOG)(Dalal et al. 2005) or the Haar

wavelets (Paul Viola et al. 2004) to perform crowd counting. However, the

performance degrades when congested scenes are analysed or when most of

the targets are occluded. Moreover, these methods are limited by occlusions

and cluttered backgrounds.

2.5.2 Regression-based approaches

Considering that detection-based methods’ performance degrades when a

scene is highly congested, alternative methods such as the regression-based

approach have been employed. Techniques have been proposed to directly

learn a mapping from features of image patches to the density of a local region
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(K. Chen et al. 2012). Additional lower level features have been generated

using foreground and texture patterns (Antoni B Chan and Vasconcelos

2009). Idrees, Saleemi, et al. (2013) proposed a method to fuse the features

extracted from Fourier analysis, Scale-Invariant Feature Transform (SIFT)

(Antoni B Chan and Vasconcelos 2011) and head detection. Lempitsky et al.

(2010) applied a technique of linear mapping between the extracted features

and density map. Furthermore, Pham et al. (2015) observed that linear

mapping approaches have performance limitations. Therefore it was proposed

using random forest regression techniques to learn the non-linear mapping

between the local region and density maps.

2.5.3 CNN-based approaches

Convolutional Neural Network (CNN) provides superior performance in visual

classification and recognition tasks, including crowd estimation problems.

Recently, numerous works have been proposed focusing on the varieties of

CNN approaches for crowd counting and density estimation5. (C. Wang et al.

2015; Fu et al. 2015) adopted a CNN based method for the crowd estimation

problem. A deep CNN regression method is proposed in (C. Wang et al.

2015), where the AlexNet architecture (Krizhevsky et al. 2012) is adapted,

replacing the last layer with a single neuron for crowd counting prediction.

The adapted network is trained with negative samples such as buildings and

trees without humans present in the captured scenes. Unlike (C. Wang et al.

2015), (Fu et al. 2015) approached crowd counting as a classification problem.

They proposed to divide the crowd into five different classes, such as very

high, high, medium, low, and very low density. They utilise (Sermanet et al.

2012) method of multi-stage ConvNet to tackle the shift, scale and distortion

problem. Furthermore, they employ two classifiers for better results, where

one classifier sampled the misclassified images, whereas the other reclassified
5Qiu et al. (2019), D. Kang and A. Chan (2018), Hanhui Li et al. (2018), Onoro-Rubio et al.

(2016), Walach et al. (2016), Lingbo Liu, Qiu, et al. (2019), Q. Wang et al. (2019a), Yuan et al.
(2015), Kok et al. (2017), and Zhou et al. (2020)
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the rejected samples. In C. Zhang, Hongsheng Li, et al. (2015), the analysis

was conducted on existing methods and concluded that their performance

degrades when new scenes are tested which are different to the training

dataset and showed existing networks were not generalised well. Therefore,

they proposed a method to learn the mapping from images to crowd count

and fine-tune the mapping to new target scenes. They trained the network

with two objective functions: crowd counting and density estimation. By

training the network alternatively, the goal is to obtain better local optima.

The network is further fine-tuned with the existing training samples, similar to

the target scene, to generalise new scenes. The important characteristic of this

approach is that no new data is introduced to the network. They also proposed

to use perspective information to generate ground truth density maps, which

makes the network more robust to scale and perspective variations. Inspired

by (C. Zhang, Hongsheng Li, et al. 2015), Walach et al. (2016) proposed

a method to perform layered boosting and selective sampling. The process

iteratively adds CNN layers to the architecture, where each layer is trained

to approximate the residual error of the earlier estimation. The layered

boosting is based on gradient boosting machine (Friedman 2001), a subset

of ensembles techniques. In contrast to previous approaches, which employ

the patch-based training method, Shang et al. (2016) proposed a method

which utilises the entire image for crowd counting. Also, the method reduces

the overall complexity of network architecture. The network simultaneously

learns to estimate the local counts and can be viewed as learning a patch level

counting model which enables faster training. The architecture incorporates

three modules, a pre-trained GoogLeNet (Szegedy, Wei Liu, et al. 2015), a

long-short time memory (LSTM) decoder and a fully connected layer. The

GoogLeNet is used to compute the higher dimensional feature maps from the

crowd image. The LSTM module is then used as a decoder for local blocks to

extract features for local crowd counting, followed by the fully connected layer,

which maps the LSTM local count to the global estimate. To capture the
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semantic information in a crowded scene, Boominathan et al. (2016) proposed

a network, which combines deep and shallow convolutional networks. Such

architecture produces better results even in the presence of wide-scale and

perspective variation. Motivated by the success of multi-columns architecture

for image recognition (Ciregan et al. 2012), (Yingying Zhang et al. 2016)

propose a similar network MCNN for the random crowded images. The

network consists of three convolutional layer columns to ensure robustness in

large scale variation. These columns are composed of different filter sizes to

capture scale variations. Besides, (Yingying Zhang et al. 2016) also proposed

a new technique to generate the ground-truth density maps. In contrast to

existing practices, where sums of Gaussian kernels with fixed variance or

perspective maps are applied, Zhang suggested considering the perspective

distortion by estimating the spread parameters of the Gaussian kernel on the

size of the head of each person within an image. However, in practice, they used

vital information observed in a highly dense crowd, where people’s head size is

correlated with the distance between the centre of two neighbouring persons,

to generate the density map. The key difference is that the method does not

require the perspective maps to employ the perspective distortion information

in the ground truth density map. A handful of other works have made further

improvements on MCNN (D. Kang and A. Chan 2018; Vishwanath A Sindagi

et al. 2017a; Vishwanath A Sindagi et al. 2017b; Walach et al. 2016) to cater

to the scale problem. Similar to the above approach, Onoro-Rubio et al. (2016)

proposed a scale aware counting model called Hydra CNN. Inspired by the

Guanbin Li et al. (2015) work, they designed the network firstly by developing

a deep fully convolutional network, which they called Counting CNN (CCNN)

based on the observation of earlier work (C. Zhang, Hongsheng Li, et al. 2015;

Loy et al. 2013) that incorporated the perspective information for geometric

correction of the input feature maps. Secondly, they designed a Hydra CNN

architecture that consists of 3 heads. Each head learns feature maps for a

particular scale. Then the features are concatenated and fed to the body. The
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body consists of two sets of fully connected layers, which are later concatenated

to estimate the density map. In contradiction to (Yingying Zhang et al. 2016)

architecture, where all the network columns are trained for all the input

patches, (Sam, Surya, et al. 2017) discussed that the performance could be

improved by training the network columns with a particular set of training

patches. Therefore, proposed a network called switching CNN that adaptively

selects optimal regressors suitable for the particular input image patch. The

network architecture is similar to multi-column network (Yingying Zhang et al.

2016) combined with a multi independent regressor with variant receptive

field and switch classifier. Here, the images are sampled in a grid form,

and the switch classifier is trained to select appropriate columns for input,

whereas the multi-columns CNNs are trained on the patches. The switch

classifier and the independent regressors are alternatively trained. Similar

to (Yingying Zhang et al. 2016; Onoro-Rubio et al. 2016), (Kumagai et al.

2017) proposed the Mixture of CNNs (MoCNN) architecture based on the

previous observation, where single column architecture is not sufficient to

estimate crowd density. The proposed network employs the combination of

"expert CNN” and a "gating CNN ” that adaptively selects the suitable CNN

among the experts based on the input image’s appearance. For estimation

purposes, the expert CNN approximates the crowd count based on the input

image, while the gating CNN calculates the appropriate probability for each

of the expert CNNs. These probabilities are used as weighting factors to

compute the weights’ average of the count prediction by all the expert CNNs.

Encouraged by the results achieved by simulation learning in (R. Ranjan et al.

2017; Yi et al. 2016), (Vishwanath A Sindagi et al. 2017a) and (Marsden

et al. 2017) investigated the multi-tasking learning to improve the network

performance. (Marsden et al. 2017) employed ResNet-18 (He et al. 2016)

architecture for simultaneous crowd counting, violent behaviours detection

and crowd density level classification. Sindagi (Vishwanath A Sindagi et al.

2017a) proposed a cascaded CNN network, which simultaneously learns to
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Figure 2.8: Density map visualisation of head centred annotation. In the left figure
around the top area, more dense crowds are present and the density map highlights it
clearly with red colour.

classify the crowd into various density levels and estimate density map similar

to (J.-C. Chen et al. 2016). Numerous types of networks exist focused on the

scale-invariant problem, a) (Weizhe Liu et al. 2019; Tian et al. 2019; Ze Wang

et al. 2018; Wu et al. 2019) carried out research infusion strategies for various

scale information, b) (Cao et al. 2018; Zeng et al. 2017) studied the multi-blob

scale aggregate network, c) (S. Huang et al. 2020; Y. Li et al. 2018; N. Liu

et al. 2019; Ze Wang et al. 2018) worked on scale-invariant convolutional or

pooling layers (Sam and Babu 2018; Babu Sam et al. 2018; L. Zhang, M. Shi,

et al. 2018) studied the automated scale adaptive network. (Y. Li et al. 2018)

propose CSRNet, which utilises VGG-16 as a backbone and exploited dilated

convolutional layers to enlarge receptive fields to improve network performance.

Janet was proposed by (Cao et al. 2018), which employs multi-scale aggregated

features to produce better crowd estimation. Besides, other varieties of studies

utilises perspective maps (M. Shi et al. 2018), geometric constraints (Cheng

et al. 2019; Youmei Zhang et al. 2019), and region-of-interest (ROI) (N. Liu

et al. 2019) to improve the counting accuracy.

2.5.4 Density map generation

Instead of regression of a headcount from the crowd image, a density map is

used to localise the head and a dense and sparse area with a heat map. The

Images removed for copyright reasons
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core reason for using a density map is it preserves more information than a

count value.

We generate a density map using geometry-adaptive Gaussian kernels based on

(Yingying Zhang et al. 2016). Geometry-adaptive kernels are used to address

highly congested scenes. The density map can be generated by blurring each

head annotation using a normalised Gaussian kernel as in (Yingying Zhang

et al. 2016; Sam, Surya, et al. 2017; Vishwanath A Sindagi et al. 2017b). The

geometry-adaptive kernel is defined as:

D(x) =
N∑
i=1

δ(x− xi)×Gσ(x), with σ = Bdi

(2.13)

where, xi is the target object for the ground truth δ. di is the average distance

of k nearest neighbours. The density map was generated using δ(x− xi) and

the Gaussian kernel with standard deviation σi (standard deviation), where x

is the position of the pixel in the input image. The value for β = 0.4 was set

according to (Yingying Zhang et al. 2016) with minor changes.

2.6 Datasets and Evaluations

2.6.1 Crowd Datasets and Benchmark

In this section, we describe some publicly available dataset for crowd counting

and estimation. We chose to have varieties of datasets in the thesis. Hence,

we have used ShanghaiTech and UCF-CC-50 for chapter 3 and 5, whereas

other datasets such Venice, Mall and UCSD were used in chapter 6. The other

reason to select different datasets was as each chapter dealt with different

aspects of the crowd counting methods, we had to choose the right dataset in
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(a) Sample image from Shanghaitech Part-A (b) Sample image from Shanghaitech Part-B

(c) Sample images from UCF-CC-50 dataset (d) Sample images from Mall dataset

(e) Sample image from Venice dataset (f) Sample image from UCSD

Figure 2.9: Sample images from Shanghaitech, UCF-CC-50, Mall, Venice and UCSD
datasets for crowd counting and estimation

Images removed for copyright reasons

Images removed for copyright reasons
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Table 2.1: Overview of the crowd counting and estimation dataset

Dataset Total Samples Avg. Image resolution (W×H) Attributes

Shanghaitech (Part-A) 482 864 × 589 Congested
Shanghaitech (Part-B) 716 1024 ×768 Free Scenes

UCF-CC-50 50 2888 × 2101 Congested
Mall 2000 640 × 480 1 fixed camera
Venice 167 1280 × 720 4 Fixed Scenes
UCSD 2000 238 × 158 1 Fixed Scenes

order to compare our results with other papers. Table 2.1 provides a brief

overview of the datasets.

– Shanghaitech dataset: The Shanghaitech dataset was introduced by

Yingying Zhang et al. (2016). The dataset comprises 330, 165 people

with the centre of their head annotated and makes up 1198 annotated

images. The dataset further splits into two sub-dataset Part-A and

Part-B. There are a total of 482 images in Part-A, consisting of randomly

crawled images from the internet. The Part-B contains 716 images

captured in the Shanghai metropolitan area. The number of crowds

varies considerably between two datasets. Likewise, Part-A contains

an average image resolution of 864 × 589 whereas Part-B with fixed

1024× 768 resolution. Both datasets are further divided into train and

test sets. In Part-A, 300 images are part of the training set and remaining

182 images as a test set. Part-B has 400 images for training and 316 for

testing purposes.

– UCF-CC-50 dataset: Idrees, Saleemi, et al. (2013) collected publicly

available images from Flickr and annotated 50 images. The images

consist of a highly diverse number of individuals ranging from 94 to 4543

with an average of 1280 people per image, a total of 63705 annotated

heads. Likewise, scenes in the dataset also include varieties of events.

On average, image resolution is around 2888× 2101.
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– Mall dataset: The mall dataset was introduced by K. Chen et al. (2012)

and contains 2000 frames captured from a shopping mall. Each frame

has a fixed resolution of 640 × 480; The first 900 frames are used as

training frames, and the remaining 1200 frames are used for testing. We

follow the predefined settings to use the first 800 frames as the training

set and the rest 1200 frames as the test set. The validation set (180

images) is selected randomly from the training set.

– Venice dataset: The Venice dataset is a relatively small size dataset

and was published by Weizhe Liu et al. (2019). The dataset contains 4

different sequences with a total of 167 labelled images with 1280× 720

resolution. Weizhe Liu et al. (2019) proposed to use a total of 80 images

for training taken from a single long sequence of images and remaining 3

sequence images for the evaluation purpose. Also, the dataset has the

Region Of Interest (ROI) for testing purposes.

