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Abstract: The increasing interest in natural foods with functional effects demands progressively
higher production levels. Nonetheless, there is an orientation towards practicing more sustainable
agriculture, free from environmentally harmful pesticides and fertilizers. Plant biostimulants, a
class of bio-based agriculture products designed to improve crop development, represent a feasible
alternative to chemical fertilizers, or, at least, an effective way of reducing the employed quantities.
Herein, different types of plant biostimulants compatible with organic farming (Phytoalgae, Foliar B,
Amino Acids, Soil B, Fitoalgas Green® and Sprint Plus®) were tested in two of the most important
nut products worldwide: almonds and hazelnuts, which were tested for nutritional parameters, fatty
acids profiles and tocopherols contents. Overall, the most notorious effects in almond samples were
obtained with phytoalgae (seaweed Ascophyllum nodosum extracts), particularly reflected in the
upraising around 10% of γ-tocopherol and β-tocopherol contents. Likewise, hazelnuts treated with
NPK + phytoalgae were also characterized by an increase of almost 18% in tocopherols levels, while
treatment with NPK alone induced 15.1% higher percentage of linoleic acid.

Keywords: almond; hazelnut; phytochemicals; nutrients; biostimulants

1. Introduction

There has been an increasing interest in the functional characteristics of nuts, as these
are a relevant source of bioactive constituents. Hazelnut (Corylus avellana L.) is the most
important cultivated species in the Corylus genus (Betulaceae). It is widely spread from the
Himalayas to the far north of Canada [1]. Turkey is the world’s largest producer, followed
by Italy and the United States of America [2]. Likewise, almond [Prunus dulcis (Mill.)
D.A. Webb, Rosaceae] is one of the most popular nuts in the world, standing out in first
place in what concerns production levels, mainly due to the contribution of California, the
world’s largest producer of this species [3,4]. The benefits of including these nuts in the
human diet are partly related to their monounsaturated fatty acids (MUFA), particularly
oleic acid, and polyunsaturated fatty acids (PUFA), namely linoleic acid, tocopherols (e.g.,
α-tocopherol), and phytosterols (e.g., β-sitosterol) [5–8]. These liposoluble components
have been recognized for their essential contribution to prevent dyslipidemias [9–12], by
specifically reducing the total plasma concentrations of LDL-cholesterol [13–17].

Tocopherols are also recognized as antioxidants due to their ability to protect cell
membranes from oxidative damage induced by free radicals [18–20], in addition to having
anti-inflammatory potential [21].
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Almond and hazelnut crops are very important, particularly among countries with
high production levels, such as Portugal, owing to their interesting nutritional/functional
value. The chemical profile of these nuts may vary due to edaphoclimatic factors, which can
also modulate the corresponding production yields, for instance due to frost damage, by
hampering the entomophile pollination, or disordered flowering and flower degeneration.
Using biostimulants might be an effective way to improve nutrients uptake from the soil,
as well as increasing photosynthesis levels, thereby representing a useful treatment for
different crops like almond and hazelnut [2,22,23].

Because of their potential health benefits, almond and hazelnut are being progressively
included in healthy diets, demanding higher production levels worldwide. Nonetheless,
there is a general concern towards the practice of agriculture less harmful to the environ-
ment, which raises the need for ecological alternatives to fertilizers or pesticides. The
search for biostimulants has been an active research field, but the maintenance, or ideally
the improvement, of the products obtained when using these growing adjuvants must
be verified [2,22,23]. Studies report that the use of marine bioactive substances extracted
from algae in agricultural and horticultural crops has many beneficial effects in terms
of increased yield and quality [24,25]. Seaweed extracts contain primary and secondary
nutrients, amino acids, vitamins, cytokins, auxin, and abscisic acid [26], among other
substances that stimulate plant growth and performance [27], help develop tolerance
to environmental stress [28,29], increase nutrient uptake from soil [30,31], and increase
antioxidant properties [31,32].

