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Abstract 

Epidemiological models used to inform government policies aimed to reduce the contagion of 

COVID-19, assume that the reproduction rate is reduced through Non-Pharmaceutical Interven-

tions (NPIs) leading to physical distancing. Available data in the UK show an increase in physi-

cal distancing before the NPIs were implemented and a fall soon after implementation. We 

aimed to estimate the effect of people’s behaviour on the epidemic curve and the effect of NPIs 

taking into account this behavioural component. We have estimated the effects of confirmed 

daily cases on physical distancing and we used this insight to design a behavioural SEIR model 

(BeSEIR), simulated different scenaria regarding NPIs and compared the results to the standard 

SEIR. Taking into account behavioural insights improves the description of the contagion dy-

namics of the epidemic significantly. The BeSEIR predictions regarding the number of infections 

without NPIs were several orders of magnitude less than the SEIR. However, the BeSEIR pre-

diction showed that early measures would still have an important influence in the reduction of 

infections. The BeSEIR model shows that even with no intervention the percentage of the cumu-

lative infections within a year will not be enough for the epidemic to resolve due to a herd im-



munity effect. On the other hand, a standard SEIR model significantly overestimates the effec-

tiveness of measures. Without taking into account the behavioural component, the epidemic is 

predicted to be resolved much sooner than when taking it into account and the effectiveness of 

measures are significantly overestimated. 

 

 

 

 

 

Introduction 

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 

virus responsible for COVID-19 has led to more than 9,277,214 confirmed cases and more than 

3,032,124 deaths as of 21/04/2021 [1]. Apart from the health-related implications, COVID-19 

has been affecting almost every aspect of people’s lives and these effects have been unequally 

distributed. [2] 

Governments have resorted to health policies known as Non-Pharmaceutical 

Interventions (NPIs), aimed to reduce the average number of contacts between individuals 

(physical distancing). While during the first period of the pandemic where no vaccines had been 

available, NPIs had been the only available measure in reducing the spread of the virus, since a 

number of vaccines became available in a number of countries, NPIs are being used in parallel 

to vaccination [3-5]. 

 A number of studies have explored the effects of NPIs on the contagion dynamics of 

COVID-19. [6–11]. One of the focuses of relevant models is the estimation of the effects of NPIs 

on the rate of spread of the epidemic, captured by the reproduction number, which differs 

across countries (12) and this can be due to a number of social and economic conditions [13, 

14]. Hence, the effectiveness of the different policies depends on how the various measures 

reduce this parameter. In order to be able to capture the level of this effect, it is necessary to 

estimate the value of the reproduction number, which in standard compartmental models is 

assumed to be initially close to constant and changes as a response to active NPIs. [12] 

However, data which capture mobility levels of individuals show that in a number of 

countries, including the UK, people took physical distancing measures before governments 

imposed NPIs. This behaviour, fits well with the insights of models, which take into account 



behavioural changes over and above NPIs [6, 15] such that the effective reproduction number 

becomes (at least partly) endogenous. Nonetheless, these works are theoretical and have not 

been applied to data sets related to COVID-19 so far. 

The purpose of our study was threefold: (i) assess the influence of NPIs on physical 

distancing in the UK, taking explicitly into account the physical distancing behaviour due to 

observed cases; (ii) extend the standard SEIR model in order to incorporate individuals’ physical 

distancing behaviour using the analysis from (i); and (iii) use this extended model to study the 

effectiveness of the NPIs, including the level and timing of NPIs imposed and the possible 

effects of lifting the relevant measures. 

Methods 

Data and Statistical Analysis 

In order to assess the influence of both NPIs and the observed information, we analysed the correlation 

between individuals’ mobility levels and the number of daily confirmed cases of the previous day as re-

ported in the WHO dashboard [1] for three different periods: (a) up to the point when physical distancing 

advice was given (b) between this advice and enforceable lockdown, and (c) after lockdown. Enforceable 

lockdown includes NPIs ranging from the closure of public spaces, transportation hubs and shops to for-

bidding interactions with people outside one’s household and ban any unnecessary travel.Following 

Buckee et al. (2020), [16] we created an aggregated data time series for physical distancing in 

the UK using data from Google’s “COVID-19 Community Mobility Reports” [17]. Data in Goog-

le's Community Mobility Reports has undergone differential anonymisation and does not contain 

any personally identifiable information. Data are generated by aggregation people that have 

turned on their "location history" setting. Data points are expressed as percentage differences 

from baseline and validated to be in the expected rabge of –100 to 100. Data shows the changes 

in mobility in six different categories: 

1. Retail and recreation, reporting the mobility trends for places such as restaurants, 

shopping centres, libraries and cinemas. 

