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A B S T R A C T   

Background: During the last decades, olive oil consumption has experienced a continuous increase due to its 
unique organoleptic properties and its related beneficial properties. Consequently, waste and by-products 
derived from the olive production have also increased causing environmental problems and economic losses. 
However, the low-cost and huge availability of these by-products is an opportunity for their valorization and the 
obtaining of high added-value compounds such as tyrosol, hydroxytyrosol (HT), oleocanthal, oleuropein (OLE), 
ligstroside, squalene, fatty acids, etc. The development of innovative extraction and characterization technolo
gies is a key factor for the olive sector. In addition, a deeper knowledge about the biological properties of the 
compounds present in the recovered products and their mechanism of action is crucial to allow their reinte
gration in the food chain and their potential uses in the food and pharmaceutical industries. 
Scope and approach: This review encompasses all these aspects showing the advances achieved to date in the olive 
oil by-products valorization focusing on their biological properties, including cardioprotective, antioxidant, 
anticancer, anti-inflammatory and antidiabetic effects. 
Key findings and conclusions: The by-products derived from the Olea europaea L. processing industry are secondary 
but valuable products, from which different biologically active molecules can be recovered by green extraction 
technologies (PLE, SFE, etc.) and reused for food, pharmaceutical and cosmetic purposes following the circular 
economy policies. One of the main advantages on recovering valuable molecules from olive by-products is their 
incorporation to functional foods. A direct effect was proved between the use of olive by-products in human 
consumption and the heath claims. In this context, different food industries have used the phenolic fraction of 
olive by-products, holding mostly HT and OLE, as food additives and as preserving agents due to their antiox
idant properties.   

1. Introduction 

The term “superfoods” is becoming popular in the food sector to 
named foods that claim health benefits (Galanakis, Aldawoud, Rizou, 

Rowan, & Ibrahim, 2020). In the last two decades, the food industry is 
looking for ingredients in food products that increase health benefits. To 
follow this trend, several additives and active compounds from different 
sources are being investigated as antimicrobial, anti-inflammatory, and 
potential antiviral agents (Galanakis, 2020; Galanakis et al., 2020). 
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Moreover, the food industry is considering the new period 
post-pandemic COVID-19 in which consumers are concerned about 
ingesting products to enhance their immune systems and to increase the 
heathier diets (Galanakis, 2020; Galanakis, Rizou, Aldawoud, Ucak, & 
Rowan, 2021). Thus, the production of bioactive compounds to develop 
functional foods may become a bottleneck, being necessary to identify 
new sources of bioactive compounds to increase the availability of 
healthy food products. In this sense, the food industry should consider 
innovations that disrupt the way we consume food being one approach 
to valorize the vast range of bioresources (Galanakis et al., 2021). It is 
worthy to accelerate efforts in developing sustainable and modern food 
systems including large food supply chains based on by-products, 
reducing the cost of food waste treatment, and their reutilization in 
the food chain. 

The by-products derived from the Olea europaea L. processing in
dustry are secondary but valuable products, from which different 
bioactive molecules such as polyphenols, anthocyanins, tannins, flavo
noids, and dietary fiber (pectin) can be recovered and reused for several 
purposes following the circular economy policies (Markhali, Teixeira, & 
Rocha, 2020). One option to separate these bioactive compounds from 
agricultural wastewaters is by traditional extraction techniques such as 
the use of organic solvent and filtration processes (membrane) (Gal
anakis, 2015). Processes of phenols recovery include condensing steps 
(thermal concentration, filtration or lyophilization) and then, sequential 
extraction steps with methanol, ethanol or hydro-alcoholic solutions 
(Rahmanian, Jafari, & Galanakis, 2014). In this sense, the bibliography 
describes numerous process about the recovery and purification of 
phenolic compounds from olive mill wastewater (OMWW) and olive 
vegetable water (OVW) with membrane treatment such us micro
filtration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse 
osmosis (RO) (Kaleh & Geiβen, 2016; Russo, 2007; Servili et al., 2011; 
Zagklis, Vavouraki, Kornaros, & Paraskeva, 2015). Different membrane 
separation techniques of vegetable wastewater for the recovering of 
hydroxytyrosol (HT) in pilot plants with fixed process parameters were 

investigated. Results showed RO concentrate can be used as pharma
cological preparations due to the content of low MW polyphenols, which 
are the principal products for food, pharmaceutical and cosmetic in
dustries (Russo, 2007). Hydrophilic phenols were recovered from fresh 
OVW in an industrial plant by innovative techniques like membrane 
filtration prior enzymatic treatment (Servili et al., 2011). This novel 
approach yielded a crude phenolic concentrate which was utilized in a 
virgin olive oil (VOO) extraction process with the aim of improving VOO 
phenolic content. In fact, the economic feasibility of a system based on 
membrane filtration and RO processes for phenolic compound extrac
tion and considering their subsequent reuse to enrich Extra Virgin Olive 
Oil (EVOO) during the malaxation phase shows to be economically 
viable showing a reduction of the waste product (La Scalia, Micale, 
Cannizzaro, & Marra, 2017). 

In addition, selective concentration by green extraction technologies 
including high-hydrostatic pressure, ultrasound-assisted extraction 
(UAE) and microwave-assisted extraction (MAE), pulsed electric field, 
radio-frequency drying, high voltage electrical discharge, and super
critical fluid extraction (SFE) and pressurized liquid extraction (PLE) can 
also be used (Galanakis, 2021). These processes aim either to recover a 
particular phenol (HT) in pure form or in the recovery of a phenol’s 
mixture as a crude product. The application of emerging technologies on 
different food components (lipids, minerals, vitamins, polyphenols, 
aroma compounds, and enzymes) keep their effectiveness and bioactive 
content and bioavailability since they are not based on high temperature 
avoiding damage the compound structure. These techniques can also 
improve their functional and culinary properties and increase the re
covery yields from agricultural products. Besides, these techniques are 
environmentally friendly, provide high efficiency, rapid temperature 
increase, short extraction time, improve the process monitoring and 
consume low energy consumption (BursaćKovačević et al., 2018; 
Nagarajan et al., 2019; P. Otero, Quintana, Reglero, Fornari, & Gar
cía-Risco, 2018; Sarfarazi, Jafari, Rajabzadeh, & Galanakis, 2020). 
However, the optimization of operational parameters is vital to avoid 

Abbreviations 

General Terms 
EVOO Extra Virgin Olive oil 
OO Olive oil 
HVED High voltage electrical discharges 
HT Hydroxytyrosol 
MUFAs Monounsaturated fatty acids 
OLE Oleuropein 
OMWW Olive mill wastewater 
OP Olive pomace 
PUFAs Polyunsaturated fatty acids 
SFAs Saturated fatty acids 
TPC Total phenolic content 
GAE Gallic acid equivalents 
dw Dry weight 
TAG Triacylglycerols 
VOO Virgin olive oil 
EFSA European Food Safety Authority 
HDL High-density lipoprotein 
LDL Low-density lipoproteins 

Extraction Techniques 
EAE Enzyme-assisted extraction 
IR-AE Infrared-assisted extraction 
MAE Microwave-assisted extraction 
MEAE Microwave-enzyme-assisted extraction 
PLE Pressurized liquid extraction 

UAE Ultrasound-assisted extraction 
US–LLE Ultrasound-assisted liquid-liquid extraction 
SWE Subcritical water extraction 
SC-CO2 Supercritical carbon dioxide extraction 
SFE Supercritical fluid extraction 

Assays and Bioactivities 
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 
COX-2 Cyclooxygenase-2 
DPPH 2,2-diphenyl-1-picrylhydrazyl radical scavenging 
FRAP Ferric reducing ability of plasma 
iNOS Inducible nitric oxide synthase 
ORAC Oxygen radical absorbance capacity 
PGE2 Prostaglandin E2 
PPARGC1α Peroxisome proliferator-activated receptor gamma 

coactivator 1 alpha 
MMP-9 Matrix metallopeptidase-9 
Nfr2 Nuclear factor (erythroid-derived 2)-like 2 
LPS Lipopolysaccharide 
NO Nitric oxide 
NF-κB Nuclear factor κ-B 
IL Interleukin 
MAPK Mitogen-activated protein kinase 
HO-1 Heme-oxygenase-1 
ERK Extracellular signal-regulated protein kinases 
ROS Reactive oxygen species 
TEAC Trolox-Equivalent antioxidant capacity 
TNF-α Tumor necrosis factor-alpha  
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degradation of macromolecules and the oxidation of labile compounds 
[11,12]. 

2. Olive oil production process and main by-products 

The tree species Olea europaea L., commonly known as olive tree, is 
distributed throughout the Mediterranean (Jimenez-Lopez et al., 2020). 
Olive worldwide farming covers about 11.6 million hectares, whereas in 
Spain the total area under olive cultivation is 2.7 million hectares 
(Fonseca, Mateo, Roberto, Sánchez, & Moya, 2020). In fact, the Euro
pean Union (EU) is responsible for the 70% of the world’s olive pro
duction, generating 7 × 109 €/year and being a key factor for 
agro-industrial, social and economic development (Jimenez-Lopez et al., 
2020). 

In the last years, olive oil (OO) production has experienced a growing 
economic situation, which is partially due to its beneficial properties, 
mostly attributed to EVOO (Contreras, Romero, Moya, & Castro, 2020; 
Domingues, Fernandes, Gomes, Castro-Silva, & Martins, 2021; Rodri
gues, Pimentel, & Oliveira, 2015). OO plays a vital role in the Medi
terranean diet, and it has been associated with several beneficial 
properties due to its high content in polyunsaturated fatty acids and 
various minor compounds (i.e. sterols). About 85% of OO composition is 
unsaturated fatty acids (due to its high content in oleic acid, C18:1), 
followed by saturated fatty acids. Minor compounds are represented by 
phenolic compounds or tocopherols. These phenolic compounds help 
protecting against oxidative stress and contribute to make OO a 
healthier product. Because of this rising demand, OO production grows 
and so does waste production. For instance, Turkey’s annual OO pro
duction is currently 200,000 tons and therefore, approximately 650,000 
tons of olive pomace per year are generated (Çelekli, Gün, & Bozkurt, 
2021). Hence, the large amount of waste generated has always been of 
great concern. However, the search for waste management strategies in 
the OO industry still needs more development to limit its environmental 
and economic impact (de la Casa, Bueno, & Castro, 2021; P.; Gullón, 
Gullón, Astray, et al., 2020). In this perspective, and considering the 
composition of OO and its by-products, it is important to select the 
appropriate extraction technology and determine specific applications 
for these bioactive compounds, thus different approaches have been 
employed (Table 1). For this purpose, conventional techniques such as 
maceration, and less traditional techniques such as microwave-, 
infrared- or ultrasound-assisted extraction, among others, have been 
used. These extraction methodologies have certain advantages over 
conventional ones, since there is a minimum degradation of compounds, 
fewer solvents are needed, and better extraction yields are obtained (G. 
S. da Rosa et al., 2021). 

In respect of the production of OO, this is a mechanical process that 
can be developed according to three main types: pressing (traditional 
process), two-phase centrifugal separation and three-phase centrifugal 
separation (Domingues et al., 2021). In turn, this process generates flows 
of OO and the different residues (olive cake, pomace, stones and olive 
mill wastewater) (Fig. 1) (Galanakis & Kotsiou, 2017). In the two-stage 
process, solid residues are formed and reused in drying processes to 
recover the remaining OO, but new wastewater is generated as well 
(Domingues et al., 2021). More concretely, the process begins with the 
olives batch washing. Larger residues are separated using mechanical 
means and water, while smaller waste is separated using other separa
tion methods, such as a vibrating screen and air blowing. Then, in the oil 
mill, they are reduced to a smaller size together with the olive stones. 
After this process, a homogeneous paste consisting of water, oil and 
solids remains. In the traditional separation process, this paste is then 
pressed between two mats to obtain the solid part together with a liquid 
fraction composed of oil and water (known as pomace), which over time 
can be separated into two parts (P. Gullón, Gullón, Astray, et al., 2020). 
In the two-phase separation, a two-phase decanter is used to separate the 
oily part and the part consisting of solids and water. Then, this 
remaining solid residues are dried or extracted to recover oil. In the third 

Table 1 
Extraction technologies, conditions and yields of the main bioactive compounds 
from olive oil production by-products.  

