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Abstract

Cryptography can be classified as secret-key and public-key cryptography. Both have dis-

tinct features and differs in performance, complexity, flexibility and security. Secret-key

cryptography, considering its simplicity and performance, is commonly used for securing

communications. The invention of public-key cryptography made it possible to develop

more flexible cryptographic schemes and algorithms, such as key exchanges and digital

signatures, hence extending the possibilities and the field of cryptography. Cryptographic

implementations are primordial for securing the Internet, and as a consequence, correct-

ness, security and efficiency are more emphasized. In this sense, this work addresses the

evaluation and the implementation of Ed25519, an instance of the Edwards-curve Digi-

tal Signature Algorithm for digital messages authentication. The implementation lies on

Rust: a safe, modern, high-level and strongly-typed programming language. This work

has two contributions: (i) an Ed25519 implementation in Rust that considers readability,

modularity and ease of use, and (ii) an evaluation of the Ed25519 implementation from a

security/performance perspective. The implementation was comprised by three modules:

field arithmetic, curve arithmetic and the interface. The security perspective presented

essential qualities of cryptographic implementations, such as functional correctness, mem-

ory safety, constant-time operations and usability. The performance evaluation showed

low execution times and proved to be as fast as implementations written in C; Rust’s

RAM consumption showed similar results in comparison to implementations written in

C.

Keywords: Edwards-curve Digital Signature Algorithm; Elliptic Curve Cryptography;

cryptographic library; security analysis; performance evaluation.
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Resumo

A criptografia pode ser classificada em simétrica e assimétrica. Ambos diferem-se com

relação ao desempenho, complexidade, flexibilidade e segurança. A criptografia simétrica

é comumente utilizada para estabelecer comunicações secretas. A criptografia assimétrica

foi capaz de ampliar as primitivas criptográficas ao possibilitar primitivas para assinaturas

digitais e acordo de chaves. Implementações criptográficas são primordiais na proteção

de comunicações e informações. Nesse sentido, a segurança, corretude e eficiência são pri-

orizadas. Este trabalho aborda a avaliação e implementação do algoritmo de assinaturas

digitais Ed25519, uma instância do Edwards-curve Digital Signature Algorithm. Este

trabalho tem como objetivo realizar a implementação do algoritmo Ed25519 em Rust,

uma linguagem de programação de alto nível, moderna e fortemente tipada, com foco em

memory safety. Dessa forma, as contribuições são: (i) uma implementação do Ed25519

em Rust que suporta legibilidade, modularidade e facilidade de uso e (ii) a avaliação da

implementação em termos de desempenho e segurança. O desenvolvimento envolveu a im-

plementação de três módulos: aritmética de corpos, aritmética de curvas e interface. Na

perspectiva da segurança, foi possível apresentar atributos essenciais às implementações

criptográficas, tais como correctness, memory safety, usabilidade e operações em tempo

constante. A implementação apresentou tempos de execução aceitáveis e próximos das

implementações em C; além disso, Rust apresentou consumo de memória RAM similar às

implementações em C.

Keywords: Edwards-curve Digital Signature Algorithm; Criptografia de Curva Elíptica;

biblioteca criptográfica; análise de segurança; análise de desempenho.
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Chapter 1

Introduction

The topic of this dissertation is the implementation of a cryptographic library. More

specifically the implementation of the Ed25519 digital signature algorithm (introduced

by Bernstein et al. [1]). We named our implementation ed25519-fun.

In this context, Elliptic Curve Cryptography (ECC) is a public-key cryptosystem pro-

posed independently by Neal Koblitz and Victor Miller in 1985. The underlying mathe-

matics revolves around elliptic curves and its intractability is based on the Elliptic Curve

Discrete Logarithm Problem [2]. The Ed25519 system is classified as ECC and is based

on the Curve25519 as twisted Edwards curve, providing fast operations and side-channel

resilience [1].

Taking a step back, cryptography can be understood as the study of mathematical

techniques to secure communications [3]. This is primarily accomplished by creating

libraries that implements cryptographic primitives. These libraries lie at the core of the

Internet, and consequently, as well as ensuring their correctness and safety [4], the quality

of the implementation is also tied with efficiency [5].

Brumley et al. [5] illustrated the difficulty of implementing cryptographic primitives.

In parallel, the authors showed how an arithmetic bug could be exploited to mount a full

key recovery attack on the Elliptic-curve Diffie-Hellman protocol. Lazar et al. [6] ana-

lyzed 269 CVEs (from January 2011 to May 2014) tagged as “Cryptographic Issues” and

classified them as plaintext disclosure, man-in-the-middle attacks, brute-force attacks and

1



2 CHAPTER 1. INTRODUCTION

side-channel attacks, 83% of which were related to the misuse of cryptographic libraries

and 17% were tied to implementation bugs. Since 2018, OpenSSL issued 22 CVEs1, which

enabled attacks classified as side-channel attacks, denial of service attacks, padding oracle

attacks.

Hence, this work dives into the properties and conditions that cryptographic libraries

rely on. We chose to implement the Ed25519 algorithm in Rust - a modern programming

language that aims for safety and performance. As a result, we were able to document

the implementation and explore aspects of performance and security that surrounds the

Ed25519 algorithm and its implementation in Rust.

1.1 Objective

Our objective is the evaluation and implementation of the Ed25519 signature system in

Rust. Therefore, we focus on the security and performance analysis and attempt to justify

the use of Rust for the Ed25519 algorithm implementation. We accomplish this within

three main tasks:

• Implementation of the Ed25519 algorithm in Rust considering good programming

practices.

• Performance evaluation comparing the execution times and memory consumption

of various Ed25519 implementations.

• Evaluation of the Ed25519 algorithm and its implementation in Rust from a security

perspective.

1.2 Focus

This work has been directed towards the objective presented in Section 1.1 in the following

ways:
1https://www.openssl.org/news/vulnerabilities.html
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• This work is about the comprehension and implementation of the Ed25519 algorithm

in Rust. The implementation is simple and has been influenced by existing Ed25519

implementations, namely the ed25519-donna [7], ed25519-dalek [8] and ed25519-java

[9] implementations.

• This work is about emphasizing the properties of the Ed25519 system. Along with its

properties lies the explanation of the mathematical techniques behind the execution

of the Ed25519 primitives.

• This work is about the analysis of our Ed25519 implementation. This analysis is

twofold. Firstly, an empirical study is performed. Secondly, the relationship between

Rust and secure and fast applications, as well as performance and security details

of the Ed25519 signature system.

• The success of this work is contingent on the success of three factors. The first

factor is the successful execution of the regression tests performed by our Ed25519

implementation in Rust. The second is a comprehensible writing about the core

functions and properties of the implementation and its mathematical techniques.

And lastly, an empirical analysis and the study of Rust features, performance and

security must be presented.

• This work is not about the design of a novel implementation of the Ed25519 algo-

rithm.

Within the analysis of Ed25519‘s performance and security properties and the study of

its mathematical perspective and its development in Rust, this work focuses on delivering

a more comprehensible document that comprises some advanced cryptographic topics.

1.3 Contributions

Our main contributions are defined by:
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• An Ed25519 implementation that prioritizes good programming practices, such as

readability, modularity and ease of use.

• A scientific evaluation of our Ed25519 implementation in Rust, from a perfor-

mance/security perspective.

1.4 Structure

The remainder of this dissertation is organized as follows. Chapter 2 describes the theo-

retical background needed for this work. Chapter 3 emphasizes important works related

to the implementation and analysis of the Ed25519 public-key signature system. Chap-

ter 4 presents the methodology used for the Ed25519 implementation and the approach

taken for the description of Ed25519’s properties and its evaluation. Chapter 5 describes

the Ed25519 signature system implementation. Chapter 6 presents the evaluation of the

Ed25519 implementation in two perspectives: performance and security. Chapter 7 shows

the final considerations.





Chapter 2

Background

The purpose of this chapter is to introduce secret-key cryptography and public-key cryp-

tography, and also to explore elliptic curves, specially the twisted edwards curves, and

the Rust programming language.

We begin in Section 2.1 with an introduction to the Rust programming language.

Then, we explain secret-key and public-key cryptography in Section 2.2. The theory for

elliptic curves can be found in Section 2.3. Lastly, Section 2.4 introduces the Ed25519

signature system. Section 2.5 discusses the main ideas presented in this chapter.

2.1 Rust

Rust is a programming language developed at Mozilla Research that offers performance

and safety features. Rust does not depend on a garbage collector, and supports zero-

cost abstractions1, type-safety and memory safety, as well as low-level control [11]. Rust

automatically runs a destructor when a variable goes out of scope [11] and does not use

garbage collection. Instead, ownership tracking allows Rust to know when a resource goes

out of scope, and thus memory leaks are avoided.

During execution, resources are uniquely owned by one alias at a time. C++ enforces

1Rust does not use more CPU, RAM, or code space for tracking type states [10].

6
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ownership with smart pointers, move semantics and RAII (Resource Acquisition Is Ini-

tialization), however, undefined/unsafe behavior is still possible [11]. Rust’s ownership

discipline, which states that “if ownership of an object (of type T) is shared between

multiple aliases (shared references of type &T), then none of them can be used to directly

mutate it”, prevents use-after-free, data races and iterator validation [11]. Rust’s unique

pointers manages ownership tracking of heap memory, and borrowed references manages

safe aliases [12].

Listings 2.1, 2.2 and 2.3 illustrates simple code examples for ownership, borrowing and

lifetimes.

Listing 2.1: Ownership. Source: Rust By Example [13].

// Resources can only have one owner.
// Ownership can be transferred. If that happens, the previous owner
// can no longer be used.

// This function takes ownership of the heap allocated memory
fn destroy_box(c: Box<i32>) {

println!("Destroying a box that contains {}", c);
// `c` is destroyed and the memory freed

}
fn main() {

// _Stack_ allocated integer
let x = 5u32;
// *Copy* `x` into `y` - no resources are moved
let y = x;
// Both values can be independently used
println!("x is {}, and y is {}", x, y);
// `a` is a pointer to a _heap_ allocated integer
let a = Box::new(5i32);
println!("a contains: {}", a);
// *Move* `a` into `b`
let b = a;
// The pointer address of `a` is copied (not the data) into `b`.
// Both are now pointers to the same heap allocated data, but
// `b` now *owns* it.

// !Error! `a` can no longer access the data, because it no longer
// owns the heap memory
//? println!("a contains: {}", a);

// This function takes ownership of the heap allocated memory from `b`
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destroy_box(b);

// Since the heap memory has been freed at this point, this action would
// result in dereferencing freed memory, but it's forbidden by the compiler
// !Error! Same reason as the previous error
//? println!("b contains: {}", b);

}

Listing 2.2: Borrowing. Source: Rust By Example [13].

// Access the data without taking ownership over it.

// This function takes ownership of a box and destroys it
fn eat_box_i32(boxed_i32: Box<i32>) {

println!("Destroying box that contains {}", boxed_i32);
}
// This function borrows an i32
fn borrow_i32(borrowed_i32: &i32) {

println!("This int is: {}", borrowed_i32);
}
fn main() {

// Create a boxed i32, and a stacked i32
let boxed_i32 = Box::new(5_i32);
let stacked_i32 = 6_i32;
// Borrow the contents of the box. Ownership is not taken,
// so the contents can be borrowed again.
borrow_i32(&boxed_i32);
borrow_i32(&stacked_i32);
// `boxed_i32` can now give up ownership to `eat_box` and be destroyed
eat_box_i32(boxed_i32);

}

Listing 2.3: Lifetimes. Source: Rust By Example [13].

// Lifetimes are annotated below with lines denoting the creation
// and destruction of each variable.
// `i` has the longest lifetime because its scope entirely encloses
// both `borrow1` and `borrow2`. The duration of `borrow1` compared
// to `borrow2` is irrelevant since they are disjoint.
fn main() {

let i = 3; // Lifetime for `i` starts.
{

let borrow1 = &i; // `borrow1` lifetime starts.
println!("borrow1: {}", borrow1);

} // `borrow1 ends.
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{
let borrow2 = &i; // `borrow2` lifetime starts.
println!("borrow2: {}", borrow2);

} // `borrow2` ends.
} // Lifetime ends.

2.2 Cryptography

Cryptography is, as defined by Bruce Schneier, “the art and science of keeping messages

secure”. Meanwhile, cryptanalysis focuses on trying to breach the system [14]. Both

complements each other and creates an adversarial way of thinking: there is a defender

and an attacker. When building cryptographic algorithms or cryptographic protocols we

must consider all the possible ways we could break the system [3].

