

CONTROL OF A MOBILE PLATFORM DIDACTIC PURPOSES

Student:

Seif Eddine Lazghab - a46656

Master Degree In Industrial Engineering

Supervised by:

Prof. José Gonçalves

Prof. José Lima

Bragança 2021

CONTROL OF A MOBILE PLATFORM

DIDACTIC PURPOSES

Seifeddine Lazghab

Dissertation presented to the Escola

Superior de Tecnologia e Gestão of the

Instituto Politécnico de Bragança,

to obtain the Master’s Degree in

Industrial Engineering

Bragança 2021

Dedication

To my dear parents, for their love, sacrifices and support in the most difficult moments,

which are at the origin of our success, may god keep and protect them.

To our dear brothers, for their constant encouragement and all the help they give us on

a daily basis.

To all the people who, from near or far, have participated in our work.To the whole

Electrical and Industrial family,

Our paths crossed for the first time when we entered the IPB , keeping the friendship

and international relation that unites us and the memories of all the moments we spent

together, nothing to say.

W e dedicate this modest work to them

I

Acknowledgements

It is with great pleasure that I would like to thank all those who, in one way or another,

contributed to the realisation of this final work in IPB.

My sincerest thanks to Dr José Gonçalves and Dr José Lima my university

supervisors, for the enriching and interesting experience they gave me during the period

of the project and for the autonomy they gave me throughout the project.

I would like to thank all those who helped me in the elaboration of this work, my

friends,and my family.

Finally, I would like to thank the entire teaching team of the IPB for having ensured a

good coaching and education during one year of research master.

II

Abstract

Robots are electromechanical machines having ability to perform tasks or actions on

some given electronic programming. Line follower robots are mobile robots having ability

to follow a line very accurately having an onboard hardwired control circuit. while

Omni directional mobile robots have been popularly employed in several applications.This

situation brings the idea of omnidirectional robot at manufacturing. Such a robot can

respond more quickly and it would be capable of more sophisticated behaviors such as

to transport materials and placed on processing machine and outgoing warehouses. This

thesis has tried to focus in the control of four wheel omnidirectional mobile robot to

be applied to the Factory Lite competition. Four motors are used for governing wheel’s

motion. Practical applications of a line follower and odometry will be implemented in

this work.

Keywords:

Omni Robot, Encoders ,Odometry ,Omni wheels ,Velocity control , PID control

III

IV

Résumé

Les robots sont des machines électromécaniques capables d'exécuter des tâches ou des

actions selon une programmation électronique donnée. Les robots suiveurs de ligne sont

des robots mobiles capables de suivre une ligne avec une grande précision grâce à un

circuit de contrôle câblé embarqué. Les robots mobiles omnidirectionnels sont

couramment utilisés dans plusieurs applications, ce qui amène l'idée d'un robot

omnidirectionnel dans la fabrication. Un tel robot peut Un tel robot peut répondre plus

rapidement et il serait capable de comportements plus sophistiqués tels que transporter

des matériaux et les placer sur des machines de traitement et des entrepôts de sortie.

Cette thèse a essayé de se concentrer sur le contrôle d'un robot mobile omnidirectionnel

à quatre roues pour être appliqué à la compétition Factory Lite. Quatre moteurs sont

utilisés pour gouverner le mouvement des roues. Des applications pratiques d'un

suiveur de ligne et d'odométrie seront mises en œuvre dans ce travail.

Mots-clés :

Robot Omni, encodeurs, odométrie, roues Omni, contrôle de vitesse, contrôle PID.

Contents

1 Introduction 1

2 State Of The Art 3

2.1 History of Robotics . 3

2.2 Evolution of Mobile Robotics . 5

2.3 Robotics Application . 5

2.3.1 The robots of intervention . 5

2.3.2 Professional service robotics . 7

2.4 Robots Classification . 8

2.5 Mobile Robot . 8

2.5.1 Components of a mobile robot . 9

2.6 Industrial Robot . 11

2.7 Autonomous Vehicle Guided . 11

2.8 Collaborative Robot . 12

2.9 Omnidirectional Robot . 13

2.10 Odometry In Relation To Mobile Robotics System 14

2.11 Conclusion . 15

3 Project Framework 16

3.1 The Competition . 16

3.2 The Machines and the Warehouses . 17

3.3 First Round . 18

V

3.4 Second Round . 18

3.5 Line Detection . 19

3.5.1 Line detection principle . 19

3.5.2 Line following . 20

3.6 Dynamic Modelling . 20

3.6.1 Kinematic model . 20

3.7 The Killough Drive . 20

3.7.1 kinematic Model . 22

3.7.2 Relationship between wheel velocity 23

3.8 Architecture Diagram . 23

3.9 Programing with Interruption . 24

3.9.1 Type of interruption . 25

3.10 Conclusion . 25

4 Equipement Used 26

4.1 The Controller . 26

4.1.1 Arduino IDE . 27

4.1.2 Visual Studio Code Envirement . 28

4.2 EMG30 Motor . 28

4.3 The Motor Driver L298N . 29

4.4 The Electromagnet . 31

4.5 QTR-8RC Sensor . 31

4.6 WIFI Sensor . 32

4.7 Power Supply . 33

4.8 Voltage Step-down . 34

4.9 Conclusion . 34

5 Programming and Realization 35

5.1 Robot Motion . 35

5.2 Odemetry . 37

VI

5.3 Odometry Error Model . 37

5.4 Test Regulation for Odometry . 39

5.4.1 Closed loop control PID . 39

5.4.2 Find Distance with Encoders . 40

5.4.3 Check Encoder Positions . 41

5.4.4 Encoders Programming . 42

5.4.5 Measuring Movement . 43

5.5 Following The Line Using The QTR Sensor 44

5.5.1 Line detection . 44

5.5.2 QTR code test . 45

5.6 Conclusion . 46

General Conclusion and Perspectives 47

A Arduino Code A1

VII

List of Tables

4.1 Specification arduino mega 2560 . 27

4.2 Wire function of EMG30 motor . 29

4.3 Electro-magnet specifications . 30

4.4 Basic characteristics of the PB battery . 33

VIII

List of Figures

2.1 Kuka mobile robot[3] . 9

2.2 Industrial robots . 11

2.3 Autonomous vehicle guided . 12

2.4 Omni robot . 14

3.1 Area of the competition . 17

3.2 The machines and wearhouses . 18

3.3 Lines to follow . 19

3.4 Omni wheel x structure . 21

3.5 Bloc Presentation of the robot . 24

4.1 Arduino mega . 27

4.2 EMG30-motor . 28

4.3 The motor driver L298N . 30

4.4 The Electromagnet . 31

4.5 QTR-8RC Reflectance Sensor Array . 32

4.6 Module WIFI . 32

4.7 Battery used . 33

4.8 LM protection board . 34

5.1 Forward and back motion . 35

5.2 Left and right motion . 36

5.3 Turn left and right . 36

IX

5.4 Left and right diagonal . 37

5.5 Principle of Odometry [13] . 38

5.6 Odometry X configuration . 38

5.7 Robot regulation part . 40

5.8 Encoder test sens . 41

5.9 Encoder robot function . 42

5.10 Mechanical structure . 43

5.11 Measure movement . 44

5.12 QTR set up program . 45

5.13 Loop of QTR sensor . 46

5.14 Braccio arduino arm . 48

X

Acronyms

AGV Automatic Guided Vehicles. 12

AI Artificial Intelligence. 8

AIV Autonomous Intelligent Vehicle. 12

EOAT End Effector Arm Tooling. 11

FMS Flexible Manufacturing Systems. 11

ICSP In Circuit Serial Programming. 26

IDE Integrated Development Environment. 27

IPB Instituto Politécnico de Bragança. 1

LED Light Eitting Diode. 31

LPS Local Positioning System. 15

MOSFET Metal Oxide Semiconductor Field Effect Transistor. 31

PID Proportional Integral Derivative. 39

PWM Pulse Width Modulation. 26

RFID Radio Frequency Identification. 18

XI

TCP/IP Transmission Control Protocol/Internet Protocol. 32

TTL Transistor-Transistor Logic. 29

UART Universal Asynchronous Receiver-Transmitter. 26

USB Universal Serial Bus. 26

XII

Chapter 1

Introduction

In this work, we will study and elaborate an autonomous mobile robot. this work will start

with a general study on mobile robots after the phase of the electrical and mechanical

design study and design and conclude with the choice of material the electrical and

data-processing part. the work will be elaborated within the laboratory of the Instituto

Politécnico de Bragança (IPB) .

The main objective of this proposal is to control a four omnidirectional wheel mobile

robot. It should be controlled automatically during the development stage. The platform

should be able to support further developments.

Mobile robotics has known a great revolution. It has become indispensable and these

applications have spread to almost all areas of life. Mobile robotics will of course continue

to integrate the progress of computer science, and will first benefit from increasingly

complex algorithms that can be executed in real time. But also, via mobile Internet

access techniques. Mobile robots will also benefit from the development of mechanics and

electronics. It will be composed of intelligent sensors, micro controllers and motors with

encoders.

Robotics allows individuals to be assisted with tough or repetitive tasks. Furthermore,

it is a dream to be able to replace the operator with a machine in these jobs. Robots

observation and thinking abilities are improving every day, and they will be relied upon to

play an increasingly vital part in human lives in the future. And being able to carry out

1

the functions necessary inside the university (delivery of objects, monitoring). We will

investigate thoroughly and decide the good mechanical components, taking into account

the complexity of the ground.