Technique Conditions Molecules Yield 
(mg/g 
dw)a 

Ref. 

Leaves 
Maceration Wt, 25 ◦C, 24 h TPC 57.28 mg/ 

g dw 
Cazals et al. (2019) 

OLE 0.051 mg/ 
g dw 

HT 0.027 mg/ 
g dw 

40% EtOH, 
25 ◦C, 24 h 

TPC 98.14 mg/ 
g dw 

(G. S. da Rosa et al., 
2019) 

70% EtOH, 
25 ◦C, 24 h 

TPC 115.75 
mg/g dw 

MAE Wt, 1000 W, 
86 ◦C. 3 min 

TPC 104.22 
mg/g dw 

Cazals et al. (2019) 

OLE 14.46 mg/ 
g dw 

HT 0.59 mg/g 
dw 

40% EtOH, 
1000 W, 5 min 

TPC 114.29 
mg/g dw 

(G. S. da Rosa et al., 
2019) 

70% EtOH, 
1000 W. 5 min 

TPC 130.09 
mg/g dw 

UAE Wt, 450 W, 
27 ◦C, 29 min 

TPC 80.51 mg/ 
g dw 

Cazals et al. (2019) 

OLE 6.91 mg/g 
dw 

HT 0.547 mg/ 
g dw 

51.3% EtOH, 
15 min 

TPC 42 mg/g 
dw 

Martínez-Patiño 
et al. (2019) 

47% EtOH, 50 
min 

TPC 0.31 mg/g 
dw 

Contreras, 
Lama-Muñoz, et al. 
(2020) OLE 4.19 mg/g 

dw 
50% AC, 60 ◦C, 
10 min 

TPC 37.44 mg/ 
g dw 

Irakli, 
Chatzopoulou, and 
Ekateriniadou 
(2018) 

IR-AE 55% EtOH, 
90 ◦C, 220 min 

TPC 36.23 mg/ 
g dw 

(A.-M. Abi-Khattar 
et al., 2020) 

OLE 14.01 mg/ 
g dw 

PLE 60% EtOH, 
190 ◦C, 5 min 

OLE 63.35 mg/ 
g dw 

(A. D. da Rosa 
et al., 2019) 

80% EtOH, 
60 ◦C 

TPC 386.42 
mg/g dw 

OLE 73.65 mg/ 
g dw 

HVED 50% EtOH, 9 
min 

TPC 65.99 mg/ 
g dw 

Žuntar (2019) 

SFE 80 ◦C, 80 min TPC 30.2–36.1 
mg/g dw 

Caballero, 
Romero-García, 
Castro, and 
Cardona (2020)  

Pruning biomass  

Maceration 50% EtOH, 
55 ◦C, 90 min 

TPC 23.85 mg/ 
g dw 

(B. Gullón et al., 
2018) 

UAE 54.5% EtOH, 
70% 
amplitude, 15 
min 

TPC 31.0 mg/g 
dw 

Martínez-Patiño 
et al. (2019) 

SFE EA, 50 ◦C, 60 
min, 200 bar 

TPC 7.94 mg/g Caballero et al. 
(2020) HT 0.03 mg/g 

EA, 50 ◦C, 60 
min, 300 bar 

TPC 10.39 mg/ 
g 

HT 0.18 mg/g 
SWE 180 ◦C, 10 min OG 37.5 g/L Cara et al. (2012)  

Aqueous olive mill wastewater 

(continued on next page) 
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extraction phase, a separation by densities takes place in a three-phase 
decanter. In this stage, water is usually added to separate and clean 
the oil, thus obtaining a clarified oil and residual water, separately (Peri, 
2014). Once the extraction process has been completed, OO holds solid 
particles that are in suspension, so filtration and solid-liquid separation 
is conducted. Finally, it is stored and packaged until shipped for mar
keting (P. Gullón, Gullón, Astray, et al., 2020). As a result of the OO 
production process, obtained by-products can be classified in the 
following parts: leaves and pruning biomass, aqueous olive mill waste
water, olive cake and olive pomace, which will be described below. 

2.1. Leaves and pruning biomass 

This by-product is composed of branches and leaves that, given the 
perennial nature of olive tree, accumulate during the maintenance of 
olive groves. It includes pruning or harvesting and also the cleaning of 
the olives prior to processing (P. Gullón, Gullón, Astray, et al., 2020). 
Both in the olive mill (accumulation of leaves, stones, pomace and the 
main product) and during olive trees pruning, a large amount of biomass 
is generated (Contreras, Romero, et al., 2020). Within this biomass, 
around 50% of weight is generated from fine branches, 25% from leaves 
and the remaining 25% is made up of coarse branches or wood (P. 
Gullón, Gullón, Astray, et al., 2020). Most of this biomass is partially 
used on-site in the form of energy, but new alternatives to produce high 
added-value products for food and/or pharmaceutical markets are 
continuously appearing (Manzanares et al., 2020). 

Different chemical compounds can be found in this matrix, which 
may vary according to several factors such as: the selected extraction 
technology, analysis systems or cultivation methods, among others. 
Nevertheless, the chemical composition of olive leaves resembles to 
lignocellulosic materials (P. Gullón, Gullón, Astray, et al., 2020). In 
addition, major phenolic groups, such as simple phenols, flavonoids and 
secoiridoids can also be found. Among these compounds, the most 
common is the oleuropein (OLE) followed by hydroxytyrosol (HT) (5 
times lower) (de Bock et al., 2013) and followed by tyrosol (up to 8 times 
less than HT) (Lamprou, Vlysidis, & Vlyssides, 2017), together with 
phenolic acids, such as caffeic, gallic or vanillic acids (Flamminii et al., 
2021). One of the main roles of HT and OLE in olive leaves is to confer a 
natural defense against biological predators. Regarding industrial ap
plications, OLE can be used as an alternative to synthetic preservatives 
and antibiotics for their antioxidant and antimicrobial properties. A 
recent study has tested both the antioxidant and antimicrobial activity of 
olive by-products (i.e. extracts from olive leaves) and it has been verified 
that they can be used in the food sector to improve the nutritional profile 
of food products and provide biological protection through their anti
microbial action (G. S. da Rosa et al., 2021). The phenolic composition 
of these by-products has led to add olive leaf extracts to VOO and other 
food products as a functional additive (Benincasa, Santoro, Nardi, Cas
sano, & Sindona, 2019). A study shows the protective attributes of OLE 
from olive trees are reflected typically by their inhibiting effects against 
oxidation, microbial disorders, inflammation, and platelet aggregation. 
In addition, OLE is found to be effectively capable of re-building the 
tissue damage, caused by cisplatin in stomach and lung organs (Markhali 
et al., 2020). 

Table 1 (continued ) 

Technique Conditions Molecules Yield 
(mg/g 
dw)a 

Ref.  

Maceration Wt, 30–70 ◦C, 
60 min 

PP 1.8 mg/L Conidi et al. (2019) 

SFE CO2, 70 ◦C, 25 
MPa, 420 min 

SQ 0.967 mg/ 
kg 

(Gallego, Bueno, & 
Herrero, 2019;  
Schievano et al., 
2015) 

CO2+0.25% 
EtOH, 480 min 

PP and SQ 10.86 mg/ 
kg 

US-LLE EA, 100W 10 
min 

TPC 1.84 mg/ 
mL 

(Jerman Klen & 
Mozetič Vodopivec, 
2011) DE, 100W 10 

min 
TPC 1.15 mg/ 

mL  

Olive cake  

Maceration MetOH, 60 ◦C, 
60 min 

TPC 4.07 mg/g Alu’datt et al. 
(2010) 

UAE LA: GLC with 
15% Wt 

PP ns (P. Gullón, Gullón, 
Romaní, et al., 
2020) 

SC-CO2 40.2 ◦C, 43.8 
MPa, 30min 

PP, TP and 
SQ 

145 mg/g 
dw 

Durante et al. 
(2020)  

Olive pomace  

Maceration Wt, 100 ◦C, 30 
min 

GLC, P and 
MA 

64% Manzanares et al. 
(2020) 

Wt, 210 ◦C, 4 
min 

GLC 74% Manzanares et al. 
(2020) 

UAE Wt, 160 W, 
25 ◦C, 5 min 

TPC 0.40 mg/ 
mL 

Nunes et al. (2018) 

OLE 1.18 mg/ 
mL 

MAE 100% EtOH, 
600 W, 
35–60 ◦C, 17 
min 

TPC 118.0 mg/ 
g 

Macedo et al. 
(2021) 

HT 128.4 mg/ 
kg 

NADES, 200 
W, 60 ◦C, 30 
min 

OLE 5–7.56 
mg/g dw 

Xie et al. (2019) 

HT 0.43–0.89 
mg/g dw 

SFE EA, 50 ◦C, 60 
min, 200 bar 

TPC 9.18 mg/g Caballero et al. 
(2020) HT 0.91 mg/g 

EA, 50 ◦C, 60 
min, 300 bar 

TPC 14.01 mg/ 
g 

HT 1.25 mg/g 
SWE 130 ◦C, 30 min OG 14.7 g/ 

100 g 
Miranda et al. 
(2019) 

EAE 50 ◦C, 120 
rpm, 2 h 

TPC 153–372 
mg/g 

Macedo et al. 
(2021) 

HT 17.16 mg/ 
kg 

MEAE EtOH, 600 W, 
35–60 ◦C, 17 
min + 2.0% 
enzymes 

TPC 0.341 mg/ 
kg 

Macedo et al. 
(2021) 

HT 24.4 mg/ 
kg 

EO 1029 mg/ 
kg  

Olive stones  

HAE MetOH, 40 ◦C, 
90 min 

TPC 211.63 
mg/kg dw 

(Nakilcioğlu-Taş & 
Ötleş, 2019) 

OLE 36.99 mg/ 
kg dw 

MetOH, 40 ◦C, 
60 min 

HT 26.85 mg/ 
kg dw 

S/L Dilute acid, 
130 ◦C, 90 min 

TPC 120 mg/ 
100 g dw 

Lama-Muñoz, 
Romero-García, 
Cara, Moya, and 
Castro (2014) 

TPC: Total phenolic content, OLE: Oleuropein, HT: Hydroxytyrosol, OG: Oligo
saccharides, PS: Polysaccharides, XYL: Xylose, GLC: Glucose, SQ: Squalene, PP: 

Polyphenols, P: Phenols, TP: Tocopherols, MA: Mannitol, Wt: water, EtOH: 
Ethanol, MetOH: Methanol, AC: Acetone, EA: Ethyl acetate, DE: Diethyl ether, 
LA: Lactic acid EO: Elenolic acid, MAE: Microwave-assisted extraction, UAE: 
Ultrasound-assisted extraction, IR-AE: Infrared-assisted extraction, PLE: Pres
surized liquid extraction, HVED: High voltage electrical discharges, SFE: Su
percritical fluid extraction, SWE: Subcritical water extraction, SC-CO2: 
Supercritical carbon dioxide, EAE: Enzyme-assisted extraction, MEAE: 
Microwave-enzyme-assisted extraction, US -LLE: Ultrasound – assisted liquid – 
liquid extraction, ns: not specified, HAE: Heat assisted extraction, S/L: Solid to 
liquid extraction. 