Modern cryptography can be divided into two main categories: secret-key and public-

key cryptography. Prior to the invention of public-key cryptography, communication

channels were secured using secret-key cryptosystems such as the Data Encryption Stan-

dard [3]. They are classified as such for performing encryption and decryption with the

same key. Public-key cryptosystems is an elegant concept invented by Diffie and Hel-

man in 1976 [15]. The understanding that it is possible to form a secure communication

without having to share private information is astounding. Such concept opened a door

that housed a wide variety of possibilities for the expansion of the cryptographic scientific

literature. The RSA and ElGamal systems are instances of public-key cryptosystems.

Contrasting secret-key cryptography, they generate key pairs: a public key and a private

key. They can be used to perform digital signatures, key exchange and encryption.

Figure 2.1 illustrates cryptographic primitives, which are related to aspects of infor-

mation security: confidentiality, data integrity, authentication and non-repudiation. They

can be evaluated in various dimensions: security level, desired functionality and security

property, methods of operation, performance and implementation complexity. Such di-

mensions vary in terms of the security goals of the application, available computational

resources and trade-off between performance and security [14].
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Figure 2.1: Classification of cryptographic primitives. Adapted from: Menezes et al. [3].

Some of the published papers that heavily impacted cryptography were the following:

“La Cryptographie Militaire” [16]. Set of requirements for cypher systems. Kerck-

hoffs states that the attacker knows the details of the encryption and decryption functions.

The security of the communication should depend on the secret key instead of the cryp-

tosystem. This way, cryptographic algorithms (e.g. RSA and AES) can be exhaustively

studied, allowing them to evolve [17].

“Communication Theory of Secrecy Systems” [18]. Theoretical and mathematical
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approach of secrecy systems. Presents the ideas of confusion and diffusion, redundancy,

entropy, and unicity distance [3].

There are several other works worth mentioning, such as: “New Directions in Cryptog-

raphy” [15] (introduction of public key cryptography), “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems” [19] (first public-key cryptosystem, i.e. RSA),

“Secure Communications Over Insecure Channels” [20] (introduction of public key dis-

tribution systems) and many others, which enables a deeper understanding of public key

cryptography.

2.2.1 Symmetric Cryptography

The most common use for secret-key cryptography is establishing secure communication

channels. For each communication channel we need a secret key K, which is shared

between the entities. The keyK is used for performing message encryption and decryption

[21].

Example 2.2.1 describes an example of secret-key cryptography showed in Figure 2.2.

Example 2.2.1. Secret-key Encryption

Figure 2.2: Example of secret-key cryptography.

1 Bob transforms the plaintext P into the ciphertext C with the encryption function

E: C = E(P,K), s.t. P and K are inputs for the encryption function and K is the

secret key.

2 Bob sends C to Alice and the message C becomes public information.
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3 Alice retrieves the plaintext P from the ciphertext C using the decryption function

D: P = D(C,K), s.t. C and K are inputs for the decryption function and K is the

secret key.

Secret-key systems can be further classified as block ciphers and stream ciphers [22]:

Block cipher. A block cipher operates over iterations of permutations and substitutions.

Essentially, each iteration needs a round function, defined by the state of the message and

a subkey, as well as a key schedule, formed by N subkeys derived from the secret key.

Examples of block ciphers: AES and 3DES.

Stream cipher. Instead of encryption algorithms being applied on blocks of data (block

cipher), a stream cipher is applied on one bit at a time in a data stream. The plaintext

and ciphertext have the same length. Examples of stream ciphers: RC4 and Salsa.

One of the main challenges for secret-key cryptosystems is key distribution: formulate

an efficient method for distributing keys between participating entities [14].

2.2.2 Public-key Cryptography

Public-key cryptography was introduced by Whitfield Diffie and Martin E. Hellman [15].

The main idea is the introduction of mathematically linked key pairs - public key and

secret key -, where a secure public channel can be established by only using public known

information and techniques.

Table 2.1 presents families of public-key cryptosystems, such as key exchange, digital

signature and encryption, exemplified in Examples 2.2.2, 2.2.3 [23] and 2.2.4 [3], respec-

tively.

Table 2.1: Classification of public-key cryptosystems [24].

Key Exchange Technique used for establishing keys between communicating enti-
ties.

Digital Signature Technique used for data origin authentication and non-repudiation.
Encryption Technique used for establishing secure communications (confiden-

tiality).
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Example 2.2.2. Public-key Encryption

Example of public-key encryption, illustrated in Figure 2.3.

Figure 2.3: Public-key encryption.

1 Bob generates the key pair: pk (public key) e sk (secret key).

2 Bob publishes the public key pk (public information).

3 Alice acquires the key pk.

4 Alice encrypts the message with the public key pk.

5 Alice sends the encrypted message to Bob.

6 Bob uses the secret key sk to decrypt the message.

The communication is unidirectional. Alice also needs to generate a key pair in order to

receive encrypted messages.

Example 2.2.3. Key Exchange

An example of the Diffie-Hellman algorithm, illustrated in Figure 2.4.

1 Bob chooses an integer a (mod n).

2 Bob computes A = ga.

3 Bob sends A to Alice.
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Figure 2.4: Key exchange.

4 Alice chooses an integer b (mod n).

5 Alice computes B = gb.

6 Alice sends B to Bob.

7 The secret key gab can be computed as gb(a) (Bob) and ga(b) (Alice).

The elements A = ga, B = gb and g becomes public. Computing gab is infeasible and

determines the Diffie-Hellman problem, which is equivalent to the discrete logarithm prob-

lem.

Example 2.2.4. Digital Signature

Generic example of digital signatures, where Bob generates the signature and Alice per-

forms the signature verification, illustrated in Figure 2.5.

1. Bob generates the signature as follows:

1 Generate the secret key sk and public key pk, and publish pk.

2 Compute h = H(m), where h is the result of the hash transformation H applied

on the message m.

3 Compute s = S(sk, h), where S is the signature generation function, with sk

and h as inputs.
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Figure 2.5: Digital signature.

4 m and s becomes public information.

2. Alice verifies the message as follows:

5 Acquire the public key pk and the message m (published by Bob).

6 Compute h = H(m).

7 Compute v = V ( s, pk, h) , where v is the result of the verification function,

with s, pk and h as inputs. Accept the signature iff the verification function

successfully verifies signature.

Hash functions takes a block of data as input and generates a fixed-size bit string hash

value. If the input changes, the hash function generates a different hash value.

Message integrity and origin authentication are security properties provided by digital

signatures.

2.2.3 Secret-key & Public-key Cryptography

Secret-key cryptosystems presents the following pros and cons. Pros: (i) high throughput,

(ii) smaller keys, as shown in Table 2.2, (iii) faster algorithms. Cons: (i) secret keys must

be shared and kept secret within communicating entities, (ii) key management and (iii)

key distribution mechanisms are necessary.

Contrasting secret-key cryptosystems, public-key cryptography presents the following

pros and cons. Pros: (i) the secret key is not shared between communicating entities, (ii)
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digital signature, key exchange and encryption algorithms are possible, (iii) in public-key

encryption systems, the number of keys necessary are less in comparison to secret-key

encryption systems. Cons: (i) the security depends on the difficulty of a mathematical

problem, (ii) slower in comparison to secret-key systems [3].

Table 2.2 shows, for each mathematical problem, the key sizes necessary to achieve a

certain security level. In this context, we are able to draw the following remarks: (i) the

difficulty of the integer factorization and discrete logarithm problems are equivalent, (ii)

the contrast in key sizes between secret-key and public-key systems (to achieve a certain

security level), which also varies depending on the underlying problem.

Table 2.2: Security level of cryptosystems. Source: Paar and Pelzl [24].

Algorithm Cryptosystem
Security Level (bit)

80 128 192 256
Integer Factorization RSA 1024 3072 7068 15360
Discrete Logarithm DH, DSA, Elgamal 1024 3072 7680 15360
Elliptic Curves ECDH, ECDSA 160 256 384 512

Secret-key AES, 3DES 80 128 192 256

2.3 Elliptic Curves

The use of elliptic curves within cryptography was originally independently introduced

by Neal Koblitz and Victor Miller. Essentially, an elliptic curve C is defined by a curve

equation built on a field F for coordinates [25]. In order to understand elliptic curves,

knowledge about group theory [26] and number theory [27] are required.

We start by giving an introduction to finite fields in Section 2.3.1. Then, we explain

elliptic curves and the Elliptic Curve Discrete Logarithm Problem in Sections 2.3.2 and

2.3.3.
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2.3.1 Finite Fields

Fields are abstractions of number systems. Examples of fields are real numbers (R),

complex numbers (C) and rational numbers (Q) [28]. Finite fields are defined by a finite

number of elements (e.g. F2255−19, which is a finite field of size 2255− 19). Definition 2.3.1

gives a more formal definition for fields.

Definition 2.3.1. A field F has the following properties [28]:

1. (F,+) is an abelian group with additive identity denoted by 0.

2. (F\{0}, ·) is an abelian group with multiplicative identity denoted by 1.

3. The distributive law holds: (a+ b) · c = a · c+ b · c for all a, b, c ∈ F .

From Definition 2.3.1, the field F has two operations: addition and multiplication. The

subtraction a−b, s.t. a, b ∈ F , can be written as a−b = a+(−b), where −b is the negative

of b and is unique in F . Division in F can be written as: a, b ∈ F, b 6= 0, a
b

= a · b−1, s.t.

b−1 is the inverse of b and unique in F and b · b−1 = 1.

Prime Fields

Lets consider Fp a prime field of order p. Additions and multiplications are calculated

modulo p. Any integer a, where a ∈ {0, 1, 2, 3, ..., p − 1}, a mod p denotes the remainder

r, s.t 0 ≤ r ≤ p− 1 (reduction modulo p).

Example 2.3.1. Arithmetic operations in F29, s.t. {0, 1, 2, 3, ..., 26, 27, 28} represents the

elements in F29:

1. Addition: 17 + 20 = 8⇐⇒ 37mod 29 = 8.

2. Subtraction: 17− 20 = 26⇐⇒ −3mod 29 = 26.

3. Multiplication: 17 · 20 = 21⇐⇒ 340mod 29 = 21.

4. Inversion: 17−1 = 12⇐⇒ 17 · 12mod 29 = 1.
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Binary Fields

The finite field F2m is called a binary field. F2m can be represented as binary polynomials

of degree at most m− 1:

F2m = {am−1z
m−1 + am−2z

m−2 + · · ·+ a2z
2 + a1z

1 + a0z
0 : ai ∈ {0, 1}}.

Multiplication in F2m is calculated modulo f(z), where f(z) is a irreducible binary

polynomial of degree m. Addition is calculated modulo 2. For any binary polynomial

a(z), a(z) mod f(z) denotes the remainder r(z) of degree less than m, resulted from the

division a(z)/f(z), which is called reduction modulo f(z).

Example 2.3.2. Arithmetic operations for F24, such that the elements {0, 1, z, z+1, z2, z2+

1, z2 + z, z2 + z + 1} ∈ F and f( z) = z3 + z + 1, is given by:

1. Addition: (z2 + z + 1) + (z + 1) = z2 + 2z + 2 = z2.

2. Subtraction: (z2 + z + 1)− (z + 1) = z2.

3. Multiplication: (z2 + z + 1) · (z + 1) = (z3 + 1)mod (z3 + z + 1) = z.

4. Inversion: (z2 + z + 1)−1 = z2 ⇐⇒ (z2 + z + 1) · z2 mod (z3 + z + 1) = 1.

Modular arithmetic (showed in Examples 2.3.1 and 2.3.2) is fundamental for modern

cryptography. It changes the way we compute efficient additions, subtractions, multipli-

cations and inversions in a field F . Common groups for ECC are most primes and binaries

[29].

2.3.2 Elliptic Curves

An elliptic curve E defined over a field F is given by the following equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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where ai are elements in the field F . The set of points in E(Fpk) satisfies the equation

and the single point O at infinity. Coordinates satisfying such equation are tuples (e.g.

affine coordinate system (x, y)) and its elements are in the finite field F . The scalar

multiplication, addition and doubling laws allows arithmetic operations in the elliptic

curve (group law). Elliptic curves have generators and a neutral point denoted ∞ [25].

Weierstrass Curve

Given a finite field F , the Weierstrass curve can be represented by the following equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with discriminant different than zero (the curve is non-singular).

Montgomery Curve

A Montgomery curve can be represented by the equation:

Ma,b : By2 = x3 + Ax2 + x,

where A,B ∈ F and (A2 − 4) 6= 0.

Twisted Edwards Curve

We expose more details for Twisted Edwards curves, since the Ed25519 scheme is an

instantiation of the EdDSA, which is based on the specified curve.