Omnidirectional mobile robots are becoming increasingly popular in mobile robot

applications, since they have some distinguishing advantages over nonholonomic mobile

robots. They have simultaneously and independently controlled rotational and translational

motion capabilities, which means that they can move at each instant in any direction

without reorientation [1].

The perception and reasoning faculties of robots are progressing every day now and

even more so in the future, they are called upon to play an increasingly important role

in our lives. Within the framework of our project it is a question of realizing a four

omnidirectional mobile robot, and to be able to carry out the tasks required during the

factory lite competition. Considering the difficulty of the ground which is full of laying we

will try well and determine the good program to pick and place the materials and parts

in the area of the competition.

2

Chapter 2

State Of The Art

The context of the project, as well as the goal, are presented in this chapter. The

framework of the project will then be presented, along with a study of the history of

robotics and the various fields of application of robots in order to determine the problem

on which this thesis is based.

2.1 History of Robotics

Without going back to the first concepts of machines replacing man as early as the 17th

century, robotics was born, in the 1950s, from the intersection of the needs and availability

of new technologies developed during the Second World War: electronics, automation

and computing. The first two orientations of these machines were to meet the needs of

manufacturing industry and the needs of industry in environments hostile to man.

Mobile robotics is a new field. Mobile robots range from the sophisticated space

robots, to the military flying robots, to the lawn mower robots at our backyard. Mobile

robotics is based on many engineering and science disciplines, from mechanical, electrical

and electronics engineering to computer, cognitive and social sciences. A mobile robot

is an autonomous or remotely operated programmable mobile machine that is capable of

moving in a specific environment. Mobile robots use sensors to perceive their environment

and make decisions based on the information gained from the sensors. The autonomous

3

nature of mobile robots is giving them an important part in our society. Mobile robots are

everywhere, from military application to domestic applications. The first mobile robots as

we know them today were developed during World War II by the Germans, and they were

the V1 and V2 flying bombs. In the 1950s, W.Grey Walter developed Elmer and Elsie,

two autonomous robots that were designed to explore their environment. Elmer and Elsie

were able to move towards the light using light sensors, thus avoiding obstacles on their

way. The evolution of mobile robots continued and in the 1970s Johns Hopkins University

develops the "Beast". The beast used an ultrasound sensor to move around. During the

same period, the Stanford cart line follower was developed by Stanford University. It was

a mobile robot that was able to follow a white line, using a simple vision system. The

processing was done off-board by a large mainframe. The most known mobile robot of the

time was developed by the Stanford Research Institute, and it was called Shakey. It was

the first mobile robot to be controlled by vision. It was able to recognize an object using

vision, find its way to the object. These robots had limitations due to the lack of processing

power and the size of computers, and thus industrial robotics was still dominating the

market research. Industrial manipulators are attached to an off-board computer for their

processing requirements and thus do not require an on-board computer for processing.

Unlike industrial robots, mobile robots operate in dynamic and unknown environment

and thus require many sensors. And therefore more processing power. Another important

requirement of mobile robots is that their processing must be done on board the moving

robot and cannot be done off-board. The computer technology of the time was too bulky

and too slow to meet the requirements of mobile robots. Also, sensor technology had

to advance further before it could be used reliably on mobile robots. In the last twenty

years we saw a revolution in computer technology. Computers got smaller, a lot faster

and less expensive. This met the requirements of mobile robots and as a result we saw

an explosion of research and development activities in mobile robotics. Mobile robots

are increasingly becoming important in advanced applications for the home, military,

industry, space, and many others. The mobile robot industry has grown enormously, and

it is developing mobile robots for all imaginable applications. The vast number of mobile

4

robot applications has forced a natural subdivision of the field based on their working

environment : land or surface robots,aquatic/underwater robots, aerial robots and space

robots. Land and surface robots are subdivided based on their locomotion: Legged robots,

wheeled robots and track robots. Legged robots can be classified as two legged robots and

animal-like robots that can have anywhere from four legs to as many as the application

and the imagination of the developer requires [2].

2.2 Evolution of Mobile Robotics

The revolution of mobile robotics has increased the need for more mobile robotics engineers

for manufacturing, research, development and education. And this in turn has significantly

changed the nature of engineering and science education at all levels, from K-12 to

graduate school. Mobile robotics are widely accepted as a multidisciplinary approach

to combine and create knowledge in various fields as mechanical engineering, electrical

engineering, control, computer science, communications, and even psychology or biology in

some cases. The majority of robotics research is focusing on mobile robotics from surface

robots, humanoids, aerial robots, underwater robots, and many more. The development

of several less expensive mobile robotic platforms [2].

2.3 Robotics Application

In order to better define the scope of personal and service robotics, as considered in this

study, it seems important to illustrate it with an example.

2.3.1 The robots of intervention

Intervention robots are generally remotely operated (remotely operated) by direct commands

(joysticks, master arm and other physical or virtual control devices), or in semi-autonomy

by high-level commands to perform and sequence tasks. They are used to perform tasks

in environments that are difficult to access or dangerous for humans.

5

• Defense: theater of operations with ground robots and aerial drones. Most military

robots fall within the field of intervention robots. They carry out reconnaissance,

surveillance, mine clearance or destruction functions.

• Civil security: Robotics for civil security is used in particular during interventions on

natural disasters. In particular, exploration robots are used to explore inaccessible

places. There are also robots used by law enforcement agencies for defusing or

destroying parcel bombs.

• Nuclear: It mainly concerns intervention in irradiated environments, harmful to the

human operator. It has given rise to the development of “hardened” technologies to

resist higher or lower levels of radiation.

• Submarine: Underwater robotics is also an important field of development for

military (underwater surveillance), petroleum (exploration, exploitation) applications.

Underwater robots, as for space exploration, have the advantage of do not require

the transport of human operators.

• Inspection and maintenance : in specific environments (pipeline, etc.). Inspection in

specific environments is concerned with intervention in places where humans cannot

materially intervene at an acceptable cost. In particular, the repair of leaks in pipes

is a relatively common application of robotics, which avoids civil works for human

intervention.

• Space exploration : Robots are today the preferred means of space exploration.

Missions to Mars are a significant example of this: information transmission delays

do not allow real-time remote operation by a remote manipulator (on Earth). This

type of application is the bearer of significant innovations in terms of perception

and robustness.

6

2.3.2 Professional service robotics

Professional service robotics intervenes in assistance to the worker in a professional setting.

Its functions are mainly to relieve professionals of repetitive or dangerous tasks (in a

perspective close to industrial robotics), or to assist them in interventions which require

a level of precision or qualities inaccessible to the human operator.

• Cleaning robot : These robots are an important part of professional service robotics.

These robots are used in particular in public or domestic spaces

• Construction and demolition : Construction robots are used more and more for

specific operations in building and civil engineering. They are generally associated

with a particular construction technique (concrete spraying for example). In all

cases, these are special machines developed for a particular application.

• Logistics robot : Logistics robots are also an interesting development path, in

particular because of the possibility of developing machines produced in series:

logistics is a vast sector, which implements partly standardized procedures and

equipment.

• Public relations robot : Reception or assistance robots in public places are today

the subject of experimentation rather than real commercial development at the level

of a sector. Public relations robots are implemented in places such as museums

or shopping centers, to help visitors find their way around, to provide them with

information.

• Medical robot: The medical field is also an important market for the development of

professional service robotics. This is a market open to innovations, in high demand

and with specific expectations from healthcare professionals and patients. The

areas of development aim to assist doctors (surgical assistance robots for example),

paramedical staff (assistance in handling bedridden people, robotic wheelchairs),

patients (rehabilitation assistance, robotic prostheses or orthotics - including exoskeletons

in the long term).

7

2.4 Robots Classification

During the course of history we can distinguish 3 types of robots corresponding in some

way to the evolution of this "species" created by Man. The first type of machine that

we can call robot corresponds to the "Automata". These are generally programmed in

advance and allow performing repetitive actions [1].

The second type of robot corresponds to those equipped with sensors. There are

temperature, photo-electronic, ultrasonic sensors for example to avoid obstacles and/or to

follow a path. These sensors will allow the robot a relative adaptation to its environment

in order to take into account random parameters that could not have been considered

during their initial programming. These robots are therefore much more autonomous

than PLCs, but require a more significant investment in design time and money.

Finally, the last type of existing robot corresponds to those with so-called Artificial

Intelligence (AI) based on complex mathematical models such as neural networks. In

addition to physical sensors like their predecessors, these robots can make much more

complex decisions and also rely on learning from their errors as humans can do. Of

course, it will be a long time before the most "intelligent" robot will be equal to humans

in its adaptability and decision making.

2.5 Mobile Robot

A mobile robot is a mechanical, electronic and computer system that physically acts on

its environment to achieve an assigned objective. This machine is versatile and capable of

adapting to certain variations in its operating conditions. It is equipped with functions of

perception, decision and action. Thus, the robot should be able to perform various tasks

in different ways and perform its task correctly, even if it encounters new and unexpected

situations.

The name Mobile Robot includes all types of robots that have the ability to move,

which is the common characteristic between them, the difference lies in the way, which

8

depends on the area of use of the robot, by which the robot will achieve this ability

of movement. Mobility by wheels is the most commonly applied mechanical structure.