a TPC yield is expressed in GAE (Gallic Acid Equivalents). 
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Today, this by-product has not been exploited, and its disposal re
quires a cost. It is usually eliminated through burning or burying with 
other by-products on the ground and can occasionally be used as animal 
feed (Cazals et al., 2019). The latter has been assessed as an alternative 
for enriching animal feeds in order to obtain better quality meat com
bined with increased weight gain (Mattioli et al., 2018). Additionally, 
olive leaves have been described to possess high concentrations of polar 
bioactive compounds, which has led to add leaf phenolic extracts to OOs 
in order to further enhance their antioxidant properties (Paiva-Martins, 
Correia, Félix, Ferreira, & Gordon, 2007). For this reason, revalorization 
approaches of this by-product have been proposed. In this context, the 
extraction of bioactive compounds is considered a potential alternative, 
thus, extraction techniques are essential to obtain enriched extracts with 
target molecules and to optimize extraction yields (Table 1). Traditional 
extraction techniques like maceration can be applied to both leaves and 
pruning biomass and also novel techniques such as UAE (e.g. using water 
and ethanol also at different extraction times) and SFE (e.g. using ethyl 
acetate at different times and pressures) (A. M. Abi-Khattar et al., 2019; 
Cazals et al., 2019; G. S. da Rosa, Vanga, Gariepy, & Raghavan, 2019; P. 
Gullón, Gullón, Astray, et al., 2020). In leaves, extraction techniques 
such as infrared-assisted extraction (IR-AE) have showing more effi
ciency compared to conventional extraction. MAE has also been used (e. 
g., using both ethanol, water, and acetone, but at different extraction 
times). PLE proved to obtain higher content of total phenolic content 
(TPC) and OLE than traditional techniques. Also, high voltage electrical 
discharges (HVED) displayed higher yield of phenolic compounds using 
ethanol as solvent (P. Gullón, Gullón, Astray, et al., 2020). In biomass 
pruning, extraction techniques such as steam explosion and subcritical 
water extraction (SWE) have been used for the recovery of glucose and 
xylose sugars (Manzanares et al., 2020). In this case, the technique that 
showed the highest yield for TPC extraction, compared to the other 
techniques, was UAE with 31.0 mg of gallic acid equivalents (GAE) per 
gram of dry weight (dw). 

2.2. Aqueous olive mill wastewater 

Olive mill wastewater (OMWW) is a complex effluent of different 
nature depending on the process that olives undergo and the crops’ 
characteristics (Domingues et al., 2021). In general terms, OMWW can 
be considered as a mixture of oil, mucilage, sugars, tannins and organic 
acids (Flamminii et al., 2021). This mixture originates from the 
three-phase process during traditional decanting, but large quantities 
also originate from washing and extraction process stages (P. Gullón, 
Gullón, Astray, et al., 2020). In addition, over the years, it has been 
considered the most polluting waste in the Mediterranean area (P. 
Gullón, Gullón, Astray, et al., 2020). So, due to the major problem it 
causes, OO production is changing from a three-stage process to a 
two-stage process, and n-hexane has been included for its extraction 
(Domingues et al., 2021). After going through the two-stage process, 
these waters can become dark brown and increase its moisture content 
(Torrecilla & Cancilla, 2021). Actually, water content represents be
tween 70 and 90% of the total weight of OMWW and it usually has a pH 
~5 (slightly acidic) (Flamminii et al., 2021). However, this improve
ment does not totally solve the OMWW problem on its own, it only re
leases the olive mills from the environmental burden and concentrates 
the problem in the oil extraction industry. Therefore, new treatment of a 
real effluent from an OO extraction industry are proposed, using the 
Fenton’s process integrated with coagulation. 

OMWW is composed of a high concentration of organic compounds 
like carbohydrates, proteins, fatty acids (FA), carotenoids, tocopherols 
and phenolics, thus being a promising source of high added-value 
bioactive compounds (P. Gullón, Gullón, Astray, et al., 2020). It is also 
characterized by high biological and chemical oxygen demand values 
(40–80 g/L and 50–159 g/L, respectively), which may be due to its high 
content of organic acids and sugars (Flamminii et al., 2021). It has also 
shown an elevated phenolic content and pectin. However, these 
phenolic substances can sometimes present phytotoxicity, which limits 
OMWW use for agricultural purposes as soil amendment (Despoudi 
et al., 2021; Di Nunzio et al., 2020; Domingues et al., 2021). However, if 

Fig. 1. By-products of the olive oil industry from agricultural maintenance (leaves and pruning biomass) and industrial process (aqueous olive mill wastewater, cake, 
pomace and stones). 
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well treated to reduce the toxicity of the phenolic compounds in these 
waters, their recovery and application as fertilizers or compost could be 
a potential alternative, in addition to the high added-value products that 
can be recovered for further use in food, cosmetic or pharmaceutical 
applications (Sánchez-Arévalo, Jimeno-Jiménez, Carbonell-Alcaina, 
Vincent-Vela, & Álvarez-Blanco, 2021). A study used heat-assisted 
extraction (HAE) combined with mixtures of different solvents, such 
as ethanol, to obtain a dietary fiber-containing material composed only 
of pectin from this by-product. Therefore, this material could serve as a 
gelling agent although there is still a lack of studies on its rheological 
behavior (Galanakis, Tornberg, & Gekas, 2010a). 

From an economic point of view, OMWW management presents a 
high cost; its disposal is around 3.25 €/m3 and, if transferred from 
biomass or composting, 6–10 €/m3 (Flamminii et al., 2021). Neverthe
less, a correct recovery of target compounds from this by-product, such 
as polyphenols, will not only improve the economic situation of OO 
producers, but will be less toxic too. So, the recovery of bioactive ex
tracts through extraction techniques, such as maceration, is mandatory 
(Table 1) (Conidi, Egea-Corbacho, & Cassano, 2019). In addition, there 
are other types of extraction for the recovery of phenols in OMWW, such 
as ultrasound-assisted liquid-liquid extraction (US–LLE), which was 
more efficient ethyl acetate as solvent than diethyl ether (Table 1). As a 
result, this technique constitute a good alternative to conventional sol
vent extractions (Jerman Klen & Mozetič Vodopivec, 2011). 

2.3. Olive cake 

Olive cake, also called “orujillo”, is the dry extracted pomace. It is a 
weathered solid that is formed when olive pomace is processed to 
recover the residual or pomace oil (P. Gullón, Gullón, Astray, et al., 
2020). It mainly comes from multiphase decanters that generate around 
55% of the total weight of the olive and is composed of the pulp and skin, 
without including the stones (Durante et al., 2020). 

Concerning its chemical composition, it contains a diversity of phy
tochemicals such as phenolic compounds and other hydrophilic and 
lipophilic bioactive molecules, including sterols, pentacyclic triterpenes, 
tocochromanols, carotenoids and mono- and polyunsaturated fatty acids 
(PUFAs) (Durante et al., 2020; P.; Gullón, Gullón, Astray, et al., 2020). 
Among phenolic compounds, HT, tyrosol, secoiridoids derivatives and 
phenolic acids can be found (Tufariello et al., 2019). 

Regarding its current use, olive cake possesses a high oil content and 
a calorific value of 17.6 MJ/kg, therefore, it is considered a suitable 
material for the production of heat and electricity by direct combustion 
(Gálvez-Pérez et al., 2021). Olive cake has also been used in food in
dustry, e.g. spaghetti enriched with 10% of this by-product have been 
developed to increase their total polyphenol content, also showing 
anti-ageing effects on human fibroblast cells (Tufariello et al., 2019). It 
has also been applied for other purposes as proven in a study with goats 
which showed that this by-product could be used as alternative animal 
feed (El Otmani, Chebli, Hornick, Cabaraux, & Chentouf, 2021). The use 
of olive cake for the animal feeding was studied by different research 
groups with significant effects both on the animal wellbeing, produc
tivity and quality of meat and milk product (Cibik & Keles, 2016; Estaún, 
Dosil, Al Alami, Gimeno, & De Vega, 2014; Tzamaloukas, Neofytou, & 
Simitzis, 2021). 

Also, different extraction techniques have been performed to obtain 
bioactive molecules from this by-product (Table 1). These techniques 
include maceration with methanol, able to extract most of the phenolic 
compounds present in their free forms, or UAE using 15% lactic acid in 
water, resulting in an effective extraction of both polar and nonpolar 
compounds (Alu’datt et al., 2010; P.; Gullón, Gullón, Romaní, Rocchetti, 
& Lorenzo, 2020). Finally, supercritical carbon dioxide extraction 
(SC–CO2), has been applied for the efficient recovery of high-value 
natural bioactive from this by-product. In particular, a recent study 
applied response surface methodology to maximize oil extraction, 
resulting in a higher content of phytosterols, tocopherols and squalene 

(Durante et al., 2020). 

2.4. Olive pomace 

Olive pomace (OP) is a by-product resulting from the solid part of the 
extract after the removal of crude olive pomace oil, consisting mainly of 
the stone, the peel and the pulp (Çelekli et al., 2021). It stands for 
35–40% of the total weight of the olive processed in the mill, considered 
as the main residue of the OO extraction production process. It is pro
duced at the two-phase and three-phase system, more specifically from 
the insoluble phase, being useful in subsequent processes (P. Gullón, 
Gullón, Astray, et al., 2020). 

OP possesses a high content of organic matter, fats, carbohydrates 
and water-soluble phenolic substances (Rodrigues et al., 2015). It also 
contains proteins, although its composition comes from lignocellulosic 
biomass (30–41.6% lignin, 35.3–49.0% cellulose, pectic polymers, 
hemicelluloses, oils, and minerals) (P. Gullón, Gullón, Astray, et al., 
2020). OP composition may vary depending on whether a two-phase 
(the most used in Spain) or a three-phase production process is used. 
OP is a coarse brown sludge that, depending on the extraction system 
applied, presents different moisture content: in this sense, after the 
application of the two-stage system OP moisture reaches up to 70%, 
which are significantly higher than those derived either from the 
three-stage system, with moisture values of 45% in the residue, or the 
separation system of traditional OO mills with moisture values of 
22–25%. All this situation makes difficult to handle and apply treat
ments, and explains the diversity between the different olive pomaces 
(P. Gullón, Gullón, Astray, et al., 2020; Manzanares et al., 2020). In 
general, processing 1000 kg of olives with the traditional system pro
duces 400 kg of OP, 800 kg in the two-phase systems and 500 kg in the 
three-phase system (Flamminii et al., 2021). 

OP can become a potential low-cost material, rich in bioactive phe
nols, for instance to produce healthier and added-value foods. In one 
study, the reuse of this by-product as a functional ingredient to produce 
biscuits and bread with different flours and fermentation protocols had 
promising results, viz. The bread that was made with conventional 
fermentation enriched with 4% olive pomace had the greatest anti- 
inflammatory effects (Di Nunzio et al., 2020). In addition, OP is 
considered an undervalued waste, although it has been employed in 
multiple applications, such as biofuel production, in the OO production 
industry itself, or as feedstock in biorefineries (Miranda et al., 2019). In 
this sense, OP can be used in the production of refined OO, throughout 
an additional stage of solvent extraction coupled with a refining process 
to eliminate or reduce all the substances or impurities that can affect oil 
quality (P. Gullón, Gullón, Astray, et al., 2020). In Spain, OP is extracted 
with solvents such as hexane (traditional system), by physical proced
ures, or centrifugation (Manzanares et al., 2020). 

Furthermore, to obtain bioactive molecules from OP, different 
extraction methods have been applied (Table 1). MAE allowed better 
extraction of polyphenolic compounds, through an environmentally 
friendly process that transforms energy into heat due to electromagnetic 
radiation, (Xie et al., 2019), while UAE has been often used due to its 
properties as a cost-effective, fast and highly efficient technique. In 
general, both MAE and UAE have demonstrated its ability to recover 
high-value compounds from OP reporting differential results (Table 1), 
obtaining higher yields in TPC by MAE (Xie et al., 2019). Besides these 
widely applied extraction techniques, enzyme-based extraction tech
niques have been also applied to OP. Enzyme-assisted extraction (EAE), 
and its combination with MAE (microwave-enzyme-assisted extraction, 
MEAE) can be highlighted. These techniques use enzymes (e.g. cellu
lases, pectinases, and tannases) and have been reported to promote 
higher extraction yields in terms of phenolic compounds, phenolic al
cohols and acids concentrations (Macedo et al., 2021). 
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2.5. Olive stones 

Olive seeds or stones (OSs) are a lignocellulosic low moisture by- 
product that can be obtained after the separation through horizontal 
centrifugation of the OP (crushed seeds, peels and pulp) (Matos, Bar
reiro, & Gandini, 2010; Padilla-Rascón et al., 2020; Rodríguez et al., 
2008). Nowadays, the two-phase separation system is the most used by 
the OO industry. This process generates high amounts of solid residues 
and consequently, the separation of OS from OP is becoming a more 

frequent practice to valorize these by-products (Matos et al., 2010; 
Padilla-Rascón et al., 2020). 