– UCSD dataset: Antoni B Chan, Liang, et al. (2008) published UCSD

dataset and the dataset consists of 2000 grayscale image frames of a

stationary camera collected from surveillance video. The dataset is from

a video recorded at 10 FPS with dimensions 238× 158. The Region Of

Interest (ROI) is also provided to ignore irrelevant objects. Following

the settings in (Antoni B Chan, Liang, et al. 2008), the frames from

601− 1400 were used as the training data and the remaining 1200 frames

as test data.

2.6.1.1 Dataset Limitation

All the mentioned datasets have various types of limitations such as incorrect

annotation, small sample datasets, or lack of diverse samples in the dataset.

Some samples in UCF-CC-50 and Shanghai tech dataset have either incorrect

head annotation or missed the head completely. The other limitation includes

the sample size and the resolution of images. For example, in the UCSD
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database on average, the images are only 238× 158 resolution. Furthermore,

datasets such as Mall and UCSD do not have diverse scenes and are captured

only from a single point of view.

2.6.2 Evaluation Metrics

Mean Absolute Error (MAE) and Mean Square Error (MSE) are the two

most common evaluation metrics used in crowd estimation and counting fields.

Unlike image comparison where it is common practice to use PSNR and SSIM

to evaluate the quality of the image, in-crowd estimation instead of the direct

pixel-wise comparison of ground-truth density map and predicted density

map, the performance of the model is evaluated based on the sum of density

pixel value which is an estimated crowd count.

– Mean Absolute Error (MAE):

It measures the average magnitude of the errors in a set of predictions,

without considering their direction. It is the average over the test samples

of the absolute difference between prediction and actual observation where

all individual differences have equal weights.

MAE = 1
N

N∑
1
|yi − ŷi| (2.14)

where yi is the ground truth density map and ŷi is the density map

learned by the proposed network. And N is the number of samples.

– Mean Square Error (MSE):

MSE measures the average squared difference of estimated value and

actual value. Here, MSE evaluates trained models’ performance, and the

value is always positive, and values closer to zero are considered better

results.

MSE =

√√√√ 1
N

N∑
1

(yi − ŷi)2 (2.15)
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Where yi is the ground truth density map and ŷi is the density map

learned by the proposed network and N is the number of samples.

2.7 Summary

In this chapter, we examined a number of techniques that are involved in the

crowd analysis field. We started the chapter with popular techniques that are

involved in the feature extraction process; then we investigated the additional

methods classifier that are used in conjunction with the feature extraction

process to improve the crowd analysis performance. Then, the core aspect of

Deep Learning components, which makes up Deep Learning techniques were

discussed. Further topics on crowd estimation and counting were explored,

mainly focusing on the evolution of crowd estimation methods. Finally, we

examine the publicly available crowd estimation and counting dataset. The

core goal of the chapter was to introduce the essential tools and techniques

applied in crowd analysis. In the next chapter, we discuss our contribution

toward the problem of the inadequate dataset in the crowd analysis field and

propose a synthetic data generation tool that tries to mitigate the problems.
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He who lives in harmony with himself lives in harmony
with the universe

— Marcus Aurelius
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In chapter 1, we introduced the challenges that lie in the crowd analysis field.

The primary difficulty in training a Deep Learning network is its requirement
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of large amounts of data for generalisation. However, due to the labour-

intensive task of annotating thousands of heads in a single image, there are

only a limited number of publicly available crowd estimation and counting

datasets. Such as UCF-CC-50 (Idrees, Saleemi, et al. 2013) has only 50 images

for both testing and training purposes. Hence, we proposed a tool to handle

such issues. The tool is able to generate a large quantity of datasets in a short

time.

3.1 Multi-Purpose synthetic data generation

Although in recent years Deep Learning (DL) has seen huge increases in

research, the requirement of a large amount of data to train is a major

blockade. It is a time-consuming and expensive task. It typically involves

collecting and manually annotating a large amount of data for supervised

learning. This requirement becomes more difficult when the data acquisition

process requires domain expertise or data that cannot be captured in large

quantities and sufficient quality at a given time or cost. As a result, accurate

crowd density estimation, 3D human pose estimation are lagging as creating

datasets for such problems at large scale is expensive. Likewise, it is not

possible to annotate in detail real-world data: a human cannot manually enter

a pixel-accurate flow field. Similarly, even when there are existing datasets,

there might be some imbalance where one class has more examples than

another class. This leads to biased outcomes. Furthermore, a recent study

by (Hestness et al. 2017) indicated that the current DL might not be limited

by the algorithms themselves but by the type and amount of supervised

data available. Therefore, improvement is needed not only on the algorithms

but also on the data generation, both for learning and qualitative evaluation.

Deep learning networks (DL) dominate the state-of-the-art results in computer

vision (CV) and other fields. One of the primary reasons why DL outperforms

existing algorithms is that these produce superior results when more labelled
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data are used. Nonetheless, it is well known that DL requires a large quality of

data to generalise well. Collecting and labelling these datasets are expensive,

time-consuming and sometimes impossible. Therefore, researchers tried to use

alternative techniques, such as graphics simulators to automatically generate

labelled datasets. However, these techniques are still expensive and require

domain knowledge to produce good datasets. In this chapter, therefore, a

graphics simulator is presented which automatically generates multi-model

datasets in real-time providing the corresponding ground truth and annotation.

The tool concentrates on pedestrian and crowd analysis including 3D human

pose estimation, pedestrian detection as well as crowd density and flow

estimation.

A good approach for tackling such limitations is to utilise synthetic data

simulators to generate labelled data automatically. A number of synthetic

datasets have been published such as Flying Chairs (Dosovitskiy et al. 2015),

MPISintel (Butler et al. 2012), SceneNetRGB-D (McCormac et al. 2016),

among others. These datasets are expensive to generate, requiring artistic

knowledge to meticulously design specific environments. These datasets have

been proven to be successful in training and testing networks for geometric

problems such as optical flow, pose estimation, classification and segmentation.

Synthetic data is widely used in research. (Hattori et al. 2015) presented

a scene-specific pedestrian detector using only synthetic data. A synthetic

dataset of human bodies was published by (Varol et al. 2017), where datasets

were used to estimate the human depth and part segmentation from RGB-

images. Similarly, synthetic data for 3D human pose estimation were used by

(W. Chen et al. 2016). Likewise, (d. Souza et al. 2017) used synthetic video

for human action recognition with deep neural networks.

Most of the above techniques discussed either dealt with real or synthetic data

only and only a number of papers considered the method of training models

with synthetic and real data together. (Marín et al. 2010) used synthetic

humans to detect pedestrians. (Cheung et al. 2018) used a mixed reality
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dataset which is composed of real-world background images and synthetically

generated static human-agents for pedestrian detection. (Pishchulin, Jain,

et al. 2011) used synthetic human bodies rendered on random backgrounds

for training a pedestrian detector.

Although all the above worked with synthetic data, which requires labour-

intensive 3D environment models, we concentrate on augmented reality

where we utilise the synergies of real and synthetic data. In contrast to

a purely synthetic dataset, we obtain a large variety of realistic data efficiently.

Furthermore, as shown by our experiments in section 3.5, combining real

and synthetic data within the same image results in models with better

generalisation performance. Unlike existing mixed-reality approaches for

training data generation which are either simplistic where they consider single

objects or augmented objects in front of random backgrounds. Our goal is

to create high fidelity augmentations of complex multi-object scenes at high

resolution in real-time.

Moreover, all the existing datasets have fixed scenarios and samples. However,

we are presenting a dataset generator tool which synthetically generates

realistic images of humans superimposed on real scenes and can be used for

any number of scenarios and samples. In addition, the results are generated

almost in real-time as the tool utilises a real-time 3D rendering engine. The

tool is mainly focused on computer vision problems such as 3D human pose

estimation, pedestrian detection, and crowd estimation.

3.2 Methodology

In this section, the core aspects of the proposed algorithm are described.

The section first details the perspective ground plane extraction, followed by

pedestrian and crowd simulation and finally the synthetic data generation.

Figure 3.1 shows flow of proposed methodology.
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Figure 3.1: An overview of the proposed method. Our approach consists of 3 major stages to generate the data: Input, Perspective/Simulation
and Graphics renderer setup stage. *The 3D rendering enhancement using baked inter-reflection is discussed in chapter 4
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3.2.1 Perspective Plane Extraction

The real-world background image is required to generate augmented datasets.

Numerous background extraction methods such as (Bouwmans et al. 2017)

can be applied to acquire a clutter-free background image. The most obvious

way to extract background is when a series of images are provided, these

images can be used to acquire an unobstructed background view (Hua et al.

2018).

Once the initial part of background extraction is completed, the process for

the perspective ground grid estimation method is applied. The perspective

estimation can be obtained using the concept of perspective scale. When two

parallel lines are defined which point towards the vanishing point, the distance

in arbitrary units within this perspective space can be measured. More detail

can be found in (Dupre et al. 2019). Figure 3.2 (a) and (b) shows the extracted

perspective and top-down view of the Oxford town center dataset (Benfold

et al. 2011).

3.2.2 Pedestrian and Crowd Simulation

A social force-based model is implemented (Karamouzas et al. 2009). The

model simulates simple crowd behaviours such as separation, object avoidance

and agent collision detection based on their field of view.

For the algorithm to simulate a crowd, key attributes such as the number

of agents, frame rate, minimum distance (total number of cells in the grid)

covered by agents and their speed are provided by the user. Using the extracted

perspective grid, the algorithm automatically calculates the entrance and

exit for each agent based on the shortest path, assigns the agent’s radius (i.e.

the space between each agent in the simulation), acceleration and rotational

velocity. Finally, the social force simulation model (Karamouzas et al. 2009)

utilises this information to simulate the agents. To ensure that the agent

speeds are consistent between different simulation models and environment,
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(a) Perspective Plane (b) Top Down View

Figure 3.2: Perspective Plane Extraction

the simulation is set to a standard frame rate (30 frames per second) and

the agent position and rotation are recorded at each frame. The generated

information is later used in a graphics simulator to position the agents in 3D

space for synthetic data generation purposes.

3.3 Type of generated data - Primary data

The graphics simulator is used to generate datasets based on the total number

of simulated frames and generates four different types of data. 1) composite

image, 2) 3D agent’s joints location, 3) Image segmentation and 4) depth

map.

3.3.1 Composite Image

The composite image is generated by superimposing the synthetic agent on

top of the real-world background. An arbitrary image size can be set for the

final results. Figure 3.3 (a) shows a sample of the final composite image.

3.3.2 3D Joints

The 3D joints location, their unique IDs for each agent are captured during

the data generation process. Total of 18 different joint locations were captured
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as shown in figure 3.3(d). The joint locations were selected based on the

popular benchmarking dataset called MPII Human Pose Dataset (Pishchulin,

Andriluka, et al. 2013).

3.3.3 Image Segmentation

Image segmentation of the crowd is also generated during the capture process

where the background is set to black colour and each individual agent is

assigned a unique colour. The figure 3.3 (b) shows the results of image

segmentation.

3.3.4 Depth Map

A depth map describes how far (per pixel) an agent is from the camera. The

map is generated in the range of 0− 0.5 value where 0.5 is the most distant

and 0 is the most closed. And value 1 indicates the background. Figure 3.3

(c), white background refers to a very far distance.

3.4 Other varieties of data generation - Sec-
ondary data

The agent joints information is further processed to generate other labelled

datasets. Such as a dataset for crowd counting from the head location of

each agent. The bounding box for pedestrian detection, and finally, 3D joint

location is used to generate data for pose estimation as shown in figure 3.4.

3.4.1 Density Map for Crowd estimation

In section 2.5.4, we introduce the density map generation process and its

importance. We also incorporate techniques to generate density maps as

secondary data from synthetic agent head locations.
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(a) Composite Image (b) Segmented

(c) Depth map (d) Agent Joints Location

Figure 3.3: Sample data generated by propose tool and visualisation of all the joints
that are capture during the data generation process

The density map utilises equation 2.5.4 to generate a map from head location.

Figure 3.4(b) shows the sample generated density map from the datasets. As

you can see, the density map is not only used to show the density variance in

the scene but also used for actual estimation of the total number of people in

the crowd. For the purpose of data generation, we used fixed σi = 4

3.4.2 The bounding box for pedestrian detection

To generate bounding boxes for the pedestrian detection, we utilise the head

top, left toe base, right toe base joints for the height of the agent and left
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shoulder, right shoulder joints for the width of the box. The bounding box is

commonly represented in two different ways.

– minimum and maximum pixel location of the box,

– minimum pixel location, width and height value.

3.4.3 3D Joint location for Pose estimation

The key joint location points in the synthetic agents were selected based

on the established benchmarking dataset called MPII Human Pose Dataset

(Pishchulin, Andriluka, et al. 2013). The dataset also consists of 18 different

key points similar to the figure 3.4(d). However, there are other datasets such

as MS coco dataset (T.-Y. Lin et al. 2014) which provides additional key points

for faces. We primarily focused on the body and head key points instead of

faces. The 3D pixel location of the joints are generated automatically and no

further procedures are required to generate label data for pose estimation.

3.5 Experiments and Analysis

To demonstrate effectiveness of our approach, we choose to validate it in

two different Deep Learning network architectures. The purpose of different

architecture is to analyse if our methods improve the network performance

even in the presence of completely different network architecture. For the

evaluation metrics, we choose the commonly used metrics Mean Absolute

Errors (MAE). MAE is widely used in various crowd counting benchmarking

datasets (V. Sindagi et al. 2017b; Idrees, Saleemi, et al. 2013).

We conducted experiments on CMTL by (V. Sindagi et al. 2017b) and CRSNet

by (Y. Li et al. 2018). Likewise, two publicly available datasets Shanghai

Tech (V. Sindagi et al. 2017b) and UCF-CC-50 (Idrees, Saleemi, et al. 2013)

were used for the experiment.
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(a) Head position (b) Density Map

(c) Pedestrian BBox (d) Pose Estimation

Figure 3.4: Other varieties of labelled data generated from joint information

The Shanghai Tech (SHT) database was introduced by Yingying Zhang et al.

