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Abstract 

Background: Rapid and accurate diagnosis of paediatric tuberculosis (TB) is key to manage the disease and to 
control and prevent its transmission. Collection of quality sputum samples without invasion methods from paediatrics 
(age < 16 years) with presumptive pulmonary tuberculosis (PTB) remains a challenge. Thus, the aim of this meta-
analysis was to assess the overall accuracy of a real-time polymerase chain reaction (RT-PCR)-based assay, for routine 
diagnosis of MTB in different samples from paediatrics with active pulmonary and extra-pulmonary tuberculosis using 
mycobacterial culture as the gold standard in clinical microbiology laboratories.

Methods: We conducted a systematic review and meta-analysis to examine the diagnostic test accuracy of RT-PCR 
based assay for the detection of MTB in paediatric clinical samples.

A systematic literature search was performed for publications in any language. MEDLINE via PubMed, EMBASE, and 
Web of Science were among 9 bibliographic databases searched from August 2019 until November 2020. Bivariate 
random-effects model of meta-analysis were performed to generate pooled summary estimates (95% CIs) for overall 
accuracy of RT-PCR based assay compared to mycobacterial culture as the reference standard.

Results: Of the 1592 candidate studies, twenty-one eligible studies met our inclusion criteria. In total, the review and 
meta-analysis included 5536 (3209 PTB and 2327 EPTB). Summary estimates for pulmonary TB (11 studies) were as 
follows: sensitivity 56 (95% CI 51–62), specificity 97 (95% CI 96–98) and summary estimates for extra-pulmonary TB (10 
studies) were as follows: sensitivity 87 (95% CI 82-91)) specificity 100 (95% CI 99–100). There was significant heteroge-
neity in sensitivity and specificity among the enrolled studies (p < 0.001).

Conclusions: Our results suggested that the RT-PCR based assay could be a useful test for the diagnosis of paedi-
atrics TB with high sensitivity and specificity in low-income/high-burden and upper medium income/low-burden 
settings. From the study, RT-PCR assay demonstrated a high degree of sensitivity for extra-pulmonary TB and good 
sensitivity for pulmonary TB which is an important factor in achieving effective global control and for patient manage-
ment in terms of initiating early and appropriate anti-tubercular therapy.

Systematic review registration: PROSPERO CRD42 01810 4052

Keywords: Paediatric Tuberculosis, Mycobacterium tuberculosis, Real-time polymerase chain reaction-based assay, 
Pulmonary samples, Extra-pulmonary samples, Systematic review, Meta-analysis
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Background
Paediatric tuberculosis (PaeTB) diagnosis presents a 
major challenge [1]. Tuberculosis (TB), an infectious dis-
ease caused by the bacillus Mycobacterium tuberculosis 
(MTB), is spread from person to person predominantly 
through an airborne route and remains a major global 
health problem as it causes ill-health among millions of 
people [2]. TB is the leading cause of death from a single 
infectious agent (ranking above HIV/AIDS) and about a 
quarter of the world’s population is infected with MTB 
[3]. According to the World Health Organization, glob-
ally, an estimated 10.0 million (range, 8.9–11.0 million) 
people fell ill with TB in 2019, a number that has been 
declining very slowly in recent years. However, World 
Health Organization (WHO) estimates that annually, 1.2 
million children have TB disease and many more harbour 
a latent form of infection [3]. The disease typically affects 
the lungs (pulmonary TB) but can also affect other sites 
(extra-pulmonary TB).

This review is important because diagnosis of PaeTB 
disease in children can be challenging as MTB can only 
be detected in biologic samples from fewer than 50% of 
children with TB [4, 5]. MTB isolation is difficult due to 
the paucibacillary nature of the disease hence diagno-
sis often relies on clinical, epidemiological, radiological, 
and tuberculin skin test. TB in children is often missed 
or overlooked due to non-specific symptoms and or non-
specific diagnostic tests [1, 6]. Ninety-four percent of 
children with TB are treated empirically in TB high-bur-
den countries with non-specific diagnostic tests [7].

The main challenges and issues which this review 
aimed to address are lack of accurate estimates due to 
under-recognition, challenges in diagnosis and non-exist-
ent of an accurate diagnostic test to confirm TB in chil-
dren [8]. The lack of a simple and effective diagnostic test 
that can be utilised in resource-limited settings, where 
the infection is endemic, has hindered its control [9]. It 
is rarely bacteriologically confirmed [10]. Young children 
are at particular risk of developing severe, often fatal, or 
life-long disabling forms of TB. In 2019, approximately 
230,000 children died of TB, among whom 52,000 were 
living with HIV (http:// www. who. int/ tb/ publi catio ns/ 
global_ report/ en). PaeTB remains a major cause of mor-
bidity and mortality globally, particularly in developing 
countries. Most deaths from PaeTB could be prevented 
with early diagnosis and appropriate treatment [11]. The 
actual burden of TB in children is likely higher given 
the challenge in diagnosing childhood TB in many low-
income countries where the diagnosis of paediatric TB is 
solely based on clinical evidence and smear microscopy 
[10]. These are more difficult in paediatric population as 
they are unable to produce deep cough for adequate spu-
tum [12]. Gastric aspirate as a sample has the drawbacks 

that it is minimally invasive and requires fasting state 
[13]. However, stool as a sample for intrathoracic tuber-
culosis has been explored on the premise that children 
usually swallow their sputum and it is convenient to 
obtain, non-invasive compared to sputum or gastric aspi-
rate [14].