OSs are considered as a source of dietary fiber, but also lipids and 
proteins (Maestri et al., 2019). Cellulose contribution varies around 
30–34%, whereas lignin and hemicellulose content is between 21 and 
28% (Matos et al., 2010). OS is especially rich in oleic and linoleic acids, 
both major compounds of OO. Mild concentrations of tocopherols, 
squalene, sterols, and other triterpenoids can be found in OS as well. 
Regarding the phenolic profile, it is especially rich in secoiridoid 

Table 2 
Main bioactive compounds identified in olive oil and principal by-products of its production. Average concentration calculated on reported means is presented.  

Group Compounds (a) OO Principal residues Ref. 

O S OMWW 

Fatty acids Oleic acid ⁓70000 ⁓2000 ⁓14000 ⁓3000 (Hannachi et al., 2020; Maestri et al., 2019; Martins et al., 2021) 
Linoleic acid ⁓12000 ⁓350 ⁓4500 –  

Phytosterols β-Sitosterol ⁓96 200 ⁓200 – (Maestri et al., 2019; Ranalli et al., 2002; Sánchez-Gutiérrez et al., 2017) 
Campesterol ⁓3 ⁓13 80 – 
Stigmasterol ⁓1 100 ⁓6 –  

Triterpenoids Squalene ⁓450 ⁓300 ⁓300 ⁓25 (Fernández-Cuesta et al., 2013; Maestri et al., 2019; Martins et al., 2021;  
Sánchez-Gutiérrez et al., 2017) 

Maslinic acid ⁓47 ⁓400 Nd ⁓18 (De La Torre et al., 2020; Mwakalukwa et al., 2020; Romero et al., 2018;  
Sánchez-Gutiérrez et al., 2017) Oleanolic acid ⁓39 ⁓350 Nd ⁓8  

Phenolic acids and 
derivatives 

Gallic acid ⁓4 ⁓10 ⁓3 – (Alu’datt et al., 2011, 2010; Cioffi et al., 2010; Dagdelen et al., 2013; Martins et al., 
2021) 

Caffeic acid ⁓3 ⁓5 ⁓140 ⁓9 (Alu’datt et al., 2010; Cioffi et al., 2010; De Marco et al., 2007; Khadem et al., 2019) 
p-coumaric acid ⁓1 ⁓10 ⁓300 ⁓5 (Alu’datt et al., 2011; Khadem et al., 2019; López-Yerena et al., 2019; Martins et al., 

2021) 
Hydroxybenzoic 
acid 

⁓1 ⁓10 ⁓5 – (Alu’datt et al., 2011, 2010; De Marco et al., 2007; López-Yerena et al., 2019) 

Ferulic acid ⁓4 ⁓20 ⁓30 – (Alu’datt et al., 2011, 2010; Cioffi et al., 2010) 
Vanillic acid ⁓1 ⁓30 ⁓10 ⁓20 (Alu’datt et al., 2010; Cioffi et al., 2010; De Bruno et al., 2020; Khadem et al., 2019;  

López-Yerena et al., 2019) 
Verbascoside – ⁓8 INd ⁓15 (De Marco et al., 2007; Maestri et al., 2019; Obied et al., 2008; Pérez-Serradilla 

et al., 2008)  

Flavonoids Luteolin ⁓2 ⁓6 ⁓60 ⁓20 (Ahmad-Qasem, Barrajón-Catalán, Micol, Mulet, & García-Pérez, 2013; Bakhouche 
et al., 2013; De Marco et al., 2007; López-Yerena et al., 2019; Pérez-Serradilla et al., 
2008) 

Apigenin ⁓5 ⁓4 ⁓30 ⁓4 (Alu’datt et al., 2011; Bakhouche et al., 2013; De Bruno et al., 2020; López-Yerena 
et al., 2019; Maestri et al., 2019) 

Rutin ⁓5 ⁓2 ⁓70 ⁓5 (Alu’datt et al., 2010; De Bruno et al., 2020)  

Secoiridoids Tyrosol ⁓3 ⁓ ⁓70 ⁓20 (Angelino et al., 2011; Benincasa, La Torre et al., 2019; De Bruno et al., 2020; De 
Marco et al., 2007; González-Hidalgo, Bañón, & Ros, 2012; Khadem et al., 2019;  
Pérez-Serradilla et al., 2008) 

Hydroxytyrosol ⁓ 2000 ⁓40 ⁓20 [22,26,35,36,42,45–48] 
Oleuropein ⁓14 ⁓3500 ⁓30 Nd (Cioffi et al., 2010; González-Hidalgo et al., 2012; Nakilcioğlu-Taş & Ötleş, 2019;  

Pérez-Serradilla et al., 2008; Romero et al., 2018) 
Oleocanthal ⁓6 30 – ⁓1 (Adhami et al., 2015; Cioffi et al., 2010; La Scalia et al., 2017; López-Yerena et al., 

2019) 
Oleacein ⁓1 20 – ⁓70 (Angelino et al., 2011; Gómez-Alonso, Salvador, & Fregapane, 2002; La Scalia et al., 

2017; Paiva-Martins et al., 2007) 
Ligstroside ⁓5 ⁓50 – ⁓9 (Ahmad-Qasem et al., 2013; Cioffi et al., 2010; De Marco et al., 2007; López-Yerena 

et al., 2019)  

Lignans Pinoresinol ⁓9 ⁓3 ⁓3 ⁓4 (Bakhouche et al., 2013; De Bruno et al., 2020; Nunes et al., 2018; Oliveras López 
et al., 2008) 

1- 
acetoxypinoresinol 

⁓2 ⁓2 – ⁓0.1 (Bakhouche et al., 2013; Mwakalukwa et al., 2020; Oliveras López et al., 2008)  

Tocopherolsb α, β. γ, and δ ⁓18 ⁓30 ⁓30 ⁓2 (Aggoun et al., 2016; Bengana et al., 2013; de Lucas, Martinez de la Ossa, Rincón, 
Blanco, & Gracia, 2002; González-Hidalgo et al., 2012; Maestri et al., 2019; Yanık, 
2017)  

a Concentrations have been calculated to mg/100 g dry weight unless indicated otherwise. 
b Tocopherols are expressed as sum of α, β. γ, and δ tocopherols; OO: Olive oil; O: Olive pulp; S: seeds; OMWW: Olive mill waste-water; INq: Identified but not 

quantified; Nd: Not detected. 
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compounds and nüzhenide derivatives (Maestri et al., 2019; Rodríguez 
et al., 2008), and some experiments have been focused on the extraction 
optimization of target polyphenols, such as HT, OLE and syringic acid 
(Nakilcioğlu-Taş & Ötleş, 2019). Among them, HT and OLE have been 
recovered from OS by conventional extractions such as HAE, showing a 
yield of ≈27 and 37 mg/kg dw, respectively (Table 1). In the same way, 
PLE has been also performed to obtain cholesterol-lowering compounds 
from OS obtaining an extraction yield up to 60% (Vásquez-Villanueva, 
Plaza, García, & Marina, 2020). 

With respect to the current applications of OS, its high calorific value 
(18 MJ/kg) has prompted its use on thermal processes for the production 
of electricity and in heating systems, as well as in diverse applications, 
ranging from activated carbon or fuel production, to sugar, furfural or 
other valuable compounds production (Padilla-Rascón et al., 2020; 
Rodríguez et al., 2008). Furthermore, stones powder has been used as 
flour substitute in biscuits improving their TPC and antioxidant activity 
(Bolek, 2020). 

The characterization of the different by-products generated during 
the OO production chain, as well as the extraction techniques that can be 
applied to obtain target molecules with bioactive properties, are 
essential to define workable valorization strategies of these residues and 
move towards a more sustainable system based on circular economy 
approach. 

3. Target bioactive components of olive oil by-products 

The wide variety of bioactive molecules present in OO should be the 
responsible ones of the benefits attributed to the potential consumers. 
These bioactive components can be found not only in OO, but also at 
significant levels in its processing by-products, such as leaves and 
pruning biomass, seeds, pomace, cake, or OMWW, and could be easily 
extracted from waste biomass and yield added-value products and in
gredients (Cicerale, Lucas, & Keast, 2012; Parkinson & Cicerale, 2016). 
The predominant bioactive compounds of OO and their residues include 
fatty acids, phytosterols, triterpenoids, phenolic compounds (namely 
phenolic acids, flavonoids, secoiridoids and lignans) and tocopherols, 
but some other bioactive compounds have been described in low 
quantities, like carotenoids or chlorophylls (Hannachi et al., 2020; 
Parkinson & Cicerale, 2016). The content of these bioactive molecules 
varies depending on the by-product considered and also according to 
other factors that influence the chemical composition of olives, such as 
variety, ripeness, climatic conditions, growth conditions, etc. (Romero, 
Medina, Mateo, & Brenes, 2018). The recovered compounds from olive 
pulp, seeds and OMWW (as the principal by-products of OO industry) 
are presented in Table 2. In addition, the distribution of these com
pounds among the by-products and also the chemical composition of 
olive pulp, seeds and OMWW is presented in Fig. 2, based on the data 
compiled in Table 2. Briefly, the sum of the main bioactive compounds 
found in olive pulp, seeds and OMWW was used to calculate the % of a 
given compound in each by-product, thus obtaining the % of the com
pound in the bioactive fraction. On the other hand, the sum of the main 
content of a given compound in the OO and residues was used to eval
uate the distribution of the compound among by-products. 

3.1. Triglycerides containing fatty acids 

Olive fruits are rich in oil, composed entirely by triglycerides con
taining fatty acids (FA), especially oleic, palmitic and linoleic acids 
(Fig. 3). Most of FA are extracted in the OO process (~80%), and thus, 
their concentration is much lower in olive by-products (~20%) (Alu’datt 
et al., 2017) (Fig. 2A). After oil extraction, olive pulp still contains about 
a 10% of residual oil, rich in FA (Peršurić, SaftićMartinović, Zengin, 
Šarolić, & KraljevićPavelić, 2020), specially the bioactive FA, oleic and 
linoleic acid. The content of these FA reaches up to 2000 mg and 350 mg 
per 100 g dw, respectively (Nunes et al., 2018). Considering the com
pounds compiled in Table 2, FA content corresponds to about 55.0% of 

the bioactive composition of the olive pulp (Fig. 2B). OSs are considered 
as a valuable source of unsaturated FA, being oleic and linoleic acids the 
most prevalent FAs. According to recent studies, seeds contain on 
average about 14,000 mg and 4500 mg/100 g dw of oleic acid and 
linoleic acid, respectively (Hannachi et al., 2020; Maestri et al., 2019), 
corresponding to 91.7% of the chemical composition (Fig. 2B). Finally, a 
recent study reported that OMWW contained about 3000 mg/100 g dw 
of oleic acid, but no linoleic acid was detected (Martins, Martins, & 
Braga, 2021). Thus, FA content stands for the 92.9% of OMWW’s com
pounds (Fig. 2B). 