(2016) and it contains 1198 annotated images with a total of 330,165 people.

The dataset is divided in two parts. Both parts are further divided into

training and test sets. Part-A has 482 images where 300 images are used

for training. Whereas Part-B has 716 images where 400 images are used for

training.

Similarly, the UCF-CC-50 dataset was introduced by Idrees, Saleemi, et al.

(2013). The dataset contains 50 annotated images of extremely dense crowds.

However, density in the dataset varies between 94 and 4543 persons with an

average of 1280 persons per image.
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3.5.1 Evaluation Metrics

For the evaluation purpose the standard metrics Mean Absolute Error (MAE)

was used, defined as:

MAE = 1
N

N∑
1
|yi − ŷi| (3.1)

Where yi is the ground truth density map and ŷi is the density map learned

by the proposed network. And N is the number of samples in the dataset.

Finally, these generated data are fed into both CMTL (V. Sindagi et al. 2017b)

and CSRNet (Y. Li et al. 2018) for evaluation.

3.5.2 Training and implementation

The training and evaluation was performed on the NVIDIA GTX TITAN-X

GPU using the Pytorch framework. While we tried to leave all other settings

in the code as published by the author, we used the well known Adam(Kingma

et al. 2015) optimiser instead of the standard Stochastic Gradient Descent

(SGD) (Sutskever et al. 2013). CMTL (V. Sindagi et al. 2017b) and CRSNet

(Y. Li et al. 2018).

The Adam optimiser also known as Clipped SGD is an adaptive variant of

SGD. Since Adam optimiser is SGD, the primary reason to choose Adam

over SGD was mainly due its less memory requirements for training as well

as faster convergence. It has been shown (Wilson et al. 2018) that either of

the optimisers will lead to similar coverage with enough training epochs. In

another paper (Luo et al. 2019), it suggested that SGD generalizes better than

other adaptive optimization methods such as Adam. Hence, it can be said

that choosing one optimizer over another is simply the authors’ preference

and does not affect the overall outcome of the deep learning network.

For the training, we generated 8000 images. These images included 8 different

scenes with varying time (different day and night time). Some examples of
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Table 3.1: MAE for CMTL and CSRNet, with and without synthetic data (*lower value
are better)

Method SHT Part-A SHT Part-B UCF-50
CMTL (without) 101.3 20.0 322.8
CMTL (with) 88.06 ↓ 17.0↓ 300.2↓

CSRNet (without) 68.2 10.6 266.1
CSRNet (with) 42.81 ↓ 6.49↓ 245 ↓

generated images are included in appendix A. In addition, the images were

further augmented by slicing it into 9 small patches. The groundtruth density

maps were generated for each patch based on equation (2.5.4). The single

patch is 1
4
th size of the original image. These images are then formatted based

on the CNN requirement. For CMTL (V. Sindagi et al. 2017b) the images

were converted into grayscale whereas for CSRNet (Y. Li et al. 2018) images

were in RGB format. No additional data augmentation has been applied to

patches.

3.5.3 Results and Discussions

The evaluation was carried out with the two networks CMTL(V. Sindagi et al.

2017b) and CSRNet (Y. Li et al. 2018) with both real and synthetic datasets.

Table 3.1 shows the network’s results with and without the use of synthetic

data. The results for the real dataset (*without) are directly from the authors

paper (V. Sindagi et al. 2017b; Y. Li et al. 2018). The results demonstrated

the overall improvement in both networks after pre-training with a synthetic

dataset and fine-tuning with the real world dataset, in spite of differences in

network architecture. CMTL (V. Sindagi et al. 2017b) takes grayscale images

as input, whereas CSRNet (Y. Li et al. 2018) takes in an RGB image as

input. It can be observed that CSRNet (Y. Li et al. 2018) improves more than

CMTL (V. Sindagi et al. 2017b). It can also be observed that it’s beneficial to

have an RGB image as input rather than grayscale image. However, further

studies are required to validate the benefit of the RGB over grayscale image
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as input. Figure 3.5, shows images generated by the proposed tool where up

1200 agents were simulated.

Although we demonstrated the improvement in the overall performance of the

deep Learning network, few key points should be noted about the generated

data. Various cases such as people wearing numerous types of clothing such

as hats were not considered. While these factors might have improved the

performance of deep learning networks even more, no significant degradation

in the performance of the network were seen without it. In addition, people of

different sizes, colours and disable people such as people in wheelchairs were

also not included in the experiments, mainly due to the nature of the crowd

counting annotation method. The annotation is carried out only in the heads

region and other parts are generally disregarded.
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l2
(a) Composite image (b) Head annotated image

(c) Crowd Density map (d) Image segmentation

Figure 3.5: Sample image generated by the proposed synthetic data generation tool. 1200 agents were simulated in the image. More
images can be found in appendix A.
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3.6 Summary

In this chapter, we proposed a method which can be used to mitigate the

problem that exists in the crowd analysis field of not having enough dataset

to train the Deep Learning networks. Not only that, we also proposed a

general approach which can be used to generate data required for other fields

of computer vision such as pedestrian detection, 3D pose estimation, image

segmentation and depth estimation. By taking advantage of augmented data,

we demonstrated that the state-of-the-art results can be considerably improved

despite the difference in the network architectures. Furthermore, our approach

tackles the problem such as training overfitting, as well as dataset accuracy

by generating high-quality synthetic data.

In the next chapter we further look into the aspect of improving the quality

of synthetic data generation by removing a phenomenon called inter-reflection

to generate better synthetic dataset.
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In the previous chapter 3, we looked into the method of the synthetic data

generation process and proposed a tool to achieve the goal. In this chapter,

we focus on a light property called inter-reflection also known as global

illumination. Inter-reflection is a major problem in composite images as

unwanted colour bleeding occurs to the object from the environment. In

addition, it is quite difficult to remove the inter-reflection from the object,

especially from the reflective objects such as metals. For example, it is widely

57



58
4. Scene and crowd analysis using synthetic data generation with 3D quality

improvement

common to use a green screen background in films and green-screen keying

is an essential part of post production workflow. The process is labour and

cost intensive as it requires expertise and time. It is even more difficult

due to inter-reflection (i.e., green background colour) occurring in various

objects in the scene (Aksoy et al. 2016). In the figure 4.1, we see the effect of

inter-reflection where green colour bleeds into the reflective metal armour.

Placeholder for image showing interreflection. 

Figure 4.1: Example of inter-reflection that occurs during the film production (Insider
2020)

Photometric stereo (PS) methods for 3D reconstruction recover the shape

and reflectance properties of an object using multiple images taken with

variable lighting conditions from a fixed viewpoint. PS assumes that a scene

is illuminated only directly by the illumination source. As a result, indirect

illumination effects due to inter-reflections introduce strong biases in the

recovered shape. Our suggested approach is to recover scene properties in

the presence of indirect illumination. To this end, we proposed an iterative

PS method combined with a reverted Monte-Carlo ray tracing algorithm to

overcome the inter-reflection effects aiming to separate the direct and indirect

lighting. This approach iteratively reconstructs a surface considering both
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the environment around the object and its concavities. We demonstrate and

evaluate our approach using three datasets and the overall results illustrate

improvement over the classic PS approaches.

4.1 Motivation

In this chapter, we present a method which examines the inter-reflection

phenomena occurring due to the concavities, proposing a novel approach to

extract and remove inter-reflection. Furthermore, in order to demonstrate the

effectiveness of our approach, reconstruction methods such as Photometric

Stereo were selected for inter-reflection colour, intensity map generation and

the evaluation. Our method accounts for inter-reflections in a calibrated

photometric stereo environment and utilises a reverted Monte Carlo ray

tracing method to extract the inter-reflection colour and intensity map. This

approach not only accommodates the concave surfaces but also any object in

a scene with inter-reflections. The proposed method Iterative Ray Tracing

Photometric Stereo - IRT PS iteratively applies Photometric Stereo (PS) and

a reverted ray tracing algorithm based on a Monte-Carlo implementation

to reconstruct with higher accuracy the observed surfaces. This approach

iteratively reconstructs the surface and separates the indirect from direct

lighting considering also the environment around the object. In addition,

the core principle of inter-reflection extraction approach is that it can be

utilised in other scenarios such as generating inter-reflection maps (i.e., baked

inter-reflection map similar to light map) which can be precomputed to be

used in a real-time environment or be integrated as a shader.

Scene and 3D object reconstruction is the process of capturing their shape and

appearance using various methods and approaches such as stereo, structure

from motion, shape from shading, and many more (Remondino et al. 2006).

The reconstruction is highly applicable in a number of fields as it provides the

ability to understand 3D scenes and objects on the basis of 2D images. The
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applications range from robotics and automated industrial quality inspection

over human-machine interaction (example gesture and face recognition) to

films and architectural applications (Herbort et al. 2011). Additionally, the

method is commonly used to analyse the surfaces of a celestial object, such as

the Moon (Hicks et al. 2011).

Photometric stereo (PS) is a well-established technique that is used for 3D

surface reconstruction (Esteban et al. 2008; ou et al. 2009). The approach

generally inherits the principle of appearance analysis of a 3D object on its

2D images. Based on the intensity information, these approaches attempt

to infer the shape of the depicted object (Herbort et al. 2011). It estimates

shape and recovers surface normals of a scene by utilising several intensity

images obtained under varying lighting conditions with an identical viewpoint

(Argyriou, Petrou, and Barsky 2010; Tankus et al. 2005; Hayakawa 1994). By

default, PS assumes a Lambertian surface reflectance; a standard reflectance

model which defines a linear dependency between the normal vectors and

image intensities. The definition of the model then can be used to determine

the 3D space in the image (Belhumeur et al. 1998). However, just a single

Lambertian image is not adequate to correctly determine the surface shape.

Therefore, the PS uses several images whose pixels correspond to a single

point on the object and is able to recover surface normals and albedos (Tan

et al. 2008).

Light displays complicated attributes while interacting with objects resulting

in direct and indirect illumination as shown in figure 4.2.However, classical

PS naively assumes that a scene is illuminated only directly by the emitting

source. In presence of indirect illumination, it produces erroneous results with

reduced reconstruction accuracy (Ikeuchi 1981). For example, an indirect

illumination such as inter-reflections makes concave objects appear shallower

(Nayar et al. 1990).
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4.1.1 Inter-reflections

An image captured by the camera is the result of a complex sequence of

reflections and inter-reflections. When light is emitted from the source, it

bounces off the scene’s surface one or more times before reaching a camera.

Figure 4.2: (Left)Direct and (Middle)(Right)indirect light bounce around the environ-
ment

In theory, every image can be captured as an infinite sum, I = I1 + I2 +

I3 + ..+ In, where In denotes the total contribution of light that bounces n

times before reaching the camera as shown in figure 4.2. For example, I1 is

the captured image if it was possible to remove all the indirect illumination

from reaching the camera sensor, while the infinite sum I2 + I3 + . . . + In

describes the total contribution of indirect illumination. Although we can

capture the final image I using a camera, the individual “n-bounce” images

are not directly measurable in the real-world scenario.

Nevertheless, the techniques for simulating inter-reflections and other light

transport effects are not new in computer vision and graphics. The algorithm

that simulated the forward light transport was solved by (Kajiya 1986). The

algorithm is also known as rendering equation. The rendering equation is an

integral in which the radiance leaving a point is given as the sum of emitted

plus reflected radiance under a geometric optics approximation.
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I(x, x′) = g(x, x′)
e(x, x′) +

∫
s

p(x, x′, x′′)I(x′, x′′)dx′′
 (4.1)

Where I(x, x′) is related to the intensity of light passing from x′ to point x.

g(x, x′) is a "geometry" term, e(x, x′) is related to the intensity of emitted

light from x′ to x and p(x, x′x′′) is related to the intensity of light scattered

from x′′ to x by a patch of surface at x′.

An algorithm such as ray tracing (Foley et al. 1996; Jarosz et al. 2008) solved

the equation 4.1 by using Monte-Carlo methods, whereas radiosity (Foley

et al. 1996; Immel et al. 1986) used a finite element method to produce near

realistic looking images in the field.

For a Lambertian object illuminated by a light source of parallel rays, the

observed image intensity a at each pixel is given by the product of the albedo ρ

and the cosine of the incidence angle θi (the angle between the direction of the

incident light and the surface normal) (Horn 1977). The above incidence angle

can be expressed as the dot product of two unit vectors, the light direction l

and the surface normal n, a = ρ cos(θi) = ρ(l · n).

Let us now consider a Lambertian surface patch with albedo ρ and normal

n, illuminated in turn by several fixed and known illumination sources with

directions l1, l2, ..., lQ̃. In this case we can express the intensities of the

obtained pixels as:

ak = ρ(lk · n), where k = 1, 2, ..., Q̃. (4.2)

We stack the pixel intensities to obtain the pixel intensity vector

Aa = (a1, a2, ..., aQ̃)T . Also, the illumination vectors are stacked row-wise to

form the illumination matrix L = (l1, l2, ..., lQ̃)T . Equation (4.2) could then

be rewritten in matrix form:

Aa = ρLn (4.3)



4. Scene and crowd analysis using synthetic data generation with 3D quality
improvement 63

If there are at least three illumination vectors which are not coplanar, we can

calculate ρ and n using the Least Squares Error technique, which consists of

using transpose of L, given that L is not a square matrix:

LTAa = ρLTLn⇒ (LTL)−1LTAa = ρn (4.4)

Since n has unit length, we can estimate both the surface normal (as the

direction of the obtained vector) and the albedo (as its length). Extra images

allow one to recover the surface parameters more robustly.

4.2 Proposed method to improve the quality
of synthetic data

In nature, when we illuminate a surface, light not only reflects towards the

viewer but also among all surfaces in the environment. This is always true,

with exception to scenes that consist only of a single convex surface. In

general, scenes include concave surfaces where points reflect light between

themselves. Furthermore, inter-reflections can occur due to the environment

and appreciably can alter a scene’s appearance. In figure 4.3, to simulate

the inter-reflections the sphere is placed within the Cornell box (Niedenthal

2002) and highlights the inter-reflections i.e. sphere receive the colours from

its environment.