Latent tuberculosis infection (LTBI) is defined as a 
state of persistent immune response to stimulation by 
MTB antigens with no evidence of clinically manifest 
active TB [15]. It is estimated that the lifetime risk of an 
individual with LTBI for progression to active TB disease 
is 5–10% over their lifetime [16]. This risk is particu-
larly high among children under the age of 5 years [17]. 
Tuberculin skin test (TST) or interferon-gamma release 
assay (IGRA) can be used to test for LTBI, as there is no 
‘gold standard’ test for LTBI [18]. It is only a marker of 
exposure rather than disease [1]. Establishing an accu-
rate diagnosis of PaeTB in children can be more difficult 
than adult TB, because of the challenge children have in 
expectorating good-quality sputum or absence of lung 
parenchymal disease as in primary complex [19]. In chil-
dren, culture methods have a greater, yet highly variable, 
sensitivity which improve diagnosis but takes between 2 
and 8 weeks in most cases and the sputum sample lacks 
representative of lower respiratory tract [20, 21]. Other 
diagnostic approaches are based on clinical presenta-
tions, imperfect tools such as radiology which is subject 
to inter-observer variability to detect radiographic abnor-
malities, contact history, and tuberculin skin test, all of 
which are of low specificity [22].

Given the difficulty in diagnosing TB disease in pae-
diatrics this systematic review assesses all the available 
published primary research studies to provide summary 
estimates to contribute to rapid and accurate diagnosis 
of PaeTB using RT-PCR based assays which can improve 
diagnostic accuracy for diagnosing MTB infection in 
paediatrics with tuberculosis compared to the mycobac-
terial culture-based assays. RT-PCR assays are nucleic 
acid amplification tests (NAATs), which was developed 
in 1983, and are now a common tool for the rapid diag-
nosis of many infectious diseases, including PaeTB [23–
26]. The assay has much better accuracy than sputum 
smear microscopy [27]. Due to advances in technologies 
over the past decades, the TB diagnostics pipeline has 
improved tremendously showing promise [28, 29]. RT-
PCR assay is commonly used to determine whether DNA 
or a unique sequence of the MTB is present in a sample 
and detects amplified DNA as the reaction progresses in 
real time [30]. Xpert MTB/RIF (Xpert) (Cepheid, USA), 
an automated cartridge-based RT-PCR assay, is cur-
rently recommended by the World Health Organization 
(WHO) as the initial diagnostic test in presumptive PTB 
cases for adults and children [31].

http://www.who.int/tb/publications/global_report/en
http://www.who.int/tb/publications/global_report/en
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The outputs of this systematic review will serve as a 
resource for decision-makers, providing government 
stakeholders and healthcare practitioners with the tools 
to make evidence-based decisions for PaeTB diagnosis 
and control. It summarises current evidence-based clini-
cal practice that can help to develop future guidelines 
and healthcare policy when choosing the most appropri-
ate tool for rapid and accurate detection of MTB by RT-
PCR assay in paediatric clinical samples on routine basis.

Methods
This review was registered and is in accord with the 
standardised written protocol (systematic review reg-
istration with the International Prospective Register of 
Systematic Reviews (PROSPERO) database PROSPERO 
CRD42018104052) that followed the PRISMA-P (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses Protocols) statement guidelines [32]. Additional 
file 1 shows the PRISMA checklist. The published proto-
col can be accessed on https:// syste matic revie wsjou rnal. 
biome dcent ral. com/ artic les/ 10. 1186/ s13643- 019- 1137-
y. Quality of included studies was assessed by Quality 
Assessment of Diagnostic Accuracy Studies-2 (QUA-
DAS-2) [33]. Institutional ethical review approval was 
not needed for this review.

Strategy
Electronic searches
Search terms (“tuberculosis”, mycobacterium tubercu-
losis, extrapulmonary tuberculosis, pulmonary tuber-
culosis, paediatric tuberculosis), “Real-time polymerase 
chain reaction”, real-time pcr, real-time pcr assay, “rt-pcr”, 
“Nucleic Acid Amplification Test”, “NAAT”, “culture-
based media”, culture-based assay, “liquid media”, “solid 
media”, “paediatric”, “paediatrics”, “children”) were used 
to generate a list of primary studies in any language with 
no restriction on date of publication, and publication 
status (see Additional file 2 for search terms). There was 
no restriction regarding the language, date of publica-
tion and publication status. Studies that recruited chil-
dren less than 16 years of age being investigated for MTB 
infection using RT-PCR assay across lower- and middle-
income countries (LMICs), and Upper middle-income 
countries (UMICs) accompanied by mycobacteriologi-
cal culture investigation as the reference standard were 
included to achieve a more reliable estimate of diagnos-
tic accuracy which is important to ensure that the pro-
cess of identifying studies is as thorough and unbiased as 
possible.