2. Supermarket and pharmacy, capturing the trends for places such as supermarkets, food 

warehouses and pharmacies 

3. Parks, which shows the mobility trends for places like parks, public beaches, plazas and 

public gardens. 

4. Public transport, which shows the mobility trends for places that are public transport 



hubs, such as underground, bus and train stations. 

5. Workplaces, capturing mobility trends to places of work 

6. Residential, which shows mobility trends for places of residence. 

 

We noted that not all of the above categories are relevant for measuring levels of 

physical distancing, which on one hand are related to both NPIs and to individuals’ behaviour, 

while on the other are relevant for the contagion dynamics.  For this reason, we used the 

categories “Workplaces”, “Public transport”, “Retail and recreation”. We defined as mobility 𝑚𝑡 

at time 𝑡, a weighted average of these three categories. In order to calculate the different 

weights, we first matched these categories with the relevant ones from the national travel 

survey, 2018 [18] which includes the following travel categories: Business, Education, Escort 

education, Shopping, Personal Business, Visiting friends at private home, Visiting friends 

elsewhere, Entertainment / public activity, Sport, Holiday, Day trip, Other. 

We matched the National Travel Survey categories “Holiday”, “Day trip”, “Entertainment / 

public activity”, “Shopping”, “Visiting friends elsewhere (than home)” to the “Retail and 

Recreation” mobility trend; “Commuting”, “Business” and “Personal Business” to the 

“Workplaces” mobility trend. Additionally, we hypothesised that the “Public Transport / Transit” 

mobility trend uniformly influences both the above trends. We then computed the relative 

weights of the above activities with regards to the total activities and mapped these weights to 

the three mobility categories. This gave us relative weights of 0.38 for “Retail and Recreation”, 

0.29 for “Workplaces” and 0.33 for “Public Transport/Transit”.  We observe that mobility over 

time resembles a logistic distribution and the same is true for new confirmed cases (𝑐𝑡), (figure 

1). 

We observed two periods: one with a sharp decrease in mobility and one with a slight 

increase. The plots of the confirmed cases follow a very similar pattern but in opposite 

directions. The different NPIs seem to have an effect of the slope of both lines. The fall in 

confirmed cases happens around 14 days after the NPIs have been introduced and a big fall in 

mobility has taken place.  

Based on this observation, it is reasonable to assume that there is a linear relationship 

between the two data series and that the available information in one period affects the decision 

for the next, which means that 𝑚𝑡 is a linear function of 𝑐𝑡−1 ie.   

 𝑚𝑡 = 𝜆0𝑐𝑡−1 + 𝜆1, 

where  𝜆0 captures the effect of daily confirmed cases and 𝜆1 other influences including the 

effects of NPIs.  



However, given that also NPIs affect mobility, we tested this hypothesis for three 

different periods: before advice, between advice and lockdown, and after lockdown. This 

hypothesis is supported by very high and significant correlation between the two variables in all 

three different periods (Supplementary Figure 1). 

This observation highlights the fact that NPIs are not the only factors which influence 

mobility which in turn is related to physical distancing levels and the reproduction number of 

COVID-19. Behaviour should therefore be taken into account in relevant models and policy 

simulations. 

Behavioural SEIR Model 

The key variable informing NPIs is the reproduction number, which is the fraction of the 

transmission rate of the epidemic (𝛽𝑡) over the recovery rate of infected individuals (𝛾). The daily 

transmission rate (and hence the basic or effective reproduction number) directly depends on 

the number contacts per individual, which means that due to the assumption that mobility is a 

proxy of daily number of contacts we can express 𝛽𝑡 as 

 

 𝛽𝑡 = 𝑃𝑚𝑡 = 𝜁𝑐𝑡−1 + 𝜀    (1) 

 

where 𝑃 is the probability of getting infected if susceptible, 𝑚𝑡 is the mobility as defined above 

𝜀 = 𝑃𝜆0 and 𝜁 = 𝑃𝜆1  capture the relative importance of the behavioural component related to 

observed infections and the NPIs respectively, such that for 𝜁 = 0 only NPIs would affect the 

level of 𝛽𝑡. Note that 𝜁 and 𝜀 are the slope and intercept of the linear model fitting the data as 

described in the previous section. 

We divided the population of 𝑁𝑖ndividuals according to the infection status into 

susceptible (𝑆𝑡), exposed (𝐸𝑡), infected (𝐼𝑡) and removed ones (𝑅𝑡) such that 𝑆𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 =

𝑁.    