4.2.1 Inverted ray tracing

Existing computer vision algorithms do not account for effects of inter-

reflections and hence often produce erroneous results. The algorithms that are

directly affected by inter-reflections are the shape-from-intensity algorithms

including Photometric Stereo. Due to the common assumption of single

surface reflections (direct illumination) and disregarding higher order (inter-

reflections, a subset of global illumination), photometric methods produce

erroneous results when applied to open scenes.
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(a) (Left)Image with no inter-reflection, (Middle) Image with inter-reflection from
Environment only, (Right) Combined Image

(b) (Left)Image with no inter-reflection, (Middle) Image with inter-reflection from Concavity
only, (Right) Combined Image

Figure 4.3: Example images of Inter-reflection from environment and concavity
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Raytracing : 
Generate 

images with 
inter-reflection

Images

Scene 
Configuration
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Stereo: Lambert 
and Global Light 

directions

Normal to depth: 
Surface (Ht) (M-

Estimator technique)

Environment Simulation: 
Place Surface (Ht) within 
environment i.e., Cornell 

Box

Raytracing (Ray Bounce: 
1-3) : Extract Global 

illumination

Fix Image: Interpolate 
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Remove Inter-
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Global Illumination 

images)

New Images

Global illumination 
Images

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Baked New Models 
with Inter-reflection

New Models without 
Inter-reflection

Figure 4.4: An overview of the proposed IRT-PS algorithm from Stage 0 - 5 and additional Stage 6 for inter-reflection baking purposes.



66 4.2. Proposed method to improve the quality of synthetic data

The figure 4.4 shows the proposed pipeline. The first stage (stage 0) of the

proposed method is performed only once throughout the process and involves

the acquisition of the initial input images. In practice, these images are

acquired from the wild and assume that inter-reflections are present and that

the captured surface is within the known environment. In our case within a

Cornell Box.

Moving to the following stage, PS is applied to the images acquired at stage 0

using equation 4.4 to obtain the initial albedo ρt and normals nt. Integrating

over the obtained normals a 3D surface Ht is obtained using the M-estimator

technique. This initial surface that is affected by the presence of the inter-

reflections becomes the input to the following stage, that involves the proposed

reverted ray tracing algorithm.

As environment information is known prior to reconstruction, we can imple-

ment our environment. The Cornell Box was set up as the environment at the

following stage 3. More realistic textures can be used for the walls without

affecting the proposed methodology.

In stage 4, we simulate the environment assuming the Cornell box is given

or estimated. In our case, this approach can be extended to other realistic

environmental projections such as Hemispherical Dome Projection (Bourke

2005) without affecting the proposed methodology. Then we place the

generated Ht surface within this environment.

In the following stage, based on the equation 4.7, the reverted ray tracing

algorithm is applied. Since we are only interested in inter-reflections, only

the indirect illumination is calculated. To implement the ray tracer for the

Lambertian surface, we solve the rendering equation by integrating Monte

Carlo estimators.

L0(p, wo) =
∫
Ω

f(p, w0, wi)Li(p, wi)cosθidwi (4.5)
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Where L0(p, w0) is the total outgoing radiance reflected at p along the w0

direction. Li(p, wi) is the radiance incident at p along the wi direction.

f(p, w0, wi) determines how much radiance is reflected at p in direction w0,

due to an irradiance incident at p along the wi direction. cosθi is from

Lambert’s cosine law: diffuse reflection is directly proportional to cos(θ) of

the normals and the incident illumination (i). Finally,
∫
Ω
dwi is an integral

over a given hemisphere.

Monte-Carlo approximation is a method to approximate the expectation of a

random variable, using samples.

E(X) ≈ 1
N

n∑
n=1

Xn (4.6)

Where, E(X) is an approximation of the average value of a random variable

X.N is the sample size. And when we integrate it to equation 4.5 we solve

the rendering equation.

〈L0(p, wo)〉 = 1
N

N∑
i=1

f(p, w0, wi)Li(p, wi)cosθidwi
p(wi)

(4.7)

However, Monte-Carlo estimator is affected by noise, the ray tracer algorithm

also inherited such a problem. For example, to half the noise in an image

rendered by ray tracing, we need to quadruple the number of samples.

To estimate the environmental colour, we first hit the Ht surface with rays

from each pixel, considering techniques such as hemisphere sampling, we

randomly reflect the rays toward the environment. As a result, the images of

the environment are captured for the various levels/depths of ray reflection.

In this study, we only use up to 3 reflection rays (1 to 3) with just a single

sampling, as shown in figure 4.5. Because we are not calculating all the

ray reflections within the environment, we will have pixel locations without

intensity values. An example can be seen in figure 4.6. Therefore, we are using

a non-uniform interpolation algorithm (Thévenaz et al. 2000) to approximate
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Figure 4.5: Extraction of Environment Intensities in 3 different ways (a) Only extract
colour (c1), (b) reflect ray one time and combine the intensities (c1 * c2), and (c), reflect
one more time and combine all the colours (c3*c2*c1).

Figure 4.6: Sample image of Environment colour captured by R1 - R3 rays and their
interpolated images

the missing values in the obtained environmental intensity images Er
t , where

r corresponds to the number of ray reflections.

In figure 4.6, we see that the more ray reflects, the less bright the pixels

become. The main reason behind this phenomenon is because of the ray

tracing algorithm and considering that the first ray r1 has more influence on

the final pixel intensity than the ray r3. Therefore, when we have more ray

reflections, the intensity of the pixels needs to be reduced, accordingly.

In stage 5, we generate the new input images At+1 = At − Er
t by subtracting
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the environmental intensity reducing the inter-reflections from the original

input images. There are three different sets of images for each ray reflection

r1, r2 and r3.

Figure 4.7: (Left) Image with inter-reflections, (Middle) estimated environmental
intensity image and (Right) obtained image without inter-reflections.

Finally, the obtained images which have fewer inter-reflections (example

difference image is shown in figure 4.7) are used for as input to photometric

stereo, generating a new Ht+1 surface. The whole process can be applied

iteratively for a certain number of iterations or until the difference DH =

Ht+1−Ht between a new 3D surface and the previous one is less than a given

threshold.

Additionally, stage 6 shows how the extracted global illumination information

can be baked to the other synthetic model. This stage can be particularly

important for improving the quality of real-time generated models such as the

data generated by the approach proposed in chapter 3 or other compositing

based applications. The inter-reflection map similar to the commonly used

shadow map can be generated using the proposed techniques. For example,

the inter-reflection map can be generated when the environment information

is known such as environment texture map, camera specification (e.g. FOV,

position and angle). The spherical dome project method can be used to project

the environment texture and the inter-reflection can be captured accordingly.

Ideally, the information can be applied in a similar fashion to a shadow map.

Nevertheless, the inter-reflection baking is not implemented in the proposed

method and should be investigated further.
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4.3 Results

In our comparative evaluation study, three different datasets with ground

truth were used. Scan data from the Harvard PS dataset (Frankot et al. 1988),

a dataset with faces (Argyriou and Petrou 2008) and synthetic data generated

by simulated objects.

4.3.1 Experiments and Analysis

We used the photometric stereo approach to reconstruct the sets of the

acquired Ht surface, with and without inter-reflections considering different

numbers (1 to 3) of ray reflections in the proposed reverted Monte-Carlo ray

tracing algorithm. We then estimate the height-, albedo- and normal-error

compared to classic PS method (J. Sun et al. 2007) using the available ground

truth.

To calculate the height-error we used the equation,

Herr = 1
n

 n∑
i=1
|HGT −Ht|i

 (4.8)

Herr is the mean for height error. HGT is the height value of the ground

truth surface, whereas Ht is the height value of the reconstructed surface.

Regarding the albedo-error we use the equation below,

P r
err = |P r

GT − P r
H |

P g
err = |P g

GT − P
g
H |

P b
err = |P b

GT − P b
H |

P rgb
err = P r

err + P g
err + P b

err

3

(4.9)

where P rgb
err is the albedo-error from mean of individual colour channel; Red

P r
err, Green P g

err, and Blue P b
err channel.
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(a) Albedo using
Classic PS

(b) Albedo using
IRT-PS method 1

(c) Albedo using
IRT-PS method 2

(d) Albedo using
IRT-PS method 3

Figure 4.8: Example of the estimated albedo using classic PS (J. Sun et al. 2007), and
the proposed IRT-PS method using 1-, 2- and 3-ray reflections.

Likewise, to calculate normal-error we utilised the following equation:

Nx
err = |Nx

GT −Nx
H |

Ny
err = |Ny

GT −N
y
H |

N z
err = |N z

GT −N z
H |

Nxyz
err = Nx

err +Ny
err +N z

err

3

(4.10)

Nxyz
err denote the mean normal-error for all the axis x, y, and z.Where Nx

err is

a mean error for X axis, Ny
err is mean error for Y, and N z

err is mean error for

Z, Nxyz
H is normal from reconstructed surface.
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Table 4.1: Obtained results for the synthetic data, the Harvard and the face PS database
comparing the (J. Sun et al. 2007) method, with the 3 variations of the proposed IRT-PS
approach.

Synthetic PS IRT-PS r1 IRT-PS r2 IRT-PS r3

Height 18.653 18.460 18.565 18.436
Albedo 0.082 0.082 0.081 0.087
Normal 0.825 0.824 0.824 0.823

Harvard PS IRT-PS r1 IRT-PS r2 IRT-PS r3

Height 8.150 8.140 8.097 7.296
Albedo 0.522 0.518 0.520 0.521
Normal 0.840 0.839 0.838 0.840

Face PS IRT-PS r1 IRT-PS r2 IRT-PS r3

Height 9.341 9.181 9.272 8.835
Albedo 0.235 0.231 0.230 0.241
Normal 0.823 0.823 0.8221 0.822

Overall PS IRT-PS r1 IRT-PS r2 IRT-PS r3

Height 12.049 11.927 11.978 11.523
Albedo 0.280 0.2772 0.2773 0.283
Normal 0.829 0.829 0.8283 0.8288
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Height Error Albedo Error Normal Error

Average Results for Synthetic database

Average Results face database

Average Results for Harvard database

Figure 4.9: Overall results for three dataset: Synthetic, face and Harvard dataset. The r1 (Ray1) and r3 (Ray3) produced the best results
for albedo and height estimation, respectively.
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From the table 4.1, and charts in figure 4.9, we can see that the overall trend

of mean Height, Albedo, and Normal errors are reduced with our approach

than the classic photometric stereo one. In table 4.1, text highlighted in red

are the average overall results of the (J. Sun et al. 2007) photometric stereo

method. Whereas best results from our IRT-PS approach are highlighted in

the green text. From the figure 4.9, we can see the general trend of the height

error: Results improve with each additional ray and the best result is achieved

by Ray 3. Likewise, the best results for Albedo and Normal are given by Ray1

and Ray 2 repectively. The indirect illumination captured by our method

were able to reduce the inter-reflection effect from the original images. This

shows that if we improve the captured indirect illumination then it should

result in more accurate and detailed reconstructed surfaces.
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Composite image Direct light only Indirect light only
Textured Scene

Lambertian Scene

Textured Scene of the floor

Figure 4.10: Sample images to demonstrate more complex scenes with humans.
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4.4 Discussions

The figure 4.10 demonstrates the more complex scenarios. We can see the

effect of inter-reflection in the composite image. The effect of inter-reflection

is more prominent in the scenes with the texture than the scenes without.

As shown in the third row, due to the inter-reflection, the colour of the box

bleeds into the floor and red and green colour can be seen. In addition, the

scene without texture is also affected by the phenomena. In our experiments,

in order to demonstrate the proposed method, we generated images with

inter-reflection. The composite image can be split into two parts: direct and

indirect scenes. All the images in the first column are composite of direct

(second column) and indirect images (third column). Likewise, the scene with

direct light is also commonly found in the gaming environment where due to

the requirement of real-time rendering, the scene usually does not contain

inter-reflection or bake in the texture map itself. The third column in the

scene with only inner-reflection and is not usually found. Hence, the aim of

the proposed method is to extract this information and reduce it from the final

composite images so that these images can be used for 3D reconstruction from

image methods (i.e. such as photometric stereo). As mentioned previously,

the 3D reconstruction from direct images can generate better 3D mesh then

the images with inter-reflection.

In regards to the performance of our approach, depending on the software

language choice, the rendering time of the direct and indirect light with

complex scenes can be much different. In most cases, rendering direct light is

faster than with indirect lights. Likewise, simple experiments with 2 different

languages MATLAB and C++ had vastly different results in rendering 64x64

pixels images with a simple Cornell box and 3D sphere. We implemented our

approach in MATLAB with multi-core cpu support and it took more than 15

minutes to render the image whereas only 4 seconds in C++. Hence, further

work is required for detailed analysis on the performance of our approach.
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4.5 Summary

In this work, a novel iterative method considering inter-reflection both due

to concavities and the environment was proposed. The IRT-PS approach

iteratively applies Photometric Stereo and a reverted Monte-Carlo ray tracing

algorithm, reconstructing the observed surface and separating the indirect

from direct lighting. A comparative study was performed evaluating the

reconstruction accuracy of the proposed solution on three different datasets

and the overall results demonstrate improvement over the classic approaches

that do not consider environmental inter-reflections. In the next chapter, we

examine the difficulties that lie in the crowd analysis field such as perspective

distortion, and we propose a novel deep learning architecture which applies a

number of approaches to overcome such problems.

In the next chapter, we examine the problems in the density map generation

method commonly used in crowd counting. At present, the generated map is

not content aware i.e., it does not know the relative size of humans’ heads.

Hence, we proposed a technique which takes in consideration of the content

of images and generates a density map accordingly.
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"There’s no one particular road that will lead you to
success. I think everybody will find it differently."

— Marina and the Diamonds
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In the earlier chapter 4, we proposed a method which improved the 3D data

generation process and enhanced the quality of the generated data. Similarly,

in this chapter we examine the problem that exists in the density map

generation process. As introduced in chapter 2, the core problem of density

map is that it is not content-aware. Hence, in this chapter, we proposed a

method to generate a content-aware and higher quality density map.