The Twisted Edwards Curve was introduced in 2008 by Daniel Bernstein and Tanja

Lange [30]. It is given by the equation:

Ee,a,d : ax2 + y2 = 1 + dx2y2,

s.t. the following conditions are satisfied:

• The field F is not binary (char(F ) 6= 2).
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• a 6= 0, b 6= 0 and a 6= b.

Arithmetic for twisted Edwards curves can be illustrated as follows [31]:

Point Addition. Consider the points P = (x1, y1) and Q = (x2, y2). The addition law

for Twisted Edwards is:

P ⊕Q =
(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
= (x3, y3)

The neutral element is (0, 1) and the negative of (x, y) is (−x, y). The addition formula

is complete and also works for point doubling.

Point Doubling. Consider the point P = Q = (x1, y1) = (x2, y2). The doubling law for

the Twisted Edwards is 2P = P ⊕Q = (x1, y1)⊕ (x2, y2):

P ⊕Q =
(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)

2P =
(
x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − ax1x1

1− dx1x1y1y1

)

=
(

2x1y1

1 + dx2
1y

2
1
,
y2

1 − ax2
1

1− dx2
1y

21

)
⇐⇒

(
2x1y1

1 + dx2
1y

2
1
,

y2
1 − ax2

1
2− ax2

1 − y2
1

)
= (x3, y3)

Repeated Doubling. Consider calculating k · P , s.t. P is a point in the curve E and

k = 200. We have [32]:

k · P = 200 · P = 2(2(2(P + 2(2(2(P + 2P ))))))

2.3.3 Elliptic Curve Discrete Logarithm Problem

Consider the elliptic curve E defined over a field F and a point P ∈ E(F ), the Elliptic

Curve Discrete Logarithm Problem (ECDLP) is represented as Q = l · P , given Q as

multiple of P and l ∈ [0, n − 1], s.t. l = logP Q. If the elliptic curve parameters are

carefully chosen, the ECDLP is infeasible: the best general-purpose attack takes fully

exponential time [28].
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2.4 Edwards-curve Digital Signature Algorithm

Ed25519 is the most popular instance of the Edwards-curve Digital Signature Algorithm

(EdDSA), and is based on the Curve25519 as twisted Edwards curve, providing ≈ 128-bits

of security. The curve equation is [25]:

ax2 + y2 = 1 + dx2y2,

s.t. a = −1 and d = −121665
121666 . The curve uses a prime field Fq, where q = 2255 − 19.

The RFC 8032 document [33] comprises the following advantages of Ed25519:

• High performance in various platforms.

• Generating a random number for each signature is not needed.

• Resilience against side-channel attacks.

• Complete formulas (e.g. addition law): the formula works for all points in the curve.

• Hash collision resistance.

• 128-bit security level.

• Small 32 byte keys and 64 byte signatures.

The EdDSA scheme has eleven carefully selected parameters (they vary between Ed-

DSA signature systems, such as Ed25519 and Ed448). Table 2.3 specifies the main pa-

rameters for the Ed25519 scheme.

Next, we expose details regarding point encoding and decoding, key generation, sig-

nature generation and signature verification [33].

Point encoding. A curve point (x, y) is encoded as a 255-bit little-endian encoding of

y. Then, the least significant bit of x is copied to the most significant bit of the last octet

of the encoded y.

Point decoding. Related to the retrieval of the x coordinate:
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Table 2.3: Ed25519 parameters. Source: RFC 8032 [33].

p 2255 − 19. Defines the underlying field F .
b 256.
Cofactor 8.
Fp encoding (b− 1)-bit little-endian encoding of {0, 1, ..., p− 1}.
H Hash function with 64 byte output (i.e. SHA-512).
d −121665

121666 ∈ Fp.
a −1.
B Group generator (x, 4

5) ∈ E with positive x.
L Group order 2252 + 27742317777372353535851937790883648493.

1. Interpret the octet string (encoded point) as an integer in little-endian represen-

tation. x0 is the least significant bit of x, which is the most significant bit of the

interpreted string.

2. x is retrieved by computing the square root:

x2 = (y2 − 1)/(dy2 + 1)−1 (mod n),

which is calculated as shown in the next steps.

3. Consider u = y2−1 and v = dy2−a. Compute the candidate root w = (u/v)p+3/8 =

uv3(uv7)(p−5)/8 (mod p).

4. Then, check three cases:

• If vw2 = u (mod p), the square root is x = w.

• If vw2 = −u (mod p), the square root is x = w ∗ 2(p−1)/4.

• Else, the square root modulo p does not exist, and decoding fails.

5. If x = 0 and x0 = 1, decoding fails.



2.4. EDWARDS-CURVE DIGITAL SIGNATURE ALGORITHM 23

6. If x (mod 2) = x0, then x = x. Else, x = p− x.

7. Finally, return the decoded point (x, y).

Key generation. The secret key Q and public key A are generated as follows:

1. Generate the b bits secret key Q using a cryptographically secure random number

generator.

2. Hash the secret key: H(Q) = (h0, h1, h2, ..., h2b−1), with an output of size 2b bits

(e.g. SHA-512).

3. We only use the lower 32 bytes of the digest (h0, h1, h2, ..., hb−1) to generate the

public key. Set h0 = h1 = h2 = 0, hb−2 = 1 and hb−1 = 0.

4. After pruning the buffer, interpret the result as a little-endian integer denoted s.

Perform the fixed-base scalar multiplication A = [s]B.

5. The public key A is the encoding of the point A = [s]B.

Signature generation. In order to sign the message M we need both secret and public

keys (Q and A, respectively). The steps for generating the signature (R, S) are described

below:

1. Hash the secret key: H(Q) = (h0, h1, h2, ..., h2b−1), with an output of size 2b (e.g.

SHA-512).

2. We only consider the second half of the digest (hb, hb+1, hb+2, ..., h2b−1) for the next

step.

3. Compute r = H(h ‖M), with an output of size 2b bits.

4. Perform r modulo L, then compute the point R = [r]B. R is the encoding of the

point R = [r]B.

5. Compute the integer s as shown in the key generation algorithm.
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6. Compute k = H(R ‖ A ‖M), then reduce k modulo L.

7. Finally, S = R + k ∗ s.

8. After encoding the point S, return the signature (R ‖ S).

Signature verification. The signature verification takes the public key A and the

message m as inputs and tries to verify the signature (R, S):

1. Decode the first half of the signature as a point R. Then, decode the second half as

an integer S. Reject the signature if the decoding fails.

2. Check that the integer S is in the range 0 ≤ S ≤ L. Reject the signature if it fails.

3. Decode the public key A as a point A. Reject the signature if it fails.

4. Compute k = H(R ‖ A ‖M) as a 64 byte little-endian integer.

5. The signature is valid if the following is true: [S]B ?= R + [k]A.

Figure 2.6 presents an overview for Ed25519. The Ed25519 Protocol comprises opera-

tions (i.e. key generation, signing and verification) that are implemented over a group of

points on an Elliptic Curve. Which, in its turn, is defined by the selected Finite Field (e.g.

F2255−19). It is important to correctly implement the underlying mathematical structure

and EdDSA protocol, so that undesired behaviors do not propagate into the Application.

Specific optimizations techniques can be implemented depending on the features that the

underlying Platform provides.

2.5 Conclusions

This chapter has showed the background theory for cryptography and elliptic curves.

We have also introduced Rust, a fast and safe programming language. For last, we have

explained the Ed25519 signature algorithm and provided an overview of a implementation

project involving Ed25519.



Figure 2.6: Ed25519 project stack.



Chapter 3

Related Work

There is a vast amount of work related to Ed25519 implementations and cryptographic

performance and security analysis. We do not attempt to find and study all applicable

works. Instead, we described some of the major Ed25519 implementations displayed

in [34] (Section 3.1). Next, we focused on works that evaluated - performance wise -

cryptographic implementations (Section 3.2). Lastly, we gathered works that verifies

Ed25519’s security (Section 3.3). Section 3.4 summarizes the main ideas presented in this

chapter.

3.1 Ed25519 Implementation

This section presents existing implementations of the Ed25519 signature algorithm.

3.1.1 ed25519-dalek

The ed25519-dalek library [8] provides a Rust implementation of Ed25519 key generation,

signing and verification. The implementation was built on top of the Curve25519 im-

plementation curve25519-dalek. The curve25519-dalek library implements u32, u64, avx2

and ifma backends. Safety features include constant-time logic, zeroisation of sensitive

26
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data, memory safety and no invalid points. Although security is prioritized, the imple-

mentation is very fast. The library offers serialization to/from bytes for secret and public

keys and signatures, as well as batch signature verification.

3.1.2 ed25519-donna

ed25519-donna [7] offers fast and constant-time 32-bit and 64-bit implementations of

Ed25519. It also leverages SSE2 instruction sets and offers batch signature verification.

It is possible to disable compilation against OpenSSL and use a custom hash function

instead.

3.1.3 ed25519-java

The ed25519-java [9] implementation is based on the ref10 implementation in SUPER-

COP. This implementation uses radix-225,26 and provides a fast and constant-time port

of the radix-251 operations in ref10, as well as a generic version using BigIntegers.

3.1.4 crypto/ed25519

The crypto/ed25519 [35] package implements the Ed25519 algorithm in Go, compatible

with RFC 8032. The code is a port of the ref10 implementation in SUPERCOP and uses

the radix-225,26 representation.

3.1.5 PyNaCl

PyNaCl [36] is a Python binding to libsodium, providing digital signatures, secret-key and

public-key encryption, hashing, message authentication and key derivation. libsodium [37]

is a portable, cross-compilable, installable and packageable fork of NaCl. The Libsodium

library includes optimized Curve25519 implementations for 32-bit and 64-bit platforms,

as well as a vectorized assembly implementation for SIMD architectures.
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3.2 Performance Evaluation

ECC has been heavily considered for securing resource constrained devices due to its

smaller signatures and key sizes and faster computation. TinyECC [38] is a configurable

library for ECC operations in wireless sensors networks. Such configuration allows dif-

ferent combinations of optimizations that have different RAM and ROM consumption,

execution time and energy consumption. The evaluation of the TinyECC library included

resource consumption and performance measurements analysis on a range of sensor plat-

forms. The metrics used were the following: ROM and RAM consumption, execution

time and energy consumption. Regarding optimization techniques, there were six in to-

tal, namely the Barrett reduction, hybrid multiplication and hybrid squaring, projective

coordinate systems, sliding window for scalar multiplications, Shamir’s trick and curve

specific optimization. The best configuration for storage and computational efficiency

were presented.

HACL [4] is a modern C cryptographic library that implements the ChaCha20 and

Salsa20 encryption algorithms, Poly1305 and HMAC message authentication, SHA-256

and SHA-512 hash functions, Curve25519, and the Ed25519 signature system. The code

verification considered memory safety, timing side-channels and functional correctness

with respect to RFC specifications. The authors also stated the library’s compatibil-

ity with NaCl, TLS and Mozilla’s NSS. Regarding the performance evaluation, the au-

thors performed benchmarks on 32-bit and 64-bit platforms, using the CPU performance

counter for measuring the average number of cycles needed to perform a typical oper-

ation. HACL was compared against OpenSSL, Libsodium and TweetNaCl. HACL’s

Ed25519 implementation proved to be much faster than TweetNaCl’s, but slower com-

pared to the others, since precomputed tables were not used. An important remark is the

use of 64x64 bit multiplications resulting in 128-bit integers, which improves performance

on supporting platforms.
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3.3 Security Verification

Chalkias et al. [34] analyzes the security of Ed25519 implementations and standardization.

The analysis is based on inconsistencies and incompatibilities in batch and single signature

verification, binding and malleability guarantees and ambiguity in verification equations.

The paper also emphasizes the convergence to a single interoperable Ed25519 scheme by

considering security properties, such as repudiation resilience and strong unforgeability.

It also approaches conflicting variants of Ed25519 implementations and correctness defi-

nitions, as well as recommendations, procedures and practical tools for choosing/building

Ed25519 applications that aim for compatibility and offer a higher security notion. Sim-

ilarly, Brendel et al. [39] helps with the understanding of Ed25519 variants and its prop-

erties. Therefore, the authors provide detailed analysis and security proofs for existential

and strong unforgeability and resilience against key substitution attacks.

Bernstein et al. [40] focuses on the security analysis of the NaCl cryptographic library.

More specifically, the security impact of NaCl’s design features, such as no data flow

from secrets to load addresses, no data flow from secrets to branch conditions; no padding

oracles; centralizing randomness; avoiding unnecessary randomness; extremely high speed;

and cryptographic primitives chosen conservatively in light of the cryptanalytic literature,

were evaluated. Hence, these features are essential for the design of cryptographic libraries.