Two investigators (EB, BC) independently and sys-
tematically carried out the search. Searches using elec-
tronic bibliographic databases (MEDLINE via PubMed, 
EMBASE, LILACS, BIOSIS Citation Index, Web of 

Science, SCOPUS, ISI Web of Knowledge, Cochrane 
Infectious Diseases Group Specialised Register (CIDG 
SR), Cochrane Registry of Diagnostic Studies, National 
Institute for Health Research, PROSPERO, Google 
Scholar Turning Research into Practice (TRIP) took place 
in August 2019 and was updated in November 2020. 
The MEDLINE search strategy is outlined in Additional 
file 2. The MEDLINE search was imported to EMBASE, 
Cochrane Infectious Diseases Group Specialised Regis-
ter and other databases to identify additional records [34, 
35]. The search strategy for each database was validated 
by a librarian information specialist familiar with the 
topic.

Attempts were made to avoid missing relevant studies 
by searching other sources such as reference lists of rel-
evant reviews, selected studies, portal of the WHO Inter-
national Clinical Trials Registry Platform (www. who. int/ 
trial search) to identify ongoing trials, as well as StopTB 
Partnership’s New Diagnostics Working Group (www. 
stoptb. org/ wg/ new_ diagn ostics/), the World Health 
Organization and Centers for Disease Control and Pre-
vention websites, and proceedings of the International 
Union Against Tuberculosis and Lung disease (UNION) 
conference. A search of grey literature including con-
ference proceedings (Conference Proceedings Cita-
tion Index–Science (CPCI-S)), Dissertations and Theses 
(www. proqu est. com), and expert information was sought 
and added to our resource material.

Besides full articles, abstracts, and letters to the editor 
with sample sizes > 20 was also considered for inclusion. 
There was no language limitation to the search. Abstracts 
or articles in languages other than English were screened 
using ‘Google Translator’.

Inclusion and exclusion criteria
Study designs such as observational, cross-sectional stud-
ies, cohort studies (prospective and retrospective) and 
case-control designs for the detection of MTB from pae-
diatrics clinical samples of age < 16 years were eligible for 
inclusion if the studies (1) compared RT-PCR based assay 
to a reference/gold standard method— MTB culture-
based (either liquid or solid) assay, (2) described original 
research, (3) reported total number of patients tested 
and positive/negative results that allowed calculation of 
true positives (TP), true negatives (TN), false positives 
(FP) and false negatives (FN). Studies were excluded if (1) 
RT-PCR assay was not used in the study, (2) if age of par-
ticipants is > 16 years, (3) all samples were not tested by 
reference/gold standard test—MTB culture-based (either 
liquid or solid) assay, (4) reference test was a combination 
of greater than one diagnostic test, (5) it included animal 
studies, (6) RT-PCR based assay was used for detecting 
non-tuberculosis mycobacteria, (7) RT-PCR based assay 

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1137-y
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1137-y
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1137-y
http://www.who.int/trialsearch
http://www.who.int/trialsearch
http://www.stoptb.org/wg/new_diagnostics/)
http://www.stoptb.org/wg/new_diagnostics/)
http://www.proquest.com/
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was used for detecting MTB from clinical isolates and 
not the pathological specimens/samples and (8) possible 
duplicate publication, when an author published more 
than one study. The existence of overlapping study popu-
lations was ascertained by checking sample recruitment 
sites and/or periods. The article reporting on the largest 
number of samples was included in our study.

Selection of studies
Full-text articles were screened independently (by EB and 
BC), using a PRISMA flow chart [32] for eligibility for 
use in the study to minimise bias in selection. Any disa-
greements were resolved through discussion and where 
needed, by a third reviewer (BO). Any rejected studies 
were documented.

Data extraction
Data extraction were independently carried out by EB 
and BC from each selected study using a predetermined 
list of categories/characteristics: participants/popula-
tion, country, index test, reference test, disease and target 
sequence for detection of MTB DNA in PaeTB (Table 1).

Assessment of study quality
The methodological quality for the included studies was 
assessed independently (EB and BC) according to the 
four domains (patient selection, index test, reference 
standard, and flow and timing) of the QUADAS-2 tool 
[33]. The study QUADAS-2 quality criteria are given in 
Additional file 3.

Data synthesis and meta‑analysis
We computed measures of test accuracy for each of 
the included studies using standard methods recom-
mended for meta-analysis of diagnostic studies: sen-
sitivity, specificity, positive likelihood ratio (PLR), 
negative likelihood ratio (NLR), diagnostic odds ratio 
(DOR) and 95% confidence intervals (CI) [56]. The 2 
× 2 data (TP, FP, TN and FN) were extracted directly 
from the included studies. Where this information 
was not available, values were calculated from the 
data provided in the article. We used a DOR using the 
DerSimonian-Laird random-effect model to calculate 
and assess the overall accuracy. This model accounts 
for both within-study variability (random error) and 
between-study variability (heterogeneity) along with 
the area under the summary receiver operating char-
acteristic (SROC) curve using the bivariate model [57, 
58]. The bivariate model considers potential threshold 
effects and the correlation between binary tests (sen-
sitivity and specificity). These measures were pooled 
using the random-effects model [57, 58]. Each of the 
included studies used in the meta-analysis contributed 

a pair of numbers: sensitivity and specificity. Since 
these measures are correlated, we summarised their 
joint distribution using a SROC curve. The SROC 
curve presents a global summary of test performance 
and shows the trade-off between sensitivity and speci-
ficity. A symmetric curve suggests that the variability 
in accuracy between studies is explained, in part, by 
differences in thresholds used by the studies. The area 
under the SROC curve is a global measure of overall 
performance of the test. An area under the curve value 
of 1 indicates perfect discriminatory ability of the test, 
while an area under the curve value of 0.5 means that 
the test does not have discriminating ability [57, 58].