It is a fact that the chemical profile of nuts can have a slight, although natural, variabil-
ity within each species. Besides the edaphoclimatic conditions, these fluctuations might be
due to the cultivar or agricultural factors, such as the use of plant biostimulants [12,33,34].
The best biostimulant application intends to improve the plant’s nutrient use efficiency
and enhance tolerance to biotic and abiotic stresses. Bearing this in mind, we tested the
influence of two plant biostimulants (seaweed extract and free amino acids) in combination
with soil and foliar boron (in almond), and with or without using a basal NPK (nitrogen,
phosphorus, and potassium) fertilization program (in hazelnut), in the chemical (moisture,
total fat, proteins, carbohydrates, and ash) and phytochemical (fatty acids, tocopherols,
sterols) properties of almond and hazelnut.

2. Materials and Methods
2.1. Samples

Hazelnut (Corylus avellana L.) and almond (Prunus dulcis (Mill.) D.A. Webb) samples
were obtained from experimental fields in the Northeast of Portugal. Almond samples
belong to Vairo cultivar and were obtained from trees submitted to five treatments: (i)
Control (without treatment/biostimulant); (ii) Phytoalgae (Fitoalgas Green®, a seaweed
extract of Ascophyllum nodosum); (iii) Foliar B (Tradebor®, boron as ethanolamine, 15.4%
w/v); (iv) Amino acids (Sprint Plus®, free amino acids, 28.8% w/v); (v) Soil B (Neobor®,
sodium tetraborate pentahydrate, 14.85% B); All products were compatible with organic
farming. Hazelnut samples belong to the Ennis cultivar and were obtained from trees sub-
mitted to six different treatments resulting from the combination of the plant biostimulants
Fitoalgas Green® and Sprint Plus® with or without a basal soil NPK fertilization program.
The treatments were: (i) Control (without treatment/biostimulant); (ii) NPK (60 kg ha−1

of N, P2O5, and K2O); (iii) NPK + phytoalgae; (iv) Sprint Plus; (v) NPK + Sprint Plus; (vi)
Phytoalgae; In all six cases, a basal treatment with boron was made. All treatments were
made in the early spring of 2019.

Both experiments were arranged as completely randomized designs with three repli-
cates. Once in the lab, each sample was analyzed in triplicate. After collection, samples
were immediately frozen and lyophilized (Telstar LyoQuest Lyophilizer), to prevent the
occurrence of any degradation. Then, samples were ground in a chopper (model A327R1,
Moulinex, Barcelona, Spain), homogenized, and stored away from light and moisture.
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2.2. Nutritional Value

The proximate composition (ash, fat, moisture, proteins, and carbohydrates) was
determined in the freeze-dried samples, according to the AOAC methods [35]. The crude
protein was determined by the macro-Kjeldahl method (N × 5.18 for almonds and N ×
5.3 for hazelnuts) using an automatic distillation and titration unit (model Pro-Nitro-A;
Selecta, Barcelona, Spain); crude fat was determined by Soxhlet extraction with petroleum
ether during 7 h and the ash content was evaluated by incineration at 550 ± 15 ◦C. Total
carbohydrates content was calculated by difference using the formula: total carbohydrates
(g/100 g) = 100 − (gfat + gash + gproteins) and the energetic value was calculated according
to the Decree-Law No. 167/2004 using the formula: energy (kcal/100 g) = 4 × (gproteins +
gcarbohydrates) + 9 × (gfat).

2.3. Free Sugars

Free sugars were determined by high-performance liquid chromatography coupled to
a refraction index detector (HPLC-RI). Freeze-dried samples (~1.0 g) were extracted with a
water:ethanol mixture (80:20) after being spiked with melezitose (IS, 5 mg/mL), further
used as the internal standard, following a previously described methodology [36,37]. The
equipment of analysis consisted of an integrated system with a pump (Knauer, Smartline
system 1000, Berlin, Germany), a degasser system (Smartline manager 5000), an auto-
sampler (AS-2057 Jasco, Easton, MD, USA), and an RI detector (Knauer Smartline 2300,
Berlin, Germany). Data were analyzed using Clarity 2.4 Software (DataApex, Prague,
Czech Republic). The chromatographic separation was achieved with a Eurospher 100-5
NH2 column (4.6 × 250 mm, 5 µm, Knauer) operating at 30 ◦C. The mobile phase was
acetonitrile/deionized water, 70:30 (v/v) at a flow rate of 1 mL/min. Compounds were
identified by chromatographic comparisons with commercial standards. Quantification
was performed using the internal standard (melezitose) method and sugar contents were
further expressed in g/100 g of fresh weight (fw).