Depending on the arrangement and dimensions of the wheels, this technique ensures

movement in all directions with high acceleration and speed.

Figure 2.1: Kuka mobile robot[3]

2.5.1 Components of a mobile robot

The Motors

A motor makes it possible to initially carry out a rotational movement. This movement

is communicated by means of the motor shaft and can then be transformed into a

translational movement by means of various technological solutions such as screw/nut,

pinion/rack, connecting rod/crank. The choice of one motor or another depends on the

requirements. It is necessary to know the power absorbed under load, the mechanical

torque and the rated speed to select one motor over another.

9

The Control electronics

The realization of electronic boards is already a difficulty in itself, but in the case of

robotics, it is coupled with a reduced space requirement, because their size must be

minimized as much as possible. As the electronics are a very sensitive part of the robot,

they must be protected. All connections between the boards, sensors, motors and power

supply are sensitive points.

Sensors

Sensors are the sensory organs of a robot. Some are fragile and must be protected,

others on the contrary must be able to absorb shocks. The simplest ones can be directly

connected to the control center, like switches. The other types require a small adapter

interface, such as infrared or ultrasonic sensors. Other more sophisticated types require

a special card, such as cameras. There are two types of sensors:

• The external sensors: These are exteroceptive sensors, delivering information related

to the environment or to the interactions between the robot and its environment,

such as distance sensors.

• The internal sensors : These are the sensors that provide information on the internal

state of the robot: wheel position or speed sensors and battery charge sensors.

The Power interfaces of the motors

Motors can only be controlled directly through a power interface. Knowing its characteristics

allows us to choose the best interface. A particularly important point is the heat dissipation

of the transistors or integrated circuit.

Control centers

The control center is generally a board equipped only with a processor or microcontroller.

In this case, the control center consists of the processor or microcontroller and its memory

devices. But sometimes it is completed by interfaces for motors and sensors.

10

2.6 Industrial Robot

Because they can be programmed to perform dangerous, dirty and/or repetitive tasks

with consistent precision and accuracy, industrial robots are increasingly used in a variety

of industries and applications. They come in a wide range of models with the reach

distance, payload capacity and the number of axes of travel (up to six) of their jointed

arm being the most common distinguishing characteristics.

In both production and handling applications, a robot utilizes an End Effector Arm

Tooling (EOAT) attachment to hold and manipulate either the tool performing the

process, or the piece upon which a process is being performed.

The robot’s actions are directed by a combination of programming software and

controls [4].

Figure 2.2: Industrial robots

2.7 Autonomous Vehicle Guided

Manufacturing companies are constantly striving towards more efficient and cheaper ways

to produce their products. Flexible Manufacturing Systems (FMS) are employed in the

pursuit of a more cost effective and time efficient process [1] . The setting up of a new

production line represents a major investment for a company, and to make minor changes

11

Figure 2.3: Autonomous vehicle guided

to existing production lines can result in down time, reduced productivity and require a

large investment of capital.

The Automatic Guided Vehicles (AGV) is the major component of this flexible production

line. The term Automatic Guided Vehicles refers to vehicles that are able to navigate

without human intervention [4] [5] [6] . It could be used as an alternative to the fixed

conveyor belt which passes an unfinished product through the production stages sequentially.

The AGV could pick and place an unfinished product to a different production stage

allowing for a more flexible production line. The latest version of an AGV is often referred

to as an Autonomous Intelligent Vehicle (AIV). Figure 2 outlines a production line with

an AIV incorporated [5].

2.8 Collaborative Robot

Collaborative robotics has shown great promise to bring potentially complex tasks in

frequently changing settings closer to automation. In that respect, especially tasks involving

contact between the robot and the environment such as assembly have remained challenging.

This is due to the fact that contact states are hard to detect and due to the difficulty in

modeling the effects of the robots’ actions. Reinforcement learning of local control policies

12

has proven to be a promising method to obtain control policies for interaction tasks. Of

particular importance here is the sample efficiency as explorative actions are costly and

potentially hazardous. An open issue remains the generalization of learned policies to

novel settings. We see the potential of addressing this using a-priori (partial) knowledge

of the robots’ model perform learning in task-invariant operational spaces. Recent policy

learning approaches also achieved a tight coupling with perception [Levine et al., 2016].

From the perception point of view, effective and flexible use of multi-sensory data in

real-time will be necessary. Although sensor fusion has been demonstrated in other areas

(mapping and localization), physical interaction suffers from the challenges outlined in

the previous paragraph and many of the existing methodologies for sensor fusion do not

meet all the challenges that physical contact, including both rigid and deformable objects,

brings [6].

2.9 Omnidirectional Robot

Omni-directional mobile robot is a kind of holonomic robot. Compared with more common

car like (nonholonomical) mobile robot, omni-directional mobile robot has the ability to

move simultaneously and independently in translation and rotation [5]. The maneuverability

of the omni-directional mobile robot makes it widely studied in the dynamic environmental

applications. The annual international Robocup competition in which the team of autonomous

robots compete in a soccer like game, is an example where the omni-directional mobile

robot can be used. The Ohio University (OU) Robocup Team’s entry Robocat is a cross-

disciplinary research project (including ME, EE, CS students and faculties) for Robocup

small-size league competition. The current OU Robocup team members are Phase V

omnidirectional mobile robot, as shown in Figure 1-1. The Phase V Robocat is an omini-

directional robot with three orthogonal wheels, arranged 120’ apart. Each wheel is driven

by a DC motors installed with shaft optical encoder. The robot is operated by an PC104

computer with 486 processors running Linux operating system. A roof camera over the

play field can sense the position and the azimuth angle of robots. From the robot testing

13

and competition at the Robocup games, it is realized that a precise trajectory control

for the robot is one of the key areas to improve the team’s performance. The trajectory

control of the omni-directional mobile robot can be divided into two tasks, trajectory

planning and trajectory following. Trajectory planning is to build a feasible and optimal

geometric path. Trajectory following is to use feedback [7]

Figure 2.4: Omni robot

2.10 Odometry In Relation ToMobile Robotics System

A mobile robot is an automatic machine that accomplishes a task in a given environment

and recognizes its surroundings with multiple sensors. Positioning of the mobile robot

to accomplish a given task and achieve autonomous travel is an important technique

and currently an important research field. There are two generals methods used for

positioning [1]: relative positioning and absolute positioning. Relative positioning, also

known as dead reckoning, calculates the position and heading angle using odometry or

inertial sensors. Absolute positioning calculates the position using an external distance

measuring system. Dead reckoning calculates the relative position from the initial starting

point information. The encoders attached to the wheels of the robot measure its angular

rate. The position and the heading angle of the mobile robot can be calculated by this

angular rate. This method is known as odometry and is the most widely used method

for the positioning [2-16]. Odometry calculates the position and the heading angle by

the integration of the travel distance and heading angle rate and has systematic and

14

nonsystematic errors [2,3]. Therefore, errors in the position and heading angle increase

continuously as the operating time and moving distance increase because these errors

are accumulated by integration. Currently, various researchers have worked to reduce

these errors by modeling and filter design [4-7], calibration algorithms [8-11], and various

combined sensor systems [12-16]. The aim of these studies was to extend the period of

navigation, without the help of external absolute position information. However, the best

solution to overcome the accumulated positioning error is to periodically compensate with

the external absolute position information. A Local Positioning System (LPS) for a mobile

robot based on ultrasonic transmission is widely used for robotics applications because it

is simple, inexpensive, and provides relatively accurate position. Various methods exist

for positioning based on ultrasonic transmission [8].

2.11 Conclusion

After presented the mobile robotics history in the world, we described briefly the evolution

of robotics and the techniques used. In the following chapter we will present the framework

of the competition that we will follow for the project.

15

Chapter 3

Project Framework

In this chapter we will present the general framework of the robotic competition, starting

with the game area, the components of the area, and we conclude with a game strategy

in order to translate it into an Arduino program at the end of this project.

3.1 The Competition

The Robot@factory robotics competition, which was included in Robotica (the main

Portuguese robotics competition). The robot competition takes place in an emulated

factory, where automatically guided vehicles must cooperate to perform tasks. To accomplish

their goals the AGVs must deal with localization, navigation, scheduling and cooperation

problems that must be solved autonomously. The presented robot competition can play

an important role in education due to the inherent multi-disciplinary concepts that are

involved, motivating students to technological areas. It also plays an important role in

research and development, because it is expected that the outcomes that will emerge

here, will later be transferred to other application areas, such as service robots and

manufacturing [9] .

The competition is divided into three rounds, preferably held on consecutive days.

Each team will have 10 minutes to do the initial tests on the field before the trial starts.

During the trial a team can attempt as much runs as it is possible in its 10 minutes

16

slot. For each trial, the final score is the total number of parts correctly placed in the

outgoing warehouse. The best run is automatically considered. The time to finish plus

any additional time penalization is used as the next criteria. The figure 9.1 shows the

starting area for the robot and the machines types with the input and output places. For

each run, the robot must start inside the green area [10] .

Figure 3.1: Area of the competition

3.2 The Machines and the Warehouses

On each machine there is an area where the parts should be placed to be processed (Input)

and another one where the processed parts should be picked (Output) as illustrated in

figure 4.1. It is the robot’s responsibility of the loading and unloading of the parts into

the machines. After the part is placed on the left side of the machine (Input), it will be

processed and should be picked on the right side (Output) [10].