Data were analysed using Meta-DiSC (version 1.4), 
Reviewing Manager ver. 5.4 (Cochrane Collaboration, 
Oxford, UK) [58, 59]. The data were displayed graphically 
on forest plots and SROC plots. The SROC curve was fit-
ted using the Littenberg-Moses method [60].

We did not evaluate the publication bias because this is 
not usually recommended in the meta-analysis for diag-
nostic test accuracy [61]. Generally, a diagnostic accuracy 
study does not test a hypothesis; therefore, there is no p 
value for authors and publishers that may influence deci-
sions about publication which are based on the statistical 
significance of the results [61, 62].

Investigations of heterogeneity
We investigated heterogeneity because of its critical 
importance (1) to understand the possible factors that 
influence accuracy estimates and (2) to evaluate the appro-
priateness of statistical pooling of accuracy estimates using 
random-effects meta-analysis to generate sensitivity and 
specificity with 95% CIs from various studies [62].

The heterogeneities among the included studies were 
assessed visually using forest plots and SROC curves with 
95% prediction regions and statistically with chi-squared 
(χ2) and using I-squared (I2) statistics with the following 
interpretation: I2 = 0, no heterogeneity; 0 < I2 < 25, mild 
heterogeneity; 25 ≤ I2 < 50, moderate heterogeneity; 50 ≤ 
I2 < 75, strong heterogeneity; 75 ≤ I2 < 90, considerable 
heterogeneity and 90 ≤ I2, extreme heterogeneity [61, 63].

Source of heterogeneity was investigated using strati-
fied (subgroup) analyses. The following factors were 
specified a priori as potential sources of heterogeneity: 
impact of RT-PCR based assays on lower- and middle 
-income countries (LMICs) versus Upper middle-income 
countries (UMICs).

Result
Study characteristics
Our search identified 1592 potentially relevant cita-
tions, of which 58 studies were selected based on 
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relevance to the study topic. An additional 13 stud-
ies were identified from grey literature and references 
of full-text articles. After screening all the titles and 
abstracts, removing the duplicates and excluding the 
ineligible studies, 20 articles (5536 samples/patients) 

[36–55] were selected for full-text review and meta-
analysis (Fig. 1).

Eleven [36, 39, 40, 44, 46, 48–50, 52, 54, 55] reported 
detection of pulmonary TB (PTB), 10 [36–38, 41–43, 
45, 47, 51, 53] reported detection of extra-pulmonary 

Table 1 Characteristics of the included studies

Key: LJ Löwenstein-Jensen, Middlebrook 7H9 broth liquid growth medium, Middlebrook 7H11 Solid medium, MGIT mycobacterium growth indicator tube, PTB 
pulmonary TB, EPTB extra-pulmonary TB, n reference list number, L lower- and middle-income countries, U upper middle-income countries

Author year
(n)

Country Study design Total number of 
samples (N)

Reference test:
culture

Index test:
RT‑PCR

Target sequence

PTB EPTB

Bates et al. (2013) 
[36]

Zambia-(L) Prospective-
descriptive

142 Liquid culture 
(MGIT)

RT-PCR Xpert MTB/
RIF

rpoB probe

Bates et al. (2013) 
[36]

Zambia-(L) Prospective-
descriptive

788 Liquid culture 
(MGIT)

RT-PCR Xpert MTB/
RIF

rpoB probe

Chipinduro et al. 
(2017) [37]

Zimbabwe-(L) A cross-sectional 222 (stool) LJ RT-PCR Xpert MTB/
RIF

rpoB probe

El Khechine et al. 
(2009)
[38]

France-(U) Diagnostic case-
control

– 134 BACTEC 9000 MB
LJ

RT-PCR(MX3000) IS6110 gene

Gous et al. (2015) 
[39]

South Africa-(U) Prospective 345 – Liquid culture 
(MGIT)

RT-PCR Xpert MTB/
RIF

rpoB probe

LaCourse et al. 
(2014) [40]

Malawi-(L) Cross-sectional 
study

300 – Bactec MGIT, BD) RT-PCR Xpert MTB/
RIF

rpoB probe

Memon et al. 
(2018) [41]

India-(L) Diagnostic accu-
racy study

– 100 Bactec MGIT 960 RT-PCR Xpert MTB/
RIF

rpoB probe

Mesman et al. 
(2019) [42]

Peru-(U) Cohort study 259(stool) BACTEC 9000 MB
LJ

TruTip Mtb DNA IS6110 real-time PCR

Nhu et al. (2013) 
[43]

Vietnam-(L) Prospective 96 MGIT, Becton 
Dickinson)