Precise knowledge about the crowd size, proximity and density can provide

valuable information for various tasks such as crowd safety and security, event

planning and analysing consumer behaviour. Creating a powerful machine

learning model, capable to perform such complex task demands for a large and

79
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highly accurate and reliable ground truth data. Unfortunately the existing

crowd counting and density estimation benchmark datasets are not only

limited in terms of the quantity, but also lack in terms of annotation strategy.

This study attempts to address this issue through a content aware technique,

using combinations of Chan-vese segmentation algorithm, two-dimensional

Gaussian filter and brute-force the nearest neighbour search. The results show

by simply replacing the commonly practised density map generators with the

proposed method, higher levels of accuracy can be achieved using the existing

state-of-the-art models.

5.1 Motivation

The study of human behaviours is a subject of great scientific interest and

probably an inexhaustible source of research. One of the most cited and

popular research topics in human behaviour analysis is study of crowd features

and characteristics. In recent years, crowd analysis has gained a lot of interest

mainly due to its wide range of applications such as safety monitoring, disaster

management, public spaces design, and intelligence gathering, especially in

the congested scenes like arenas, shopping malls, and airports (Pelechano et al.

2005; Silverman et al. 2005).

Crowd counting, localisation and density estimation are crucial objectives

of automated crowd analysis systems. Accurate knowledge of the crowd

size, location and density in a public space can provide valuable insight for

tasks such as city planning, analysing consumer shopping patterns as well

as maintaining general crowd safety. Several studies attempt to produce an

accurate estimation of the true number of people present in a crowded scene

through density estimation.

Classic computer vision and machine learning techniques were struggling with

overwhelming complexity of crowd counting and behaviour analysis models.

However, the emergence of deep learning in the last decade was a breath of
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fresh air for crowd behaviour, counting and simulation studies and has largely

advanced the state of the art in this domain (Marsden et al. 2016).

Generally, crowd counting and density estimation approaches can be divided

into two categories: detection-based methods (atomistic) and regression-

based methods (holistic). Detection-based methods generally assume each

person in the crowd can be detected and located individually based on its

individual features and characteristics. These approaches are preferable in

sparse crowd analysis where crowd occlusion is negligible. Holistic crowd

counting and behaviour analysis approaches utilise global crowd features

and characteristics to estimate the crowd size, location and density. These

approaches are preferable in dense crowd analysis where crowd occlusion is

significant. Due to the high amount of occlusions these approaches only utilise

heads as deterministic feature (Ryan et al. 2015).

Despite this, crowd counting and density estimation is not a trivial task.

Several key challenges such as severe occlusions, poor illumination, camera

perspective and highly dynamic environments further complicate this task.

On top of these, lack of quality annotated training data further challenges

the crowd counting and behaviour analysis studies performance. The existing

crowd counting and density estimation benchmark datasets are not only

limited in terms of the quantity, but also lack in terms of annotation strategy.

In regression-based crowd counting and density estimation approaches, heads

are the only confidently visible body part in the image. Thus, these approaches

use heads as the only discriminant feature. Meanwhile, the existing benchmark

datasets such as UCF-CC-50 and ShanghaiTech are only providing the

heads centroid pixel instead of masking the entire head region. Hence, the

recreation of the ground truth head masks is accomplished through a static

two-dimensional Gaussian filter or a dynamic two-dimensional Gaussian based

on the K nearest neighbours. Despite, a dynamic Gaussian approach based

on proximity of the nearest neighbours mitigates the issue to some extent,
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but this technique is not content aware and incorporates significant amounts

of false information into ground truth data (Idrees, Tayyab, et al. 2018;

Yingying Zhang et al. 2016).

In this regard, this study attempts to address the limitation of the existing

crowd counting and density estimation benchmark datasets through a content

aware annotation technique, employing combinations of nearest neighbour

algorithm and unsupervised segmentation to generate the ground truth head

masks. The proposed technique first uses the brute-force nearest neighbour

search to localise the nearest neighbour head point, then it identifies the

head boundaries using Chan-vese segmentation algorithm and generates a

two-dimensional Gaussian filter on that basis.

We believe that by simply replacing the kNN/Gaussian based ground truth

density maps in an existing state-of-the-art network with the proposed content

aware approach in this study, higher level of accuracy can be achieved.

5.2 Background

Over the last decade there have been several studies attempting to address

crowd counting and density estimation through deep learning techniques.

L. Liu et al. (2020) proposed a universal network for counting crowds with

varying densities and scales. The proposed deep network in this study is

composed of two components, i.e. a detection network (DNet) and an encoder-

decoder estimation network (ENet). The input first runs through DNet to

detect and count individuals who can be segmented clearly. Then, ENet is

used to estimate the density maps of the remaining areas, where the numbers

of individuals cannot be detected. Modified version of Xception used as an

encoder for feature extraction and a combination of dilated convolution and

transposed convolution used as decoder. Authors attempted to address the

variations in crowd density with two literally isolated deep networks which

significantly slows down the process.
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In Valloli et al. (2019) proposed independent decoding reinforcement branch

as a binary classifier which helps the network converge much earlier and also

enables the network to estimate density maps with high Structural Similarity

Index (SSIM). A joint loss strategy, i.e., Binary cross entropy (BCE) Loss and

Mean squared error (MSE) Loss used to train the network in an end to end

fashion. They have used variations of U-net models to generate the density

maps. The proposed model shows notable improvements in recreation of the

crowd density maps over the existing models.

A study by Oh et al. (2020) examined the uncertainty estimation in the

domain of crowd counting. This study proposed a scalable neural network

framework with quantification of decomposed uncertainty using a bootstrap

ensemble. The proposed method incorporates both epistemic uncertainty and

aleatoric uncertainty in a neural network for crowd counting. The proposed

uncertainty quantification method provides additional auxiliary insight to

the crowd counting model. The proposed technique attempts to address the

uncertainty issue in crowd counting. However, the use of an unsupervised

calibration method to re-calibrate the predictions of the pre-trained network

is questionable.

Olmschenk et al. (2019) investigated the inefficiency of the existing crowd

density map labelling scheme for training deep neural networks. This study

proposes a labelling scheme based on inverse k-nearest neighbour (ikNN)

maps which does not explicitly represent the crowd density. Authors claim

a single ikNN map provides information similar to the commonly practiced

accumulation of many density maps with different Gaussian spreads.

A study by Idrees, Tayyab, et al. (2018) stems from the observation that

crowd counting, density map estimation and localization are very interrelated

and can be decomposed with respect to each other through composition loss

which can then be used to train a neural network.
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Several other research including (Jiang et al. 2020; Varior et al. 2019; X. Liu

et al. 2018; Change Loy et al. 2013; Hossain et al. 2019; Q. Wang et al. 2019b;

Ze Wang et al. 2018; D. Kang and A. Chan 2018; Lingbo Liu, Hongjun Wang,

et al. 2018; C. E. Kim et al. 2018; V. Ranjan et al. 2018; Z. Shi et al. 2018;

Babu Sam et al. 2018) tried to address crowd counting, localization and

density estimation issues yet the majority of these approaches employed the

flawed ground truth density map generation approach.

5.3 Implementation

In dense crowd scenarios, aside from the heads which are usually fairly visible,

the majority of the other body parts are subject to heavy occlusion. This

makes heads the only reliable discriminant feature in dense crowd counting

and localization. Existing crowd counting and density estimation benchmark

datasets such as UCF-CC-50 (Idrees, Saleemi, et al. 2013) and ShanghaiTech

(Yingying Zhang et al. 2016) are providing the heads centroid pixel location as

labels. Conducting the crowd counting and density estimation as a regression

task, seeks for regional isolation of the heads in the form of a binary mask. As

the head size is subject to various factors such as camera specifications, point

of view, perspective, distance and angle, generation of such a mask could be

a challenging task, given the heads centroid pixel is the only provided form of

annotation in existing benchmark datasets.

The formation of the ground truth binary head masks in large part of the

existing studies is either accomplished through a static two-dimensional

Gaussian filter or a dynamic two-dimensional Gaussian filter paired with

k nearest neighbours approach. The static two-dimensional Gaussian filter

assigns a fixed size Gaussian filter to each head regardless of the head size

and proximity of the nearest neighbour. This approach does not attempt

to compensate for crowd density, distance and camera perspective and

incorporates significant amounts of noise into ground truth data. The dynamic
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two-dimensional Gaussian filter approach employs the nearest neighbours

search through the k-d tree space partitioning approach, prioritises the speed

over integrity and does not deliver optimal results. In this approach the

Gaussian filters are centred to the annotation points and spread based on

the average euclidean distance among the three nearest neighbours. In both

approaches, the spatial accumulation of all Gaussians creates the global density

map for the given image. The following formula shows the commonly used

dynamic two-dimensional Gaussian approach:

D(x, f) =
T∑
h=1

1√
2πf(σh)

exp(−(x− xh)2 + (y − yh)2

2f(σh)2 ) (5.1)

Where T is the total number of the heads presents in the given image, σh is

the sized for each head point positioned at (xh, yh) determined by k-d tree

space partitioning approach based on the average euclidean distance among

the three nearest neighbours and f is a scaling constant.

Despite, dynamic Gaussian approach based on proximity of the k nearest

neighbours attempts to mitigate the crowd density, distance and camera

perspective issues to some extent, but this technique is not content aware and

it injects significant amounts of false information into the ground truth data

which negatively affects the model’s accuracy. Figure 5.1 shows some sample

images from ShanghaiTech dataset (Yingying Zhang et al. 2016) along with

their respective density maps. It can be observed that both approaches are

fairly unreliable and inconsistent in determining the true head sizes.

5.3.1 Methodology

In order to address the shortcomings of the existing ground truth density

maps generation approaches, this study offers a content aware technique using

combinations of Chan-vese segmentation algorithm, two-dimensional Gaussian

filter and brute-force nearest neighbour search.
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Figure 5.1: From top to bottom: sample images from ShanghaiTech dataset (Yingying
Zhang et al. 2016), density map based on static two-dimensional Gaussian filter and
density map based on dynamic two-dimensional Gaussian filter using k-d tree space
partitioning technique.

This technique is based on the Mumford-Shah functional for segmentation,

and is widely used in the medical imaging field. The Chan-vese segmentation

algorithm is able to segment objects without prominently defined boundaries.

This algorithm is based on level sets that are evolved iteratively to minimise

an energy, which is defined by weighted values corresponding to the sum of

differences intensity from the average value outside the segmented region, the

sum of differences from the average value inside the segmented region, and

a term which is dependent on the length of the boundary of the segmented

region. As the head boundaries in highly dense crowds are not clearly defined,

this technique can be used to segment the head regions from the background.

Chan-vese algorithms attempt to minimise the following energy function in
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an iterative process (T. F. Chan et al. 2001).

F (c1, c2, G) = µ.Len(G) + ν.Area(in(G))

+λ1

∫
in(G)
|u0(x, y)− c1|2dxdy

+λ2

∫
out(G)

|u0(x, y)− c2|2dxdy

(5.2)

where G denote the initial head which manually set to a box of [5x5] pixels

centered to the annotation head point, c1 will denote the average pixels’

intensity inside the initial head region G, and c2 denotes the average intensity

of a square box, centered to the annotation head point and its boundary

extended to the nearest neighbour head point. λ1 , λ2 and µ are positive

scalars, manually set to 1, 1 and 0 respectively. A two-dimensional Gaussian

filter which extends to the G mean and centered to the head point is used to

create the ground truth head mask.

Unlike the k-d tree space partitioning technique which does not always

deliver the absolute nearest neighbours, brute-force nearest neighbour search

technique always guarantees to find the absolute nearest neighbours regardless

of the distribution of the points. The brute-force nearest neighbour search

technique does take considerably longer time (O(n2) vs O(n log n)) to find

the nearest neighbours. However, since generating the ground truth density

maps is a single-pass preliminary operation in crowd counting and density

estimation, speed is a less of a priority. Since, the Chan-vese segmentation

algorithm only uses the very nearest neighbour head point to determine the

boundary of the outside region, the brute-force nearest neighbour search only

looks for the very nearest head point. To create the global density map, we

employed an exclusive cumulative of the Gaussians which address the head

mask overlap issue. To maintain the count integrity, the density map has

been normalized at each iteration.
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5.4 Experiments and Analysis

In order to measure the effectiveness of our content-aware crowd density

map generator, we have re-trained some notable state of the art deep models

including Vishwanath A Sindagi et al. (2017a)1, Z. Shi et al. (2018)2, Y. Li

et al. (2018)3 and C. Zhang, Hongsheng Li, et al. (2015)4 using the density

maps generated by the proposed crowd density map generator. We used the

original implementation of these algorithms provided by authors in GitHub.

All algorithms were trained and tested across both UCF-CC-50, ShanghaiTech

(SHT) and synthetic datasets using the proposed content-aware crowd density

map generator as well as the commonly used existing ground truth density

map generator. In some cases we were unable to reproduce the reported

performance in the original manuscripts. There might be a multiple reasons

for not being able to get the same results that the original authors achieved.

Few key points that should be noted are the total epoch i.e duration of

training, additional augmentation methods and much more. However, as we

were consistent with the experiments across both density map generators,

validity and integrity of the comparison is not compromised.

Table 5.1 shows the Mean Square Error (MSE) comparison between the

proposed and existing density map generator across ShanghaiTech dataset

Part-A and B. It can be observed that using the proposed content-aware

density map generator, MSE has been consistently decreased across relatively

all investigated models. The improvement is more pronounced in the Shang-

haiTech (SHT) Part-A dataset. ShanghaiTech Part-A dataset exhibits more

challenging and dynamic crowd scenarios. The results convey the proposed

method could deliver better depiction of the ground truth density maps. Table

5.2 compares the Mean Square Error (MSE) and Mean Absolute Error (MAE)
1https://github.com/svishwa/crowdcount-cascaded-mtl
2https://github.com/shizenglin/Deep-NCL
3https://github.com/leeyeehoo/CSRNet-pytorch
4https://github.com/wk910930/crowd_density_segmentation
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Figure 5.2: From top to bottom: sample images from ShanghaiTech dataset, density
map generated using the existing method and density map generated using the proposed
method.

between the proposed and existing density map generator using an extremely

challenging UCF-CC-50 dataset. Similar to the results in ShanghaiTech

dataset, there is a notable improvement in both MSE and MAE metrics.