17

Figure 3.2: The machines and wearhouses

3.3 First Round

In the first round, the objective is just to collect the four parts from the incoming

warehouse and transport them to the outgoing warehouse as fast as possible. The four

parts will be already placed on the incoming warehouse, ready to be moved.

3.4 Second Round

In the second round, some of the four parts present in the incoming warehouse must be

placed in a machine for processing. After the completion of this operation they can be

carried into the outgoing warehouse. A table that maps the Radio Frequency Identification

(RFID) codes that differentiates the parts from those that are already processed and can

be taken directly to the outgoing warehouse will be published. For this round, there is

an additional rule that every attempt must be spaced by at least one minute. Is only

possible to resume an attempt one minute after the moment when the previous attempt

was initiated. This limits the maximum number of attempts to less than 10 [10].

18

3.5 Line Detection

A line is often defined as a line or even a curve, which may be more accurate. Because

this definition boils down to saying that a line is a series of dots. True, but in reality,

a line is observed when the line is thick enough and large enough for our QTR sensor

can see it. Moreover, it is imperative that it has a color that is quite different from the

background color. In our case, the line is black. The thickness of the line is sufficient for

the robot’s sensor to detect it but moderately so that it is not considered as a full figure.

3.5.1 Line detection principle

We know that radiation of a certain wavelength will be absorbed by a material, if the

material diffuses all radiation except that of this wavelength, and it will be diffused by

another material diffusing radiation, one of which has a wavelength of. In our case, we

used two colors: black and white. As for the QTR sensor of our robot, they will only

have to be able to detect the absence or the presence of the line. The QTR sensor will

detect the presence or absence of a light beam. It is necessary to take in consideration the

environment of our robot, which is not necessarily in total darkness; the only significant

sources of light in the way of the competition come from neon lights or lamps.

Figure 3.3: Lines to follow

19

3.5.2 Line following

In this first case, the robot knows that it is in the presence of a line. Moderately curved.

Then checks which of the lateral sensors detects the line.

1. If it is the straight sensor that detects the line, it means that it is deflecting through

the left, so it must rotate to the right.

2. If the left sensor detects the line, it means the opposite: it deviates by the right and

must therefore rotate to the left.

This rotation continues until the central sensors has detected the line. And if it detects

it, the rotation stops and the adjustment to the line is completed. Program ending then

it switches back to the line processing program so that the robot continues to follow the

rest of the line.

3.6 Dynamic Modelling

3.6.1 Kinematic model

Most of kinematic models of mobile robots assume that no tire slippage occurs, so the

inputs to the system are right and left wheel angular velocities, Wr and Wl , respectively.

Then the motion of the robot can be described by the simple kinematics of rigid bodies.

In order to determine the robot motion, it is so important to define the position and

orientation of the robot as the location and orientation of the center of gravity.

3.7 The Killough Drive

A symmetrical holonomic drive with four omni wheels is usually called a ’Killough Drive’.

This is shown in an ’X’ configuration below, but it works in a similar way if it’s rotated by

45◦ into a ’+’ configuration, where the motor angles would be 0◦, 90◦, 180◦ and 270◦. One

thing to bear in mind with more than three wheels is that some form of chassis flexibility

20

or suspension will help to keep all the wheels touching the ground in cases where the floor

isn’t mirror-flat. Omni-wheel robots though, are probably somewhat better-behaved than

Mecanum wheel robots when a wheel does lose contact with the ground.

Figure 3.4: Omni wheel x structure

In the ’X’ configuration, the angle of each motor axis from the robot coordinate frame

’x’ axis is:

α1 = 45◦ α2 = 135◦ α3 = 225◦ α4 = 315◦

We add π/2 to get the drive direction of each wheel:

w1 = α1 + π/2 = 135◦

w2 = α2 + π/2 = 225◦

w3 = α3 + π/2 = 315◦

w4 = α4 + π/2 = 45◦

Once using the trig to express the direction of each wheel as components in x and y

21

relative to the robot coordinate frame:

For wheel 1,

x1 = cos(α1 + π/2) · s1

and,

y1 = sin(α1 + π/2) · s1

and the same for the other three wheels. Then gather up all the individual motor

contributions to the robot motion in x, in y and in w:

x = x1 + x2 + x3 + x4;

y = y1 + y2 + y3 + y4;

w = s1 + s2 + s3 + s4

To use the summed x and y contributions we need to substitute in the trig expressions

we worked out that express the x and y contributions of each motor in terms of ′α′ and

’s’ to get:

x = cos(α1 + π/2) · s1 + cos(α2 + π/2) · s2 + cos(α3 + π/2) · s3 + cos(α4 + π/2) · s4 (3.1)

y = sin(α1 + π/2) · s1 + sin(α2 + π/2) · s2 + sin(α3 + π/2) · s3 + sin(α4 + π/2) · s4 (3.2)

3.7.1 kinematic Model

In order to find motion models for a surface vehicle, the pose of the vehicle must be

identified as (x, y, θ) and associated velocities are

vx(t) = dxt
d(t) ; vy(t) = dyt

dt
; w(t) = dθt

dt
(3.3)

22

v(t)

vn(t)

w(t)

 =

cos(t) sin(θ(t)) 0

−sin(θ(t)) cos(t) 0

0 0 1

×

v(t)

vn(t)

w(t)

 (3.4)

3.7.2 Relationship between wheel velocity

The relationship between the wheels velocities v0, v1, v2 and v3, with the robot velocities

v, vn and w is described by the following equation:

v0(t)

v1(t)

v2(t)

v3(t)

=

0 1 d

−1 0 d

0 −1 d

1 0 d

×

v(t)

vn(t)

w(t)

 (3.5)

It is possible to obtain the equations that determine the robot velocities related with

wheels velocity but the matrix associated with equation (2.3) is not square. This is

because the system is redundant [9]. It can be found that:

v(t) = (1
2) · (v3(t)− v1(t))

vn(t) = (1
2) · (v0(t)− v2(t))

w(t) = (1
2·d) · (v0(t) + v1(t) + v2(t) + v3(t))

(3.6)

3.8 Architecture Diagram

The electrical part in relation to the mechanical and control part is detailed in the figure

3.5. The electrical configuration is quite simple to set according to the program loaded

into the microcontroller.

23

Figure 3.5: Bloc Presentation of the robot

3.9 Programing with Interruption

Interrupts are useful for making things happen automatically in micro-controller programs

and can help solve timing problems. Good tasks for using an interrupt may include reading

a rotary encoder, or monitoring user input.

To ensure that a program always caught the pulses from a rotary encoder, so that it

never misses a pulse, it would make it very tricky to write a program to do anything else,

because the program would need to constantly poll the sensor lines for the encoder, in

order to catch pulses when they occurred. Other sensors have a similar interface dynamic

too, such as trying to read a sound sensor that is trying to catch a click, or an infrared

slot sensor (photo-interrupter) trying to catch a coin drop. In all of these situations, using

an interrupt can free the micro-controller to get some other work done while not missing

the input [11].

24

3.9.1 Type of interruption

Interrupts really enhance the use of microcontrollers in a big way. Interrupts make the

programs react to the hardware of the microcontrollers, which may be a reaction from

the circuit/environment outside of the microcontroller. An interrupt is a condition that

causes the microprocessor to temporarily work on a different task, and then later return

to its previous task.

Internal interruption

An internal interrupt is a type of interrupt that results from a specific event within the

processor, such as the occurrence of an error due to division by zero, which produces an

internal interrupt called divide by a zero interrupt. An interrupt in arduino is a signal

that tells the processor to immediately stop what it is doing and handle some high priority

processing. An interrupt handler is like any other void function. If it is written one and

attach it to an interrupt, it will get called whenever that interrupt signal is triggered.

External interruption

There are six external interrupts to serve external devices in arduino mega 2560. Both

these interrupts are active low. An external interrupt informs the microcontroller that an

external device needs its routine service. External interrupt is a process by which arduino

stops its regular task or stop its looping and go to interrupt function to complete its given

interrupt function task. They are Digital pin 2, 3, 18, 19, 20, 21 (pins 20 21 are not

available to use for interrupts while they are used for I2C communication).

3.10 Conclusion

After presented the competition area, we described briefly the movement of the robot and

the techniques used to pick and place the parts in the area.

25

Chapter 4

Equipement Used

In this chapter, we will present the equipment implemented in the final mechanical design

platform, which is based on EMG30 motors and QTR sensor. We end this chapter with

the resume of the control process.

4.1 The Controller

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has 54

digital input/output pins (of which 15 can be used as Pulse Width Modulation (PWM)

outputs), 16 analog inputs, 4 Universal Asynchronous Receiver-Transmitter (UART), a

16 MHz crystal oscillator, a Universal Serial Bus (USB) connection, a power jack, an In

Circuit Serial Programming (ICSP) header, and a reset button. It contains everything

needed to support the microcontroller; simply connect it to a computer with a USB cable

or power it with a AC-to-DC adapter or battery to get started. The Mega 2560 board is

compatible with most shields designed for the Uno and the former boards Duemilanove

or Diecimila. The Mega 2560, shown in Figure 4.1, is an update to the Arduino Mega,

which it replaces.

26

Figure 4.1: Arduino mega

The characteristics of the arduino Mega are shown in Table 4.1.