RT-PCR Xpert MTB/
RIF

rpoB probe

Nicol et al. (2011) 
[44]

South Africa-(U) Prospective-
descriptive

452 – Liquid culture RT-PCR Xpert MTB/
RIF

rpoB probe

Nicol et al. (2013) 
[45]

South Africa-(U) Prospective – 115 Bactec MGIT 960 RT-PCR Xpert MTB/
RIF

rpoB probe

Nicol et al. (2018) 
[46]

South Africa-(U) Cohort study 367 – MGIT, Becton 
Dickinson)

RT-PCR Xpert MTB/
RIF

rpoB probe

Oberhelman et al. 
(2010) [47]

Peru-(U) Prospective case-
control study

218 (stool, GA, etc.) LJ culture hemi-nested 
IS6110 PCR

IS6110 PCR

Qing-Qin Yin et al. 
(2014) [48]

China-(U) Prospective 255 Solid (LJ) and Liq-
uid culture (Bactec 
MGIT 960

RT-PCR Xpert MTB/
RIF

rpoB probe

Rachow et al. 
(2012) [49]

Tanzania-(L) Prospective cohort 
study

164 – Solid (LJ) and Liq-
uid culture (Bactec 
MGIT 960

RT-PCR Xpert MTB/
RIF

rpoB probe

Sekadde et al. 
(2013) [50]

Uganda-(L) Cross-sectional 
diagnostic study

235 – Solid (LJ) and Liq-
uid culture (Bactec 
MGIT 960

RT-PCR Xpert MTB/
RIF

rpoB probe

Walters et al. (2017) 
[51]

South Africa-(U) Prospective 379 (stool) BACTEC 9000 MB RT-PCR Xpert MTB/
RIF

rpoB probe

Wang et al. (2013) 
[52]

China-(U) Retrospective 30 – Bact/Alert 3D LightCycler® 480 
(Roche)

Wolf et al. (2008) 
[53]

Peru-(U) Diagnostic accu-
racy study

– 16 (6+) (stool) hemi-nested 
IS6110 PCR

IS6110 PCR

Zar et al. (2012) [54] South Africa-(U) Prospective 535 – Liquid culture 
(MGIT)

RT-PCR Xpert MTB/
RIF

rpoB probe

Zar et al. (2013) [55] South Africa-(U) Prospective study 384 – Bactec MGIT 960 RT-PCR Xpert MTB/
RIF

rpoB probe
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TB (EPTB) and 1 [36] reported on both types of clinical 
sample. Table  1 summarises the main characteristics 
of the included studies. In total, the review and meta-
analysis included 5536 (3209 PTB and 2327 EPTB) 
clinical samples obtained from 12 countries with high, 
moderate and low prevalence of PaedTB. There were 12 
studies from the developed and eight studies from the 
developing countries. The studies included in the analy-
sis were conducted in 11 different countries. Most stud-
ies (8 out of 20, 40%) were carried out prospectively 
[36, 39, 43–45, 48, 49, 51].

Studies included paediatric patients with infections 
identified in primary, secondary and tertiary healthcare 
settings (see Table  1). Sixteen studies performed RT-
PCR based assay using Xpert MTB/RIF on both paedi-
atrics pulmonary and extra-pulmonary clinical samples 
[36, 37, 39–41, 43–46, 48–52, 54, 55] while 4 stud-
ies used other types of RT-PCR based assays to detect 
MTB from paediatrics extra-pulmonary (stool and 

gastric aspirates samples [36, 41, 47, 60]. Details of the 
RT-PCR based assays used are summarised in Table 1. 
The overall study quality assessed by the QUADAS-2 
tool showed a low risk of bias except for studies using a 
case-control design (see Figs. 2 and 3).

The methodological quality of studies (assessed by the 
QUADAS-2 tool) was generally high, with 37 of the stud-
ies meeting all four domains of the criteria (see Figs.  2 
and 3). All studies used assays that are based on RT-PCR 
principle as index test and culture-based assay as the ref-
erence test.

Meta‑analysis
Results as 95% CI values were as follows: overall sensitiv-
ity 56 (95% CI 51–62) and 87 (95% CI 82–91); 97 (95% 
CI 96–98) and 100 (95% CI 99–100) the values and confi-
dence intervals for specificity are for PTB and EPTB sam-
ples, respectively. AUC was 0.98 and 0.99 for PTB and 
EPTB samples, respectively.

Fig. 1 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
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The summary estimates of PTB for heterogeneity 
with chi-squared (χ2) using 95% CI for sensitivity, spec-
ificity, PLR, NLR and DOR were 151.22, 277.67, 205.09, 
99.77 and 36.66 respectively, and p = 0 indicating sig-
nificant heterogeneity across studies. I2 was between 
72.7 and 93.4% showing significant heterogeneity. The 
summary estimates of EPTB heterogeneity with chi-
squared (χ2) using 95% CI for sensitivity, specificity, 
PLR, NLR and DOR were 47.45, 19.19, 11.74, 29.44, 
and 13.02 respectively, and p < 0.5 indicating signifi-
cant heterogeneity across studies. I2 was between 30.90 
and 81.00% showing significant heterogeneity. There 
were considerable heterogeneities (see Table 2, Figs. 4, 
5 and 6) in these data.