3.2. Phytosterols 

Although phytosterols are extracted during OO production, generally 
higher levels have been described in the residues (Mateos, Sarria, & 
Bravo, 2019). According to the data compiled, these compounds are 
distributed as follows: a ~10% of the total phytosterols are found in OO, 
whereas around ~80% are present in the by-products (Fig. 2A). OO 
contains about 100 mg of phytosterols/100 g dw, which corresponds to a 
0.1% of the main bioactive compounds found in its chemical composi
tion (Fig. 2B). The major phytosterols found on this product are 
β-sitosterol, campesterol and stigmasterol (Fig. 3), with a content about 
96, 3 and 1 mg/100 g dw, respectively (Ranalli et al., 2002). Regarding 
by-products, phytosterols have been detected in olive pulp and in OSs, 
but not in OMWW (Table 2, Fig. 2). The total phytosterol content in olive 
pulp is around 380 mg/100 g dw (200, 80 and 100 mg/100 g dw for 
β-sitosterol, campesterol and stigmasterol, respectively), while it is 
lower in seeds, around 219 mg/100 g dw (200, 13 and 6 mg/100 g dw 
for the previously indicated compounds) (Maestri et al., 2019; Ranalli 
et al., 2002). According to the bioactive compounds present in these 
residues, phytosterols correspond to an average of 8.9% and 2.7% of the 
bioactive composition of olive pulp and seeds, respectively (Fig. 2B). 

3.3. Triterpenoids 

According to the compiled data, only about a 33% of triterpenoids is 
extracted during OO production, thus, about a 67% of these compounds 
is present in the by-products (Fig. 2A). Specifically, triterpenes corre
spond to a 0.6, 17.6, 1.5, and 0.8% of the bioactive composition of OO, 
OP, OS and OMWW, respectively (Fig. 2B). Among triterpenoids, 
squalene, maslinic and oleanolic acids are the most representative 
compounds (De La Torre et al., 2020; Fernández-Cuesta, León, Velasco, 
& De la Rosa, 2013) (Fig. 3, Table 2). Squalene is the main component of 
unsaponifiable matter, constituting more than 90% of OO hydrocarbons 
and containing up to 450 mg/100 g dw (Beltrán, Bucheli, Aguilera, 
Belaj, & Jimenez, 2016; Fernández-Cuesta et al., 2013). Regarding 
by-products, squalene content is lower, reaching 300 mg/100 g dw both 
in olive pulp and seeds and 25 mg/100 g dw in the case of OMWW 
(Maestri et al., 2019; Martins et al., 2021; Sánchez-Gutiérrez, 
Ruiz-Méndez, Jiménez-Castellanos, & Lucero, 2017). On the other hand, 
the presence of maslinic and oleanolic acids has been reported in OO, 
olive pulp and OMWW, but not in seeds (Table 2). In OO, the content of 
maslinic and oleanolic acids is about 47 and 39 mg/100 g dw, respec
tively (De La Torre et al., 2020). This content is higher in olive pulp, with 
a content of 400 and 300 mg/100 g dw, respectively (Sánchez-Gutiérrez 
et al., 2017), while lower levels have been reported in OMWW (18 mg of 
maslinic acid and 8 mg of oleanoic acid per 100 g dw (Mwakalukwa, 
Amen, Nagata, & Shimizu, 2020; Romero et al., 2018)). 

3.4. Phenolic compounds 

Phenolic compounds present in OO and its by-products are greatly 
heterogenous and include mainly phenolic alcohols, phenolic acids, 
flavonoids, secoiridoids, and lignans, among others (Servili et al., 2004, 
2014). They are the primary group of bioactive molecules derived from 
olive and appear at markedly different concentrations among residues. 
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Fig. 2. Distribution and relative percentage of the bioactive compounds in olive pulp, seeds and OMWW.  
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As it could be seen in Fig. 2A, the diverse groups of phenolic compounds 
are generally present in higher amounts in the residues, except for 
lignans. 

3.4.1. Phenolic alcohols 
The most relevant phenolic alcohols found in OO and by-products 

are HT and tyrosol, which can be found in variable amounts, depend
ing on the olive variety and maturation stage (Wani et al., 2018). Their 
high prevalence is due to their derivation from the most abundant 
phenolic compounds of OO, the secoiridoids oleoeuropein and ligstro
side (Cardoso, Falcão, Peres, & Domingues, 2011). Thus, HT is mainly 
produced from the hydrolysis of oleoeuropein, whereas tyrosol derives 
from ligstroside degradation (Wani et al., 2018). From a biosynthetic 
point of view, both HT and tyrosol are derived from L-DOPA and 
L-tyrosine, respectively, suffering further sequential enzymatic modifi
cations to give rise to the final compounds, which are incorporated into 
the secoiridoid compounds as the phenolic moiety through a biosyn
thetic pathway that is not fully elucidated, to date (Sánchez, García-Vico, 
Sanz, & Pérez, 2019). Nevertheless, as bioactive compounds it is 
assumed that all HT-containing molecules in OO are the major respon
sible for its associated biological properties (López de las Hazas et al., 
2016).Phenolic acids. 

The main phenolic acids found in OO and the selected residues are 
gallic, caffeic, p-coumaric, hydroxybenzoic, ferulic and vanillic acids, 
together with some derivatives, such as verbascoside (a glycosylated 
phenylethanoid, derived from hydroxycinnamic acid) (Table 2). 
Comparing their distribution, a 4.4% of these compounds is present in 
OO, while the remaining 95.6% can be found in the residues (Fig. 2A). 

Previous data have reported a phenolic acid content of approximately 
14,000 mg/100 g dw of OO (Cioffi et al., 2010; Dagdelen, Tümen, 
Özcan, & Dündar, 2013; López-Yerena et al., 2019), which corresponds 
to an average 0.01% of the main bioactive compounds reported in this 
product (Table 2, Fig. 2B). Among residues, seeds stand out, with an 
average content of 488 mg/100 g dw (Alu’datt et al., 2011; Khadem, 
Rashidi, & Homapour, 2019) (2.4% of the main bioactive compounds), 
followed by the olive pulp, with 93 mg/100 g dw (Alu’datt et al., 2010; 
Pérez-Serradilla, Japón-Luján, & De Castro, 2008) (corresponding to a 
2.2% of the bioactive fraction) (Table 2, Fig. 2B). Finally, only caffeic, 
p-coumaric and vanillic acids and verbascoside have been detected in 
OMWW, containing an average content of 49 mg/100 g dw (De Marco, 
Savarese, Paduano, & Sacchi, 2007; Martins et al., 2021; Obied, Bed
good, Mailer, Prenzler, & Robards, 2008), which corresponds to a 1.6% 
of bioactive compounds. 

3.4.2. Flavonoids 
Regarding flavonoids, some of the most widely identified in OO and 

by-products include the flavones luteolin and apigenin, and the flavanol 
rutin (Table 2, Fig. 3). Like in previous compounds, their content is 
higher in the by-products than in OO. Thus, the distribution of flavo
noids is as follows: about a 5.6% is present in the OO, while the 
remaining 94.4% can be found in the residues (Fig. 2A). OO has been 
described to contain an average content of 2000 mg of luteolin and 5000 
mg of apigenin and rutin per 100 g dw (Bakhouche et al., 2013; 
López-Yerena et al., 2019), accounting for a 0.01% of OO’s main 
bioactive compounds (Fig. 2B). Regarding residues, luteolin is the pre
dominant flavonoid in pulp and OMWW, while rutin is the major 

Fig. 3. Chemical structure of main bioactive compounds found in olive oil and by-products.  
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flavonoid of seeds. On average, olive pulp, seeds and OMWW contain up 
to 12, 160 and 29 mg of these flavonoids per 100 g dw (Alu’datt et al., 
2011, 2010; De Marco et al., 2007; Khadem et al., 2019; Maestri et al., 
2019; Pérez-Serradilla et al., 2008), which represent the 0.3, 0.8 and 
0.9% of the bioactive compounds found in these matrices (Table 2, 
Fig. 2B). 

3.4.3. Secoiridoids 
Secoiridoids (Fig. 3) are the most abundant and distinctive phenolic 

compounds present in OO and olive by-products. The main secoiridoids 
are oleuropein, biosynthetically derived from the esterification of HT 
with elenolic acid, and ligstroside, derived from the esterification of 
tyrosol with oleoside 11-methyl ester, a methylated derivative of elenoic 
acid (Bianchi, 2003; Czerwin, Kiss, & Naruszewicz, 2012). As expected, 
the content of these compounds is higher in the different residues, 
presenting a 96.9% of total secoiridoids, compared to 3.1% found in OO 
(Fig. 2A). According to the previously available bibliography, secoir
idoids content has been described to be more abundant in olive pulp 
(≥5000 mg/100 g dw) and OMWW (≥4000 mg/100 g dw), while this 
content is much lower in seeds (~140 mg/100 g) (Angelino et al., 2011; 
Khadem et al., 2019; Martins et al., 2021; Tufariello et al., 2019). 
Considering the bioactive compounds of residues, the amount of 
secoiridoids represents a 15.2, 0.7 and 3.7% of the bioactive fraction of 
olive pulp, seeds and OMWW, respectively (Table 2, Fig. 2B). 

3.4.4. Lignans 
Unlike other phenolic compounds, similar lignans distribution has 

been observed between OO and the different residues: 47.8 and 52.2%, 
respectively (Fig. 2A). The two main bioactive lignans described in OO 
are (+)-pinoresinol and (+)-1-acetoxypinoresinol (Fig. 3), whose con
tent has been estimated in 9 and 2 mg/100 g dw, respectively (Bengana 
et al., 2013; De Bruno, Romeo, Piscopo, & Poiana). The lignans content 
stands for a 0.01% of the bioactive compounds present in OO (Fig. 2B). 
Regarding by-products, both compounds have been identified in olive 
pulp (~3 and ~2 mg/100 g dw, respectively) and OMWW ~ (4 and 
~0.1 mg/100 g dw, respectively), but only (+)-pinoresinol was detected 
in seeds (~3 mg/100 g dw) (Mwakalukwa et al., 2020; Nunes et al., 
2018). Specifically, lignans represent a 0.1, 0.01 and 0.1% of the 
bioactive compounds of olive pulp, seeds and OMWW, respectively 
(Fig. 2B). 

3.5. Tocopherols 

OO is rich in tocopherols (isomers of vitamin E), which may be 
present as α-, β-, γ- and δ-tocopherol isoforms (Fig. 3). Considering the 
distribution of tocopherols, higher amounts have been reported in by- 
products (77.5%) than in OO (22.8%) (Fig. 2A). Specifically, tocoph
erols content (the sum of all isoforms) in OO is generally reported to be 
around 18 mg/100 g dw (Bengana et al., 2013), representing a 0.02% of 
the main bioactive compounds (Table 2). In olive by-products, tocoph
erols are reported at varying concentrations, being α-tocopherol the 
most common isoform (Boskou, 2015; Moghaddam et al., 2012). In olive 
pulp and seeds, this content reaches around 30 mg/100 g dw, while a 
lower content is observed in OMWW, ~2 mg/100 g dw (Aggoun et al., 
2016; Maestri et al., 2019; Yanık, 2017) (Fig. 2B). 

4. Bioactivities of olive oil by-products 

Diverse types of biological properties have been attributed to olive 
and OO by-products, including antioxidant, anti-inflammatory, anti
cancer, and others. In general, these properties have been linked with 
the diverse, previously-mentioned bioactive compounds, especially 
phenolic compounds (like HT, OLE, oleocanthal, etc.) (P. Gullón, 
Gullón, Astray, et al., 2020). In this section, several activities associated 
with olive by-products will be described, as well as the mechanism of 
action of the involved compounds (Table 3). 

Table 3 
Biological properties of compounds present from olive oil by-products.  

Activity Compounds Main Mechanisms Ref. 

Antioxidant HT and D Ability to scavenge 
free radicals and 
chelate metals. 

(Araújo et al., 2015; 
Karković; Kouka 
et al., 2017; Marković 
et al., 2019;  
Robles-Almazan 
et al., 2018) 

Reduction of lipid 
peroxidation. 
Reduction of 
mitochondrial 
dysfunction. 
Activation of Nrf2 
and upregulation of 
antioxidant genes. 