Susceptible subjects might get infected when they contact an infectious individual and if 

infected, they enter the exposed compartment before the infected one. Following Prem et al. 

(2020) [8], the infected individuals are split into two further groups where the first group is 

symptomatic and clinical (𝐼𝑡
𝐶) and the second asymptomatic and subclinical (𝐼𝑡

𝑆𝐶). The first group 

is a fraction 𝜌 of the total infected and the second is 1 − 𝜌 of the total. 

Accordingly, the evolution of the infection is given by the following set of equations 

 



𝑆𝑡+1 = 𝑆𝑡 − 𝛽𝑡𝑆𝑡 𝐼𝑡 𝑁⁄ ,   (3) 

 

𝐸𝑡+1 = (1 − 𝛼)𝐸𝑡 + 𝛽𝑡𝑆𝑡 𝐼𝑡 𝑁⁄ ,   (4) 

 

𝐼𝑡+1
𝐶 = 𝜌𝛼𝐸𝑡 + (1 − 𝛾)𝐼𝑡

𝐶,   (5) 

 

𝐼𝑡+1
𝑆𝐶 = (1 − 𝜌)𝛼𝐸𝑡 + (1 − 𝛾)𝐼𝑡

𝑆𝐶 (6) 

 

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼𝑡,   (7) 

 

with 𝐼𝑡 = 𝐼𝑡
𝐶 + 𝐼𝑡

𝑆𝐶, where 𝛽𝑡 captures the daily transmission rate of COVID-19 (as above), 𝛼 is the 

parameter related to the incubation with 1 𝛼⁄  being the average incubation period (in days) and 𝛾 

is the daily probability that an infected individual becomes removed (as above). Note that the 

confirmed daily cases 𝑐𝑡 refer to only the symptomatic, which means that 𝑐𝑡 = 𝜌𝛼𝐸𝑡−1 . hence 

equation (1) can be expressed as   

 

𝛽𝑡 = 𝜁𝜌𝛼𝐸𝑡−2 + 𝜀   (8) 

 

We note that intuitively 𝜁 should be negative such that an increase in confirmed cases 

leads to an increase in physical distancing practices, hence to a reduction in 𝛽𝑡 . 

Equations (2)-(8) constitute the baseline Behavioural SEIR (BeSEIR) model based on 

UK data. The last equation captures the behavioural part of the compartmental model based in 

the UK and may differ for other countries or other epidemics as the linear relationship which we 

observed may not hold in other jurisdictions or countries. 

Results and discussion 

 

We simulated the contagion dynamics in the UK and the different effects of policies over 

two periods of 200 and 300 days, respectively, with the demographic changes being ignored, 

hence keeping the total number of individuals as constant. For equations (3)-(7), we used 

values from relevant published works. We used the data from a counterfactual SEIR model with 

𝛽 = 𝛽0, 𝛾 = 0.133, 𝜌 = 0.4 (Prem et al. 2020) [8], Ν = 50000000 (roughly the number of adults in 

the UK [19]), and started with 1000 people exposed at t=0. We started our simulations with a 



seed of 1000 people exposed on Day 0. Genetic analysis has showed 1356 transmission 

lineages of COVID-19 in the UK. [20] 

We calibrated the constants of equation (8) as follows: 

For 𝐸𝑡−2 = 0, we get 𝛽0 = 𝜀. Equation (1) can be expressed as 𝑅0𝛾 = 𝑃𝑚0, which means that 

for 𝑚0 = 1 (equivalent to 100% mobility levels) and given values of 𝛾 and 𝑅0 we can find 𝑃 and 

𝛽𝐴, the value of the reproduction number at the time when the NPIs are introduced. 

From Flaxman et al. (2020) [14], we set 𝑅0 = 3.8 , which gives  𝛽0 = 𝜀 = 𝑅0𝛾 = 0.5. We 

observed that the UK government started implementing measures when new cases per day 

were 409 [1]. Using the counterfactual BeSEIR model, we chose the time step with the closest 

value, which was 441 on day 24. Hence, for 𝜌𝛼𝐸𝑡−2 = 441, 𝛽𝐴 = 441𝜁 + 𝛽0 

which gives 𝜁 = (𝛽𝐴 − 𝛽0) 409⁄ = −0.00016.  

We then considered the peak in new clinical cases per day as the time of the maximum 

physical distancing and 𝑚𝑡 = 0.2 and thus the lowest value of the effective reproduction 

number. Based on this we calculated the value of 𝛽𝑡 on that day (at t=104), which we call 𝛽𝐵 

and is 0.10. Using this value, we calculated the parameters of equation (8) after the measures. 