Subgroup analyses by impact of RT‑PCR based assay 
on countries
Subgroup analyses by Impact of RT-PCR based assays 
on lower- and middle-income countries (LMICs) versus 
upper middle-income countries (UMICs). We assessed 
sources of data to these graders.

1. With LMICs (Table  1) as the RT-PCR based assay 
(8 studies, 2,047 specimens), the results were as follows: 
sensitivity 65 (95% CI 58–72), specificity 99 (95% CI, 
99–99) and AUC 0.99. A test with perfect discrimina-
tion has a ROC curve that passes through the upper left 
corner (100% sensitivity, 100% specificity). The closer the 
ROC curve to the upper left corner, the higher the over-
all accuracy of the test. The summary estimates of per-
formance of RT-PCR based assay in LMICs heterogeneity 
with chi-squared (χ2) using 95% CI for sensitivity, speci-
ficity, PLR, NLR and DOR were 44.28, 10.46, 5.97, 29.54 
and 11.25, respectively, and p = < 0.001–0.5 indicating 
significant heterogeneity across studies. I 2 was between 
37.8 and 84.20% showing significant heterogeneity. The 
results for subgroup analysis by RT-PCR based assay in 
LMICs are as presented in Table 3 and Additional file 4 
and show considerable heterogeneity.

2. With UMICs (Table  1) as the RT-PCR based assay 
(12 studies, 3489 specimens), the results were as fol-
lows: sensitivity 68 (95% CI 63–73), specificity 97 (95% 
CI 96–98) and AUC 0.99. A test with perfect discrimina-
tion has a ROC curve that passes through the upper left 
corner (100% sensitivity, 100% specificity). The closer the 
ROC curve to the upper left corner, the higher the overall 
accuracy of the test. The summary estimates of perfor-
mance of RT-PCR based assay in UMICs heterogeneity 
with chi-squared (χ2) using 95% CI for sensitivity, speci-
ficity, PLR, NLR and DOR were 197.71, 291.40, 247.81, 
228.53 and 50.80, respectively, and p = < 0.001 indicating 
significant heterogeneity across studies. I2 was between 
37.8 and 84.20% showing significant heterogeneity. The 
results for subgroup analysis by RT-PCR based assay in 
UMICs are as presented in Table 3 and Additional file 5 
and show considerable heterogeneity.

Discussion
Tuberculosis is a global health threat, and early and accu-
rate diagnosis is crucial for preventing morbidity and 
mortality. Various methods are employed for the diagno-
sis of TB such as smear microscopy, culture identification, 
histopathology, tuberculin skin test (TST), serological 
assays, interferon-gamma release assays (IGRAs) and 
nucleic acid amplification (NAA) tests [64, 65]. The main 
advantages of RT-PCR based assay are shortened turn-
a-round time, quantification of bacterial load and auto-
mation of the procedure that reduces hands-on time and 
decreased risk of cross-contamination [66, 67].

This review provides evidence on the paediatric tubercu-
losis diagnosis using Mycobacterium tuberculosis RT-PCR 
based assay for the rapid and accurate detection of MTB 
from clinical samples. To our knowledge, this is the first 
systematic review and meta-analysis for ascertaining the 
advantage of RT-PCR based assays for the detection of pae-
diatrics MTB from both pulmonary and extra-pulmonary 
clinical samples. This systematic review and meta-analysis 

Fig. 2 Risk of bias and applicability concerns graph: review authors’ judgements about each domain presented as percentages across included 
studies
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are broader in scope and included other types of RT-PCR 
based assay other than Xpert MTB/RIF than a previous 
meta-analysis on this topic [68] and the inclusion of data 
from low-, middle- and high-income countries.

In this study, results indicated that RT-PCR based assay 
produces consistent results with high specificity of 97 
(95% CI 96–98), PLR of 70.73 (8.55–585.40) and NLR of 
0.43 (0.28–0.66) for PTB, whereas specificity, PLR and 

Fig. 3 Risk of bias and applicability concerns summary: review authors’ judgements about each domain for each included study
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Table 2 Summary of statistical results for pulmonary tuberculosis (PTB) and extra-pulmonary tuberculosis (EPTB) clinical samples

a Random effects model, χ2 chi-squared, d.f. degree of freedom, I2 I-squared. b number of specimens, n number of studies, CI confidence interval, AUC  area under 
receiver operating characteristics curve, PTB pulmonary tuberculosis, EPTB extra-pulmonary tuberculosis

Test property Summary of measure test  accuracya 
(95%)