3.4 Conclusions

This chapter presented existing Ed25519 implementations and works that evaluated cryp-

tographic libraries with regards to security and performance.

After doing a superficial analysis of Ed25519 implementations we have learned the

following:

• Platform based optimizations, such as implementations tailored for 32-bit, 64-bit

and SIMD architectures.

• Easy to use and misuse resistant interfaces.
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• Readability and documentation leads to better code auditing and maintainability.

• Constant-time operations, memory safety, performance and resource consumption.

We were also able to understand security in two dimensions. (i) Ed25519 algo-

rithm: procedures taken to offer security properties, such as strong unforgeability, non-

repudiation and backwards-compatibility. (ii) Ed25519 implementation: prevent side-

channel attacks by implementing constant-time operations; functional correctness. In

terms of performance, ECC implementations can leverage optimization techniques with

varying levels of resource consumption and execution time. Therefore, efficiency must

be considered, especially for resource constrained devices, and should not conflict with

security.
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Approach

This chapter describes the approach used to implement the Ed25519 signature system in

Rust and the analysis process of Ed25519 security and performance. We organized this

chapter in three sections. Section 4.1 describes the implementation process. Section 4.2

defines the methods for performing the analysis of the Ed25519 implementation and Rust.

Finally, Section 4.3 summarizes this chapter.

4.1 Implementation

The process of transforming mathematical techniques into code is not an easy task. The

ultimate goal of creating another Ed25519 implementation in Rust was to comprehend

and document the process and the path taken to achieve our goals.

The Ed25519 system refers to the implementation of the following modules: field

element arithmetic, group element arithmetic and an interface defining the cryptographic

operations (key generation, signature generation and signature verification).

The implementation process consisted of a theoretical study of the signature system

and the Rust programming language, followed by the implementation itself:

• Step 1 (theory): perform a study related to the Ed25519 signature system and

the Rust programming language.

32
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The study includes materials and documentations provided by existing implemen-

tations: namely the ed25519-dalek [8], ed25519-java [9] and ed25519-donna [7]. As

well as articles and books, specially the original work [1] and the RFC 8032 [33].

The Rust community provides excellent documentations (i.e. The Rustonomicon

[41]), fundamental to the success of this work.

• Step 2 (implementation): implement each layer in the following sequence, start-

ing from the field element arithmetic, group element arithmetic and lastly, the key

generation, signature and verification functions. The implementation should include

aspects of readability, modularity and ease of use.

• Step 3 (tests): test the implementation in two ways.

Unit testing. Ensure appropriate behavior for functions (i.e. underlying arithmetic

for field elements and group elements).

Regression testing. This can be achieved by testing the output of the key gen-

eration, signature generation and signature verification functions by consuming the

test vectors available in [42].

• Step 4 (library API): build an appropriate interface for our Rust library.

This step involves the implementation of an interface that provides the function-

ality of the Ed25519 signing algorithm. The interface should have the following

characteristics:

– Design an interface similar to existing Ed25519 implementations, such as the

ed25519-dalek [8] library.

– Provide clear documentation for data types and functions with examples re-

garding its usage.

– Use Rust’s type system to ensure that the signature, public key and secret key

are distinguishable from each other. In other words, they are essentially arrays

of bytes with another level of abstraction.
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• Step 5 (documentation): The goal of the documentation is an overview of the

Ed25519 algorithm and the exploration of its mathematical perspective reflected in

the implementation. Thus, the documentation comprises the following:

– Overview of the Ed25519 signing algorithm.

– Describe the implementation, specially its structure, interface and general de-

cisions considered in the development process, as well as explore core functions

and its mathematical perspective when applicable.

4.2 Analysis

Lastly, we carried out a study of security and performance involving the Ed25519 algo-

rithm and implementation.

4.2.1 Performance Evaluation

All benchmarks were performed in an IntelR CoreTM i7-9750H Processor (64-bit) running

Ubuntu 20.04 5.8.0-53-generic (64-bit)(with 16 GiB of RAM). Ultimately, our goal is

to measure the performance of Ed25519 implementations with different configurations.

We specially want to evaluate Rust’s performance. In order to evaluate performance we

considered the execution time and memory consumption:

Execution speed. The execution speed was measured using benchmarking libraries

built for that specific language. We give special attention when comparing Rust and

C implementations, considering that C is a fast programming language. Thus, we use

Rust’s Foreign Function Interface (FFI) to communicate with C cryptographic libraries.

Consequently, two main factors arises. The first is the possibility to use the same bench-

marking library to evaluate both C and Rust libraries. Second, this is a fair comparison

if we consider that the overhead introduced is negligible [43]–[45]. Also, Table 4.1 shows

similar execution times when comparing Rust’s FFI with C’s clock() function.
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Table 4.1: Comparison between two benchmarking techniques: call C functions from Rust
using FFI; native in C using the clock() function (using the ed25519-donna implementa-
tion).

ed25519-donna With FFI (µs) Without FFI (µs)
Key Generation 10.215 10.682
Signature Generation 11.279 11.317
Signature Verification 36.436 35.975

Memory consumption. We used Valgrind’s Massif1 tool to measure the memory con-

sumption of programs that included all three Ed25519 operations (this was done for each

implementation we selected).

Experiment Setup (execution speed)

The Ed25519 system involves three main operations: key and signature generation and

signature verification. Therefore, these operations were the focus of our benchmarks.

To understand the impact of optimizations, we adopt two variables:

• Architecture: 32-bit or 64-bit implementations.

• Scalar multiplication: use of precomputed data to speed up scalar multiplications.

We also choose major Ed25519 implementations [34] in the following programming

languages: C, Go, Rust, Java and Python. Ten implementations were selected in total,

and are listed in Table 4.2. Table 4.2 also presents the main features provided by the

implementation, as well as the benchmarking library.

Table 4.2: Ed25519 implementations used in the performance evaluation, as well as a
description of the benchmarking libraries used, such as criterion, timeit, testing and JMH.

Benchmarking Environment

1https://www.valgrind.org/docs/manual/ms-manual.html
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C and Rust/criterion library: collects 100 samples in estimated 5s of execution 3s of

warmup. Each sample contains a different number of iterations (criterion does not analyze

individual iterations).

Python/timeit library: used to collect the average execution time from at least 5s of execution,

this was repeated three times and the lowest measurement was considered.

Go/testing package: default configurations 100.000 iterations.

Java/JMH library: returns the average execution time from 300.000 iterations 100.000

iterations warmup.

Library: ed25519-fun [46].

Features: 64-bit.

Environment: rustc version 1.53.0-nightly criterion version 0.3.

Library: ed25519-dalek version 1.0.1 [8].

Features: 32-bit 64-bit SIMD instructions.

Environment: rustc version 1.53.0-nightly criterion version 0.3.

Library: ed25519-java version 0.3.0 [9].

Features: 32-bit.

Environment: JDK version 14.0.1 JMH version 1.28.

Library: Go package crypto/ed25519 [35].

Features: 32-bit.

Environment: Go version 1.16 Go package testing.

Library: ed25519 (oasisprotocol) [47].

Features: 32-bit 64-bit.

Environment: Go version 1.16 Go package testing.

Library: Bouncy Castle version 1.68 [48].

Features: 32-bit.

Environment: JDK version 14.0.1 JMH version 1.28.
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Library: ed25519 (orlp) [49].

Features: 32-bit.

Environment: GCC version 9.3.0 Library time.h for clock_t clock(void) function Rust

crates (FFI): libc version 0.2 criterion version 0.3.

Library: ed25519-donna [7].

Features: 32-bit 64-bit SSE2 instructions.

Environment: GCC version 9.3.0 Library time.h for clock_t clock(void) function Rust

crates (FFI): libc version 0.2 criterion version 0.3.

Library: PyNaCl version 1.4.0 [36].

Features: 32-bit 64-bit SIMD instructions.

Environment: Python version 3.8.5 Python library timeit.

Library: pyca version 4.1 [50].

Features: 64-bit.

Environment: Python version 3.8.5 Python library timeit.

To simplify, we create three scenarios. In the first two scenarios we perform bench-

marks that reflects the impact of the optimizations. The third scenario presents bench-

marks for all selected implementations. These benchmarks were applied for all of the

Ed25519 operations (namely key generation, signing and verification).

Experiment Setup (memory consumption)

We used Valgrind’s Massif (version 3.15.0) to measure memory consumption of programs,

such that each program used a specific Ed25519 library and included key generation,

signing and verification functions pertaining to that library. The --pages-as-heap option

replaces heap profiling for lower-level page profiling: the stack, heap, data and BSS seg-

ments are all measured; the --stacks option, in the other hand, measures the stack and

the heap. Both options were used in the performance analysis.
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4.2.2 Security

To gain more insights into the features of the Ed25519 signature system/implementation

and what makes Rust a suitable language for cryptographic implementations, we also

performed a study focused on security properties. Straightforwardly, we discussed security

in three perspectives:

1. Implementation: discussion of security considerations in the implementation level,

such as constant-time operations.

2. Programming language: discussion of Rust’s safety features.

3. Algorithm: classification of our implementation in respect to the security properties

exposed by Brendel et al. [39] and Chalkias et al. [34].

4.3 Conclusions

As stated in this chapter, this work focuses on the Ed25519 implementation in Rust and its

analysis. The implementation is composed by the comprehension of the theory, Ed25519

implementation in Rust and the documentation. The analysis targets the implementa-

tion’s performance and security.





Chapter 5

Ed25519 Implementation

This chapter focuses on the implementation details (the implementation can be found

in GitHub1) and is organized as follows. Section 5.1 describes the implementation itself

(field arithmetic, curve arithmetic and protocol). Section 5.2 expands on implementation

properties, such as modularity, readability and ease of use. Unit testing and regression

testing are presented in Section 5.3. The interface was exemplified in Section 5.4. Lastly,

Section 5.5 summarizes this chapter.

5.1 Implementation

The implementation can be divided as: field element, group element and interface. They

are presented in Sections 5.1.1, 5.1.2 and 5.1.3, respectively.

5.1.1 Field Element Arithmetic

This section describes the field element representation and arithmetic, i.e. the radix-251

representation, field element addition, subtraction, multiplication, squaring and inversion.

1https://github.com/yuzonightly/ed25519-fun.git

40
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Radix-251 Representation

Considering the goal to reduce the number of instructions when performing field ele-

ment arithmetic and the inability to perform 255-bit integer arithmetic on mainstream

computers, we take an element x of field F2255−19 as five 64-bit limbs (x0, x1, x2, x3, x4) :

x = ∑4
i=0 xi251i [1].

x is represented as:

x = x0 + x1251 + x22102 + x32153 + x42204, with 0 ≤ xi ≤ 251.

Addition and Subtraction

Field Element additions can be done simply by performing limb by limb addition. Dealing

with carries is not necessary. The reason lies on the absence of large addition chains.

One addition and one subtraction for each limb is needed to perform subtraction on

field elements. Since we are storing them as 64-bit unsigned, in order to avoid underflow

we first add a multiple of p (e.g. k ·p), and then perform the subtraction: s = (x+k ·p)−y.

Listing 5.1 shows the code that performs the subtraction.

Listing 5.1: Subtraction on field elements.

1 let mut h = [0u64; 5];
2
3 // Perform h = self - g
4 // The element [twoP0, TwoP1234, TwoP1234, TwoP1234, TwoP1234] is a multiple
5 // of p: 2 * (2^255 - 19).
6 h[0] = (self.0[0] + TwoP0) - g.0[0];
7 h[1] = (self.0[1] + TwoP1234) - g.0[1];
8 h[2] = (self.0[2] + TwoP1234) - g.0[2];
9 h[3] = (self.0[3] + TwoP1234) - g.0[3];

10 h[4] = (self.0[4] + TwoP1234) - g.0[4];
11
12 // Perform field element reduction
13 FieldElement::reduce(h)
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Multiplication

The result of the multiplication of two field elements x and y, z = x·y = z0+z1251+z22102+

· · · + z82408, can be obtained as follows. By exposing that p = 2255 − 19 −→ 2255 ≡ ( 19

mod p) , Equation 5.1 is straightforward [1].

z = ( z0 + 19z5) + ( z1 + 19z6) 251 + ( z2 + 19z7) 2102 + ( z3 + 19z8) 2153 + z42204 (5.1)

z0 = x0y0

z1 = x0y1 + x1y0

z2 = x0y2 + x1y1 + x2y0

z3 = x0y3 + x1y2 + x2y1 + x3y0

z4 = x0y4 + x1y3 + x2y2 + x3y1 + x4y0

z5 = x1y4 + x2y3 + x3y2 + x4y1

z6 = x2y4 + x3y3 + x4y2

z7 = x3y4 + x4y3

z8 = x4y4 (5.2)

From Equations 5.1 and 5.2 we can deduce Equation 5.3.

z0 = x0y0 + 19(x0y4 + x2y3 + x3y2 + x4y1)

z1 = x0y1 + x1y0 + 19(x2y4 + x3y3 + x4y2)

z2 = x0y2 + x1y1 + x2y0 + 19(x3y4 + x4y3)

z3 = x0y3 + x1y2 + x2y1 + x3y0 + 19(x4y4)

z4 = x0y4 + x1y3 + x2y2 + x3y1 + x4y0 (5.3)
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In order to obtain coefficients that are slightly larger than 251, reduce (dealing with

carries) is necessary after performing multiplications [51]. The same approach is applied

to field element squaring (Section 5.1.1). Listing 5.2 shows the Rust code for field mul-

tiplication, which reflects Equation 5.3. It is important to note that inner field element

(u64 limbs) multiplications are performed as (f as u128) · (g as u128), where both f and

g are u64.