Figure 5.2 compares the density maps generated using the existing approach

based on k-d tree space partitioning technique and the proposed content-

aware crowd density map generator. It can be observed that in highly dense

crowds, the proposed method generates more granular density maps with

lesser overlaps between neighbour Guassians. The proposed method uses a

combination of pixel intensity and nearest neighbours to adjust the size of the

Guassians per head. Figure 5.2 shows this technique significantly improves

the integrity of the density map relative to the input image.
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Table 5.1: MSE comparison between the existing and proposed density map generator across ShanghaiTech (Part-A and B)dataset (*
lower value is better).

Existing Method (MSE) Proposed Method (MSE)
Method Part-A Part-B Part-A Part-B

Cascaded CNN (Vishwanath A Sindagi et al. 2017a) 152 31 149↓ 28↓
D-ConvNet (Z. Shi et al. 2018) 112 26 110↓ 26↓
CRSNet (Y. Li et al. 2018) 115 16 113↓ 16

Crowd CNN (C. Zhang, Hongsheng Li, et al. 2015) 197 66 191↓ 57↓

Table 5.2: MSE and MAE comparison between the existing and proposed density map generator across UCF-CC-50 dataset (* lower value
is better).

Existing Method Proposed Method
Method MSE MAE MSE MAE

Cascaded CNN (Vishwanath A Sindagi et al. 2017a) 397 322 397 320↓
D-ConvNet (Z. Shi et al. 2018) 415 293 414↓ 286↓
CRSNet (Y. Li et al. 2018) 397 266 396↓ 264↓

Crowd CNN (C. Zhang, Hongsheng Li, et al. 2015) 498 467 483↓ 459↓
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5.5 Summary

Creating an accurate model for crowd counting and density estimation

demands for a large and highly reliable ground truth data in the first place.

However, the existing crowd counting and density estimation benchmark

datasets are not only limited in terms of size, but also lack in terms of

annotation methodology. This study attempted to address this issue through

a content-aware technique which employed combinations of Chan-Vese seg-

mentation algorithm, two-dimensional Gaussian filter and brute-force nearest

neighbour search to generate the ground truth density maps. Experiment

results show that by replacing the commonly practised ground truth density

map generators with the proposed content-aware method, the existing state-of-

the-art crowd counting models can achieve higher level of count and localisation

accuracy.

In the next chapter, we examine the difficulties in the crowd analysis field such

as perspective distortion, and we propose a novel Deep Learning architecture

which applies a number of techniques to overcome such problems.
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"Create. Not for the money. Not for the fame. Not
for the recognition. But for the pure joy of creating
something and sharing it."

— Ernest Barbaric

6
Tackling one problem at a time with

composite techniques using Deep
Learning for crowd analysis
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In chapter 5, we proposed a method which improved the quality of the density

map. In addition, it demonstrated that generated density maps elevated the

performance of existing Deep Learning networks.

In this chapter, we propose a novel deep network, called Adaptive Scale Vari-

ance Network (ASVNet), for accurate and effective crowd counting. Designing

a general purpose crowd counting network applicable to a wide range of

crowd images is challenging, mainly due to the large variability in camera

perspective. To address this, ASVNet extracts multi-scale features with a

pyramid contextual module to provide long-range contextual information and

enlarge the receptive field. A scale aggregation module, which extracts the

multi-scale features and a multi-branch self-attention module, are proposed to

cater for perspective variations. Most existing methods utilise the Euclidean

loss function and assume that pixels are independent and overlook the local

correlation in the derived density maps. We propose a novel method called

switch loss function, which combines two sets of loss functions. Alongside the

local pattern consistency loss (SSIM), we also propose Peak Signal-to-Noise

Ratio (PSNR) as a novel loss function, to improve the performance of our

model. We conducted comprehensive experiments on three major crowd

counting datasets to test our proposed method and ASVNet produced a better

performance than state-of-the-art methods.

6.1 Introduction

Crowd analysis has been subject of intense research because of its wide range

of applications such as public safety management (e.g. rallies, sporting events),

congestion avoidance (e.g. traffic control), and flow analysis (V. Sindagi et al.

2017a; D. Kang, Ma, et al. 2018). In this chapter, we examine the complexity
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Figure 6.1: Sample images and related density maps from crowd counting datasets.
The images present various challenges in crowd estimation such as severe occlusions,
perspective distortion, and highly variable crowd density.

of crowd estimation in arbitrary images. When no prior information of a

captured scene is available, such as camera specifications and the scene layout,

deriving an accurate estimate of the crowd density and people count is a

hard task. Given the complexity of people counting in a potentially crowded

scene and the lack of ground truth, research has shifted to crowd density

estimation, visualising the results with a density map (see figure 6.1). In an

accurate density map, each pixel value corresponds to the crowd density at the

corresponding location in the scene (C. Zhang, K. Kang, et al. 2016). However,

generating accurate density maps is challenging due to the complexity of crowd

scenes caused by various factors including occlusions, clutter, potentially large

variations in perspective and highly variable crowd distribution.

Recent approaches adopt Deep Neural Networks (DNN) to estimate crowd

density and the related generation of a high quality crowd density map. While

DNN based methods (Yingying Zhang et al. 2016; Vishwanath A Sindagi et al.

2017b; Lingbo Liu, Hongjun Wang, et al. 2018; Cao et al. 2018; Y. Li et al.

Images removed for copyright reasons
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2018) have significantly improved over time, there still exists the problem of

accuracy degradation when applied to scenes where congestion and perspective

affect greatly visibility of people and their size in the image. Our goal is to

generate high-resolution density maps that help to capture accurately the

crowd density of a captured scene.

Recent methods (Yingying Zhang et al. 2016; Sam, Surya, et al. 2017) have

shown higher accuracy by using multi-scale architectures, to cater for the

perspective problem. To tackle large variation in people’s head size, several

filter sizes are used to extract features. Most published research employs multi-

column DNN (Yingying Zhang et al. 2016) or stacked multi-branch blocks (Cao

et al. 2018) to extract features with different receptive fields, combining them

either using a concatenation or using an average weighting method to generate

the corresponding density map. Nevertheless, two main drawbacks still exist

in approaches based on DNN. On one side, crowd estimation benefits from

the design of a multi-scale representation of the multi-column architecture.

However, the diversity in scale is entirely constrained by the number N of

columns present in the architecture. For example, in (Yingying Zhang et al.

2016)only three multi-columns are used.

On the other hand, a Euclidean loss function is widely used for crowd

estimation, which assumes that pixels have independent information. Fur-

thermore, this loss function is known to produce blurred images (Isola et al.

2017). An adversarial loss (Goodfellow et al. 2014) has been applied in

(Vishwanath A Sindagi et al. 2017b) to further improve the density map quality,

achieving better performance. Nonetheless, the additional discriminator still

remains computationally costly.

In order to address these issues, we focus on two points. First, features

at different scales contain different information, while the shallower layers

features present low-level appearance details. The work in (D. Xu et al.

2017; L. Zhang, Ju Dai, et al. 2018) has demonstrated that refining these
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complementary features can help the network to be robust to scale variation.

Nevertheless, simple strategies such as weight average and concatenation are

generally adopted in most existing methods to combine multiple features,

which cannot capture the scale variance information. Therefore, it is necessary

to propose a more effective mechanism for the task of crowd counting, to fully

exploit the information between features at different scales and improve their

robustness. Second, the rich information of scale variance present in a crowd

density map can be captured effectively by the loss function.

The architecture of the proposed network ASVNet, is shown in figure 6.2.

Motivated by feature pyramid network architectures (J.-P. Lin et al. 2018)

in image recognition domain, we employ the pyramid encoder by adaptively

enlarging its receptive field and scale aggregation module, to improve rep-

resentation ability and scale diversity of features. Using adaptive scale and

self-attention modules with multi-branch architecture, high scale sensitivity

and much better accuracy can be attained in detecting sparse and dense

crowds. Finally, it generates high-resolution and high-quality density maps

of which the resolution is exactly the size of input images. We propose a

novel loss which uses a combination of peak signal-to-noise loss and local

pattern consistency loss, to exploit the local correlation as well as the quality

of the density map. The local pattern consistency loss is computed using the

SSIM (Zhou Wang et al. 2004) to measure the structural similarity between

the estimated density map and the corresponding ground truth. While extra

computation is required for the loss, the computation cost is negligible, and

the results show its implementation improves the performance.
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Figure 6.2: Overview of the proposed ASVNet architecture consisting of four major modules: pyramid, scale aggregation, self attention
and density generation.
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6.2 ASVnet for better crowd estimation

In this section, we present the details of the proposed Adaptive Scale Variance

Network (ASVNet). We first describe how the ground truth density map

is generated and then introduce the ASVNet architecture, followed by the

proposed loss function.

6.2.1 Ground truth generation

We introduce the density map generation process under section 2.5.4. Here,

we will briefly go through the creation of ground truth i.e. density maps.

We generate our density map based on a geometry-adaptive Gaussian kernel

proposed by (Wei et al. 2016).

Geometry-adaptive kernels are used to address highly congested scenes. The

density map can be generated by blurring each head annotation using a

normalised Gaussian kernel as in (Yingying Zhang et al. 2016; Sam, Surya,

et al. 2017; Vishwanath A Sindagi et al. 2017b). The geometry-adaptive

kernel is defined as:

D(x) =
N∑
i=1

δ(x− xi)×Gσ(x), with σ = Bdi (6.1)

where, xi is the target object for the ground truth δ. di is the average distance

of k nearest neighbours. To generate the density map, we convolve δ(x− xi)

with a Gaussian kernel with parameter σi (standard deviation), where x is the

position of the pixel in the input image. In our experiments, we configured

the parameters according to (Wei et al. 2016), where β = 0.3, and k = 3. For

a sparse crowd, we empirically set the Gaussian kernel based on the average

head size of people in the input images.



100 6.2. ASVnet for better crowd estimation

6.2.2 Architecture of ASVNet

ASVNet consists of three major components: the pyramid contextual module,

the adaptive scale aggregation module and the self-attention module. As

shown in figure 6.2, we designed our ASVNet to cater for the scale variance

problem by implementing a multi-scale feature extractor and generating a high-

resolution density map to capture finer details. Existing approaches utilise

multi-column architectures with various filter sizes to address the multi-scale

issues (Yingying Zhang et al. 2016). The multi-scale features are extracted

from shallower layers early on and then fed to various scale feature branches.

Finally, the features are merged to predict the density map. We implemented

a similar architecture with additional modules namely: the pyramid, the scale

aggregation and the self-attention module.

Given an image of H ×W size, we first build a four level image pyramid

I1, I2, I3, I4, where I1 ∈ RH×W is the original image, I2 ∈ R
H
2 ×

W
2 , I3 ∈ R

H
4 ×

W
4 ,

and I4 ∈ R
H
8 ×

W
8 are the downsampled ones. Each of these images is fed

into one of the sub-network blocks. The extracted features of the ConvN

layers are denoted as {fn}, where N is a scalar value. The features from

various levels of block-1 are grouped with different sub-networks with the

same resolution. Three sets of multi-scale features are extracted from the

process {f1, f2}, {f3, f4}, {f5, f6}. Within each block, these features are fed

into a convolutional layer and, depending on the resolution of the feature

maps, features are further max-pooled. ConvN_KpDq → {F,M,U} is a

convolutional layer where, N is the convolutional layer’s number, K indicates

the convolutional kernel, p is the kernel size, D is the dilation and q is the

dilation rate. F is the total number of features, M represents max-pool and

U is the upsampling. By default, all the convolutional layers use kernel size

3 denoted by K3. In Block 2, features {f1, f2} are fed into Conv1_K3D1 →

{64, 64,M, 128, 128,M, 256, 256} that returns features {f9}. In Block 3,

{f3, f4} is passed to Conv2_K3D1 → {64, 64,M, 128, 128, 256, 256}, which
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returns {f8}. Likewise, {f5, f6} to Conv3_K3D1, which generates features

{f7} → {64, 64, 128, 128, 256, 256}. The different features present in each

set complements each other, since the features are deduced from various

receptive fields and are obtained from separate convolutional layers of multi-

scaled images. For example, features {f4} primarily consist of appearance

information, whereas {f10} represent some high-level semantic information.

To enhance the robustness of scale invariance, we improve the features

in the succeeding three sets {f7, f8, f9} and features from block-1 {f10}

are concatenated and fed to the scale aggregation module as {f11}. The

features extracted from scale aggregation module {f12} are then passed

to self-attention module described in section 6.2.2.2. With richer scale

information, the features {f13} become more robust to scale variation. The

features {f13} are concatenated with {f11} and fed into Conv4_K3D2 →

{256, 256, 256, 256, 256, 128, 128, 128, 128, 64, 64, 64, 32, 32,

32} for deeper feature representation learning. The Conv4_K3D2 is a deep

convolution layer with kernel size 3 and 2 × 2 dilation rate. After Conv4,

the network produces a high-quality density map. Here, in order to generate

high resolution map, a pyramid style architecture is utilised again. An 1× 1

filter convolution layer after last features {f14} is applied, reducing its channel

from {32 → 1} to generate a density map D1. However, it produces a low-

resolution density map D1 of size H
8 ×

W
8 , because of various max pooling

layers throughout the network. The density map D1 lacks spatial detail.

Therefore, we generate two additional density maps D2, D3 at shallower

layers, where Dn has resolution H
4 ×

W
4 and H ×W respectively. Specifically,

D3 is computed by feeding the concatenation of upsampled features {f15}

and {f17} into Conv6_K3D3 → {32, U, 64, 128}, where {f17} is final density

map D2, followed by an 1× 1 filter convolution layer to reduce features from

{128→ 1}. D2 is obtained in similar manner, where features {f14} are fed to

Conv5_K3D2 → {32, U, 64, 128}, followed by an 1×1 filter convolution layer.