Microcontroller ATMEGA2560
Operating Voltage 5 V

Input Voltage 7 V- 12 V
USB Port Yes

DC Power Jack Yes
Current Rating Input/Output 20 mA
Current Drawn from Chip 50 mA
Digital Input/Output pins 54

PWM 15
Analog Pins 16
Flash Memory 256 KB

SRAM 8KB
EEPROM 8KB

Crystal Oscillator 16 MHz
LED Yes
Wi-Fi No

Shield Compatibility Yes

Table 4.1: Specification arduino mega 2560

4.1.1 Arduino IDE

The open-source Arduino Software Integrated Development Environment (IDE) makes

it easy to write code and upload it to the board. This software can be used with any

Arduino board. In this work we install the Arduino IDE into Visual studio code to make

27

the work easier and clear, Arduino integrated into VS code can do the same things in the

Arduino IDE.

4.1.2 Visual Studio Code Envirement

Visual Studio Code combines the simplicity of a source code editor with powerful developer

tooling, like IntelliSense code completion and debugging.

First and foremost, it is an editor that gets out of our way. The delightfully frictionless

edit-build-debug cycle means less time fiddling with our environment, and more time

executing on our ideas.We’ll often benefit from tools with more code understanding than

just blocks of text. The Arduino IDE is already installed in VS Code in order to more

fast compiling and execute the robot tasks.

4.2 EMG30 Motor

The EMG30 gear-motor is a powerful 12V brushed DC motor with a 30: 1 metal gearbox

and an integrated quadrature encoder that provides a resolution of 64 counts per revolution

of the motor shaft, which corresponds to 1920 counts per revolution of the gearbox’s

output shaft. These units have a 16 mm-long, 6 mm-diameter D-shaped output shaft.

Figure 4.2 shows the EMG30 motor used.

Figure 4.2: EMG30-motor

These motors are intended for use at 12 V, though in general, these kinds of motors

28

can run at voltages above and below the nominal voltage. Lower voltages might not be

practical, and higher voltages could start negatively affecting the life of the motor.

A two-channel Hall effect encoder is used to sense the rotation of a magnetic disk on

a rear protrusion of the motor shaft. The quadrature encoder provides a resolution of

64 counts per revolution of the motor shaft when counting both edges of both channels.

To compute the counts per revolution of the gearbox output, multiply the gear ratio by

64. The motor encoder has six color-coded, (20 cm) leads terminated by a 1 6 female

header with a 0.25 cm pitch, as shown in the main product picture. This header works

with standard 0.25 cm male headers and our male jumper and pre-crimped wires. The

table 4.2 describes the wire functions.

Red motor power (connects to one motor terminal)
Black motor power (connects to the other motor terminal)
Green GND encoder
Blue Vcc encoder (3.5 - 20 V)
Yellow A output encoder
White B encoder output

Table 4.2: Wire function of EMG30 motor

4.3 The Motor Driver L298N

The L298 H Bridge in the figure 4.3 is base on l298 Chip manufacture by ST Semiconductor.

The l298 is an integrated monolithic circuit in a 15 lead multi-watt and power S020

package. It is a high voltage and high current full dual bridge driver designed to accept

standard Transistor-Transistor Logic (TTL) logic level and drive inductive loads such as

relays, solenoids and DC stepper motor.

29

Figure 4.3: The motor driver L298N

Two enabled inputs are provided to enable or disable the device independently of the

input signals. The emitters of the lower transistors of each bridge are connected together,

and the corresponding external terminal can be use for the connection of an external

sensing resistor. An additional supply input is provided so that the logic works at lower

voltage.

This module has ease to connect and drive a DC motor or stepper motor allows user

to easily and intently control two motor up to 2A each in both direction or one stepper

motor. It is excellent for robotics applications and well fit to a microcontroller. It can

also be interfaced with simple manual switches, TTL Logic gates and relays [12]. The

L298N Module Pin Configuration are show in table 4.3.

Pin name Description

IN1 IN2 Motor A input pins Used to measure the spinning direction of Motor A

IN3 IN4 Motor B input pins Used to measure the spinning direction of Motor B

ENA Enables PWM signal for Motor A

ENB Enables PWM signal for Motor B

OUT1 OUT2 Output pins of Motor A

OUT3 OUT4 Output pins of Motor B

12V 12V input from DC power Source

5V Supplies power for the switching logic circuitry inside L298N IC

GND Ground pin

Table 4.3: Electro-magnet specifications

30

4.4 The Electromagnet

An electromagnet is a type of magnet in which the magnetic field is produced by electric

current. An electric current flowing in a wire creates a magnetic field around the wire,

due to Ampere’s law (see drawing below). To concentrate the magnetic field, in an

electromagnet the wire is wound into a coil with many turns of wire lying side by side.

The magnetic field of all the turns of wire passes through the center of the coil, creating

a strong magnetic field there. Grove - Electromagnet in the figure below can shuck 1KG

weight and hold on. It is easy to use for pick and place.

Figure 4.4: The Electromagnet

The device must be powered by a voltage source equivalent to 5 V DC, and draws

a maximum current of 400 mA. In addition, when the device is in standby mode, it

consumes a power of approximately 1 mW.

4.5 QTR-8RC Sensor

This sensor module has 8 IR LED/photo-transistor pairs mounted on a 0.375” pitch,

making it a great detector for a line-following robot. Pairs of Light Eitting Diode (LED)

are arranged in series to halve current consumption, and a Metal Oxide Semiconductor

Field Effect Transistor (MOSFET) allows the LEDs to be turned off for additional sensing

or power-savings options. Each sensor provides a separate digital I/O-measurable output.

31

Figure 4.5: QTR-8RC Reflectance Sensor Array

4.6 WIFI Sensor

The ESP8266 is a low-cost Wi-Fi chip with full support for Transmission Control Protocol/Internet

Protocol (TCP/IP) and microcontroller functionality. Figure 4.6 shows the ESP8266

Module.

Figure 4.6: Module WIFI

This small module allows microcontrollers to connect to Wi-Fi networks using the

TCP/IP protocol through AT commands. However, due to the low cost and the fact

that there were very few external components in the module, suggesting that large scale

production would be very inexpensive to produce, attracted many enthusiasts to explore

the module and the software contained within. The ESP8285 is an ESP8266 with an

internal MiB flash memory, which allows single chip devices to connect via Wi-Fi.

32

4.7 Power Supply

The sizing of the power supply of the robot consists in defining the desired autonomy

for normal operation, and secondarily to distribute the capacity on several independent

sources. The necessary energy is calculated from the consumption of all the elements of

the robot. The calculation is simple, just multiply the total current consumed by the

desired autonomy. The power supply can be in the form of batteries or accumulators,

taking into account the final weight of the robot, its power and autonomy.

The problem with robots is the lack of space. The choice of battery depends on the

mechanical characteristics of the robot.

Figure 4.7: Battery used

Battery specification

Type Battery PB Battery

Capacity 3.2 Ah

Nominal voltage 12 V

Internal resistance 45m

Max Charge Voltage 13.5 to 13.8 V

Standard Charge Current 0.96 A

Weight 1.35 Kg

Operating Temperature 40 degree

Table 4.4: Basic characteristics of the PB battery

33

4.8 Voltage Step-down

Because the arduino board work on 5 V, and there are no such things as a 3.3 V or 5 V

battery, thus, it is needed to include a voltage regulator to step down the voltage offered

by the battery and regulate it. Figure 4.8 shows the chosen step down regulator.

This simple power supply board tackles the problem with a buck regulator, the simplest

type of switched mode DC/DC converter. It uses a single IC of type LM2596, a flyback

diode, and a handful of passive components to set up an efficient voltage regulator. It

accepts any DC input voltage between 5V and 30V, making it compatible with just about

any battery pack out there. With a screw terminal it’s very easy to connect it, and fine

tune the output voltage with a trimmer. Most Arduino boards have an integrated voltage

regulator, but it’s a linear one and thus not very efficient at converting a high voltage to

5V, wasting precious battery power in the process.

Figure 4.8: LM protection board

4.9 Conclusion

The equipment selection which is a very important part in the elaboration of our project

was detailed in this chapter. The work of the two preceding chapters helped for the

programming stage of the hardware parts in the following chapter.

34

Chapter 5

Programming and Realization

The link between the software and hardware components will be introduced in this

chapter. Starting with the main task and motion of the robot in the factory lite competition.

This chapter will conclude everything to make the robot working in the area requested

and ended by perspective program.

5.1 Robot Motion

Forward and back motion

To move the robot forward, the two green 0 wheels must turn clockwise as shown in the

figure below. To move backwards, the same two wheels must turn anti-clockwise. This

configuration is applied in the arduino code (Odometry part).

Figure 5.1: Forward and back motion

35

Left and right motion

To move the robot in the left wise, it need to turn the motor one and three in the anti-

clockwise. For the right motion the other two motors should turn in the clockwise.

Figure 5.2: Left and right motion

Turn left and right

To turn the robot in the left motion, it need to turn all the motors in the clockwise. For

the right motion the other motors should turn in the anti-clockwise as shown in the figure

below.

Figure 5.3: Turn left and right

36

Left and right diagonal

To move the robot diagonally to the left, motors one and two must be turned clockwise

and motors three and four anticlockwise. To change the direction we need to reverse the

rotation direction of the motors as shown in the figure below.