Listing 5.2: Field multiplication modulo p

1 let h0 = f0g0 + f1g4_19 + f2g3_19 + f3g2_19 + f4g1_19;
2 let mut h1 = f0g1 + f1g0 + f2g4_19 + f3g3_19 + f4g2_19;
3 let mut h2 = f0g2 + f1g1 + f2g0 + f3g4_19 + f4g3_19;
4 let mut h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g4_19;
5 let mut h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0;

Squaring

Field element squaring is similar to its multiplication. We have z = x · x = z0 + z1251 +

z22102 + · · · + z82408 and p = 2255 − 19 −→ 2255 ≡ ( 19 mod p) . Equation 5.4 describes

the operation x · x.

z0 = 2 · x0

z1 = x0x1 + x1x0

z2 = x0x2 + 2 · x1 + x2x0

z3 = x0x3 + x1x2 + x2x1 + x3x0

z4 = x0x4 + x1x3 + 2 · x2 + x3x1 + x4x0

z5 = x1x4 + x2x3 + x3x2 + x4x1

z6 = x2x4 + 2 · x3 + x4x2

z7 = x3x4 + x4x3

z8 = 2 · x4 (5.4)
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Equations 5.1 and 5.4 generates the limbs z0, . . . , z4 illustrated in Equation 5.5.

z0 = 2 · x0 + 19(2 · x1x4 + 2 · x2x3)

z1 = 2 · x0x1 + 19( 2 · x2x4 + 2 · x3)

z2 = 2 · x0x2 + 2 · x1 + 19( 2 · x3x4)

z3 = 2 · x0x3 + 2 · x1x2 + 19( 2 · x4)

z4 = 2 · x0x4 + 2 · x1x3 + 2 · x2 (5.5)

Reduce is also necessary to obtain coefficients that are slightly larger than 251, similarly

to field element multiplications.

Inversion

For field element inversion we have ap ∼= a mod p and therefore a(p−2) ∼= a−1 mod p.

More specifically we will simply compute a2255−21 mod p. This can be achieved by per-

forming sequences of squaring and multiplications. For example:

• Square field element a: b = a · a = a2.

• Square field element b: c = b · b = a4.

• Multiply a and b: d = a2 · a4 = a6.

• Square field element d: e = d · d = ( a6) 2 = a24−22 .

Listing 5.3 shows (partially) the code that performs the field element inversion.

Listing 5.3: Field element inversion.

1 ...
2 ...
3 // 1 * 2 = 2 -> self^2
4 let mut t0 = self.square();
5 // 2 * 2 = 4 -> self^4
6 let mut t1 = t0.square();
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7 // 4 * 2 = 8 -> self^8
8 t1 = t1.square();
9 // 1 + 8 = 9 -> self^9

10 t1 = self.mul(t1);
11 // 2 + 9 = 11 -> self^11
12 t0 = t0.mul(t1);
13 // 2 * 11 = 22 -> self^22
14 let mut t2 = t0.square();
15 // 22 + 9 = 31 -> self^31
16 t1 = t1.mul(t2);
17 // 31 * 2 = 62 = 2^6 - 2^1 -> self^(2^6 - 2)
18 t2 = t1.square();
19 // 2^4 * (2^6 - 2^1) = 2^10 - 2^5 -> self^(2^10 - 32)
20 t2 = t2.square_times(4);
21 ...
22 ...
23 // Perform squarings and multiplications until self^(2^255 - 21)

5.1.2 Group Element Arithmetic

In this section we aim for expanding details about group arithmetic, i.e. coordinate

systems, point addition, point doubling and scalar multiplication.

Coordinate Systems

Alternate coordinate systems are considered for performing point arithmetic.

The point (x, y) in the extended coordinate system (P 3) is represented as:

x = X/Z

y = Y/Z

xy = T/Z,

The identity element is (0 : 1 : 1 : 0) and the negative element is (−X : Y : Z : −T ).

The point (x, y) in the projective coordinate system (P 2) is represented as:
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x = X/Z

y = Y/Z,

where Z 6= 0.

The precomputed representation is defined as (y + x, y − x, 2 ∗ d ∗ x ∗ y), where d is

the constant (Ed25519 parameter) −121665/121666 (mod p). The precomputed values

(precomp.rs) used in scalar multiplications are points in the precomputed representation.

The cached representation also uses precomputations, satisfying (Y +X, Y −X,Z, 2 ∗

d ∗ T ) (X, Y , Z and T are values extracted from the P 3 representation).

Finally, the completed (P × P ) representation ((X : Z), (Y : T )) satisfies x = X/Z

and y = Y/T .

Addition and Subtraction

Addition and subtraction were implemented for points X and Y as X ⊕Y , where X is in

the extended point representation and Y can either be in the precomputed or cached rep-

resentations. The result of the operation is returned as P ×P (completed representation).

The code is available in the Appendix B.

Doubling

Doubling the point X requires performing X + X. The point X can either be in the

extended or projective representation, and the result is returned as P × P (completed

representation). The code is available in the Appendix B.

Fixed-window Scalar Multiplication

Two approaches were considered for scalar multiplications: one approach uses fixed win-

dows and the other one uses sliding windows (Section 5.1.2). We will go through the

constant-time fixed window approach in this section.
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We consider a fixed window of size 4. The following needs to be computed:

S = a ∗ P,

s.t. a is defined as a0 + a1 · 2561 + a2 · 2562 · · · a31 · 25631 and P is the base point.

For point P we precompute the following table:

P 2 · P 3 · P · · · 8 · P

162 256 · P 2 · 256 · P 3 · 256 · P · · · 8 · 256 · P

164 2562 · P 2 · 2562 · P 3 · 2562 · P · · · 8 · 2562 · P

166 2563 · P 2 · 2563 · P 3 · 2563 · P · · · 8 · 2563 · P
... ... ... ... . . .

1662 25631 · P 2 · 25631 · P 3 · 25631 · P · · · 8 · 25631 · P

Then, compute the radix-24 representation for the scalar a:

a = a0 + a1 · 161 + a2 · 162 + · · ·+ a63 · 1663,

where −8 ≤ ai < 8 and 0 ≤ |ai| ≤ 8. Therefore, instead of doing precomputations for

P . . . 16P , only P . . . 8P precomputations were generated. This is possible by using signed

values for ai and transforming the resulting point (ai · 16j · P ) into its negative whenever

ai is negative.

The scalar multiplication can be solved by iterating through a and accumulating each

ai · 16j ·P . It is important to note that we accumulate odd indexes first and multiply the

result by 16. Although performing the scalar multiplication with the lookup table uses

more memory, it is much faster. The code for the fixed-window scalar multiplication can

be found in Appendix C.



48 CHAPTER 5. ED25519 IMPLEMENTATION

Sliding-window Scalar Multiplication

The goal is to compute the following:

S = a · P,

where a = a0 + a1 · 256 + a2 · 2562 + · · ·+ a31 · 25631 and P is a point in the curve.

In contrast to the fixed-window scalar multiplication, the sliding-window scalar mul-

tiplication is used for verifying signatures. It uses less memory but is not constant-time.

The idea is to “slide” the window over the scalar [52]. The following steps were

implemented:

1. First, a is passed to the slide function. The function slide takes the parameter a,

which has 32 8-bit unsigned elements (a1, a2, ..., a31), and returns r.

2. r has 256 8-bit signed elements and is defined as: r0 +r1 ·21 +r2 ·22 + · · ·+r255 ·2255.

Each element ri ∈ {−15,−13,−11,−9,−7,−5,−3,−1, 0, 1, 3, 5, 7, 9, 11, 13, 15}.

3. Then, since ri is always odd, we precompute values for the point P : {P, 3P, 5P,

7P, 9P, 11P, 13P, 15P}.

4. Lastly, perform the chain of point doublings and additions in r, and accumulate the

result after each operation.

Although the sliding-window method is more efficient, it is not constant-time and is

only used for verifying signatures. The code can be found in Appendix D.

5.1.3 Interface

Fundamentally, the interface should have at least three operations: key generation, signa-

ture generation and signature verification. These operations are illustrated in Figures 5.1

and 5.2. Both diagrams reflect the steps described in Section 2.4. It is important to



5.1. IMPLEMENTATION 49

observe a few things about the design illustrated in both figures: Ed25519 performs secret

key clamping (set/clear bits); signing also depends on the public key; verification also

depends on checks and point decoding validations [39].

Figure 5.1: Overview of Ed25519’s key generation and signature generation.

Further details about the usage of the library API (code examples) and a description

of the Ed25519 algorithm (showing the key generation, signing and verification processes)

were given in Sections 5.4 and 2.4, respectively.
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5.2 Implementation Properties

The properties considered for the implementation were three: modularity, readability and

ease of use.

Figure 5.2: Overview of Ed25519’s signature verification.

5.2.1 Modularity

The implementation was organized as follows:
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/ed25519-fun

/benches

/src

/curve25519

constants.rs

field_element.rs

group_element.rs

mod.rs

precomp.rs

scalar_ops.rs

utils.rs

constants.rs

errors.rs

keypair.rs

lib.rs

public.rs

secret.rs

signature.rs

/tests

ed25519_testing.rs

sign.input

verify.input

Cargo.toml

The implementation was organized similarly to the ed25519-java implementation. The

library was divided in three parts. (i) Built-in benchmarks for key generation, signing

and verification were included in the /benches folder. (ii) /src comprises the Ed255519
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implementation. (iii) /tests includes the regression testing. The /src folder was organized

as follows:

Curve25519. The module /curve25519 houses the implementation of the field element

arithmetic, group element arithmetic and scalar operations.

Ed25519. The modules keypair.rs, public.rs, secret.rs and signature.rs implements the

specification for the secret key, public key and signature, as well as the implementation

of the Ed25519 protocol. To do so, it uses the /curve25519 module.

5.2.2 Readability

In this case, we refer to readability simply as the appropriate attribution of names. To

exemplify, the code in Listing 5.4, which returns a point in P 3 representation given a 32

byte encoding enc, illustrates two main characteristics. First, names given to functions

are easily associated with the arithmetic applied to the field element. Second, names

given to variables follows the same pattern introduced by the RFC 8032 and articles.

Listing 5.4: Point decoding.

1 pub fn decode(enc: [u8; 32]) -> Option<P3> {
2 let y = FieldElement::decode(enc);
3 let yy = y.square();
4 let u = yy - FieldOne;
5 let v = (yy * D) + FieldOne;
6 let v3 = v.square() * v;
7 let v7 = v3.square() * v;
8 let mut x = u * v7;
9 x = x.pow22523();

10 x = x * u * v3;
11 let vxx = x.square() * v;
12 let mut check = vxx - u;
13 if check.is_zero().unwrap_u8() == 0u8 {
14 check = vxx + u;
15 if check.is_zero().unwrap_u8() == 0u8 {
16 return None;
17 }
18 x = x * I;
19 }
20
21 if x.is_negative().unwrap_u8() == enc[31] >> 7 {
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22 x = x.negate();
23 }
24
25 Some(P3 {
26 X: x,
27 Y: y,
28 Z: FieldOne,
29 T: x * y,
30 })
31 }

5.2.3 Ease of Use

We associate ease of use with the library interface and code examples.

Code examples. Proper usage of the library were exposed in this documentation and

on the root of the GitHub repository. Also, complete examples were written as Rust

comments (for data types and functions).