OLE and D Ability to scavenge 
ROS and RNS. 

(Czerwin et al., 2012;  
Janahmadi et al., 
2017; Jemai et al., 
2008; Sherif, 2018;  
Yin et al., 2019) 

Reduction of lipid 
peroxidation. 
Activation of Nrf2 
and upregulation of 
antioxidant genes. 

Anti- 
inflammatory 

HT and D Inhibition of pro- 
inflammatory 
molecules (e.g., NO, 
PGE2, TNF-α, NF- 
κB) 

(Aparicio-soto et al., 
2017; Bigagli et al., 
2017; Fki et al., 2020; 
Plastina et al., 2019;  
Robles-Almazan 
et al., 2018) 

OLE and D Activation of Nfr2- 
related pathways 
and 
downregulation of 
inflammation 
related genes (e.g., 
iNOS, COX-2). 

(Aparicio-soto et al., 
2017; Feng et al., 
2017; Hassen et al., 
2015; Janahmadi 
et al., 2017; Sherif, 
2018; Yin et al., 
2019)  

Antitumor HT Inhibition of 
proliferation, 
induction of cell 
cycle arrest. 
Induction of pro- 
apoptotic pathways 
(e.g., PI3K/Akt/ 
FOXO3a, PI3K/ 
Akt/mTOR, caspase 
cascade) 
Alteration of pro/ 
anti-apoptotic Bcl-2 
family proteins 
ratio. 
Downregulation of 
anti-apoptotic 
factors, oxidative 
stress and 
inflammation. 

(Calahorra et al., 
2020; Goldsmith 
et al., 2018; Imran 
et al., 2018;  
KarkovićMarković 
et al., 2019;  
Robles-Almazan 
et al., 2018) 

OLE (Asgharzade et al., 
2020; Boss et al., 
2016; Goldsmith 
et al., 2018; Imran 
et al., 2018;  
Shamshoum et al., 
2017)  

Anti-obesity, 
anti-diabetic 

OLE and D Enhancement of 
GPBAR1, better 
insulin secretion. 

(Sato et al., 2007; 
Ling Wu et al., 2017) 

Reduction of 
glycaemia. 
Activation of ERK/ 
MAPK signaling 
pathway.  

Cardioprotective 
effect 

HT, tyrosol, 
OLE and D 

Reduction of 
systolic blood 
pressure, cardiac 
hypertrophy, and 
plasma levels of 
total cholesterol 
and angiotensin II. 

(Bendini et al., 2007;  
Covas et al., 2006;  
Gómez-Caravaca 
et al., 2015;  
Janahmadi et al., 
2015; Soler-Rivas 
et al., 2000; Tuck & 
Hayball, 2002;  
Vazquez et al., 2019; 
Lixing Wu et al., 
2018) 

Downregulation of 
oxidative stress and 
inflammation. 

P. Otero et al.                                                                                                                                                                                                                                    



Trends in Food Science & Technology 116 (2021) 1084–1104

1095

4.1. Antioxidant effect 

Numerous studies have reported the antioxidant properties of olive- 
related by-products (OP, OMWW, olive leaf) by the free radical scav
enging (ABTS assay), ferric reducing ability of plasma (FRAP assay), the 
Trolox-Equivalent antioxidant capacity (TEAC) assays, the 2,2-diphenyl- 
1-picrylhydrazyl (DPPH) scavenging and oxygen radical absorbance 
capacity (ORAC) assays (Cedola, Cardinali, D’Antuono, Conte, & Del 
Nobile, 2020; Moudache, Colon, Nerín, & Zaidi, 2016; Posadino et al., 
2021; Tamasi et al., 2019). In general, phenolic compounds, such as HT, 
OLE, OLE aglycone, and derivatives are significantly related with the 
antioxidant effects of the olive by-products. The antioxidant properties 
of HT result from its o-diphenolic structure, responsible for the free 
radical scavenging and metal chelating properties (Araújo, Pimentel, 
Alves, & Oliveira, 2015; KarkovićMarković, Torić, Barbarić, & Jakobu
šićBrala, 2019). Antioxidant effects have not only been reported by 
DPPH and ABTS assays (Kouka et al., 2017; Pannucci et al., 2019), but 
also in cell cultures and in vivo models (Granados-Principal et al., 2014; 
Kouka et al., 2017; Ricelli et al., 2020). Similar effects have been also 
observed with HT derivatives found in by-products, such as HT oleate 
(Benincasa, La Torre et al., 2019) and homovanillic alcohol (Ricelli 
et al., 2020).Several mechanisms of action have been proposed for HT, 
including the activation of the nuclear factor (erythroid-derived-2)-like 
2 (Nrf2), a transcription factor that plays a crucial regulator role on the 
antioxidant response element (ARE) or the activation of 
NK-p62/SQSTM1 pathway, both involved in the cellular response 
against oxidative stress (Kouka et al., 2017; Robles-Almazan et al., 
2018). HT has been also reported to stimulate mitochondrial biogenesis 
and function by peroxisome proliferator-activated receptor gamma 
coactivator 1 alpha (PPARGC1α) activation (Granados-Principal et al., 
2014). A schematic representation of these mechanisms has been pre
sented in Fig. 4. 

Like HT, OLE also presents a o-diphenolic structure, responsible for 
its antioxidant properties (Araújo et al., 2015), acting as a ROS and 
reactive nitrogen species (RNS) scavenger, specially nitric oxide (NO) 
(Czerwin et al., 2012). In addition, both in vitro and in vivo studies 

showed that OLE reduces ROS, RNS, and oxidative markers production, 
inhibits lipid peroxidation and also improves the antioxidant defense 
systems, increasing the levels and activity of antioxidant enzymes 
(Czerwin et al., 2012; Janahmadi, Nekooeian, Moaref, & Emamghor
eishi, 2017; Jemai, Bouaziz, Fki, El, & Sayadi, 2008) (Fig. 4). As ex
pected, OLE derivatives present in olive and OO by-products, like 
OLE-aglycone or oleacin have shown analogous effects (Czerwin et al., 
2012; Nardi et al., 2017). 

4.2. Anti-inflammatory effect 

Olive and OO by-products also exert anti-inflammatory effects, 
although they were reported by less studies compared with those 
focused on antioxidant activity. Recently, phenolic extracts from 
OMWW and OP have been shown to reduce NO production in lipo
polysaccharide (LPS)-stimulated RAW-264.7 macrophages (Plastina 
et al., 2019) and inhibit the production of the interleukin-8 (IL-8) 
pro-inflammatory cytokine in human colorectal adenocarcinoma 
Caco-2 cells (Di Nunzio et al., 2018), respectively. Anti-inflammatory 
effects have been also observed in vivo. For example, in rats, OO 
by-products promoted an inflammation reduction associated with 
gastrointestinal disorders (Parisio, Lucarini, Micheli, Toti, Bellumori, 
Cecchi, Calosi, Bani, Di, et al., 2020). In general, these properties of 
by-products have been attributed to the presence of compounds such as 
HT, OLE and their derivatives, as anti-inflammatory activity is usually 
linked to antioxidant activity. 

HT and types of derivatives, such as HT oleate or HT stearate, have 
shown anti-inflammatory properties in vitro and in vivo. Several cellular 
studies have reported that these compounds inhibited NO, prostaglandin 
E2 (PGE2) and pro-inflammatory cytokines production, tumor necrosis 
factor-alpha (TNF-α) secretion and expression, and repressed 
inflammatory-related genes expression, such as inducible nitric oxide 
synthase (iNOS), cyclooxygenase-2 (COX-2), matrix metallopeptidase-9 
(MMP-9), among others (Bigagli et al., 2017; Plastina et al., 2019; 
Robles-Almazan et al., 2018). In addition, HT and their derivatives have 
been reported to activate the nuclear factor (erythroid-derived 2)-like 2 
(Nfr2) transcription factor, leading to an inhibition of pro-inflammatory 
mediators, and also modulates microRNA-146a expression, a post
transcriptional regulator of the inflammatory response (Bigagli et al., 
2017). These effects and mechanisms have been also observed in animal 
models, such as liver-injured rats or systemic lupus erythematous mice 
models (Aparicio-soto et al., 2017; Fki et al., 2020). In Fig. 4, a 

D: derivatives; Nrf2: nuclear factor (erythroid-derived 2)-like 2; ROS: reactive 
oxygen species; RNS: reactive nitrogen species, HO-1: heme oxygenase 1; NO: 
nitric oxide; PGE2: prostaglandin E2; TNF-α: tumor necrosis factor-alpha; NF-κB: 
nuclear factor kappa B; iNOS: inducible nitric oxide synthase; COX-2: cyclo
oxygenase-2. 

Fig. 4. Schematic mechanisms of antioxidant, anti-inflammatory and antitumor properties of HT and OLE.  
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schematic representation of anti-inflammatory mechanisms is 
presented. 

Regarding OLE and derivatives, such as oleacin or oleocanthal, 
similar anti-inflammatory effects and mechanisms have been observed 
in cell cultures, including the inhibition of the nuclear factor κ-B (NF-κB) 
and its translocation into the nucleus and the production of pro- 
inflammatory cytokines (such as NO, PGE2, interleukins, etc.) and also 
the downregulation of genes like COX-2 and iNOS (Aparicio-soto et al., 
2017; Hassen, Casabianca, & Hosni, 2015; Janahmadi et al., 2017) 
(Fig. 4). It has been reported that OLE also inhibits the activation of 
NF-κB and mitogen-activated protein kinase (MAPK) pathways, being 
both important regulators of the inflammatory process (Feng et al., 
2017). This anti-inflammatory activity has been also corroborated on 
animal models, where OLE reduced the levels and the expression of 
pro-inflammatory mediators and genes, which has been attributed to the 
activation of Nrf2/heme-oxygenase-1 (HO-1) signaling pathway (Sherif, 
2018; Yin et al., 2019). 

4.3. Antitumor effect 

The antitumor properties of olive by-products have been also 
described in the literature. To cite some of the most recent studies, 
phenolic extracts from olive leaf and OP exerted inhibitory effects 
against mouse sarcoma S180, HeLa, Caco-2 and HCT116 cell lines 
(Lanza et al., 2020; Wang et al., 2019) and the antitumor properties have 
been mainly correlated to HT and OLE (Imran et al., 2018; Roble
s-Almazan et al., 2018). 

Regarding HT, it has been demonstrated to inhibit the proliferation 
and growth and induce apoptosis in different cancer cell lines and in vivo 
models, by promoting cell cycle arrest in the G0/G1 phase and also by 
modulating the expression of different pathways and genes involved in 
tumor progression, as it has been extensively covered by previous re
views (KarkovićMarković et al., 2019; Robles-Almazan et al., 2018) 
(Fig. 4). For example, HT has been shown to activate PI3K/Akt/FOXO3a 
pathway and caspase signaling, which play a fundamental role in cell 
apoptosis, and also downregulates the expression of Bcl-2, an 
anti-apoptotic protein (Imran et al., 2018). Recently, HT exerted cyto
toxic effects against pancreatic cancer cells, MIA PaCa-2, and HPDE 
cells, inducing cell cycle arrest. In MIA PaCa-2, HT induced activation of 
caspase 3/7 and the subsequent apoptosis and altered the ratio of 
pro/anti-apoptotic Bcl2 family proteins. Further analysis showed that 
HT increased the gene expression and the protein content of c-Jun and 
c-Fos, involved in proliferation, cellular differentiation, and also 
apoptosis (Goldsmith et al., 2018). 