Call these parameters 𝜁′ = −0.0001734341and 𝜀′ = 0.1769653. Using these values, our 

extended BeSEIR model was able to reproduce the dynamics of contagion in the UK (Figure 2 

A, B). 

We compared the simulation results of our model with a standard SEIR model and found 

that the latter model predicts a number of infections both cumulative (figure 2 C) and per day, 

much higher than the BeSEIR (figure 2 D,E). The difference regarding infections is several 

orders of magnitude, which highlights the importance of taking into account behavioural factors. 

We compared the effectiveness of NPIs between our model and the standard SEIR. As 

expected in the standard SEIR, the cumulative number of infected individuals is lower than in 

the BeSEIR (figure 3A). As in the previous case, the cumulative number differs by several 

orders of magnitude. We noticed that the reproduction rate on the standard SEIR is only 

affected by NPIs (figure 3 B). Interestingly, we noticed that the maximum number of infected 

individuals at any point in time using the BeSEIR model is significantly and much more 

realistically lower than the standard SEIR (figure 4 C, D), where it also takes longer for the 

number of infected to be reduced.   

We tested the impact on the total number of infected individuals and the maximum 

confirmed daily cases of the delay of (i) implementing the measures (ii) and lifting restrictions. 

This allowed us to compute the cost in terms of lockdown days in order to reach the same 

reproduction number. The next graph shows the dynamics of key variables compared to a 



hypothetical situation when the same measures had been taken 7 days earlier than the actual 

date of intervention. 

We noticed that, while the timing of measures has an important impact on the number of 

infected individuals (both daily and cumulatively, figure 4 A, B, C), the reproduction rate is 

reduced relatively less compared to the scenario where the measures are taken later (figure 4 

D). This highlights that all other factors being equal, it may be optimal to have a relatively higher 

reproduction rate with a lower number of infected rather than the opposite. This is due to the 

fact that the number of infected individuals at any point in time depends both in the reproduction 

rate and the number of infected in the previous period. Hence a later intervention would require 

a higher reduction in the reproduction number to have the same reduction in infections to an 

earlier one. 

We tested the impact of lifting the measures earlier rather than later and also compared 

this to the hypothetical case of earlier timing of NPIs. As expected, the most efficient policy 

would be to both delay lifting physical distancing measures and implementing NPIs early (figure 

5). We noticed that taking the timing regarding on when the measures are lifted plays a less 

important role (assuming that there will be a lift) compared to the timing of imposing the 

measures. 

Discussion 

In this paper argued that in order to be able to evaluate the effectiveness of NPIs, it is 

necessary to explicitly take account of the behavioural change with regards to physical 

distancing due to both the relevant NPIs and independent individual choices. If the behaviour of 

individuals is not taken into account, the levels of physical distancing without measures can be 

underestimated and similarly the effectiveness of measures can be overestimated. Hence, 

incorporating an autonomous element of physical distancing can also increase the accuracy of 

modelling predictions. 

Using aggregate mobility data for the UK, we observed that individual mobility levels had 

been reducing before the measures were taken and have been increasing even before the 

announcement of relaxation of the measures. We tested whether information regarding 

confirmed cases can explain the changes in mobility within the different periods of NPIs. In 

order to also take into consideration, the effects of policies, we considered three distinct periods: 

before advice, between advice and lockdown, and after lockdown. We found high correlation in 

all three periods, which confirms the fact that people have been making physical distancing 

choices using the available information regarding the number of cases which are also assumed 



to be correlated to the number of deaths. We note that the number of cases reported, at the 

early phases of the epidemic at least, was a gross underestimate of the real cases. However, 

the number of deaths has been used in order to infer the number of cases by imposing a 

somewhat arbitrary death rate. Given this as long as the number of deaths is a fraction of the 

number of cases the outcome of our BeSEIR model will not change and in addition we 

acknowledge that people make decisions based on imperfect information.   

Our results not only confirms that individual behaviour should be taken into account but 

also provides a functional form that can be used in models which have similar assumptions 

regarding physical distancing behaviour [6, 7, 15]. Other studies modelling the COVID-19 

pandemic taking into account government interventions implicitly assume a behavioral change 

as a function of NPIs [21-23] , whereas our study links the behavioral component to the 

available information and the current state of the progression of the pandemic.   Furthermore, 

this type of empirical exercise can be replicated across countries to analyse the relative role of 

social and economic conditions in physical distancing practices along the lines discussed in 

[13,14]. 