U denotes upsampling of the features with an upsampling rate of 2× 2. The
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final crowd density map D3 ∈ RH×W has fine details of the crowd spatial

distribution.

Finally, we train our ASVnet with the combined loss function. We call it

switch loss function due to its nature of alternating between two sets of loss

functions. We implemented PSNR and SSIM alongside conditional Root Mean

Square Error (RMSE) loss function and the count loss function.

6.2.2.1 Pyramid module

The pyramid module aims to extract long-range contextual information and

enlarge the receptive field. Following a similar concept to (Boominathan

et al. 2016; Sam, Surya, et al. 2017; Vishwanath A Sindagi et al. 2017b), our

approach incorporates the VGG-16 network (Simonyan et al. 2015) as the

front-end of ASVNet, because of its transferability and flexible architecture.

As shown in figure 6.2, the pyramid module consists of four blocks. Each

branch is fed with multi-scaled versions of the original input image to extract

the features. The block-1 consists of truncated VGG-16 layers. Here, the first

ten layers of VGG-16 are used to have a larger valid receptive field, as well as

to reduce the loss of spatial information. Blocks 2 to 4 utilise the first two

layers of the VGG-16.

6.2.2.2 Scale-Aggregation module

The design purpose of both modules is to handle the scale variance in the

scene. The scale aggregation module tackles by multi-kernel size, whereas

the self-attention module utilises a multi dilation rate to extract the features.

Both modules are adaptable and can be extended to arbitrary branches. In

figure 6.2 the features f11 are fed to the adaptive scale aggregation module.

Figure 6.3 shows the architecture of the scale aggregation module.

The scale aggregation module starts with a convolutional layer ConvK1D1

before the other branches to reduce the feature dimensions by half. Then we
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Figure 6.3: The scale Aggregation Modules consist of five branches with different kernel
sizes.

Figure 6.4: Self Attention Module consist of three dilation convolution branch

construct four branches with filter sizes K1, K3, K5 and K7. The ConvK1D1

branch is used to preserve the previous layer scale features and includes small

targets, while other branches are used to increase the corresponding field size.

Lastly, all the features are concatenated and passed to the next layers.



104 6.2. ASVnet for better crowd estimation

6.2.2.3 Self-Attention module

The self-attention block consists of three self-attention modules with similar

architecture. A self-attention consists of three branches the same filter size

K3 → {170} with and in dilation ratio (1× 1, 2× 2, 3× 3) (Yu et al. 2016).

An additional convolutional layer with filter size K1 is also added at the

beginning of each branch to reduce the number of parameters. This can help

to reduce memory requirements without sacrificing performance (Szegedy,

Ioffe, et al. 2017). Given the set of feature maps from the previous layer, the

attention module forwards them through a set of convolutional layers and a

softmax function to generate an attention map with three channels. Each

channel represents the importance of the relative features. The attention

maps are calculated as follows: first we extract the three set of features using

same dilation rate fa, fb, fc, as shown in the figure 6.4. Here, we assume

that fa is query, fb as key and then calculate attention score by element-wise

multiplication, fa × fbT then apply softmax to the score. The attention score

is further multiplied with fc to get the weighted value and finally sum the

weighted values and add it with the feature fd. The same method is applied

to other two module expect difference in dilation rate. The feature extracted

from each module is then concatenated and feed to following convolutions

layers.

6.2.3 Switch Loss function

The standard way of calculating the crowd count is by summing up all the

contributions from the density map, as follows

Dc =
n∑
i=0

Di (6.2)

where i is a pixel location and N is a total number of pixels in D density

map, which represents the total number of people in the crowd. We propose

a novel loss SL function, which combines two sets of error estimation. During
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constructing the function, we focus on two aspects of the image quality

loss. The first set of loss focuses on pixel wise loss, which is calculated by

seta{RMSE,Count loss}, where RMSE is the root mean squared error. The

second set of loss function focuses on the quality of image setb{PSNR, SSIM},

where PSNR and SSIM is the structural similarity loss function. Here, as

far as we are aware, we are the first to propose PSNR as a loss function for

crowd estimation.

The Seta loss function switch to Setb is based on the following condition:

SL

Setb, if Dc − t < D̂c < Dc + t

Seta, otherwise.
(6.3)

where, D̂c is the estimated count using the proposed network, Dc is the ground

truth count and t is the threshold.

Here, we aim to reduce the pixel-level error when the crowd estimation count

is higher or lower than a Dc ± t. When the threshold is met, we focus on

improving the quality of the density map. The threshold is set empirically

by observing the type of crowd dataset. In this chapter, we calculate the

threshold t based on:

t =
max{Dn

c,i}
x

, where Dc ∈ Cd (6.4)

where, Dc is the total number of people in the ith ground truth density map.

N is the total number of images in the training dataset Cd and x is set to 4

empirically.

In the following section, we describe the loss function in detail. First we detail

the proposed PSNR loss function, then the SSIM followed by the RMSE and

Count loss.
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Figure 6.5: (Left) Overview of existing and proposed PSNR loss function. (Right)
Proposed PSNR function equation 6.7. The existing PSNR (i.e Original PSNR) value
goes to infinity when the MSE approaches zero whereas the proposed PSNR approaches
zero.

.

6.2.3.1 PSNR Loss function

The peak signal-to-noise ratio is widely used to evaluate the quality degradation

of reconstructed images especially due to lossy compression codecs. In PSNR,

the original data is considered as a signal and the error produced by the

compression or distortion is regarded as noise. PSNR calculates the ratio

between the maximum possible signal value and value of distorting noise,

which affects the quality of its representation. The ratio is computed in

decibels. Typically, the PSNR is calculated as the logarithm term on the

decibel scale as signals have a very wide dynamic range. For image and video,

usually for 8-bit colour range, the PSNR values are in the 30-50dB and for

16-bit data, the range is between 60 and 80dB (Deshpande et al. 2018).

MSE = 1
N

N∑
j=0

(Îj − Ij)

PSNR = 10× Log10
γ2

MSE

)

= 20× Log10
γ√
MSE

)
= 20× Log10(γ)− 10× log10(MSE)

(6.5)
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where N is the total number of pixels, I is ground truth image and Î is

degraded image. j is the pixel location and N is the total number of pixels.

Again γ is the maximum variation in the input image data. If the image

is 32 bit then the γ is 1. Also, the PSNR value approaches infinity as the

MSE approaches zero; this shows that a higher PSNR value provides a higher

image quality. However, in Deep Learning lower loss is considered as higher

quality,so we need to modify the PSNR accordingly to achieve the desired

goal.

ˆMSE = MSE + ε (6.6)

To avoid the infinity problem with PSNR, we introduce ε and it is set to

1e−10. Using equation 6.6 to calculate the ˆMSE for the proposed PSNR

equation.

Following equation describes propose PSNR loss function:

LPSNR =
∣∣∣∣∣λ− PSNRλ

∣∣∣∣∣ (6.7)

where, λ is set empirically through a toy data experiment. In this chapter λ

is set to 100.

We experimented with toy data to validate our equation. In our experiment,

we have a 64× 64, 32-bit floating-point density map Dt. We experimented

with 100 different sequentially degraded clones of Dt and assumed it as a

predicted density map. The degradation is performed by multiplying Dt by

X. The X value ranges from −4 to 1. Figure 6.5(left) shows the overview of

all the PSNR loss functions. When the value of X is increased from −4 to 1,

which reduces the error D̂t, the value of the original PSNR improves from

−10 to inf . The key aspect of the optimiser in Deep Learning is to reduce

the loss value, the original PSNR is not suitable for the purpose of learning as

the optimiser assumes −10 is the best case scenario which is false. Therefore,
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we modify the value of the original PSNR loss function by introducing λ at

equation 6.7. Figure 6.5(right) shows the good curve of PSNR value from high

to a low when error is reduced. The lower PSNR value represents less noise

in the D̂t density map. As shown in the figure 6.5(right), the value of PSNR

goes toward zero when the density map is similar. And, when the density

map is identical the PSNR yields zero. We can observe that when the value

of x is closer to 1 PSNR decreases in the proposed LPNSR loss function.

6.2.3.2 SSIM Loss function

We also used the SSIM loss function to improve the local correlation in

the density, which in turn yields quality results. Usually, the SSIM is used

to analyse the quality of an image. Therefore, we exploit the SSIM index

to evaluate the local pattern consistency of the predicted density map and

the ground truth map. SSIM computes images such as mean, variance and

covariance to assess the similarity between two images. The SSIM range is

from −1 to 1 and when two images are identical it produces 1.

SSIM(p) = 2µxµy + C1

µ2
x + µ2

y + C1
.

2σxy + C2

σ2
x + σ2

y + C2

= l(p)cs(p)
(6.8)

where we omitted the dependence of means and standard deviations on pixel

p. Means and standard deviations are computed with a Gaussian filter with

standard deviation σ. The loss function for SSIM can be then written by

setting ε(p) = 1− SSIM(p) :

Lssim = 1
N

∑
1− SSIM(P̂ ) (6.9)

Equation 6.8, shows that the SSIM(p) requires a neighbouring pixel P as

large as the support of σ. In other words, in some boundary regions of

P , LSSIM(P ) and its derivatives cannot be computed. Nevertheless, the

convolutional nature of the network allows us to write the loss as
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Figure 6.6: Results of count loss function with 100 iterations. GT is ground truth, Pred
is predicated count value.

LSSIM(P ) = 1− SSIM(p̂) (6.10)

where p̂ is the centre pixel of path P . Again, this is because, even though

the network learns the weights maximising SSIM for the central pixel, the

learned kernels are then applied to all the pixels in the image.

• Root Mean Square Error (RMSE): The RMSE loss is used to measure

estimation error at the pixel level, which is defined as follows

LRMSE =
√√√√ n∑
i=0

(D̂i −Di)2 (6.11)

Where, D̂i is the estimated density map, Di is the ground truth density map,

and N is the number of pixels in the density map. The RMSE loss is computed

at each pixel and summed. Considering the input image size may be arbitrary

in the dataset, the loss value of each sample is normalised by the total pixel

number to keep training stable.

6.2.3.3 Count Loss function

We also propose a simple count loss function, which forces the optimiser

not only to localise the human heads in a density map, but also the sum of
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Figure 6.7: Results of switch loss function with 100 iterations. GT is ground truth,
Pred is predicated count. The values have been normalise for the visualisation purpose.

the density map. The loss function will simply take the absolute difference

between the sum of ground truth and the estimate in the density map. While

the count loss function does not help the network to localise, it does help the

network to produce the right sum for a given density map. We use the count

loss in combination with RMSE loss LRMSE.

Lcount = |Dc − D̂c|+ ε

|Dc + D̂c|+ ε
(6.12)

where, Dc is the ground truth for the total number of people and D̂c is the

predicted count. We then normalise the value. We also add ε to avoid the

infinity problem. Evaluation of the loss function with similar experiments

as in the PSNR case and figure 6.6 shows that the error moves towards zero

when the prediction is close to ground truth.

• Final loss functions: By weighting the above loss functions, we define the

final loss function as

SL

Seta = LRMSE + LCOUNTη

Setb = LPSNRα + LSSIMβ.
(6.13)

where we empirically set α, β and η values. α is 1e− 4, β is 1e− 3 and η is

1e− 4. Again, we evaluated the loss function with similar experiments as in



6. Tackling one problem at a time with composite techniques using Deep Learning
for crowd analysis 111

the PSNR case and figure 6.7 shows that the error moves towards zero when

the prediction is close to ground truth.

6.2.4 Implementation

As part of data augmentation, we crop the image into 9 small patches from each

image at random locations. The patch size is 1
4 of the original image. Then, we

apply random horizontal flip, light augmentation, and noise while training. Our

network can be trained end-to-end. For the purpose of pyramid architecture we

downsample the patches into H
2 ×

W
2 ,

H
4 ×

W
4 ,

H
8 ×

W
8 sizes.

The first 10 convolutions layers in block1 and first 2 layers in other blocks are

fine-tuned by pre-trained VGG-16 (Simonyan et al. 2015) weights. For other network

weights we use He normal (He et al. 2015) to initialise them. We use Adam (Kingma

et al. 2015) optimiser with a polynomial decay learning rate, starting at 1e−5, which

gradually decreases at each increasing epoch. The implementation of our method is

based on the Keras-TensorFlow framework. Likewise, the proposed network ASVNet

can process 8 frames per second for the high quality density prediction in NVIDIA

2080 RTX. Although 8 - 10 fps is almost real-time and quite applicable for real-time

application, further research can be done to architecture design to improve the speed

as well as to run it in embedded devices such as Nvidia jetson nano. (Cass 2020).

6.3 Experiments and Analysis

In this section, we first present our implementation details and then compare the

proposed ASVNet with state-of-the-art networks on three publicly available crowd

datasets, Venice (Weizhe Liu et al. 2019), Mall (K. Chen et al. 2012) and UCSD

datasets (Antoni B Chan, Liang, et al. 2008). An extensive ablation study is then

conducted to reveal the contribution of each component in ASVNet.

We use the mean absolute error (MAE) and the mean squared error (MSE)

to evaluate the network performance.

MAE = 1
N

N∑
i

|Di − D̂i| (6.14)
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MSE =

√√√√ 1
N

N∑
i

(Di − D̂i)2 (6.15)

where N is the total number of test images, Di is the ground-truth count of people

in the image, D̂i is the predicted number of people in the ith image.
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113Figure 6.8: Results of our network ASVNet. The top 2 rows are from the Venice dataset, the middle 2 rows are Mall dataset and bottom 2
rows are UCSD dataset. The first column is the input image, second is ground truth density map and third is predicted density map.