2.4. Fatty Acids

Fatty acid composition was determined by gas-liquid chromatography with flame
ionization detection (GC-FID)/capillary column, after the extraction and derivatization
to fatty acid methyl esters (FAME) according to a previously described methodology [37].
Fatty acids were obtained after 1 h of Soxhlet extraction with petroleum ether. Petroleum
ether was chosen as a solvent due to its lower boiling temperature than hexane, for example.
Therefore, the samples were not at risk of oxidation because the temperature in question
does not affect the extraction of the compounds. The solvent was recovered by drying
in an oven at approximately 50 ◦C until it had a constant weight. Then, the fatty acids
were derivatized with 5 mL of methanol:sulphuric acid:toluene 2:1:1 (v:v:v), during at
least 12 h in a bath at 50 ◦C and 160 rpm; then 3 mL of deionized water and 3 mL of
diethyl ether were added, to obtain phase separation; FAME were recovered by vortex-
shaking, and the upper phase was recovered and filtered with 0.2 µm nylon filter from
Whatman before injection [38]. The analysis was carried out with a DANI model GC 1000
instrument equipped with a split/splitless injector, a flame ionization detector (FID), and
a Macherey-Nagel (GC 1000, Düren, Germany) column (50% cyanopropyl-methyl-50%
phenylmethylpolysiloxane, 30 m × 0.32 mm i.d. × 0.25 µm df). The oven temperature
program was as follows: the initial temperature of the column was 50 ◦C, held for 2 min,
then a 30 ◦C/min ramp to 125 ◦C, 5 ◦C/min ramp to 160 ◦C, 20 ◦C/min ramp to 180 ◦C,
3 ◦C/min ramp to 200 ◦C, 20 ◦C/min ramp to 220 ◦C, and held for 15 min. The carrier gas
(hydrogen) flow-rate was 4.0 mL/min (0.61 bar), measured at 50 ◦C. Split injection (1:40)
was carried out at 250 ◦C. Fatty acid identification was made by comparing the relative
retention times of FAME peaks from samples with commercial standards. The results were
recorded and processed using the Software Clarity DataApex 4.0.1.7 and expressed as the
relative percentage of each fatty acid.
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2.5. Tocopherols

Tocopherols were determined by HPLC (equipment described above) and a fluores-
cence detector (FP-2020; Jasco). The extracts obtained after Soxhlet extraction (1 h) were
submitted to dryness under a nitrogen stream. Then, the extract was dissolved in 2 mL of
hexane and filtered through 0.2 µm nylon filters (Whatman) and transferred into injection
vials. The fluorescence detector was programmed for excitation at 290 nm and emission at
330 nm. The chromatographic separation was achieved with a Polyamide II (250 mm × 4.6
mm, 5 µm) normal-phase column from YMC Waters operating at 30 ◦C. The mobile phase
used was a mixture of n-hexane and ethyl acetate (70:30, v/v) at a flow rate of 1 mL/min.
The detected peaks were compared with commercial standards, the quantification is based
on the fluorescence signal, using the internal standard method (tocol). The results were
expressed in mg/100 g of dried weight (fw).

2.6. Statistical Analysis

For the comparison between the effects of the different treatments, one-way analysis
of variance (ANOVA) was used, using the Tukey test or the Tamhane’s T2 test, the (through
Levene’s test) homogeneity or heterogeneity of the variances, respectively, were found.
Before the variance tests, the normality of the distributions was verified using the Shapiro–
Wilks test. The software used was the Statistical Package for the Social Sciences (SPSS)
version 24 (IBM Corporation, New York, NY, USA). All results were expressed as mean
values ± standard deviations (SD), keeping the decimal places allowed by the magnitude
of the standard deviation.

Additionally, a linear discriminant analysis (LDA) was used to evaluate which of
the evaluated parameters showed the highest differences as a result of being treated with
the assayed biostimulants. This was also done to find the biostimulant that would be
able to maximize the concentration of any given compound, either in almonds, as well
as in hazelnuts. The independent variables (predictors) were entered together and the
usual assumptions of LDA were fully verified. To validate the significance of the canonical
discriminating functions, Wilk’s
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procedure was carried out to assess the model performance.

All tests were performed with a 5% significance level. For all methods, three samples
were mixed to have a representative pool and all tests were performed in triplicate.