Library API. As for the library interface, we provided distinct Rust types for each

element: SecretKey for secret keys, PublicKey for public keys, Signature for signatures,

and Keypair for both secret and public keys. The interface has similarities with the

ed25519-dalek implementation. In this context, the Keypair type implements both signing

and verification functions, SecretKey implements the signing function, and PublicKey

implements the verification function. Therefore, using distinct types to represent different

elements (even though these elements are all byte arrays), and functions implemented

under the correct types, are essential for the usability of the library and to increase the

difficulty of misusing the API.

5.3 Tests

Tests were applied for internal functions and Ed25519 operations. We classified them as:

Unit testing. Written mainly for field elements (field_element.rs), group elements

(group_element.rs), scalar operations (scalar_ops.rs) and utilitarian functions (utils.rs).

Tests were done using random inputs. The goal was to ensure basic functionality by
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generating the correct output.

Regression testing. Regression tests were written for key generation, signing and ver-

ification functions. Tests were taken from [42]. Essentially, the test vectors have 1024

instances, each containing a message, secret and public keys, and the corresponding sig-

nature. Therefore, the key generation, signature generation and signature verification

functions were tested. The output from each operation was matched against the test

vectors.

5.4 Library API

Key generation. The secret key and public key are generated using the generation

function from Keypair, as shown in Listing 5.5.

Listing 5.5: Example of secret key and public key generation.

1 let keypair: Keypair = Keypair::generate();

Signature generation. Signing is done through the sign function from Keypair, as

shown in Listing 5.6.

Listing 5.6: Example of signature generation.

1 let message: &[u8] = b"";
2 let signature: Signature = keypair.sign(message);

Signature verification. In order to verify signatures we use the verify function from

Keypair, as shown in Listing 5.7.

Listing 5.7: Example of signature verification.

1 let signok: bool = keypair.verify(message, signature);

Listing 5.8 provides a full example using our library.

Listing 5.8: Example using the library API.

1 extern crate ed25519_fun;
2 use ed25519_fun::{Keypair, Signature, SecretKey, PublicKey};
3
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4 fn main() {
5 // Keypair generation
6 let keypair: Keypair = Keypair::generate();
7
8 // Signing
9 let message: &[u8] = b"";

10 let signature: Signature = keypair.sign(message);
11
12 // Verification
13 let signok: bool = keypair.verify(message, signature);
14
15 // The Keypair can also be generated with the secret key
16 let secret_key: SecretKey = keypair.secret;
17 let keypair_from_secret_key = Keypair::generate_public_key(secret_key);
18
19 // Signing can also be performed with SecretKey
20 let public_key: PublicKey = Keypair.public;
21 let secret_key_signing: Signature = secret_key.sign(public_key, message);
22
23 // Verification can also be performed with PublicKey
24 let public_key_signok = public_key.verify(message, signature);
25
26 // Transform Keypair, SecretKey, PublicKey and Signature into byte arrays
27 let keypair_bytes: [u8; 64] = keypair.as_bytes();
28 let secret_bytes: [u8; 32] = secret_key.as_bytes();
29 let public_bytes: [u8; 32] = public_key.as_bytes();
30 let signature_bytes: [u8; 64] = signature.as_bytes();
31
32 // Transform byte arrays into its corresponding types
33 let keypair_from_bytes: Keypair = Keypair::from_bytes(&keypair_bytes);
34 let secret_key_from_bytes: SecretKey = SecretKey::from_bytes(&secret_bytes);
35 let public_key_from_bytes: PublicKey = PublicKey::from_bytes(&public_bytes);
36 let signature_from_bytes: Signature = Signature::from_bytes(&signature_bytes);
37 }

5.5 Conclusions

This chapter described the implementation of the signature scheme. For simplicity, we

have only explored the main ideas and functions surrounding the underlying arithmetic.

Then, we attempted to explain the properties we chose to consider in the implementation:

modularity, readability and ease of use. They are simple concepts that resulted in writing
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code that is easier to read and maintain, and in a usable interface. Lastly, we described

the tests written for the internal functions and API, as well as code examples using the

library.





Chapter 6

Performance and Security Analysis

This chapter focuses on the aspects of performance and security in two perspectives: Rust

programming language and Ed25519 implementation and algorithm. Section 6.1 evaluates

Ed25519 implementations by measuring the execution time of the key generation, signing

and verification functions, as well as the memory footprint. Next, Section 6.2 explores

Rust’s and Ed25519’s security.

6.1 Evaluation

We observed the impact of precomputed values in scalar multiplications, as well as 32-bit

and 64-bit implementations in Sections 6.1.1 and 6.1.2, respectively. Then, we analyzed

our benchmark results for various implementations in Section 6.1.3. Lastly, Section 6.1.4

shows memory consumption. The code can be found in GitHub1.

6.1.1 Scalar Multiplication

First, we take look at the impact of precomputed values, explained at Section 5.1.2. As

shown in Table 6.1, the use of precomputed values in scalar multiplications can drastically

improve performance in key and signature generation, seeing that scalar multiplications
1https://github.com/yuzonightly/ed25519-bench
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are the most expensive operation in ECC arithmetic. Our results indicated an increase

in performance by 81.77% and 78.87% in key and signature generation, respectively.

Table 6.1: Performance impact of 30 KB of precomputed values (with our implementa-
tion).

ed25519-fun With Precomputation (µs) Without Precomputation (µs)
Key Generation 21.065 115.99
Signature Generation 25.294 120.05

By using precomputed values, we perform 128 table lookups and 128 point additions.

Otherwise, 512 point additions are necessary.

6.1.2 Architecture

This time, we consider the difference in performance for 32-bit and 64-bit implementations

of Ed25519. Essentially, 64-bit implementations breaks field elements into 5 limbs using

radix 251. 32-bit implementations, in the other hand, breaks them into 10 limbs using

the radix-2{25,26} representation. Figures 6.1, 6.2 and 6.3 show that performance halves

(performance decreases by a factor of 2) for key generation, signing and verification when

building the library for 32-bit targets. Which is expected, considering that the field

element arithmetic is optimized for specific radix-β number representations. Because we

wanted to emphasize the difference in performance for radix-β representations, we decided

to exclude our implementation, which only supports the 64-bit version.

6.1.3 Overall

We now focus on performance comparisons between Ed25519 implementations in the

following languages: Rust, C, Python, Java and Go.

Rust’s performance. The C language is known to be fast and efficient. Thus, we set

ed25519-donna as a performance baseline. For all Ed25519 operations, our implemen-

tation (ed25519-fun) has performed as well as the ed25519-donna implementation with

similar optimization configurations. Also, it outperformed both Java implementations,
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Go’s crypto library and ed25519 (orlp), likely due to different field element representa-

tions and optimizations choices.

Figure 6.1: Key generation benchmarks involving 32-bit and 64-bit builds of three
Ed25519 implementations.

Figure 6.2: Signature generation benchmarks involving 32-bit and 64-bit builds of three
Ed25519 implementations.

The following observations derived from Figures 6.4, 6.5 and 6.6, which illustrates the

execution time (in microseconds) for the selected implementations:
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Figure 6.3: Signature verification benchmarks involving 32-bit and 64-bit builds of three
Ed25519 implementations.

• ed25519-dalek’s experimental SIMD backend has the best signature verification per-

formance.

• ed25519-donna with SSE2 instruction sets offers the fastest key generation and

signature generation.

• Rust is capable of matching C’s performance. ed25519-fun and ed25519-donna, for

instance, shows similar performance of key generation and signature generation.

The same can be applied for implementations written in Go, which is known for

being efficient and reliable. ed25519 (oasis), for example, has great performance for

key generation (14.068 µs) and signature generation (14.921 µs).

• pynacl is a Python binding to libsodium, and pyca, in the other hand, is a Python

binding to OpenSSL. We assume that the added overhead (binding) is insignifi-

cant, since pyca and pynacl have similar execution times in comparison to other

implementations in C and Rust.

• The Bouncy Castle library (in Java), ed25519-java and the crypto library (in Go)

placed last in our tests likely due to field element representations, which can increase
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performance considerably (as seen in Section 6.1.2).

Figure 6.4: Key generation benchmarks for Ed25519 implementations in various lan-
guages.

Figure 6.5: Signature generation benchmarks for Ed25519 implementations in various
languages.
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Figure 6.6: Signature verification benchmarks for Ed25519 implementations in various
languages.

As seen in our benchmarks of Ed25519 implementations, Rust offers high performance,

while providing desirable features for cryptographic applications, such as memory safety.

6.1.4 Memory Usage

Table 6.2 shows peak memory consumption reported by the Massif tool, which encouraged

the following observations:

• The implementations in Java clearly consumes more memory.

• ed25519 (orlp) has the lowest memory consumption.

• Although the total memory consumed (≈ 750 MiB) by Go implementations was

≈ 15× higher than implementations in Python, its stack + heap consumption (≈

85 KiB) was only ≈ 3× higher than implementations in Rust.

• ed25519-donna’s total memory consumption is 9.7 MiB, which surpasses ed25519-fun

and ed25519-dalek by ≈ 1.7 MiB. Regarding stack+heap, however, Rust (ed25519-

dalek and ed25519-fun) showed ≈ 4× more memory usage than C.
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• ed25519-dalek with the simd_backend feature enabled is worth considering: ed25519-

dalek SIMD showed an increase in total memory usage of 0.2 MiB and significant

improvement in signature verification speed. Whereas ed25519-donna did not show

significant changes in regards to peak memory usage after enabling SSE2 instruc-

tions.

Table 6.2: Peak memory usage reported by Massif for various implementations.

Implementation Total Memory

(--pages-as-heap)

Stack + Heap

(--stacks)

Rust/ed25519-fun 8 MiB 29.7 KiB

Rust/ed25519-dalek 8 MiB 29.1 KiB

Rust/ed25519-dalek SIMD 8.2 MiB 90.7 KiB

C/ed25519-donna 9.7 MiB 7.5 KiB

C/ed25519-donna SSE2 9.7 MiB 7.5 KiB

C/ed25519 (orlp) 4.2 MiB 7.2 KiB

Python/pynacl 37.3 MiB 912.1 KiB

Python/pyca 52.7 MiB 2700 KiB

Go/crypto 750.2 MiB 85.4 KiB

Go/ed25519 (oasis) 750.3 MiB 85.2 KiB

Java/ed25519-java 15200 MiB 25400 KiB

Java/Bouncy Castle 15200 MiB 25600 KiB

6.2 Security

The Rust language has features that are appealing for cryptographic implementations,

such as:

Expressiveness. Rust’s type system allows for writing expressive programs. In this

context, creating layers of abstraction and traits converges into lines of code that are

easier to write and read.
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Memory safety. Ownership is the main Rust feature, which enables memory manage-

ment [53]. The Rust documentation states three ownership rules: (i) each value has an

owner, (ii) there can only be one owner at a time, and lastly, (iii) the value is dropped

once the owner goes out of scope [54]. These rules implies the following:

• There is no pointer aliasing in Rust (one owner at a time).

• Variables can only be either copied or moved (borrow).

• When the value is dropped its memory is no longer accessible.

The compiler knows when the allocated memory should be freed (lifetime construct).

Use-after-free, double-free and dangling pointers are prevented at compile time [53]. Also,

buffer overflow is prevented with built-in bounds checking.

Security measures considered for the Ed25519 implementation in Rust included the

following:

Constant-time operations. Making sure cryptographic implementations are isochronous

is important. Underlying field arithmetic and scalar multiplications should operate in

constant-time to avoid side-channel attacks [55]. Our implementation approaches constant-

time operations for key generation and message signing. An example of this approach is

the use of fixed-window scalar multiplications (Section 5.1.2), which attempts constant-

time execution. The subtle library [56], for instance, is another attempt that provides

constant-time implementations of bitwise operations.

Zeroization. As an exploit mitigation technique, we used the zeroize library [57] to

ensure that secret data is no longer accessible. This library performs memory zeroing

while avoiding compiler optimizations.

Usability. The usability of cryptographic libraries is essential for preventing API misuse.

Simplicity, easy to comprehend documentation and secure code examples were emphasized

as important usability qualities for cryptographic APIs [58]–[60]. Therefore, we adopted

the documentation of a simple and structured interface, that provides distinct types for

the public key, secret key and signature.
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Lastly, we tried classifying our implementation based on security properties exposed

by Chalkias et al. [34] and Brendel et al. [39]:

EUF-CMA (existential unforgeability under chosen message attacks). For a

number of selected messages and its respective signatures, the attacker should not be able

to efficiently output a signature σ∗ for a new message m∗ that can be verified under the

same public key, s.t. m∗ /∈ {mi}i=1
N .

SUF-CMA (strong unforgeability under chosen message attacks). This defini-

tion is stronger than the EUF-CMA property. For a number of selected (message mi,

signature σi) pairs, the attacker should not be able to output (m∗, σ∗), s.t. (m∗, σ∗) /∈

{mi, σi}i=1
N . This implies that a valid signature for an old message cannot be generated,

except with negligible probability. This is useful for blockchain applications.