Images removed for copyright reasons
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Method MAE MSE
DecideNet (J. Liu et al. 2018) 1.52 1.90
R-FCN† (Jifeng Dai et al. 2016) 6.02 5.46
Faster R-CNN† (Ren et al. 2015) 5.91 660
Count-Forest (Pham et al. 2015) 4.40 2.40

Exemplary-Density (Yi Wang et al. 2016) 1.82 2.74
Boosting-CNN (Walach et al. 2016) 2.01 -
Mo-CNN (Kumagai et al. 2017) 2.75 13.40

Weighted-VLAD (Sheng et al. 2016) 2.41 9.12
ASVNet(Ours) 1.48 1.88

Table 6.1: The Comparison of performance with other networks over the Mall dataset.†
These results are obtained from (J. Liu et al. 2018)

.

6.3.1 Results and Discussions
6.3.1.1 Mall dataset

We compare our ASVNet with several regression-based approaches and the eval-

uation results are shown in Table 6.1.

From table 6.1, we can observe that our proposed ASVNet obtains the minimum

error on both MAE and MSE metrics. Compared to the best approaches ’DecideNet’,

ASVNet achieves 2.64 % improvement on MAE. This is achieved without using the

ensemble scheme employed by the ’MoCNN’ (Kumagai et al. 2017) and "Boosting

CNN ” (Walach et al. 2016) methods. Moreover, the MSE of the ASVNet is only

1.88, which is significantly lower than other state-of-art methods.

6.3.1.2 Venice dataset

We also evaluated our network with the venice dataset. The Venice dataset has a

relatively fixed camera angle. However, the number of people in the scene is greater

than the Mall dataset. Figure 6.8 shows samples from the dataset, ground truth

and predicted density maps. The table 6.2 shows the results of our experiments.

6.3.1.3 UCSD dataset

We also evaluated our network with the UCSD dataset. Similar to the Mall dataset,

the video is taken from a fixed angle camera and has an average of 25 people.
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Model MAE MSE
MCNN (Yingying Zhang et al. 2016) 145.5 147.3
Switch-CNN (Sam, Surya, et al. 2017) 52.8 59.5

CSRNet† (Y. Li et al. 2018) 35.8 50.0
CAN† (Weizhe Liu et al. 2019) 23.5 38.9
ECAN† (Weizhe Liu et al. 2019) 20.5 29.9

ASVNet(Ours) 18.7 26.4

Table 6.2: The Comparison of the performance of our network with other networks in
the Venice dataset. †These results are obtained from (Weizhe Liu et al. 2019).

Model MAE MSE
MCNN (Yingying Zhang et al. 2016) 1.07.5 1.35

Bidirectional ConvLSTM (Xiong et al. 2017) 1.13 1.43
CSRNet (Y. Li et al. 2018) 1.16 1.47
SANet (Cao et al. 2018) 1.02 1.29
E3D (Zou et al. 2019) 0.93 1.17
ASVNet(Ours) 0.91 1.14

Table 6.3: The Comparison of the performance of our network with other networks in
the UCSD dataset.

6.4 Ablation

An ablation study was carried out on the UCSD dataset. This provides further

analysis of the relative contribution of a given component in our architecture.

In order to validate the effectiveness of the pyramid context module, the scale

aggregation module and the self-attention module, we train variants of our model

and conduct the experiments.

6.4.0.1 Effectiveness of the Baseline

Our baseline network consists of Block-1 with 10 layers of VGG-16 without pyramid

modules, scale aggregation and scale attention module. The module takes a single

image that is fed to block-1. The extracted features {f10} directly pass to the

backend Cov4K3D2 dilation block. Table 6.4 shows that with just the single VGG-16

as the encoder, the results are not promising compared with other modules.
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Model MAE MSE
Baseline 1.69 3.37

Baseline + PCM 1.51 3.32
Baseline + PCM+SAGM 1.49 1.82
Baseline + PCM+SAM 1.23 1.54

Baseline + PCM+ SAGM + SAM 0.91 1.14

Table 6.4: The table shows the Comparison between Baseline,Pyramid context module
(PCM),Scale Aggregation module (SAGM) and Self-attention module (SAM).

6.4.0.2 Effectiveness of Pyramid context module (PCM)

In this experiment, we divided the image into 3 different scales and the original image

is fed to block-1 and reset to other blocks {2..4} respectively. As a result the network

is context-aware and the performance of the network has improved significantly.

Table 6.4 shows the results of the baseline against the pyramid context module.

6.4.0.3 Effectiveness of Scale aggregation module (SAGM)

We then compared the results of the model with the pyramid context module and

attention module, with and without the scale aggregation module. The scale aggre-

gation module has improved the results of the pyramid context modules, however

it alone cannot achieve better results. Table 6.4 shows that the scale aggregation

module is more accurate than both Baseline and Baseline + PCM networks.

6.4.0.4 Effectiveness of Self-attention module (SAM)

We analyse the contribution of the self-attention module in our model. In table

6.4, we show that the addition of the self-attention modules on baseline + PCM

has performed better than baseline + PCM as well as the baseline + PMC +

SAGM modules. The results demonstrate the self-attention module has a greater

contribution to the final results, and we achieve the best performance.

6.5 Summary

In this chapter, we presented an adaptive scale variance network (ASVNet) for

crowd counting, which deals with the very large variation in people size in a scene.



6. Tackling one problem at a time with composite techniques using Deep Learning
for crowd analysis 117

To exploit the scale variance we propose a pyramid module, which can fully encode

the contextual information. We also embed the adaptive scale aggregation and

self-attention modules to automatically choose the most appropriate branches and

naturally enlarge the receptive field. Likewise, we propose a novel loss function

we called: switch loss function which utilises a combination of novel loss peak

signal-to-noise loss, local consistency loss, a root mean squared error loss and count

loss to alternate from one set of loss to another improving the quality of density

maps. Extensive experiments show that our method achieves the best performance

to state-of-the-art methods on three crowd counting benchmarks.
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"If you fell down yesterday, stand up today."

— H. G Wells

7
Conclusions and Future Work
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In this thesis, we examined various aspects of the scene analysis, in particular

we analysed the challenges that exist in the human detection and counting field. We

introduced the scopes and difficulties in human detection and analysis in chapter

1 and in chapter 2, we explored the essential concepts that are present in the

field of pedestrian and crowd analysis. From chapter 3 to 6, we proposed our

solution toward the challenges that exist in human analysis where we concentrate

the majority of research in the synthetic data generation and crowd analysis field.

7.1 Summary of Thesis Achievements

In this thesis, we have provided our solutions towards the challenges that are

present in crowd estimation and counting. We tried to tackle four core aspects

of the problem :

Firstly, we looked at the inadequacy of crowd dataset in the field and proposed a

multi-purpose synthetic data generation tool which leverages the real-time graphics

119
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engine and can be used to produce large amounts of mix-reality dataset. The

important aspect of the technique is that it not only can be used to generate crowd

related data but also for other computer vision problems such as pedestrian detection,

3D pose estimation, image segmentation and depth estimation. In addition, due

to the use of real data for the background we also increase the exposure of non-

artificial data to the network which in turn performs better in real-world scenarios.

Finally, we demonstrated that use of synthetic data can improve performance of

state-of-the-art results and achieve higher accuracy.

Secondly, we explored the problem of inter-reflection and proposed a novel

approach of utilising the reverted ray tracing mechanism to reduce the effect of

such inter-reflection. The primary contribution is that we demonstrated the method

to capture the environment noises present in the data generation process and the

ways to reduce it from the final results. While the chapter is fully focused on

removing inter-reflection, the global goal of improving crowd estimation can be

achieved through better quality of synthetic data. Hence, the chapter achieves

its aim in improving such data.

Thirdly, we proposed a solution for the limitation that exists in the density map

generation process. At current, almost all the researchers use the density generation

process which is not content-aware i.e. the head size in the density map does not

correlate with the actual head size in the image. Hence, we proposed a content

aware density map with the combination of the nearest neighbour algorithm and

unsupervised segmentation to generate the density map head masks. Furthermore,

we illustrated that simply modifying the method of density map generation can

improve the performance of state-of-the-art networks.

Finally, we tried to handle the difficult challenge that was present in the crowd

scene, perspective distortion. For this, we propose entirely new deep learning

architecture which employs a number of clever techniques to minimise the effect of

perspective distortion in crowd estimation and counting. We propose a deep learning

architecture with an effective way to capture multi-scale features by the use of

pyramid contextual modules in combination with scale aggregation and self-attention
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mechanism. In addition, we also proposed a novel loss function Switch loss function

to maximise the quality of the predicted density map and accuracy. The loss function

utilises a combination of multiple functions such as PSNR, SSIM, Root mean square

errors to achieve higher quality density map and accuracy. We also illustrated that

by using a variation of the above method we can achieve state-of-the-art results.

7.2 Future Work

There are diverse areas where future work can focus on, however handful of the

notable fields whereas immediate focus can go are discussed below:

• In chapter 3, we saw a difference between the network performance with grays

and RGB image as input. We observed that networks which utilised RGB

images were able to learn more from the generated data than the network

which used grayscale images. Therefore, additional research can be performed

to validate the observation by training more varieties of crowd counting

networks.

• Further research is needed on the proposed method described in chapter 4.

Although we have presented the core aspect of the IRT-PS method which

describes a method to capture the inter-reflection, a more detailed analysis

should be carried out to improve the scope of the proposed method. Additional

work can be done to evaluate the performance of the IRT-PS method and

identify other applications for the method.

• Likewise, in chapter 6, we proposed an ASVNet architecture for crowd counting.

Due to the presence of millions of parameters in the proposed network, the

AVSNet does not perform inference in real-time. Hence, further work can

be done on the research using the Generative Adversarial network (GAN)

to improve the quality of the density map as well as reduce the size of the

network and preserve or improve the model accuracy.
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• In the thesis, while we demonstrated that the synthetic data can elevate the

results of existing deep learning networks, it was also clear that the synthetic

data alone was not enough for deep learning models to generalise well. Crowd

events and large gatherings in current time are rather common and it does

not take much man power to capture such video. Nevertheless, it is difficult

to manually annotate such large data. Therefore, further research can be

carried out in methods which can leverage the existing deep learning model

to roughly estimate the crowd in the unlabelled data and allow humans to

fine tune the head localisation. This can not only save time but might also

help to annotate more accurate dataset.

• At present, evaluation of crowd estimation and counting are only carried out

in either single images or video. Techniques developed for one are generally

not well suited for the other purpose. Currently Deep Learning architectures

that are designed are primarily focused on particular dataset and usually are

not generalised enough to be used in crowd scenes. Therefore, developing the

approach which combines both image and video and general enough is not a

trivial task and more research can be done in this area.

• Another area where crowd analysis suffers is its performance in terms of

real-world applicability. As in most scenarios such as security and critical

application requires real-time analysis, further intuitive techniques should be

the priority for researchers to deliver real-time crowd analysis.
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"One finds limits by pushing them."

—Herbert Simon

A
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A.1 Synthetic data generation method

A.1.1 Synthetic crowd with real-world background

We can generate a variety of images with a proposed synthetic data generation

method discussed in chapter 3. For the following sample, we utilised publicly

available images of Place de la comédie montpellier as background with a varying

day and night time. In addition, the light in the scene can also be adjusted according

to the background which helps to generate realistic shadows.

125
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ethodFigure A.1: Sample image generated by synthetic data generation method. 1200 agents were simulated in the image.
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Figure A.7: As described in chapter 4, a 3D environment is set up for capturing photometric stereo images. Four spheres at the core of the
box represent lights and a green sphere at the centre represents a camera

Figure A.8: We captured four different images based on varying light and later used these images for 3D reconstruction.
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Algorithm 1: IRT-PS algorithms
Input: Images with inter-reflections i
Output: 3D mesh from images

1 Function ClassisPS(i):
/* Generate 3D surface S using images i */

2 S = NormalToDepth(i)
3 return S
4

/* Simulate 3D environment using techniques such as Spherical
domo projection. Requires Environment information EnvInfo
such as HDR images */

5 Function SetEnvironment(S, EnvInfo):
6 E = Simulate3DEnv(EnvInfo)

/* Add generated surface S inside the 3D environment E */
7 if S != none then
8 E += S

9 return E
10

/* capture the environment colour within 3D environment E */
11 Function CaptureInterReflection(E):
12 î = revertedRaytraying(E)
13 return î

14

/* Reduce the inter-reflection from original input image i

using new generated image î */
15 Function RemoveInterReflection(i, î):
16 i = i− î
17 return i

18

19 Function Main:
20 i = Images with inter-reflection
21 EnvInfo = Environment Texture map, Camera specification
22 Env = SetEnvironment(EnvInfo)

/* Set the total loop t */
23 t = 3
24 while t > 0 do
25 S = ClassisPS(i)
26 Env = SetEnvironment(S, EnvInfo)
27 î = CaptureInterReflection(Env)
28 i = RemoveInterReflection(i, î)
29 t = t− 1
30 return 0



134 A.1. Synthetic data generation method

Algorithm 2: Chan-Vese algorithms
Input: Head annotated images i
Output: Image segmentation

1 Function CalChanVese(i, µ λ1, λ2, t):
2 î = initValue(i,c1,c2)

/* It calculate the total energy of the current level */
3 energy = calEnergy(i, î,µ, λ1, 2)

/* Si is an image segmentation */
4 Si = î > 0
5 x = 0

/* The loop iterates till x < t */
6 while x < t do
7 î = calculateVariation(i, î, µ, λ1,λ2)
8 î = resetLevelSet(̂i)
9 Si = î > 0

10 energy = calEnergy(i, î, µ, λ1, 2)
11 x =x + 1
12 return Si

13

14 Function Main:
15 i = Greyscale image
16 G = 5x5 pixel centered to head
17 c1 = Initial average pixels intensity inside G region
18 c2 = Initial average pixels intensity of square box G which extends to

the nearest head point
/* Parameters are set according to (T. F. Chan et al. 2001)

*/
19

20 λ1 = 1
21 λ2 = 1
22 µ = 0

/* User defined parameter; Total iteration to calculate the
segmentation */

23

24 t = 500
25 segmentation = CalChanVese(i, µ λ1, λ2, t)
26 return 0



"The science of today is the technology of tomorrow"

— Edward Teller
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