Test of heterogeneity

PTB
(n = 11; b3209)
AUC = 0.98

χ2
(d.f. = 10)

l2 p value

Sensitivity 56(51–62) 151.22 93.4 < 0.001

Specificity 97(96–98) 277.67 96.4 < 0.001

Positive likelihood ratio (PLR) 70.73 (8.55–585.40) 205.09 95.1 < 0.001

Negative likelihood ratio (PLR) 0.43 (0.28–0.66) 99.77 90.0 < 0.001

Diagnostic odd ratio (DOR) 193.06 (51.21–727.83) 36.66 72.7 < 0.001

EPTB
(n = 10; b 2327)
AUC=0.99

X2

(d.f. = 9)
l2 p value

Sensitivity 87(82–91) 47.45 81.00 < 0.001

Specificity 100(99–100) 19.19 53.10 0.0236

Positive likelihood ratio (PLR) 111.91(53.97–232.04) 11.74 23.40 0.2282

Negative likelihood ratio (PLR) 0.15 (0.07–0.30) 29.44 69.40 0.0005

Diagnostic odd ratio (DOR) 1337.84 (441.92–4050.12) 13.02 30.90 0.1610

Fig. 4 Forest plot of estimates of RT-PCR assay for pulmonary tuberculosis (PTB and EPTB). TP = true positive, FP = false positive, FN = false 
negative, TN = true negative. Between brackets are the 95% CI of sensitivity and specificity. The figure shows the estimated sensitivity and 
specificity of the study (blue squares) and its 95% CI (black horizontal line)
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NLR were 100 (95% CI 99–100), 111.91 (53.97–232.04) 
and 0.15 (0.07–0.30), respectively, for EPTB. A PLR of 71 
suggests that patients with a pulmonary MTB infection 
have a 71-fold higher chance of being RT-PCR-based test 
positive compared with patients without the infection. 
This ratio suggests a potential role for RT-PCR assay in 
confirming (ruling in) an MTB infection in paediatrics.

The summary estimates of sensitivity, however, were 
56 (95% CI 51–62) and 87 (95% CI 82–91) for pulmo-
nary and extra-pulmonary samples, respectively, higher 
in extra-pulmonary than pulmonary TB possibly due to 
quality and paucity of tubercle bacilli in paediatrics spu-
tum samples. Sensitivity estimates were more variable 

than specificity. According to the AUC and the DOR (see 
Table 2), diagnostic accuracy of RT-PCR based assay was 
excellent for the extra-pulmonary specimens over pul-
monary and these results are acceptable for clinical prac-
tice (see Table 2).

A RT-PCR based assay for the detection of MTB has a 
high sensitivity and specificity. The PLR and NLR showed 
that RT-PCR may serve as a suitable method when con-
firming or excluding TB. It was anticipated that there 
would be some degree of heterogeneity of diagnostic 
measures across studies due to differences in sample size, 
RT-PCR based assay type, reference test of mycobacterial 
culture (either liquid or solid or both) and TB prevalence. 

Fig. 5 Forest plot of estimates of RT-PCR assay for pulmonary tuberculosis (PTB). TP = true positive, FP = false positive, FN = false negative, TN = 
true negative. Between brackets are the 95% CI of sensitivity and specificity. The figure shows the estimated sensitivity and specificity of the study 
(blue squares) and its 95% CI (black horizontal line)

Fig. 6 Forest plot of estimates of RT-PCR assay for extra-pulmonary tuberculosis (EPTB). TP = true positive, FP = false positive, FN = false negative, 
TN = true negative. Between brackets are the 95% CI of sensitivity and specificity. The figure shows the estimated sensitivity and specificity of the 
study (blue squares) and its 95% CI (black horizontal line)
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High heterogeneity was found among studies (as defined 
by the χ2 and I2 statistics) for all measures. Subgroup 
analyses were therefore performed pre-specified to inves-
tigate potential sources of the observed between-study 
heterogeneity. It was assumed that the disparity was likely 
a result of the differences in the type of index test (RT-
PCR assay) or target sequence gene of MTB used or the 
income categories of countries in the included studies.

In the current study, a limited number of subgroup 
analyses were conducted by comparing the impact of 
RT-PCR based assays on categories of lower- and middle-
income countries (LMICs) versus upper middle-income 
countries (UMICs) to reduce the degree of study het-
erogeneity. Heterogeneity assessed by χ2 and I2 statistics 
between these subgroups was generally not very strong 
(see Table 3). However, significant heterogeneity of diag-
nostic accuracy measures was expected and was, indeed, 
found among studies and the random-effects model par-
tially accounted for the between-study heterogeneity.

Some degree of heterogeneity of diagnostic measures 
across studies was found due to differences in sample 
size, sample type, study design, target genes and clinical 
settings of the participants. Thus, it is possible that when 
evaluating RT-PCR assays using a more sensitive index 
test can lead to overestimation of the assay’s sensitivity.

Strengths and weaknesses of the review
An important strength of this study was its comprehen-
sive search strategy using several search engines to iden-
tify any unpublished studies in the form of conference 

abstracts or proceedings. Screening, study selection, 
quality assessment and data extraction were under-
taken independently and reproducibly by two reviewers, 
as such human error should be limited. The problem of 
missing data was reduced by contacting the authors of 
the publications. In accordance with the study guide-
lines, potential publication bias and heterogeneity was 
explored [69, 70]. Random-effects analysis and subgroup 
analyses in anticipation of heterogeneity were used. Eval-
uation of level of publication bias was not formally car-
ried out in the study; however, the risk of this bias was 
reduced by not restricting the search to any language. 
Another strength of this review is that RT-PCR based 
assay has comparably high sensitivity with paucibacil-
lary specimens (EPTB) and high throughput capacities 
particularly in paediatrics where getting quality sputum 
samples is difficult.