OLE has shown also antitumor effects in different cancers, reducing 
viability and inducing cell cycle arrest and apoptosis (Boss, Bishop, 
Marlow, Barnett, & Ferguson, 2016; Imran et al., 2018). Like HT, it has 
been observed that OLE exerts antitumor properties affecting many 
different pathways, such as caspase pathway, PI3K/Akt/mTOR 
pathway, or extracellular signal-regulated protein kinases 1 and 2 
(ERK-1 and ERK-2), and also downregulating inflammatory and oxida
tive factors (Shamshoum, Vlavcheski, & Tsiani, 2017) (Fig. 4). In a 
previous cited study, OLE induced apoptosis in MIA PaCa-2 cells trough 
activation of caspase 3/7, increased pro/anti-apoptotic Bcl2 proteins 
ratio and augmented the expression of c-Jun and c-Fos (Goldsmith et al., 
2018). Recently, this compound has shown to decrease cell viability and 
induce apoptosis in breast cancer cell lines MCF7 and MDA-MB-231 
through the downregulation and upregulation of anti and 
pro-apoptotic genes, respectively, and also modulating microRNA 
expression (Asgharzade et al., 2020). Other compounds to which anti
tumor properties are attributed are luteolin or apigenin, due to their 
ability to reduce oxidative damage and also modulate the inflammatory 
response mediated by NF-κB, and also tumor progression-related path
ways (Boss et al., 2016). 

4.4. Anti-obesity and antidiabetic effect 

Obesity is known to be associated with a series of metabolic diseases, 
including insulin resistance, which can lead to type II diabetes (Rabe, 
Lehrke, Parhofer, & Broedl, 2008). Phenolic acids, flavonoids and their 
derivatives seem to be responsible for the greatest antidiabetic activities 
of olive and its by-products (Vlavcheski, Young, & Tsiani, 2019), since 
phenolic compounds are inhibitors of α-glucosidase and α-amylase en
zymes, which are therapeutic targets of anti-diabetic drugs (Kamiyama 
et al., 2010). Among the by-products of the food industry, olive leaves, 
skin and pomace are the main components with antidiabetic and 
anti-obesity properties (P. Gullón, Gullón, Astray, et al., 2020), as 
evaluated in several works (Abunab, Dator, & Hawamdeh, 2017; de 
Bock et al., 2013; Guex et al., 2019; Liu, Jung, Park, & Kim, 2014). 

These biological activities are mainly attributed to phenolic com
pounds, in particular to OLE and some derivatives (Kaeidi et al., 2011; 
Sato et al., 2007). For instance, it has been reported that OLE and ole
anolic acid enhance the role of G-protein-coupled bile acid receptor 1 
agonists, improving metabolic disorders with greater peripheral use of 
glucose and better insulin secretion (Sato et al., 2007). More recently, 
OLE has shown to reduce glycemia and enhance glucose tolerance in 
several animal models. This compound stimulates the insulin secretion 
promoted by glucose in pancreatic β-cells with a dose-dependent effect, 
activating the ERK/MAPK signaling pathway (Ling Wu, Velander, Liu, & 
Xu, 2017). 

4.5. Cardioprotective effect 

Nowadays, there are many studies that support the cardioprotective 
properties of olive by-products, such as antiarrhythmic and vasodilator 
effects (Covas et al., 2006), linked to their antioxidant and 
anti-inflammatory properties, being HT, tyrosol, OLE, and their de
rivatives the major responsible of the cardioprotective effect (Bendini 
et al., 2007; Gómez-Caravaca, Lozano-Sánchez, Contreras Gámez, Car
retero, & Taamalli, 2015; Soler-Rivas, Espiń, & Wichers, 2000; Tuck & 
Hayball, 2002). To cite some examples evaluating by-products and 
bioactive compounds, a study assessed the effect of EVOO enriched with 
phenolic compounds obtained from its by-products in rats. The results 
showed that the group supplied with enriched EVOO presented 
decreased systolic blood pressure, cardiac hypertrophy, and reduced 
plasma levels of total cholesterol and angiotensin II (Vazquez et al., 
2019). In agreement, other authors reported that olive leaf extract, and 
also its main component HT, can protect rat cardiovascular H9c2 cells 
against apoptosis induced through the endoplasmic reticulum pathway, 
exerting a cardioprotective effect (Lixing Wu, Xu, Yang, & Feng, 2018). 
In other study, OLE displayed cardioprotective effects in rats with acute 
myocardial infarction because it prevents cardiac deterioration by 
reducing oxidative stress and decreasing the release of pro-inflammatory 
cytokines (Janahmadi, Nekooeian, Moaref, & Emamghoreishi, 2015). 
Regarding the antihypertensive effect, a study reported that the con
sumption of 500 mg twice a day of olive leaf extract for 8 weeks was able 
to lower blood pressure in a similar extent than the group treated with 
captopril, and also the olive leaf extract was able to lower triglyceride 
levels (Susalit et al., 2011). 

5. Innovative applications on food, pharmaceutical and 
cosmetic industries 

The high content of active principles in most of the OO by-products 
allows their use for therapeutic, dietary, and gastronomic purposes. 
Thus, notable efforts have been made to recover bioactive compounds, 
mostly phenolics, from different OO by-products to use them as func
tional additives or for their application in pharmaceutical and cosmetic 
products (Araújo et al., 2015). Table 4 shows some examples. To obtain 
the maximum benefit from the by-products, it is necessary to extract and 
purify their active components, which is usually performed in the form 
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of an extract. For purification, it is usually employed liquid-liquid 
extraction methods in counter-current adsorbent resins with supercrit
ical fluid with a column operating in the counter-current mode or ul
trafiltration and adsorption in non-ionic resins (Fernández-Bolaños, 
Rodríguez, Rodríguez, Guillén, & Jiménez, 2006). However, to achieve 
high purity chromatographic methodologies with silica gel or sephadex 
LH-20 columns are required (D. M. Otero, Oliveira, et al., 2020). In 
addition, Fernandez-Bolanos and co-workers have been developed an 
industrial purification system which allows to obtain HT from any liquid 
source of olive by-product in two stages of purity. The first form at 50% 
of purity, is obtained by passing the liquid source of HT through an 
ion-exchange resin to trap the antioxidant and further elution with 
water. The second form of HT in a 99.6% of purity is obtained by a 
procedure consisting in using a XAD-type adsorbent non-ionic resin and 
washed it with a mixture of methanol or ethanol and water (30–33%) 
(Fernández-Bolaños et al., 2006). 

5.1. Food industry 

Once the compound is purified it can be incorporated into other 
foods to improve its functional properties or stability. In this line of 
research, some studies show the incorporation of phenolic fractions (HT, 
OLE) from by-product into oils to improve their antioxidant properties 
(Araújo et al., 2015). For examples, an in vivo assay shows the effects of 

HT-enriched sunflower oil in twenty-two healthy volunteers who 
participated in a cross-over study involving two 3-week periods in which 
they consumed 10–15 g/day of either HT-enriched sunflower oil (45–50 
mg/day of HT) or non-enriched sunflower oil. (Vázquez-Velasco et al., 
2011). Results showed the product functioned as a functional food by 
increasing arylesterase activity and reducing oxidized LDL and sVCAM-1 
level. In another research, hydroethanolic extracts rich in phenolic 
compounds from olive cake were included in OO to improve their 
antioxidant capacity (up to 73%) without increasing the caloric intake 
(Suárez, Romero, & Motilva, 2010). In animal feed supplementation, the 
possible use of olive leaves as a food supplement in chicken feed has 
been studied, obtaining eggs enriched with long-chain omega-3 fatty 
acids (P. Gullón, Gullón, Astray, et al., 2020). Alternative uses of OMW 
phenolic extracts are represented by their application as feed, to 
improve the quality of meat and animal products. Concentrations as 
little as 1.5% of crude phenolic extract, corresponding to approximately 
300 mg/kg total phenolic compounds, for swine were applied (Capor
aso, Formisano, & Genovese, 2018). 

Besides, olive by-products were also employed in milk, winemaking 
and meat industries supplying some innovative applications. HT has 
been used as a substitute for sulfur dioxide in the winemaking process 
due to its antimicrobial properties (P. Gullón, Gullón, Astray, et al., 
2020). In dairy products, the possible protective effect of phenolics from 
olive by-products in the Maillard Reaction was investigated. For this 

Table 4 
Innovative applications from olive by-products in the food, pharmaceutical and cosmetic industries.  

Matrix Analyte Innovative Application Benefit Ref. 

Applications in the food industry 

OO by-products HT, OLE Incorporation in 
sunflower oil 

Improve their antioxidant properties. Araújo et al. (2015) 

Alperujo HT HT-rich oil. Increase the antioxidant activity of the oil Tirado, Fuente, and Calvo (2019) 
Olive cake PC VOO enriched with PC. Increase antioxidant capacity without the drawback of a 

higher calorie intake. 
Suárez et al. (2010) 

OMWW PC PC incorporated in milk 
(before pasteurization) 

Off-flavor compounds formation inhibition (Maillard 
Reaction) during the heat treatment. Nutritional and 
sensorial properties improvement. 

Troise et al. (2014) 

OP PC Incorporated to milk Improve its health properties Aliakbarian et al. (2015) 
OP PROT, S, 

LIG 
Sugars for bioEtOH 
production (yield: 25%) 

Sustainable biorefinery approach Kazan et al. (2015) 

Olive vegetation water PC Fresh pork sausage 
enriched with PC 

Food-borne pathogens (Listeria monocytogenes, 
Staphylococcus aureus) inhibition growth. 

Fasolato et al. (2016) 

OMWW DF Additive for fat 
replacement in low fat 
meatballs 

Oil uptake restriction giving rise to meatballs with reduced 
fat content. Culinary properties improvement. 

Galanakis et al. (2010b)  

Applications in the pharmaceutical industry  

OP PC Intestinal diseases new 
treatment 

Metabolic change towards a glucose saving strategy 
(appetite-suppressing effect). Decrease of the secretion of 
the pro-inflammatory cytokine, IL-8. 

Di et al. (2018) 

OP skin (New by- 
product) 

TA Therapeutic agent based 
on the skin of olive fruit 

Antidiabetic effect. Improves insulin action. Romero et al. (2018) 

OMWW and dry OP PC Agent against visceral 
pain 

Reduce the pain perception, the macroscopic intestinal 
damage, the inflammatory infiltrate, and the fibrosis. 

Parisio, Lucarini, Micheli, Toti, Bellumori, 
Cecchi, Calosi, Bani, Di Cesare Mannelli et al. 
(2020)  

Applications in the skin care industry  

OO by-products Minerals Ingredients for cosmetic Hydration finality. Rodrigues et al. (2015) 
Leaves, Stems, Flowers, 

OMWW, Fruit Pulp, 
Seeds. 

OLE, PC. Skin care industry. Antioxidant, anti-inflammatory, anti-atherogenic, anti- 
cancer activities, antimicrobial, antiviral activities 

Kishikawa et al. (2015) 

OP SQ Biological skin barrier 
against solar rays 

Antioxidant properties at the cutaneous level Rodríguez-Gutiérrez et al. (2014) 

OO by-products MUFA Ingredient for cosmetics 
and products 

Improve epidermis and sebaceous glands functions 
(permeability barrier and promote the stratum corneum 
acidification). 

Lin and Khnykin (2014) 

DF: dietary fiber; EtOH: Ethanol; LIG: Lignin; HT: Hydroxytyrosol; MUFA: monounsaturated fatty acids; OLE: Oleuropein; OMWW: Olive mill wastewater; OP: Olive 
pomace; OO: olive oil; PC: Phenolic content; PROT: Protein; S: Sugars; SQ: Squalene; TA: triterpene acids; VOO: virgin olive oil. 
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purpose, Troise incorporated phenolic powder content from OMWW in 
raw milk before ultra-pasteurization, resulting in the inhibition of 
off-flavor compounds formation during the heat treatment, improving 
both the nutritional and sensorial properties (Troise et al., 2014). In 
addition, a phenolic extract from OP was incorporated into milk as a 
new functional ingredient to improve its health properties (Aliakbarian 
et al., 2015). Regarding meat products, obtaining phenolics from agri
cultural by-products was used as an eco-friendly strategy for food con
servation (Fasolato et al., 2016). Indeed, the purified phenolic extract 
from olive vegetation water was added to fresh Italian sausages, showing 
a clear inhibition of food-borne pathogens growth, like Listeria mono
cytogenes and Staphylococcus aureus. Thus, it was demonstrated that 
phenolic extracts from olive vegetation water constitute a promising 
source of ingredients to improve food safety and quality of fresh sau
sages (Fasolato et al., 2016). A fraction of dietary fiber from OMWW can 
be also used as additive for fat replacement in low-fat meatballs, 
improving their culinary properties, by restricting the oil uptake and, 
therefore, reducing the overall fat content of meatballs (Galanakis, 
Tornberg, & Gekas, 2010b). It has also been reported the use of OLE 
extracts from leaves and olive fruits in sanitizing formulations and 
mannitol recovered from olive residues (pruning, leaves and aqueous 
residues) has been used as a thickener (P. Gullón, Gullón, Astray, et al., 
2020; D. M. Otero, Oliveira, et al., 2020). In addition, vitamin E and 
monounsaturated fatty acids have been isolated from olive by-products 
and applied as natural ingredients due to their oxidative stability and 
antioxidant activity. 