Figure 5.4: Left and right diagonal

5.2 Odemetry

Odometry is the use of data from motion sensors , in this case the sensors are the encoders

of the EMG30 motors,To estimate change in position over time. It is used in robotics by

some legged or wheeled robots to estimate their position relative to a starting location.

Odometry is the most widely used method for determining the momentary position of a

mobile robot.

5.3 Odometry Error Model

Lets took as a consideration a mobile robot with a synchronous drive system. Assuming

a two-dimensional world, we can define the robot configuration with respect to a world-

coordinate frame W by the vector X=[x,y, θ]T, containing its position and orientation.

The robot configuration estimated by odometry measurements is different from the actual

37

Figure 5.5: Principle of Odometry [13]

configuration X because of the odometry errors.

In order to compute the global odometry error related to a given robot motion, we

divided the trajectory in N small segments in figure 5.6. We first modeled the elementary

error related to a single segment. Then we computed the cumulative error on the global

path. Finally, we took the limit value when N →∞.

Figure 5.6: Odometry X configuration

38

5.4 Test Regulation for Odometry

5.4.1 Closed loop control PID

The Proportional Integral Derivative (PID) controller is parameterized in its proportional

(Kp), integral (KI) and derivative (KD) gains. Two robust PID design methods based on

minimizing the norm of the tracking error caused by a step load disturbance are evaluated

to determine the values of these gains [14].

Proportional part

The proportional part reduces the rise time and decreases the steady state error. This

means that the system will take lesser time to reach its peak value and when it reaches its

steady state, the steady state error will be low. However, it increases the peak overshoot.

Derivative part

The derivative part reduces the overshoot and the settling time. This means that the

transient state of the system will be more damped. Also, the system will reach its steady

state in a lesser time. However, it does not have any effect on the rise time or the steady

state error.

Integral part

The integral part reduces the rise time and completely eliminates the steady state error.

However, it increases the peak overshoot and the settling time.

The figure 5.7 shows the process for coding error correction and PID control for the

system.

39

Figure 5.7: Robot regulation part

5.4.2 Find Distance with Encoders

As each motor shaft rotates, it also rotates its attached ring magnet at the same rate.

As the ring magnet completes one full rotation, the Hall effect sensor detects 4 changes

(or "ticks") in the magnetic field as each magnetic pole passes by the sensor. However,

each rotation of the motor only turns the wheel a certain number of degrees. The EMG30

motors have a gearbox ratio of 30:1, which means it takes 30 rotations of the motor to

turn the wheel one complete revolution (360 ◦).

for one shaft of the motor , the wheel move distance equal to 180 mm ,in the figure

5.8 checking the rotation sens and value of the encoder measurement. Based on the size

40

of the robot’s wheels, we can also calculate the distance that the robot travels .

Figure 5.8: Encoder test sens

5.4.3 Check Encoder Positions

In order to function accurately, each wheel encoder sensor must be positioned correctly,

relative to its ring magnet. The sensor tip must be centered within the silver band of

the ring magnet (not too far inward or outward) and must be close to the ring magnet’s

surface (about 1/8 inch away). Visually check the position of the left and right encoder

sensors. If necessary, we might need to push (or pull) a sensor to position it correctly.

Each encoder need to be initialized or get the actual value of the position and send it to

the arduino as indicated in the figure 5.9.

41

Figure 5.9: Encoder robot function

5.4.4 Encoders Programming

To use the wheel encoders of the EMG30 motor on thefour omnidirectional mobile robot,

it is necessary to: Change the number of ticks to distance and angle (it depends of the

mechanical dimension of the components of the robot).Add code statement to drive one

or both motors Use the object’s getValue() method to get the current encoder counts.

Add a sequence statement to perform action based on the encoder counts.

42

5.4.5 Measuring Movement

The technique of measuring the movement of the position of this robot, called odometry,

requires an encoder that translates the turn of the wheels into the corresponding traveled

distance. To provide four degrees of freedom while moving, its typically need four motors,

and as described in the figure 5.10.

Figure 5.10: Mechanical structure

The equations for computing the position from the decoded movements depends on

the architecture of the robot are explained in chapter 2. We will explain it here using

the example of the differential drive. Referring to the robot structure dimension and the

dimension of the omni wheels, it is possible to define the distance desired. The next figure

show how does the robot calculate and change the number of ticks to the desired position.

43

Figure 5.11: Measure movement

5.5 Following The Line Using The QTR Sensor

5.5.1 Line detection

It was known that radiation of a certain wavelength will be absorbed by a material, if the

material diffuses all radiation except that of this wavelength, and it will be diffused by an

other material diffusing radiation.In our case, it was advisable to use two "colors": black

which absorbs all wavelengths of radiation, and the white, which diffuses all wavelengths,

including infrared. As for the QTR sensor implemented in the robot, it will only have to

be able to detect the absence or the presence of the black line . It is necessary to take

in consideration the environment of the robot, which is not necessarily in total darkness;

the only significant sources of light in a room of the competition come from neon lights or

lamps. with incandescence whose emitted infra-red does not disturb the robot. The QTR

44

sensors that was used will be associated with ultrasnic sensor that emit the presence of

the parts in the area of the competition. The magnet installed between each two wheels

will be the actuator to pick and place the parts in the right position.

5.5.2 QTR code test

To follow the line with the stable motion of the robot, it is important to adjust the right

KP value for the PID controller of the robot as indicated in the figure below.The right

value found with sampling in many real test of the robot motion on the black line and

calibration of the QTR sensor.

Figure 5.12: QTR set up program

45

Figure 5.13: Loop of QTR sensor

5.6 Conclusion

The programming stage has been well thought out and carried out ,We have tried to get

as close as possible to the operating mode.This chapter contains the new program and a

general algorithm for control and during the robotic competition.

46

General Conclusion and Future

Work

General Conclusion

Mobile robots are used for automatically transporting products in factories and warehouses.

Especially, omnidirectional mobile robots that can move immediately in an arbitrary

direction have the potential for further efficiency. However, existing omnidirectional

mobile robots need specialized wheel mechanisms, which can be unreliable. To solve

this problem. The idea of the robot which has been presented in this project employs

instructions from sensors and on board arduino to achieve its physical movement. One of

its significant attribute is controlling efficiently with very much accuracy. It does not use

complex algorithms for line following applications , even for pick and place the materials

exist in the area of the competition. Controlling process has been made automatic by

straightforward controlling mechanism. Simple basic electronics is used instead of costly

microcontrollers which made it very much cost effective. Further modification of this

robot includes additional sensors like WI-FI and infrared so that the robot will be able

to follow a line or use odometry having the ability to pick and place the parts exist.

In its current form robot is enough capable. It can follow any curve and cycle line.

We must build a robot that has light weigh and high speed because points are awarded

based upon the distance covered and the speed of the overall robot. Therefore, we used

four EMG30 motors.

47

The body weight and wheels radius have effects on speed, too. The weight of the

designed robot is around 4kg and it can be lighter. To get better maneuver, we must

build a robot that uses two motors and two wheels on the rear and a free wheel on the

front. The power supply is 12 V with regulator.

The designed robot has QTR sensors on the bottom for detect line. Microcontroller

Arduino Mega 2560 R2 and drivers L298 were used to control direction and speed of the

four motors.

Future Work

The future work will be to attach a manipulator arm to the omnidirectional wheel mobile

robot, the main things to do is to make communication between the base and the brake

arm.

The objective is to develop more and more about the mobility and activities of the

mobile robot attached to the arm. On the surface of the robot structure, a place is

prepared to install this arm above the robot.

Our futur design and assembling robot is intended for research and education , it

is similar to the KUKA Youbot mobile robot. KUKA well known as one of the world’s

leading industrial robots manufacturer has designed a rich platform, affordable and open.With

a small KUKA arm with 5 degrees of freedom.

Figure 5.14: Braccio arduino arm

Bibliography

[1] Lab4sys. (consulted on 22 october 2020). ‘History of robotucs’, [Online]. Available:

https://lab4sys.com/en/history-of-robotics/?cn-reloaded=1.

[2] G. A. Demetriou, “Mobile robotics in education and research”, Mobile Robots-

Current Trends, pp. 27–48, 2011.

[3] Arduino. (consulted on 22 march 2021). ‘attachInterrupt()’, [Online]. Available:

https : / / roboticsandautomationnews . com / 2017 / 09 / 14 / kuka - launches -

autonomous-mobile-robot-for-logistics-industry/14077/.

[4] MHI. (consulted on 25 march 2020). ‘Industrial robots, [Online]. Available: https:

//www.mhi.org/fundamentals/robots.

[5] L. Lynch, T. Newe, J. Clifford, J. Coleman, J. Walsh, and D. Toal, “Automated

Ground Vehicle (AGV) and Sensor Technologies-A Review”, in 2018 12th International

Conference on Sensing Technology (ICST), IEEE, 2018, pp. 347–352.

[6] D. Kragic, J. Gustafson, H. Karaoguz, P. Jensfelt, and R. Krug, “Interactive, Collaborative

Robots: Challenges and Opportunities.”, in IJCAI, 2018, pp. 18–25.

[7] Y. Liu, X. Wu, J. J. Zhu, and J. Lew, “Omni-directional mobile robot controller

design by trajectory linearization”, in Proceedings of the 2003 American Control

Conference, 2003., IEEE, vol. 4, 2003, pp. 3423–3428.