BS (binding signatures). The signer cannot generate two messages (m,m∗) that can be

verified under the same signature σ and public key pk, except with negligible probability.

This implies that the signature is bound to the message and the non-repudiation property

is held.

SBS (strongly binding signatures). The attacker cannot output valid (m1, pk1, σ∗)

and (m2, pk2, σ∗), s.t. either m1 6= m2 or pk1 6= pk2 is true. This is an stronger notion

than BS, and implies that the signature is also bound to the public key.

Table 6.3: Security properties satisfied by Ed25519 implementations. Adapted from:
Chalkias et al. [34]. The test vectors, together with the explanation, can found in
Appendix A.

Library 0 1 2 3 4 5 6 7 8 9 10 11 SUF-CMA SBS cofactored
Bouncy Castle 3 3 3 3 7 7 7 7 7 7 7 7 3 7 7

ed25519-dalek 3 3 3 3 7 7 7 7 7 7 7 3 3 7 7

ed25519-donna 3 3 3 3 7 7 3 7 7 7 7 3 7 7 7

go/crypto 3 3 3 3 7 7 7 7 7 7 7 3 3 7 7

libsodium 7 7 7 3 7 7 7 7 7 7 7 7 3 3 7

pyca 3 3 3 3 7 7 7 7 7 7 7 3 3 7 7

ed25519-fun 3 3 3 3 7 7 3 7 7 7 7 3 7 7 7

Appendix A gives an explanation for the test vectors. The following analysis can be

drawn from Table 6.3 [34]:
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• All libraries implements the cofactorless variant of EdDSA. We also considered the

cofactorless version.

• Most implementations offer SUF-CMA security, with the exception of our imple-

mentation (ed25519-fun) and ed25519-donna.

• libsodium checks vectors 0, 1 and 2, which leads to SBS security.

Although the implementation that provides the strongest notion of security satisfies

the SUF-CMA and SBS properties (e.g. libsodium), it is sufficient for a signature scheme

to only satisfy the EUF-CMA property [34]. Therefore, our implementation meets the

standard EUF-CMA security property.

6.3 Conclusions

This chapter has demonstrated that Rust is competitive considering its performance and

security properties. Our Ed25519 implementation in Rust has respectable execution times

and memory consumption, which matched Ed25519 libraries implemented in C. We have

also performed benchmarks for comparing 32-bit and 64-bit implementations, and showed

the impact of precomputed values in scalar multiplications. Further, we discussed security

with regard to the implementation (i.e. constant-time operations, usability), Ed25519

algorithm (i.e. SUF-CMA, SBS) and Rust (i.e. memory safety).

In order to achieve memory safety, programs can be written in Java, C# or F#, which

performs runtime checks and garbage collection. However, the consequential overhead

of such memory management is undesired for programs that aims for efficiency. Rust

is not a language for rapid scripting or tasks that does not require performance, such

as Python. Though its features are desirable for cryptographic implementations, where

memory safety, efficiency and expressiveness are important.





Chapter 7

Conclusions

Taking the RFC 8032 and existing Curve25519 and Ed25519 implementations in C, Java

and Rust and implementing our own is straightforward. However, focusing on the bigger

picture and understanding the overall functionality of the Ed25519 system was not the

only goal. As well as describing the internal functions of the Ed25519 library, we also

presented attributes related to modularity, readability and ease of use.

In addition to the implementation, an evaluation from a security/performance per-

spective was also a part of the contribution. Performance wise, Rust presented execution

times and memory consumption comparable to implementations written in C. We have

also investigated the use of basepoint precomputed table and field element representations

tailored for 32-bit and 64-bit platforms. This investigation showed significant impact in

performance: ≈ 80% performance increase for key generation and signing - using the base

point precomputed table; ≈ 2× performance increase for 64-bit representations. Security

wise, we mainly discussed the unforgeability and non-repudiation (binding signatures)

properties, constant-time operations, zeroization and memory-safety. Thanks to Rust the

implementation is type and memory safe and does not compromise on performance. Con-

sequently, Rust is suitable for writing cryptographic applications and expressive code that

runs efficiently.

Therefore, we were able to explore the understanding of individual functions, opti-

mizations and security properties for Ed25519. This exploration showed the correlation
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between security, efficiency and cryptographic applications. Furthermore, the discrepancy

between specification and the actual implementation was emphasized, where knowledge

about cryptographic implementations is important.

There are two remarks worth raising, especially because we believe they would better

the execution of this work. (i) Understanding the underlying mathematical details and

design helps with the creation of layers of abstractions within the implementation, and

also the writing of better documentations/comments and tests. (ii) Simply let the idea

of cryptographic implementation dictate the quality and focus of the evaluation process:

security, correctness and efficiency are essential.

7.1 Future Works

The Ed25519 implementation can be expanded in the following ways: (i) include batch

verification functions; (ii) implement layers of abstraction for internal mathematical repre-

sentations; (iii) include optimization configurations for scalar multiplications and support

for 32-bit and 64-bit platforms; (iv) include the necessary modifications and verification

for signature malleability and security notions, such as strong unforgeability and strongly

binding signatures; (v) optimize arithmetic operations by using a vectorized SIMD imple-

mentation. Beyond that, we glimpse the idea of implementing other instances of EdDSA

(e.g. Ed448) and analyzing its contrasting properties in comparison to Ed25519; also,

the implementation of ristretto255 1 for Ed25519; and lastly, we consider the addition of

support for other environments (resource-limited devices) and the no_std feature, plus

benchmarks considering energy and memory consumption and speed.

1https://ristretto.group/ristretto.html
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Appendix A

Test Vectors

Listing A.1 shows the test vectors used in the security evaluation, found in [34]. There

are 12 test vectors in total:

• Notation: public key A; signature (R, S); hashed secret key h; group order L.

• Tests vectors 0-3 passes both cofactored and cofactorless verification. Tests 0-2 have

small R, A or both, whereas test 3 has mixed-order A and R.

• Test vector 4 passes cofactored but fails in cofactorless verification.

• Test 5 is rejected in cofactored verification that erroneously performs (8h mod L)A

instead of 8(hA).

• Tests 6-7 passes for libraries that accept non-canonical S or performs an incomplete

check.

• Tests 8-9 have a non-canonical R; vector 8 passes if the library reduces R before

hashing; vector 9 passes if the library does not reduce R before hashing.

• Vector 10-11 have a non-canonical A; test 10 passes if the library reduces A before

hashing; test 11 passes if the library does not reduce A before hashing.

Listing A.1: Test vectors.

80
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1 {
2 message: 8c93255d71dcab10e8f379c26200f3c7bd5f09d9bc3068d3ef4edeb4853022b6
3 public_key: c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa
4 signature: c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a0
5 000000000000000000000000000000000000000000000000000000000000000
6 }
7 {
8 message: 9bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79
9 public_key: c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa

10 signature: f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43a
11 5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04
12 }
13 {
14 message: aebf3f2601a0c8c5d39cc7d8911642f740b78168218da8471772b35f9d35b9ab
15 public_key: f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43
16 signature: c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa8
17 c4bd45aecaca5b24fb97bc10ac27ac8751a7dfe1baff8b953ec9f5833ca260e
18 }
19 {
20 message: 9bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79
21 public_key: cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d
22 signature: 9046a64750444938de19f227bb80485e92b83fdb4b6506c160484c016cc1852f8
23 7909e14428a7a1d62e9f22f3d3ad7802db02eb2e688b6c52fcd6648a98bd009
24 }
25 {
26 message: e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c
27 public_key: cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d
28 signature: 160a1cb0dc9c0258cd0a7d23e94d8fa878bcb1925f2c64246b2dee1796bed5125
29 ec6bc982a269b723e0668e540911a9a6a58921d6925e434ab10aa7940551a09
30 }
31 {
32 message: e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c
33 public_key: cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d
34 signature: 21122a84e0b5fca4052f5b1235c80a537878b38f3142356b2c2384ebad4668b7e
35 40bc836dac0f71076f9abe3a53f9c03c1ceeeddb658d0030494ace586687405
36 }
37 {
38 message: 85e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40
39 public_key: 442aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623
40 signature: e96f66be976d82e60150baecff9906684aebb1ef181f67a7189ac78ea23b6c0e5
41 47f7690a0e2ddcd04d87dbc3490dc19b3b3052f7ff0538cb68afb369ba3a514
42 }
43 {
44 message: 85e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40
45 public_key: 442aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623
46 signature: 8ce5b96c8f26d0ab6c47958c9e68b937104cd36e13c33566acd2fe8d38aa19427
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47 e71f98a4734e74f2f13f06f97c20d58cc3f54b8bd0d272f42b695dd7e89a8c2
48 }
49 {
50 message: 9bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41
51 public_key: f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43
52 signature: ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0
53 3be9678ac102edcd92b0210bb34d7428d12ffc5df5f37e359941266a4e35f0f
54 }
55 {
56 message: 9bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41
57 public_key: f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43
58 signature: ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
59 a8c5b64cd208982aa38d4936621a4775aa233aa0505711d8fdcfdaa943d4908
60 }
61 {
62 message: e96b7021eb39c1a163b6da4e3093dcd3f21387da4cc4572be588fafae23c155b
63 public_key: ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
64 signature: a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dca
65 5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04
66 }
67 {
68 message: 39a591f5321bbe07fd5a23dc2f39d025d74526615746727ceefd6e82ae65c06f
69 public_key: ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
70 signature: a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dca
71 5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04
72 }
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Group Element Arithmetic

Listings B.1, B.2 and B.3 shows the code that performs point addition, subtraction and

doubling, respectively.

Listing B.1: Implementation of addition for extended points (P 3).

1 impl Add<Cached> for P3 {
2 type Output = P1P1;
3
4 fn add(self, p: Cached) -> P1P1 {
5 let YpX = self.Y + self.X; // Y1 + X1
6 let YmX = self.Y - self.X; // Y1 - X1
7 let B = YpX * p.YpX; // (Y1 + X1) * (Y2 + X2)
8 let b = YmX * p.YmX; // (Y1 - X1) * (Y2 - X2)
9 let c = p.T2d * self.T;

10 let d = self.Z * p.Z;
11 let e = d + d;
12 let x = B - b;
13 let y = B + b;
14 let z = e + c;
15 let t = e - c;
16
17 P1P1 {
18 X: x,
19 Y: y,
20 Z: z,
21 T: t,
22 }
23 }
24 }
25
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26 impl Add<Precomp> for P3 {
27 type Output = P1P1;
28
29 fn add(self, p: Precomp) -> P1P1 {
30 let YpX = self.Y + self.X; // Y1 + X1
31 let YmX = self.Y - self.X; // Y1 - X1
32 let a = YpX * p.YpX; // (Y1 + X1) * (Y2 - X2)
33 let b = YmX * p.YmX; // (Y1 - X1) * (Y2 - X2)
34 let c = p.XY2d * self.T; // D * 2 * (X2 * Y2) * T
35 let d = self.Z + self.Z; // Z1 + Z1
36 let x = a - b;
37 let y = a + b;
38 let z = d + c;
39 let t = d - c;
40
41 P1P1 {
42 X: x,
43 Y: y,
44 Z: z,
45 T: t,
46 }
47 }
48 }

Listing B.2: Implementation of subtraction for extended points (P 3).

1 impl Sub<Cached> for P3 {
2 type Output = P1P1;
3
4 fn sub(self, p: Cached) -> P1P1 {
5 let YpX = self.Y + self.X;
6 let YmX = self.Y - self.X;
7 let a = YpX * p.YmX;
8 let b = YmX * p.YpX;
9 let c = p.T2d * self.T;

10 let d = self.Z * p.Z;
11 let e = d + d;
12 let x = a - b;
13 let y = a + b;
14 let z = e - c;
15 let t = e + c;
16
17 P1P1 {
18 X: x,
19 Y: y,
20 Z: z,
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21 T: t,
22 }
23 }
24 }
25
26 impl Sub<Precomp> for P3 {
27 type Output = P1P1;
28
29 fn sub(self, p: Precomp) -> P1P1 {
30 let YpX = self.Y + self.X; // Y1 + X1
31 let YmX = self.Y - self.X; // Y1 - X1
32 let a = YpX * p.YmX; // (Y1 + X1) * (Y2 - X2)
33 let b = YmX * p.YpX; // (Y1 - X1) * (Y2 - X2)
34 let c = p.XY2d * self.T; // 2 * D * (X2 * Y2) * T
35 let d = self.Z + self.Z; // Z1 + Z1
36 let x = a - b;
37 let y = a + b;
38 let z = d - c;
39 let t = d + c;
40
41 P1P1 {
42 X: x,
43 Y: y,
44 Z: z,
45 T: t,
46 }
47 }
48 }

Listing B.3: Implementation of doubling for projective points (P 2).