3. Results and Discussion

In this preliminary study, it was intended to evaluate potential changes in different
nutrients and bioactive compounds expression in result of treating almond and hazelnut
crops with different biostimulants. There are other factors such as edaphoclimatic condi-
tions, different crop locations, different irrigation systems, or different trees densities that
can influence the levels of the compounds assayed herein. However, this first assay was
mainly designed to pave the way for further investigations relating the previous factors. In
addition, comparative statistical tests like ANOVA, loose effectiveness when testing two
or more factors, mainly due to the high probability of their interaction; when two given
factors interact significantly, it is not possible to infer unequivocal conclusions for each
single factor. Accordingly, and in order to acquire those conclusions, the biostimulant type
was maintained as the single variability factor for this study.

3.1. Nutritional Value

The results for nutritional evaluation (Table 1) show that both assayed species are
mainly composed by fat (around 55% in fresh weight basis). In both cases, the highest fat
contents were detected in the control lines, with slight differences resulting from using
different plant biostimulants. Protein levels, in turn, were highest (16.8 g/100 g fw) in
hazelnuts treated with NPK (12% higher than the control), but all plant biostimulants
(except phytoalgae) induced a positive effect in this analyte. On the other hand, the
same effect could not be observed among almond samples. Carbohydrate contents were
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generally increased in samples treated with plant biostimulants, particularly when using
phytoalgae (29 g/100 g fw), in almonds’ case, and NPK + phytoalgae (28 g/100 g fw),
relating to hazelnut samples. A similar result was obtained for sucrose, the main sugar
identified (highest contents: 13.7 g/100 g fw in almond samples treated with Tradebor; 18.8
g/100 g fw in hazelnut samples treated with NPK + phytoalgae), a reducing sugar that
has been previously reported as the major form in these species [39,40]. Ash and water, the
minor components, showed very small variations (insignificant in the case of ash content
in almond samples). In what concerns energy, the maximal values (669 kcal/100 g fw for
almonds; 675 kcal/100 g fw for hazelnuts) were obtained in control lines (samples grown
in soils without any biostimulant); this result was common to almonds and hazelnuts.

Table 1. Nutritional composition (g/100 g fw) and energy values (kcal/100g fw) for almond and hazelnut cultivars
submitted to different plant biostimulants treatments.

Biostimulant Water Fat Protein Ash Carbohydrates Sucrose Energy

Almond (Vairo cultivar)

Control 3.3 ± 0.1 b 56 ± 1.3 a 15.1 ± 0.2 a 2.5 ± 0.2 27 ± 1.3 c 11.8 ± 0.2 c 669 ± 6.4 a

Phytoalgae 3.5 ± 0.1 a 54 ± 1.1 c 14.6 ± 0.5 b 2.5 ± 0.2 29 ± 1.5 a 12.8 ± 0.5 b 660 ± 4.9 c

Tradebor® 3.1 ± 0.1 c 55 ± 2.1 bc 15.2 ± 0.5 a 2.4 ± 0.2 28 ± 2.4 bc 13.7 ± 0.5 a 664 ± 7.8 bc

Sprint Plus® 3.3 ± 0.2 b 55 ± 0.7 ab 14.6 ± 0.3 b 2.5 ± 0.1 28 ± 1.5 b 11.4 ± 0.2 d 665 ± 7.2 ab

Neobor® 3.3 ± 0.1 b 55 ± 1.7 ab 14.7 ± 0.4 b 2.4 ± 0.2 28 ± 2.2 b 12.1 ± 0.5 c 665 ± 8.0 ab

ANOVA p-value
(n = 45) 1 <0.001 <0.001 <0.001 0.225 <0.001 <0.001 <0.001

Hazelnut (Ennis cultivar)

Control 2.4 ± 0.1 d 57 ± 1.0 a 15.0 ± 0.5 d 2.8 ± 0.1 c 25 ± 1.3 c 14.4 ± 0.5 d 675 ± 2.7 a

NPK 2.9 ± 0.1 b 53 ± 1.5 c 16.8 ± 0.5 a 3.4 ± 0.2 a 27 ± 1.3 ab 15.7 ± 0.3 c 651 ± 6.1 c

NPK +
phytoalgae 3.1 ± 0.1 a 53 ± 3.0 c 15.5 ± 0.1 c 3.1 ± 0.2 b 28 ± 3.3 a 18.8 ± 0.5 a 655 ± 14.6 c