[8] B.-S. Cho, W.-J. Seo, W.-s. Moon, and K.-R. Baek, “Positioning of a mobile robot

based on odometry and a new ultrasonic LPS”, International Journal of Control,

Automation and Systems, vol. 11, no. 2, pp. 333–345, 2013.

49

https://lab4sys.com/en/history-of-robotics/?cn-reloaded=1
https://roboticsandautomationnews.com/2017/09/14/kuka-launches-autonomous-mobile-robot-for-logistics-industry/14077/
https://roboticsandautomationnews.com/2017/09/14/kuka-launches-autonomous-mobile-robot-for-logistics-industry/14077/
https://www.mhi.org/fundamentals/robots
https://www.mhi.org/fundamentals/robots

[9] J. Gonçalves, J. Lima, P. Costa, and A. Moreira, “Manufacturing Education and

Training resorting to a new mobile robot competition”, in Conference on Flexible

Automation and Intelligent Manufacturing FAIM 2012, Tampere University of Technology,

2012.

[10] R. factory lite. (consulted on 2019). robot factory lite, [Online]. Available: https:

//web.fe.up.pt/~robotica2019/index.php/pt/robot-factory-lite.

[11] Arduino. (consulted on 22 march 2021). ‘attachInterrupt()’, [Online]. Available:

https://www.arduino.cc/reference/en/language/functions/external-

interrupts/attachinterrupt/.

[12] 1. core. (consulted on 2018). using l298N half bridge, [Online]. Available: https:

//www.14core.com/wiring-driving-the-l298n-h-bridge-with-stepper-

motors/.

[13] N. Chindakham, Y.-Y. Kim, A. Pirayawaraporn, and M.-H. Jeong, “Simultaneous

Calibration of Odometry and Head-Eye Parameters for Mobile Robots with a Pan-

Tilt Camera”, Sensors, vol. 19, no. 16, p. 3623, 2019.

[14] K. Soltesz, J.-O. Hahn, T. Hägglund, G. A. Dumont, and J. M. Ansermino, “Individualized

closed-loop control of propofol anesthesia: A preliminary study”, Biomedical Signal

Processing and Control, vol. 8, no. 6, pp. 500–508, 2013.

50

https://web.fe.up.pt/~robotica2019/index.php/pt/robot-factory-lite
https://web.fe.up.pt/~robotica2019/index.php/pt/robot-factory-lite
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.14core.com/wiring-driving-the-l298n-h-bridge-with-stepper-motors/
https://www.14core.com/wiring-driving-the-l298n-h-bridge-with-stepper-motors/
https://www.14core.com/wiring-driving-the-l298n-h-bridge-with-stepper-motors/

Appendix A

Arduino Code

A1

Regulation robot.h

#ifndef __ROBOT_REGULATION_H

#define __ROBOT_REGULATION_H

#ifdef __cplusplus

extern "C" {

#endif

typedef struct {

 float Kp;

 float Ki;

 float Kd;

 float Derror;

 float Ierror;

 float LastError;

 int Error;

 int Perror;

 int CurrentTime;

 int DeltaTime;

 int previousTime;

}RobotRegulation_Handle;

void RobotRegulation_Init(RobotRegulation_Handle *hRegulation);

int RobotRegulation_Compute(RobotRegulation_Handle *hRegulation, int DesiredPosition, int

CurrentPosition);

#ifdef __cplusplus }

#endif

#endif

Robot Regulation

#include "Robot_Pinout.h"

#include "Robot_Conf.h"

#include "Robot_Regulation.h"

void RobotRegulation_Init(RobotRegulation_Handle *hRegulation)

{

 memset(hRegulation, 0, sizeof(*hRegulation));

 hRegulation->Kp = KP_MOVE;

 hRegulation->Ki = KI_MOVE;

 hRegulation->Kd = KD_MOVE;

}

int RobotRegulation_Compute(RobotRegulation_Handle *hRegulation, int DesiredPosition, int Curre

ntPosition)

{

 int Output = 0;

 hRegulation->CurrentTime = millis() ;

 hRegulation->DeltaTime = hRegulation->CurrentTime - hRegulation->previousTime ;

 hRegulation->Error = DesiredPosition - CurrentPosition ;

 hRegulation->Ierror + = hRegulation->Error * hRegulation->DeltaTime ;

 hRegulation->Derror = (hRegulation->Error - hRegulation->LastError)/hRegulation->DeltaTime ;

 hRegulation->Perror = hRegulation->Error * hRegulation->Kp ;

 Output = hRegulation->Perror + hRegulation->Ierror * hRegulation->Ki - hRegulation-

>Derror *hRegulation->Kd ;

 Output = abs(Output);

 hRegulation->LastError = hRegulation->Error ;

 hRegulation->previousTime = hRegulation->CurrentTime ;

 if(Output < ROBOT_MIN_VELOCITY)Output = ROBOT_MIN_VELOCITY ;

 if(Output > ROBOT_MAX_VELOCITY) Output = ROBOT_MAX_VELOCITY ;

 return Output; }

1

Robot Actions

#if (ARDUINO >= 100)

#include <Arduino.h>

#else

#include <WProgram.h>

#endif

#include "Robot_Actions.h"

#include "Robot_Motors.h"

#include "Robot_Encoder.h"

#include "Robot_ElectroMagnet.h"

#include "Robot_Conf.h"

static RobotActionHandle_TypeDef hRobot ;

static void RobotActionMotor1(int DesiredPosition);

static void RobotActionMotor2(int DesiredPosition);

static void RobotActionMotor3(int DesiredPosition);

static void RobotActionMotor4(int DesiredPosition);

void RobotActionInit(void) {

 RobotRegulation_Init(&hRobot.hRegulation1);

 RobotRegulation_Init(&hRobot.hRegulation2);

 RobotRegulation_Init(&hRobot.hRegulation3);

 RobotRegulation_Init(&hRobot.hRegulation4);

 RobotEncoders_Init();

 RobotMotorInit();

 RobotElectromagnetInit(); }

void RobotActionMove(int Motor, int DesiredPosition)

{ /*Check if motor 1 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_1) == ROBOT_ACTION_MOTOR_1)

 { RobotEncoders_SetValue(ENCODER_MOTOR1, 0);

 hRobot.Motor1State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor1DesiredPosition = DesiredPosition; }

2

 /*Check if motor 2 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_2) == ROBOT_ACTION_MOTOR_2)

 { RobotEncoders_SetValue(ENCODER_MOTOR2, 0);

 hRobot.Motor2State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor2DesiredPosition = DesiredPosition; }

 /*Check if motor 3 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_3) == ROBOT_ACTION_MOTOR_3)

 { RobotEncoders_SetValue(ENCODER_MOTOR3, 0);

 hRobot.Motor3State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor3DesiredPosition = DesiredPosition; }

 /*Check if motor 4 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_4) == ROBOT_ACTION_MOTOR_4)

 { RobotEncoders_SetValue(ENCODER_MOTOR4, 0);

 hRobot.Motor4State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor4DesiredPosition = DesiredPosition; } }

void RobotActionMoveDiagonal(int Motor, int DesiredPosition)

{ /*Check if motor 1 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_1) == ROBOT_ACTION_MOTOR_1) {

 RobotEncoders_SetValue(ENCODER_MOTOR1, DesiredPosition);

 hRobot.Motor1State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor1DesiredPosition = 0; }

 /*Check if motor 2 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_2) == ROBOT_ACTION_MOTOR_2)

 { RobotEncoders_SetValue(ENCODER_MOTOR2, 0);

 hRobot.Motor2State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor2DesiredPosition = DesiredPosition; }

 /*Check if motor 3 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_3) == ROBOT_ACTION_MOTOR_3) {

 RobotEncoders_SetValue(ENCODER_MOTOR3, 0);

3

 hRobot.Motor3State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor3DesiredPosition = DesiredPosition; }

 /*Check if motor 4 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_4) == ROBOT_ACTION_MOTOR_4)

 { RobotEncoders_SetValue(ENCODER_MOTOR4, DesiredPosition);

 hRobot.Motor4State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor4DesiredPosition = 0; } }

void RobotActionBack(int Motor, int DesiredPosition)

{ /*Check if motor 1 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_1) == ROBOT_ACTION_MOTOR_1) {

 RobotEncoders_SetValue(ENCODER_MOTOR1, DesiredPosition);

 hRobot.Motor1State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor1DesiredPosition = 0; }

 /*Check if motor 2 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_2) == ROBOT_ACTION_MOTOR_2)

 { RobotEncoders_SetValue(ENCODER_MOTOR2, DesiredPosition);

 hRobot.Motor2State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor2DesiredPosition = 0; }

 /*Check if motor 3 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_3) == ROBOT_ACTION_MOTOR_3)

 {RobotEncoders_SetValue(ENCODER_MOTOR3, DesiredPosition);

 hRobot.Motor3State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor3DesiredPosition = 0; }

 /*Check if motor 4 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_4) == ROBOT_ACTION_MOTOR_4)

 { RobotEncoders_SetValue(ENCODER_MOTOR4, DesiredPosition);

 hRobot.Motor4State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor4DesiredPosition = 0; } }

void RobotActionTurnRight(int Motor, int DesiredPosition) {

 /*Check if motor 1 is selected*/

4

 if((Motor & ROBOT_ACTION_MOTOR_1) == ROBOT_ACTION_MOTOR_1)