1 pub fn double(&self) -> P1P1 {
2 let A = self.X.square();
3 let B = self.Y.square();
4 let C = self.Z.double_square();
5 let Y_plus_X = self.X + self.Y;
6 let a = Y_plus_X.square();
7 let y = A + B;
8 let z = B - A;
9 let x = a - y;

10 let t = C - z;
11
12 P1P1 {
13 X: x,
14 Y: y,
15 Z: z,
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16 T: t,
17 }
18 }



Appendix C

Scalar Multiplication

Listing C.1 shows the code that performs h = a · B, s.t. a is a scalar and B is the base

point (Ed25519 parameter).

Listing C.1: Scalar multiplication in constant-time.
1 pub fn select(pos: usize, b: i8) -> Precomp {
2 // Check if b is negative (1u8: true, 0u8: false)
3 let negative = (b as u8) >> 7;
4
5 // If b is negative:
6 // we have b - (b << 1), which results in its absolute value.
7 // If b is positive:
8 // we have b - 0x00 = b.
9 let absolute: u8 = (b - (((-(negative as i8)) & b) << 1)) as u8;

10 let mut t = Precomp::zero();
11
12 // Assign value based on pos (exponent of base 256) and
13 // absolute ([1, 8]).
14 // Ex.: if pos = 1 and absolute = 8, t is assigned (8 * 256^{1} * B).
15 t.conditional_assign(&PRECOMP_BASE[pos][0], equal(absolute, 1u8).into());
16 t.conditional_assign(&PRECOMP_BASE[pos][1], equal(absolute, 2u8).into());
17 t.conditional_assign(&PRECOMP_BASE[pos][2], equal(absolute, 3u8).into());
18 t.conditional_assign(&PRECOMP_BASE[pos][3], equal(absolute, 4u8).into());
19 t.conditional_assign(&PRECOMP_BASE[pos][4], equal(absolute, 5u8).into());
20 t.conditional_assign(&PRECOMP_BASE[pos][5], equal(absolute, 6u8).into());
21 t.conditional_assign(&PRECOMP_BASE[pos][6], equal(absolute, 7u8).into());
22 t.conditional_assign(&PRECOMP_BASE[pos][7], equal(absolute, 8u8).into());
23
24 // Negative of t.
25 let negative_t = Precomp {
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26 YpX: t.YmX,
27 YmX: t.YpX,
28 XY2d: t.XY2d.negate(),
29 };
30
31 // Assign negative of t if b is negative.
32 t.conditional_assign(&negative_t, negative.into());
33
34 t
35 }
36
37 /// Converts a to radix 16 representation.
38 /// a: a[0] + 256 * a[1] + 256^{2} * a[2] + ...
39 /// + 256^{31} * a[31].
40 fn radix16(a: &[u8]) -> [i8; 64] {
41 let mut e = [0i8; 64];
42
43 // Split each byte into two 4-bit values.
44 // [e[0]..e[62]] values ranges between 0 and 15.
45 // e[63] ranges between 0 and 7.
46 for i in 0..32 {
47 e[2 * i + 0] = (a[i] & 15) as i8;
48 e[2 * i + 1] = ((a[i] >> 4) & 15) as i8;
49 }
50
51 // Convert each value from e to [-8..7].
52 let mut carry: i8 = 0;
53 // 10 -> -6, 9 -> -7, 8 -> -8...
54 for i in 0..63 {
55 e[i] += carry;
56 carry = e[i] + 8;
57 carry >>= 4;
58 e[i] -= carry << 4;
59 }
60 e[63] += carry;
61
62 e
63 }
64
65 /// Performs scalar multiplication h = a * B.
66 /// a: a[0] + 256 * a[1] + 256^{2} * a[2] + ...
67 /// + 256^{31} * a[31].
68 /// B: Ed25519 base point (x, 4/5) with positive x.
69 /// Uses precomputed values.
70 pub fn scalar_multiply(a: &[u8]) -> P3 {
71 let e: [i8; 64] = Precomp::radix16(a);
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72 let mut t: Precomp;
73
74 let mut h = P3::zero();
75 // 64 table lookups
76 // 64 point additions
77 for i in (1..64).step_by(2) {
78 t = Precomp::select(i / 2, e[i]);
79 h = (h + t).to_P3();
80 }
81
82 // 4 doublings
83 h = h
84 .double()
85 .to_P2()
86 .double()
87 .to_P2()
88 .double()
89 .to_P2()
90 .double()
91 .to_P3();
92
93 // 64 point lookups
94 // 64 point additions
95 for i in (0..64).step_by(2) {
96 t = Precomp::select(i / 2, e[i]);
97 h = (h + t).to_P3();
98 }
99 h

100 }
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Sliding-window Scalar Multiplication

Listing D.1 shows Code that performs r = a ·A+ b ·B, s.t. a and b are scalars and A and

B (base point) are points.

Listing D.1: Sliding-window scalar multiplication.
1 pub fn slide(a: &[u8]) -> [i8; 256] {
2 let mut r = [0i8; 256];
3
4 // Each bit in a has its own position in r.
5 for i in 0..256 {
6 r[i] = (1 & (a[i >> 3] >> (i & 7))) as i8;
7 }
8
9 for i in 0..256 {

10 if r[i] != 0 {
11 for b in 1..min(7, 256 - i) {
12 if r[i + b] != 0 {
13 if r[i] + (r[i + b] << b) <= 15 {
14 r[i] += r[i + b] << b;
15 r[i + b] = 0;
16 } else if r[i] - (r[i + b] << b) >= -15 {
17 r[i] -= r[i + b] << b;
18 for k in i + b..256 {
19 if r[k] == 0 {
20 r[k] = 1;
21 break;
22 }
23 r[k] = 0;
24 }
25 } else {
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26 break;
27 }
28 }
29 }
30 }
31 }
32
33 r
34 }
35
36 pub fn double_scalar_multiply_vartime(a: &[u8], b: &[u8], A: P3) -> P2 {
37 let aslide = P2::slide(a);
38 let bslide = P2::slide(b);
39
40 // A * I precomputation.
41 // {A, 3A, 5A, 7A, 9A, 11A, 13A, 15A}.
42 let mut AI = [Cached {
43 YpX: FieldZero,
44 YmX: FieldZero,
45 Z: FieldZero,
46 T2d: FieldZero,
47 }; 8];
48 AI[0] = A.to_Cached(); // A
49 let A2 = A.double().to_P3(); // 2A
50 for i in 1..8 {
51 // 3A, 5A, 7A, ..., 15A
52 AI[i] = (A2.add(AI[i - 1])).to_P3().to_Cached();
53 }
54
55 let mut r = P2::zero();
56 let mut i: usize = 255;
57
58 loop {
59 if aslide[i] != 0 || bslide[i] != 0 {
60 break;
61 }
62
63 if i == 0 {
64 return r;
65 }
66
67 i -= 1;
68 }
69
70 loop {
71 // Doubling chain.
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72 let mut t = r.double();
73
74 if aslide[i] > 0 {
75 t = t.to_P3() + AI[(aslide[i] / 2) as usize];
76 } else if aslide[i] < 0 {
77 t = t.to_P3() - AI[(-aslide[i] / 2) as usize];
78 }
79
80 if bslide[i] > 0 {
81 t = t.to_P3() + BI[(bslide[i] / 2) as usize];
82 } else if bslide[i] < 0 {
83 t = t.to_P3() - BI[(-bslide[i] / 2) as usize];
84 }
85
86 r = t.to_P2();
87
88 if i == 0 {
89 return r;
90 }
91
92 i -= 1;
93 }
94 }



Appendix E

Ed25519 Protocol

Listings E.1, E.2 and E.3 shows the implementation of the key generation, signature

generation and signature verification functions, in that sequence.

Listing E.1: Secret key and public key generation functions.

1 /// Generates the secret key: 32 octets of cryptographically
2 /// secure random data.
3 pub(crate) fn generate_key() -> SecretKey {
4 let mut sk = [0u8; 32];
5 let mut csprng: ThreadRng = thread_rng();
6 csprng.fill_bytes(&mut sk);
7 SecretKey(sk)
8 }
9

10 /// Generates asymmetric keys: both public and secret,
11 /// as described in RFC 8032.
12 pub fn generate() -> Keypair {
13 let secret = SecretKey::generate_key();
14
15 // Hash the 32-byte private key using SHA-512, storing the digest in
16 // a 64-octet large buffer h. Only the lower 32 bytes are
17 // used for generating the public key.
18 let h = {
19 let mut hash = Sha512::default();
20 hash.input(secret.0);
21 let mut output = hash.result();
22 // Lowest 3 bits of the first octet are cleared
23 output[0] &= 248;
24 // Highest bit of the last octet is cleared
25 output[31] &= 63;

93
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26 // Second highest bit of the last octet is set
27 output[31] |= 64;
28 output
29 };
30
31 // Scalar multiplication: h * B.
32 let point = Precomp::scalar_multiply(&h[0..32]);
33 // Encode P2 point y coordinate.
34 let public = PublicKey(point.encode());
35
36 Keypair { secret, public }
37 }

Listing E.2: Signature generation function.

1 /// RFC 8032.
2 /// Generates the signature.
3 pub fn sign(&self, public: &PublicKey, message: &[u8]) -> Signature {
4 // Hash the secret key using SHA-512.
5 let h = {
6 let mut hash = Sha512::new();
7 hash.input(self.0);
8 let mut output = hash.result();
9 output[0] &= 248;

10 output[31] &= 63;
11 output[31] |= 64;
12 output
13 };
14
15 // Compute SHA-512(prefix || PH(M)), where M is the
16 // message to be signed and prefix is the second half of h.
17 // Interpret the 64-octet digest as a little-endian integer r.
18 let mut r = {
19 let mut hash = Sha512::default();
20 hash.input(&h[32..64]);
21 hash.input(message);
22 hash.result()
23 };
24
25 // Compute the point [r]B. For efficiency, do this by first
26 // reducing r modulo L, the group order of B.
27 reduce(&mut r[..]);
28 let R: P3 = Precomp::scalar_multiply(&r[0..32]);
29
30 // Compute SHA512(enc(R) || A || PH(M)), and interpret the
31 // 64-octet digest as a little-endian integer k.
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32 let mut k = {
33 let mut hash = Sha512::default();
34 hash.input(&R.encode());
35 hash.input(public.0);
36 hash.input(&message);
37 hash.result()
38 };
39 reduce(&mut k[..]);
40
41 // The signature.
42 let mut signature = [0u8; 64];
43 // Populate the second half of the signature with the
44 // result of (r + k * s) mod L.
45 multiply_add(&mut signature[32..64], &k[0..32], &h[0..32], &r);
46
47 // Populate the first half of the signature with the
48 // encoding of R.
49 for (result_byte, source_byte) in &mut signature[0..32].iter_mut().zip(R.encode().iter()) {
50 *result_byte = *source_byte;
51 }
52 Signature(signature)
53 }

Listing E.3: Signature verification function.

1 /// Verifies the signature.
2 pub fn verify(&self, message: &[u8], sig: &Signature) -> Result<(), Error> {
3 let signature = sig.as_bytes();
4 let s = &signature[32..64];
5
6 if check_lt_l(s) {
7 return Err(Error::InvalidSignature);
8 }
9

10 // Try to decode the public key into a P3 point.
11 // Verification fails if decoding fails.
12 let A = match P3::decode(self.0) {
13 Some(point) => point,
14 None => {
15 return Err(Error::InvalidSignature);
16 }
17 };
18
19 // Compute SHA512(R || A || PH(M)), and interpret the
20 // 64-octet digest as a little-endian integer k.
21 let mut k = {
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22 let mut hash = Sha512::default();
23 hash.input(&signature[0..32]);
24 hash.input(&self.0);
25 hash.input(&message);
26 hash.result()
27 };
28 reduce(&mut k);
29
30 // Check the group equation [s]B = R + [k]A'.
31 // Perform [s]B + [k]A'.
32 let eq = P2::double_scalar_multiply_vartime(&k[..], s, A);
33 // Check [s]B + [k]A' == R?
34 if eq
35 .encode()
36 .as_ref()
37 .iter()
38 .zip(signature.iter())
39 .fold(0, |acc, (x, y)| acc | (x ^ y))
40 == 0
41 {
42 Ok(())
43 } else {
44 return Err(Error::SignatureMismatch);
45 }
46 }
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