This review does, however, have some limitations in 
assessing issues such as cost-effectiveness and the net 
effect of RT-PCR assay on clinical care and patient out-
comes. Also, because of poor reporting, an analysis of the 
effect of factors such as laboratory infrastructure was not 
possible. Secondly, empirical evidence suggests that stud-
ies with significant or favourable results are more likely 
to be published than those with non-significant or unfa-
vourable results [71]. In addition, literature search strate-
gies are inherently imperfect, and studies can be missed, 
it is therefore possible that a proportion of such studies 
with non-significant or unfavourable results may have 
been missed. Other limitations are conflicts of interest of 

Table 3 Subgroup analyses by impact of RT-PCR based assays on lower- and middle-income countries (LMICs) versus upper middle-
income countries (UMICs). We will assess sources of data to these graders

a Random effects model, χ2 chi-squared, d.f. degree of freedom, I2 I-squared, b number of specimens, n number of studies, CI confidence interval, AUC  area under 
receiver operating characteristics curve, PTB pulmonary tuberculosis, EPTB extra-pulmonary tuberculosis

Test property Summary of measure test  accuracya 
(95%)

Test of heterogeneity

Lower‑MICs
(n = 8; b 2047)
AUC = 0.99

χ2
(d.f. = 7)

l2 p value

Sensitivity 65 (58–72) 44.28 84.20 < 0.001

Specificity 99 (99–99 10.46 33.10 0.1639

Positive likelihood ratio (PLR) 86.61 (46.72–160.53) 5.97 0.0 0.5432

Negative likelihood ratio (NLR) 0.367 0.233–0.578 29.54 76.30 < 0.001

Diagnostic odd ratio (DOR) 311.43 (106.76–908.51) 11.25 37.8 0.1280

Upper‑MICs
(n = 12; b 3487)
AUC = 0.99

χ2
(d.f. = 11)

l2 p value

Sensitivity 68 (63–73) 197.71 94.40 < 0.001

Specificity 97 (96–98) 291.40 96.20 < 0.001

Positive likelihood ratio (PLR) 80.90 (10.31–634.9) 247.81 95.6 < 0.001

Negative likelihood ratio (NLR) 0.20 (0.09–0.42) 228.53 95.2 < 0.001

Diagnostic odd ratio (DOR) 522.72 (107.04–2552.8) 50.80 78.30 < 0.001
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study authors particularly from industry supported stud-
ies and fully keeping up to date with the primary studies 
in this rapidly evolving field. Two of the included stud-
ies in our analysis were case-control, and thus subject to 
potential bias that could have affected outcomes.

Given that RT-PCR based assays in this review cover a 
range of different target genes and procedures, it is not 
possible to recommend any one over another owing to a 
lack of direct test comparisons. Our findings should be 
interpreted in the context of the quality of studies and 
reporting and variability in study quality. Diagnostic 
studies in general [72] and TB diagnostic studies in par-
ticular [73, 74] seem to be beset by these problems.

The use of guidelines such as the Standards for Report-
ing of Diagnostic Accuracy (STARD) might improve 
the quality of reporting of primary studies [75]. Future 
studies should compare commercialised RT-PCR assays 
to determine their diagnostic accuracy. Further work is 
required to devise a simple and cost-effective RT-PCR 
test for an efficient diagnosis of PaeTB that can be used 
routinely in resource-poor countries.

Conclusion
According to this review and meta-analysis, RT-PCR 
assay has a high sensitivity and specificity for EPTB 
with turn-a-round time of 2 h compared with reference 
culture-based assay that takes between 2 and 10 weeks 
for detection. Supporting the fact that where quality 
pulmonary (sputum) samples could not be collected in 
paediatrics, the use of extra-pulmonary samples should 
be considered. Overall, RT-PCR based assay accuracy 
was superior for extra-pulmonary samples (sensitiv-
ity 87 (95% CI 82–91); specificity 100 (95% CI 99–100) 
as opposed to pulmonary samples sensitivity 56 (95% 
CI 51–62); specificity 97 (95% CI 96–98). The specific-
ity was high for both pulmonary and extra-pulmonary 
samples indicating that the test should be adopted as 
the first-line test for ruling in TB infection but may 
need to be an add-on test to rule out the disease. It 
offers an alternative robust approach to detect MTB in 
paucibacillary PaeTB samples, showing rapid results 
with good diagnostic accuracy. The results of our study 
should provide encouragement to health-care providers 
for treating children with TB. Nevertheless, the results 
of this assay should be interpreted in parallel with clini-
cal findings and the results of conventional tests, but 
the assay may contribute significantly for an early diag-
nosis and exert an impact on the clinical management 
and control of TB. The findings do not support the use 
of this assay for excluding a diagnosis of TB on its own 
as a standalone test. It offers an incremental benefit as 
an add-on test to other investigations. RT-PCR assays, 
combining amplification and detection in a single run, 

seem to offer advantages over conventional assays 
including the mycobacterial culture-based reference 
standard which is slow.

It is anticipated that our findings will aid healthcare 
practitioners and policymakers in adopting the use of this 
assay on a routine basis. Most importantly, this can be as 
a point-of-care-test which will help in the global control 
of PaeTB, particularly in developing countries with a high 
burden of the disease.
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