Sprint Plus® 2.4 ± 0.1 d 56 ± 2.1 ab 16.0 ± 0.2 b 3.1 ± 0.2 b 25 ± 2.4 c 17.1 ± 0.5 b 668 ± 7.8 b

NPK + Sprint
Plus® 2.6 ± 0.1 c 55 ± 1.4 b 16.2 ± 0.5 b 2.8 ± 0.1 c 26 ± 2.4 bc 17.0 ± 0.5 b 665 ± 5.9 b

Phytoalgae 2.7 ± 0.1 c 56 ± 1.4 b 15.1 ± 0.2 d 3.1 ± 0.1 b 26 ± 1.5 b 15.4 ± 0.4 c 665 ± 4.6 b

ANOVA p-value
(n = 54) 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1 If p < 0.050, the corresponding parameter presented a significantly different value for at least one biostimulants; different letters in column
indicate significantly different values. fw—fresh weight. Results are presented as mean ± standard deviation.

3.2. Fatty Acids

The major fatty acids profile is detailed in Table 2. The results include only the major
fatty acids; however, other fatty acids were detected in trace percentages (total sum less
than 2%), these being: myristic acid (C14: 0), palmitoleic acid (C16: 1), marginal acid
(C17: 0), α- linolenic (C18: 3n3), arachidonic acid (C20: 0), and eicosenoic acid (C20: 1).
Oleic acid (C18: 1n9c) was the predominant fatty acid in both species, but it did not affect
equally, in terms of percentage, in almond and hazelnut. In fact, while it remained nearly
unchanged in almond when using different plant biostimulants, an obvious decrease was
observed in hazelnut, independently of the plant biostimulant, when comparing with the
control (76%). The lack of significant changes in almond was also observed for linoleic
acid (C18:2n6c), which, contrarily to oleic acid, showed a significant increase in hazelnut
samples grown in soils treated with plant biostimulants, reaching the maximum value
when using NPK (15.1%). Palmitic acid, likewise, was more affected in hazelnut samples,
reaching the highest percentage with Sprint Plus (9.6%), while it remained nearly constant
in almond samples. A very similar result was observed for stearic acid (C18:0).
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Besides the tabled fatty acids, a few others were detected in minute percentages,
namely myristic acid (C14:0), palmitoleic acid (C16:1), heptadecanoic acid (C17:0), α-
linolenic acid (C18:3n3), arachidic acid (C20:0), and eicosanoic acid (C20:1). These profiles
were in general agreement with those reported in literature [41–44], despite the natural
variability that results from genetic and edaphoclimatic factors [12,33,34].

Table 2. Major fatty acids profile (relative%) for almond and hazelnut cultivars submitted to different
plant biostimulant treatments.

Biostimulant C16:0 C18:0 C18:1n9c C18:2n6c

Almond (Vairo cultivar)

Control 8.8 ± 0.5 a 2.0 ± 0.1 b 71 ± 0.6 b 17.2 ± 0.5 a

Phytoalgae 8.7 ± 0.5 a 2.0 ± 0.1 b 71 ± 0.9 ab 16.9 ± 0.3 b

Tradebor® 8.1 ± 0.5 b 2.1 ± 0.1 a 72 ± 0.8 a 17.1 ± 0.4 ab

Sprint Plus® 8.8 ± 0.3 a 2.0 ± 0.1 b 71 ± 1.0 b 17.2 ± 0.5 a

Neobor® 9.1 ± 0.5 a 1.9 ± 0.1 b 71 ± 0.8 b 17.2 ± 0.1 a

ANOVA p-value (n = 45)
1 <0.001 <0.001 0.002 0.001

Hazelnut (Ennis cultivar)

Control 8.8 ± 0.3 d 2.5 ± 0.1 b 76 ± 1.0 a 11.7 ± 0.3 d

NPK 9.1 ± 0.4 cd 2.1 ± 0.1 d 72 ± 2.0 de 15.1 ± 0.5 a

NPK + phytoalgae 8.9 ± 0.3 cd 2.3 ± 0.1 c 73 ± 1.0 c 14.3 ± 0.4 b

Sprint Plus® 9.6 ± 0.4 a 2.8 ± 0.1 a 72 ± 1.1 e 14.5 ± 0.4 b

NPK + Sprint Plus® 9.5 ± 0.5 ab 2.1 ± 0.1 d 73 ± 1.0 cd 14.3 ± 0.3 b

Phytoalgae 9.2 ± 0.5 bc 2.4 ± 0.2 b 74 ± 1.0 b 12.7 ± 0.3 c

ANOVA p-value (n = 54)
1 <0.001 <0.001 <0.001 <0.001

1 If p < 0.050, the corresponding parameter presented a significantly different value for at least one biostimulant;
different letters indicate significantly different values. Results are presented as mean ± standard deviation.