 { RobotEncoders_SetValue(ENCODER_MOTOR1, 0);

 hRobot.Motor1State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor1DesiredPosition = DesiredPosition; }

 /*Check if motor 2 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_2) == ROBOT_ACTION_MOTOR_2)

 { RobotEncoders_SetValue(ENCODER_MOTOR2, 0);

 hRobot.Motor2State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor2DesiredPosition = DesiredPosition; }

 /*Check if motor 3 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_3) == ROBOT_ACTION_MOTOR_3)

 { RobotEncoders_SetValue(ENCODER_MOTOR3, DesiredPosition);

 hRobot.Motor3State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor3DesiredPosition = 0; }

 /*Check if motor 4 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_4) == ROBOT_ACTION_MOTOR_4)

 { RobotEncoders_SetValue(ENCODER_MOTOR4, DesiredPosition);

 hRobot.Motor4State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor4DesiredPosition = 0; } }

void RobotActionTurnLeft(int Motor, int DesiredPosition) {

 /*Check if motor 1 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_1) == ROBOT_ACTION_MOTOR_1)

 { RobotEncoders_SetValue(ENCODER_MOTOR1, DesiredPosition);

 hRobot.Motor1State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor1DesiredPosition = 0; }

 /*Check if motor 2 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_2) == ROBOT_ACTION_MOTOR_2)

 { RobotEncoders_SetValue(ENCODER_MOTOR2, DesiredPosition);

 hRobot.Motor2State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor2DesiredPosition = 0; }

5

 /*Check if motor 3 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_3) == ROBOT_ACTION_MOTOR_3)

 { RobotEncoders_SetValue(ENCODER_MOTOR3, 0);

 hRobot.Motor3State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor3DesiredPosition = DesiredPosition; }

 /*Check if motor 4 is selected*/

 if((Motor & ROBOT_ACTION_MOTOR_4) == ROBOT_ACTION_MOTOR_4)

 { RobotEncoders_SetValue(ENCODER_MOTOR4, 0);

 hRobot.Motor4State = MOTOR_ACTION_STATE_IN_PROGRESS;

 hRobot.Motor4DesiredPosition = DesiredPosition; } }

void RobotActionEnableElectromagnet(int Electromagnet, int dummy)

{ /*Avoid warning*/

 (void)dummy;

 if((Electromagnet & ROBOT_ACTION_ELECTRO_MAGNET_1) ==
ROBOT_ACTION_ELECTRO_MAGNET_1) {

 RobotElectroMagnet1On(); }

 if((Electromagnet & ROBOT_ACTION_ELECTRO_MAGNET_2) ==
ROBOT_ACTION_ELECTRO_MAGNET_2) {

 RobotElectroMagnet2On(); } }

void RobotActionDisableElectromagnet(int Electromagnet, int dummy) {

 /*Avoid warning*/

 (void)dummy;

 if((Electromagnet & ROBOT_ACTION_ELECTRO_MAGNET_1) ==
ROBOT_ACTION_ELECTRO_MAGNET_1) {

 RobotElectroMagnet1Off(); }

 if((Electromagnet & ROBOT_ACTION_ELECTRO_MAGNET_2) ==
ROBOT_ACTION_ELECTRO_MAGNET_2) {

 RobotElectroMagnet2Off(); } }

MotorAction_TypeDef RobotActionCompute(void) {

 /*Check if motor 1 is selected*/

 if(hRobot.Motor1State != MOTOR_ACTION_STATE_IDLE) {

6

 RobotActionMotor1(hRobot.Motor1DesiredPosition);

 /*check if Robot doesn't move anymore*/

 if(abs((hRobot.Motor1DesiredPosition - RobotEncoders_GetValue(ENCODER_MOTOR1))) <=
ROBOT_OFFSET) {

 hRobot.Motor1State = MOTOR_ACTION_STATE_COMPLETE; } }

 /*Check if motor 2 is selected*/

 if(hRobot.Motor2State != MOTOR_ACTION_STATE_IDLE) {

 RobotActionMotor2(hRobot.Motor2DesiredPosition);

 /*check if Robot doesn't move anymore*/

 if(abs((hRobot.Motor2DesiredPosition - RobotEncoders_GetValue(ENCODER_MOTOR2))) <=
ROBOT_OFFSET) {

 hRobot.Motor2State = MOTOR_ACTION_STATE_COMPLETE; } }

 /*Check if motor 3 is selected*/

 if(hRobot.Motor3State != MOTOR_ACTION_STATE_IDLE) {

 RobotActionMotor3(hRobot.Motor3DesiredPosition);

 /*check if Robot doesn't move anymore*/

 if(abs((hRobot.Motor3DesiredPosition - RobotEncoders_GetValue(ENCODER_MOTOR3))) <=
ROBOT_OFFSET) {

 hRobot.Motor3State = MOTOR_ACTION_STATE_COMPLETE; } }

 /*Check if motor 4 is selected*/

 if(hRobot.Motor4State != MOTOR_ACTION_STATE_IDLE) {

 RobotActionMotor4(hRobot.Motor4DesiredPosition);

 /*check if Robot doesn't move anymore*/

 if(abs((hRobot.Motor4DesiredPosition - RobotEncoders_GetValue(ENCODER_MOTOR4))) <=
ROBOT_OFFSET) {

 hRobot.Motor4State = MOTOR_ACTION_STATE_COMPLETE; } }

 delay(REGULARION_STEPS);

 if((hRobot.Motor1State == MOTOR_ACTION_STATE_IN_PROGRESS) ||\

 (hRobot.Motor2State == MOTOR_ACTION_STATE_IN_PROGRESS) ||\

 (hRobot.Motor3State == MOTOR_ACTION_STATE_IN_PROGRESS) ||\

 (hRobot.Motor4State == MOTOR_ACTION_STATE_IN_PROGRESS)) {

7

 return MOTOR_ACTION_ONGOING; }

 return MOTOR_ACTION_DONE; }

static void RobotActionMotor1(int DesiredPosition) {

 hRobot.Motor1SpeedToSet = RobotRegulation_Compute(&hRobot.hRegulation1,DesiredPosition,

 RobotEncoders_GetValue(ENCODER_MOTOR1));

 if(hRobot.hRegulation1.Error > 0) {

 RobotMotor1Move(hRobot.Motor1SpeedToSet); }

 Else {

 RobotMotor1Back(hRobot.Motor1SpeedToSet); } }

static void RobotActionMotor2(int DesiredPosition) {

 hRobot.Motor2SpeedToSet = RobotRegulation_Compute(&hRobot.hRegulation2,DesiredPosition,

 RobotEncoders_GetValue(ENCODER_MOTOR2));

 if(hRobot.hRegulation2.Error > 0) {

 RobotMotor2Move(hRobot.Motor2SpeedToSet); }

 Else {

 RobotMotor2Back(hRobot.Motor2SpeedToSet); } }

static void RobotActionMotor3(int DesiredPosition) {

 hRobot.Motor3SpeedToSet = RobotRegulation_Compute(&hRobot.hRegulation3,DesiredPosition,

 RobotEncoders_GetValue(ENCODER_MOTOR3));

 if(hRobot.hRegulation3.Error > 0) {

 RobotMotor3Move(hRobot.Motor3SpeedToSet); }

 Else {

 RobotMotor3Back(hRobot.Motor3SpeedToSet); } }

static void RobotActionMotor4(int DesiredPosition) {

 hRobot.Motor4SpeedToSet = RobotRegulation_Compute(&hRobot.hRegulation4, DesiredPosition,

 RobotEncoders_GetValue(ENCODER_MOTOR4));

 if(hRobot.hRegulation4.Error > 0) {

 RobotMotor4Move(hRobot.Motor4SpeedToSet); }

 Else {

 RobotMotor4Back(hRobot.Motor4SpeedToSet); } }

	Introduction
	State Of The Art
	History of Robotics
	Evolution of Mobile Robotics
	Robotics Application
	The robots of intervention
	Professional service robotics

	Robots Classification
	Mobile Robot
	Components of a mobile robot

	Industrial Robot
	Autonomous Vehicle Guided
	Collaborative Robot
	Omnidirectional Robot
	Odometry In Relation To Mobile Robotics System
	Conclusion

	Project Framework
	The Competition
	The Machines and the Warehouses
	First Round
	Second Round
	Line Detection
	Line detection principle
	Line following

	Dynamic Modelling
	Kinematic model

	The Killough Drive
	kinematic Model
	Relationship between wheel velocity

	Architecture Diagram
	Programing with Interruption
	Type of interruption

	Conclusion

	Equipement Used
	The Controller
	Arduino IDE
	Visual Studio Code Envirement

	EMG30 Motor
	The Motor Driver L298N
	The Electromagnet
	QTR-8RC Sensor
	WIFI Sensor
	Power Supply
	Voltage Step-down
	Conclusion

	Programming and Realization
	Robot Motion
	Odemetry
	Odometry Error Model
	Test Regulation for Odometry
	Closed loop control PID
	Find Distance with Encoders
	Check Encoder Positions
	Encoders Programming
	Measuring Movement

	Following The Line Using The QTR Sensor
	Line detection
	QTR code test

	Conclusion

	General Conclusion and Perspectives
	Arduino Code