This observation raised two policy related questions with regards to the timing of making 

the interventions and the time of lifting these. Given that individuals react autonomously, policies 

are less effective compared to a situation where individuals do not act independently. However, 

it is not clear how much this behaviour would impact the overall results.  

We showed that when the level of daily infections is relatively low, more strict measures 

are required in order to achieve high levels of physical distancing. This means that the same 

level of measures may be less effective in reducing the reproduction rate if these are imposed 

earlier rather than later. But importanly, this does not mean that early measures are less 

effective in reducing the overall number of infections. NPIs which are imposed even a week 

earlier can have an important impact in the reduction of infections.  

This finding may give an explanation about the initial spread of the epidemic in countries 

that were hit first. Given the high uncertainty and the much lower volumes of information the 

endogenous behavioural component we describe couldn’t have a significant effect in these 

countries. On the other hand, quickly introduced NPIs in the form of enforceable lockdowns 

were the only way to reduce the spread of the epidemic. 

Other studies have taken into account the structured nature of human relationships and 

the different transmission rates that can be realized in different places, for example care homes 

or hospitals can show higher transmission rates than households. We acknowledge that our 

model provides a higher level of abstraction that doesn’t take this into account. 



Conclusion 

In order to be able to assess the effects of the different policies, we first extended the 

standard SEIR model to a BeSEIR one and calibrated it using epidemiological data from 

previous relevant studies.  t Our results highlight two issues. First, not taking into account the 

fact that individuals also react themselves over and above NPIs may lead to very misleading 

projections with regards to the effectiveness of measures. Second, the fact that even though the 

reproduction number is a relevant variable for policy purposes, it is not necessarily a measure of 

success of NPIs. A higher reproduction number with less active cases can be preferable to the 

opposite can be less challenging to the capacity of a given health system. Of course, the basic 

reproductive rate of the disease as defined by the biological features of the SARS-COV-2 virus 

is still important as it is predictive of the epidemic curve in the absence of NPIs or changes in 

human behaviour.   
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Figure legends 

 

Figure 1: 

Mobility and new confirmed cases for the UK 15-02-2020: 14-06-2020. 

The gold line represents the 7-day rolling mean of the new confirmed cases per day. Values are 

scaled to the range of 0-100. The green line represents the weighted average of the percentage 

drop of mobility trends from baseline. Vertical dashed lines show the timing of various Non-

Pharmaceutical Interventions. Mobility data has been downloaded from google mobility trends 

and is publicly available, [16] new daily cases has been downloaded form the WHO dashboard 

[1] and is publicly available.   

 



Figure 2: 

Behavioural SEIR model simulation for the UK adult population, with measures implemented on 

Day 24, when the number of new observable cases per day is similar to what was in the UK on 

16-03-2020. Panel A shows the percentage of Exposed and Infected (both clinical and sub-

clinical) individuals per day. Panel B shows the reproductive rate of the disease (Rt) over time. 

Panel C shows the cumulative infected people as predicted with the standard SEIR model – 

blue line vs the BeSEIR model – red line. Panel D shows the infected people at any time point 

as predicted by the standard SEIR. Panel E shows the infected people at any time point as 

predicted by the behavioural SEIR. 𝑅0 =3.8, α=0.15625, γ=0.1331221, starting seed = 1000 

individuals exposed on Day 0. 

 

 

Figure 3: BeSEIR vs standard SEIR with NPIs implemented on Day 24. Panel A shows the 

cumulative infected people as predicted with the standard SEIR model – blue line vs the 

behavioural SEIR model – red line. Panel B shows the reproductive rate over time. Panel C 

shows the infected people at any time point as predicted by the standard SEIR. Panel D shows 

the infected people at any time point as predicted by the behavioural SEIR. 

 

Figure 4: 

BeSEIR model comparing the effect of measures taken on Day 24, Baseline model – red line or 

measures taken on Day 17, Early model – blue line. A: Percentage of infected individuals. B: 

Percentage of Removed individuals. C: Percentage of Exposed individuals. D: Reproductive 

rate. 

 

Figure 5: 

BeSEIR model comparing the effect of measures taken on Day 24 and lifted on Day 114, 

Baseline model – red line, measures taken on Day 17 and lifted on Day 114, Early model – 

green line, or measures taken on Day 17 and lifted on Day 107, Early model and early lifting– 

blue line. A: Percentage of infected individuals. B: Percentage of Removed individuals. C: 

Percentage of Exposed individuals. D: Reproductive rate. 
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