3.3. Tocopherols

As in most foods with high fat content, the concentration of tocopherols (Table 3) was
elevated: average values of 50 mg/100 g fw in almonds and 25 mg/100 g fw in hazelnuts,
which is in agreement with previous reports [45,46]. Considering the concentration in
total tocopherols, the soil supplementation with phytoalgae produced an increase around
10% (50 to 55 mg/100 g fw), mainly due to the increase in α-tocopherol and γ-tocopherol.
Nonetheless, all other assayed biostimulants had an opposite effect.

In what concerns hazelnuts, all biostimulants had the capacity to increase the toco-
pherols content, with the mixture NPK + phytoalgae as the one reaching the best results
(23 to 28 mg/100 g fw). This is a positive result, although not entirely surprising. The
European Biostimulant Industry Council (www.biostimulants.eu (accessed on 19 December
2020)) defined “plant biostimulants as containing substance(s) and/or micro-organisms
whose function when applied to plants or the rhizosphere is to stimulate natural processes
to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and
crop quality”. These improvements are mainly based in mechanisms able to enhance key
physiological, biochemical and molecular processes. Besides, their effects in nutrients
availability, using biostimulants has been related to the up-regulation of photosynthesis
and improved nitrogen and carbon metabolism, which can result in higher expressions of
antioxidant compounds such as tocopherol [47].

The obtained values were lower than those reported in different hazelnut varieties [48],
which might be related with genetic factors (different cultivars), climatic variation [49,50],
soil type [41], or analytical methodology [42].

www.biostimulants.eu
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Table 3. Tocopherols profile (mg/100 g fw) for almond and hazelnut cultivars submitted to different
plant biostimulants treatments.

Biostimulant α-Tocopherol β-Tocopherol γ-Tocopherol Tocopherols

Almond (Vairo cultivar)

Control 46 ± 1.0 b 0.8 ± 0.1 ab 3.6 ± 0.3 b 50 ± 1.1 b

Phytoalgae 49 ± 2.7 a 0.8 ± 0.1 a 4.4 ± 0.2 a 55 ± 3.1 a

Tradebor® 43 ± 1.6 c 0.6 ± 0.1 c 3.1 ± 0.2 d 47 ± 2.5 c

Sprint Plus® 45 ± 3.0 b 0.8 ± 0.1 b 3.5 ± 0.2 c 49 ± 3.0 b

Neobor® 41 ± 1.0 d 0.8 ± 0.1 b 3.6 ± 0.2 bc 46 ± 1.0 c

ANOVA p-value
(n = 45) 1 <0.001 <0.001 <0.001 <0.001

Hazelnut (Ennis cultivar)

Control 22 ± 1.5 c 0.57 ± 0.03 e 0.75 ± 0.02 d 23 ± 1.5 c

NPK 22 ± 2.0 c 0.72 ± 0.03 c 0.83 ± 0.05 ab 24 ± 2.1 c

NPK + phytoalgae 26 ± 1.1 a 0.76 ± 0.05 b 0.79 ± 0.05 c 28 ± 1.2 a

Sprint Plus® 26 ± 2.2 a 0.88 ± 0.03 a 0.84 ± 0.03 ab 27 ± 2.2 a

NPK + Sprint Plus® 24 ± 0.6 b 0.67 ± 0.03 d 0.80 ± 0.05 bc 26 ± 0.7 b

Phytoalgae 22 ± 1.4 c 0.74 ± 0.04 bc 0.87 ± 0.04 a 24 ± 1.4 c

ANOVA p-value
(n = 54) 1 <0.001 <0.001 <0.001 <0.001

1 If p < 0.050, the corresponding parameter presented a significantly different value for at least one biostimulant;
different letters indicate significantly different values. fw—fresh weight. Results are presented as mean ±
standard deviation.