To summarize, different phenolic compounds (HT, OLE, etc.) and 
dietary fiber, have important biological properties (especially antioxi
dant activity), scientifically proved to be used as food additives and 
preservatives in a wide range of food products, including dairy, oil, and 
meat industries. Companies are already using phenolics as a natural 
preservative to increase the shelf life of products. However, it has been 
shown once added to food, HT has advantages over other phenolic 
compounds as it remains active much longer while the concentration of 
other phenolic compounds decreases (P. Gullón, Gullón, Astray, et al., 
2020). 

5.2. Pharmaceutical industry 

In 2011, the European Food Safety Authority (EFSA) Panel on Di
etetic Products, Nutrition and Allergies released an opinion about the 
effects of olive polyphenols in the body after their consumption (Panel & 
Nda, 2011). These compounds can balance blood high-density lipopro
tein (HDL)-cholesterol levels, preserve the low-density lipoproteins 
(LDL) particles from oxidative damage, and keep a normal blood pres
sure. In addition, they can assist in the correct gastrointestinal and 
respiratory functions, promote anti-inflammatory properties and, in 
general, contribute to body defense response against external agents. 
This scientific evidence, together with European circular economy pol
icies, have boost the research on olive by-products revalorization in the 
last decade, not only in the food industry, but also in the pharmaceutical 
sector. One of the potential applications is the use of polyphenols from 
by-products in the treatment of intestinal diseases (Di et al., 2018). In 
this sense, the anti-inflammatory properties and the effect on cell 
metabolome of an aqueous extract of OP were studied in human intes
tinal Caco-2 cells. Such supplementation reduced the main 
pro-inflammatory cytokine, IL-8, secretion, showing the therapeutic 
potential of polyphenols from olive pomace in intestinal illness. Addi
tionally, the effects on cell metabolome revealed a metabolic change 
towards a glucose saving strategy that explain the appetite-suppressing 
effect observed upon polyphenols-rich foods uptake (Di et al., 2018). In 
addition, the evaluation of polar lipids (from OP and OP production 
by-products) showed the inhibition of platelet activating factor involved 
in inflammatory pathologies, such as atherosclerosis (P. Gullón, Gullón, 
Astray, et al., 2020). 

In parallel, Romero and co-workers concluded that OP skin is rich in 

triterpenoid acids, discovering a new bioactive-rich by-product from the 
OO mill processing (Romero et al., 2018). It is worthy to highlight that 
triterpenoid acids improve insulin action and, thus provide an antidia
betic effect (Tan et al., 2008). The olive by-products are also implicated 
in the relief of the abdominal pain, which is still considered a health 
problem in the current society. In a recent in vivo study, EVOO, OMWW, 
and dry OP were orally administered (dose of 0.3 g/kg) to 
colitis-induced rat models, providing evidence about the effectiveness of 
by-products in reducing not only pain perception, but also macroscopic 
intestinal damage, as well as fibrosis (Parisio et al., 2020). Finally, the 
effect of two olive by-products having phenols and polysaccharides in 
the modulation of the human microbiota was studied, showing an in
crease in Lactobacillaceae and Bifidobacteriaceae populations after 
nine-day administration of an olive pâté (obtained from the EVOO 
production) in the proximal tract. The polyphenol profiling showed the 
formation of tyrosol in the distal tract, while two ellagic acid metabolites 
derived from gut microbes (urolithins C and A) were induced from 
another by-product which was obtained from olive pomegranate 
mesocarp. 

To sum up, the latest studies about the olive by-products employ
ment in the development of new pharmaceutical products point out their 
positive use in gastrointestinal disorders, as appetite-suppressant agents, 
antinociceptives, and as modulators of human microbiota, among 
others, most due to the high contents in phenolic compounds, triterpe
noid acids and polysaccharides. 

5.3. Cosmetic industry 

OO by-products have the potential to be further developed and used 
in the skin care industry. The previously mentioned compound OLE, 
present in olive leaves, stems and flowers is widely considered for nu
traceutical applications due to its antioxidant, anti-inflammatory, anti- 
atherogenic, anticancer, antimicrobial and antiviral activities, together 
with its hypolipidemic and hypoglycemic effects (Omar, 2010). One 
study has proved that OO by-products containing OLE are good candi
dates for applications in skin treatment, since leaf ethanolic extracts 
containing this compound inhibited Staphylococcus aureus growth and 
reduced melanin biosynthesis in B16 melanoma cells. Also, the OMWW 
extract inhibited granule release from RBL-2H3 cells (Kishikawa et al., 
2015). 

The potential use of OMWW as a source for the recovery of phenols 
and their application as UV booster in cosmetics was also investigated 
with satisfactory results (Galanakis, Tsatalas, & Galanakis, 2018). The 
absorption of physical and chemical UV filters increased as a function of 
olive phenols concentration (in both UVB and UVA regions). Although 
UVA rays penetrate deeper into the skin and can cause cancer, both 
radiations lead to free radicals, toxic elements for skin cells and provoke 
skin ageing. Olive by-products are also rich in minerals, which were 
proposed as ingredients for cosmetic products with a hydration finality. 
Minerals are one of the main components of the natural moisturizing 
factor, which is significantly correlated with the state of hydration, 
stiffness, and pH, in the stratum corneum (Rodrigues et al., 2015). OP is 
also a good reservoir of squalene, which shows antioxidant properties at 
the cutaneous level against solar rays, acting as an active biological skin 
barrier (Rodríguez-Gutiérrez, Rubio-Senent, Lama-Muñoz, García, & 
Fernández-Bolaños, 2014). Besides, squalene may also have moistur
izing properties, being eventually used as an ingredient in 
dermo-protective creams and other cosmetic formulations as emollient 
agent (Rodríguez-Gutiérrez et al., 2014). Squalene daily dose from food 
has been related to many health benefits and there are on the market 
several squalene formulations as nutraceuticals. However, cosmetics is 
the largest end-use industry of squalene due to its increasing usage in 
skincare products manufacturing. The demand for natural cosmetics 
with good quality has been the main driver for the growth of the market, 
especially in countries like France, Germany, Italy and Spain. Finally, 
olive by-products have also been proposed as promising ingredients for 
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cosmetical products due to the high content of monounsaturated fatty 
acids (MUFAs), which are crucial in the structural function of cell 
membranes (Lin & Khnykin, 2014), playing an essential role in the 
proper functions of epidermis and sebaceous glands, including perme
ability barrier and promoting the acidification of the stratum corneum. 
Summarizing, olive by-products have interesting molecules (OLE, 
squalene, minerals, FAs) with biological activities (antioxidant, anti
cancer, antimicrobial, hydration) which can be of interest for product 
design in the cosmetic industry. 

6. Future perspectives 

Nowadays, the consumer habits are evolving towards more selective 
products with highly functional compounds, obtained by environmen
tally friendly and sustainable methodologies. As shown before, the 
production of OO, especially in the Mediterranean countries, is an 
important sector that requires the establishment of new applications in 
the use of its by-products in the food, pharmaceutical and cosmetic in
dustries (Donner & Radi, 2021). However, the innovation processes to 
obtain precious products from olive by-products need the planification 
of a business model (bioeconomy strategy) that determines the viability 
of the extraction and their use in these industries. Up to now, the most 
widely-adopted choices in the OO sector in most countries with bio
economy strategies support bioenergy and biofuels production (Berbel & 
Posadillo, 2018). In the case of OP in Spanish cultures, it is removed by 
authorized managers to whom the agro-industries pay for it. Subse
quently, the manager can revalue these by-products, with the extraction 
of OP oil and the sale of biomass (olive pit). Also, they can be intended 
for feed, showing low economic benefits for the industry (Berbel & 
Posadillo, 2018). Thus, the development of high-value and innovative 
products from olive by-products is an urgent objective in many agri-food 
strategies, but when it comes to commercial application, the imple
mentation of the policies is mainly focused on the application of biomass 
or materials to bioenergy. 

Another issue to consider is that the recovery of by-products in the 
food industries may require the incorporation of new procedures and 
equipment, which can be unacceptable for small industries. Among 
extraction techniques, EAE is becoming an extended procedure to 
improve the extraction performance of various compounds in OO by- 
products (Kazan, Soner, Sargin, & Yesil-celiktas, 2015). It is based on 
the earlier treatment of the matrix with the corresponding enzyme, 
followed by a solvent extraction process. The hydrolytic enzymes can 
catalyze the degradation reactions of cell walls and membranes 
(composed of large and complex polymeric structures, such as cellulose, 
hemicellulose, lignin, and pectin), increasing the permeability of 
bioactive compounds and enabling target compounds release. For 
example, Kazan used OP to obtain added-value products, such as pro
teins, fermentable sugars, ethanol and lignin after a high pressure 
extraction and hydrolysis processes (Kazan et al., 2015). The use of this 
technology and the previously ones described (PLE and SCFE) needs 
qualified personnel and new investments which are difficult to support 
in small olive industries. To solve this issue, be the creation of plants for 
the use of by-products at the regional level, either in the form of com
panies or cooperatives, depending on the concentration of the raw ma
terial and the volumes that would need to be processed, constitutes one 
promising strategy to be developed (Sdino, Rosasco, & Lombardini, 
2020). One plant could serve to different stakeholders and the invest
ment by agribusiness is low, so their profitability can be increased. In 
this context, the recovery of some by-products from OO could be an 
opportunity for family-owned OO mills (D’Adamo, FalconeGastaldi, & 
Morone, 2019). Nevertheless, it seems necessary to promote an 
inter-sectorial dialogue and create collaborations to increase the 
amounts and applications of by-products in different fields. 

7. Conclusions 

The scientific evidence supporting the healthy benefits associated 
with the consumption of olives, takes an advantage to open new markets 
that meet the consumers requirements about their health. The infor
mation collected in this review shows that the by-products derived from 
the Olea europaea L. processing industry are secondary but valuable 
products, from which different biologically active molecules can be 
recovered by green extraction technologies (PLE, SFE, etc.) and reused 
for food, pharmaceutical and cosmetic purposes following the circular 
economy policies. One of the main advantages on recovering valuable 
molecules from olive by-products is their incorporation to functional 
foods. A direct effect was proven between the use of olive by-products in 
human consumption and the heath claims. In this context, different food 
industries have used the phenolic fraction of olive by-products, holding 
mostly HT and OLE, as food additives and as preserving agents due to 
their antioxidant properties. 

In this review, we also described the progress in the biomedical field 
about the use of olive by-products to treat intestinal disorders and as 
appetite-suppressing agents, pain reducers, and modulators of human 
microbiota. These activities are attributed to phenols, triterpenoid acids 
and polysaccharides present in OO, olive fruit, OMWW, olive extracts, 
and leaf. In addition, olive by-products have other value molecules like 
squalene, minerals and FAs, so that they are precious products to be used 
for the skin care. To summarize, the exploitation of olive by-products to 
formulate new food and nutraceutical products constitute an innovative 
strategy that meets current and future expectations of consumers about 
environmental impact, ethical issues, human health, and safety. 
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