3.4. Linear Discriminant Analysis

To extend the characterization of differences observed in all individual parameters
described in the former sections, the totality of results was evaluated simultaneously to
analyze the overall effects of the studied biostimulants on almond and hazelnut profiles.
This study was made using linear discriminant analysis (LDA), measuring the correla-
tions among different biostimulants (categorical dependent variables) and the obtained
results (quantitative independent variables). All significant independent variables were
selected from the stepwise method of LDA, using the Wilks’ λ test criterion. The obtained
statistical models maintained only the variables with a statistically significant classification
performance (p < 0.050).

Concerning almonds, most of the results’ variation was included in function 1 (func-
tion 1:68.3%; function 2:24.1%; function 3:6.1%; fourth function:1.5%); the first three
functions are represented in Figure 1. Among all studied variables, γ-tocopherol, su-
crose, tocopherols, β-tocopherol, protein, water, and C18:2n6c were selected as having
discriminant ability (i.e., the ones showing the highest variation in result of using different
biostimulants). Considering the correlations among discriminant functions and selected
variables, function 1 was more correlated with γ-tocopherol, β-tocopherol, and water,
mostly separating samples treated with phytoalgae (which showed the maximum values in
γ-tocopherol, β-tocopherol, and water) and Tradebor (which showed the minimum values
in γ-tocopherol, β-tocopherol, and water). In turn, function 2 had the highest correlation
coefficients with sucrose, grouping samples treated with phytoalgae or Tradebor (higher
sucrose contents) in one cluster. On its side, function 3 was mostly correlated with total
tocopherols, and its most observable effect was the separation of markers corresponding
to samples treated with Borax (lower tocopherol contents). Overall, the most pronounced
effect in almond were obtained when using phytoalgae, mainly due to the increase in
γ-tocopherol, β-tocopherol. In this LDA, the classification performance was 91.7% accurate
for the original grouped cases and 89.4% for the cross-validated grouped ones.
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Figure 1. Spatial distribution of almond crop biostimulant markers according to the discriminant
functions coefficients. Function 1 accounted for 68.3% of the variation, function 2 accounted for
24.1%, while function 3 accounted for 6.1%.

In hazelnut’s case, the first three discriminant functions (Figure 2) included 89.3%
(function 1:49.6%; function 2:28.5%; function 3:11.2%) of the observed variance. In this
second LDA, the variables selected as having discriminant ability were water, β-tocopherol,
C18:0, sucrose, protein, C18:1n9c, α-tocopherol, ash, γ-tocopherol, C18:2n6c, and energy.
Function 1 was mainly correlated with C18:2n6c (lowest percentage in control samples)
and C18:1n9c (highest percentage in control samples), clearly separating the markers
corresponding to control samples from all others obtained from trees grown in soils supple-
mented with any kind of biostimulants. Function 2, on its side, was more correlated with
C18:0 and β-tocopherol, placing markers corresponding to samples treated with Sprint
Plus (the ones showing highest contents of C18:0 and β-tocopherol) in the positive side
of the corresponding axis. Function 3 had higher correlations coefficients with sucrose,
α-tocopherol, and total tocopherols, variables that reached the highest contents in samples
treated with NPK + phytoalgae, thereby the ones that separated better (positive side of the
axis). Generally, these results showed that the treatment with biostimulants is effective
to increment the percentage of linoleic acid (particularly when using NPK); likewise, the
tocopherols levels were also increased, with maximum expression when using NPK +
phytoalgae.

In this first LDA, the classification performance was 100% accurate, either for the
original grouped cases, as well as for the cross-validated grouped ones.
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Figure 2. Spatial distribution of hazelnut crop biostimulant markers according to the discriminant
functions coefficients. Function 1 accounted for 49.6% of the variation, function 2 accounted for
28.5%, while function 3 accounted for 11.2%.

4. Conclusions

In general, the tested plant biostimulants induced increased levels of important bioac-
tive compounds, particularly in what concerns γ-tocopherol and β-tocopherol in almonds,
and linoleic acid (particularly when using NPK) and tocopherols levels (with best results
when using NPK + phytoalgae) in hazelnuts. These results might be important to select
the best plant biostimulant to be applied in each case, aiming to increase the expression of
a specific bioactive compound, and inputting higher commercial value to these products.
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