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ABSTRACT 

The manufacturing processes involving thermal transitions have been more used in 
industries nowadays, being the welding one of the most widely used. The requirement to 
design and predict adverse conditions are fundamental to the development of any 
mechanical project. As a result, the market needs have motivated the companies to find 
faster and more effective solutions, being one of a recent tools an ACT (Ansys 
Customization Toolkit) called “Moving Heat Source”, in which is executed the Gaussian 
heat source to model welding and laser processes. Based on this, the present work 
proposes to evaluate the accuracy of that extension implementing a finite element model 
for the MAG/TIG welding processes in DINCK20 steel and Al6082-T6 aluminium alloy, 
comparing with one of the first mathematical model proposed by the literature (Rosenthal) 
and with a recent analytical method of high precision already validated experimentally. 
The results showed a smaller global error for MAG process (3~10%) when compared to 
TIG (15~18%) and, the temperatures measured on the surface of the plate presented 
errors lower than the bottom in both alloys. 

Keywords: Numerical extension, Moving heat source, Finite element, Analytical method. 

1. INTRODUCTION

Nowadays, industries have increased manufacturing processes that involves thermal
transitions of which several welding techniques are popular such as GTAW (Gas 
Tungsten Arc Welding), GMAW (Gas Metal Arc Welding), laser and others (Bajpei et al., 
2016; Kik and Górka, 2019; Kumar and Sinha, 2018; Winczek, 2017; Zuo et al., 2020). 
These technologies are widely used in industries to assemble various products such as 
automobiles, trains, ships, and bridges (Deng et al., 2007). 

Among the welding methods, the most commons in the industrial sector are Metal 
Active Gas (MAG) for steel (Guilherme et al., 2020) and Tungsten Inert Gas (TIG) for 
stainless steel and aluminium alloys (ASM, 1993; Bansal et al., 2020). That processes 
when the welding starts, the heat source is focus in a region where the materials are 
locally casting and joint (Wang et al., 2020), consequently, this local heat creates non-
uniform thermal cycles in the materials (Darmadi et al., 2014). 
Nevertheless, the thermal non-uniformity has consequences of the material equilibrium 
stress-strain state, that can lead to residual stresses (Knoedel et al., 2017), fatigue failures 
(Lahtinen et al., 2019), stress corrosion and fracture (Vicente et al., 2018). One of the 
first steps to avoid such problems is the understanding of thermal phenomena, that affect 
the structure at macro and micro-structural levels, where is presenting by Fig. 1 and Fig. 
2 the welding thermal changes for steel and aluminium alloy. 
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Fig. 1. Schematic representation of microstructural transformations for aluminium alloys, image gently authorized by the 
authors (Ambriz and Jaramillo, 2014) 

Typically, there are three types of approaches to interpret 
this behaviour, such as analytical (Nasiri and Enzinger, 
2019), numerical (Balram and Rajyalakshmi, 2019) and 
experimental (Kumar et al., 2020). 

With the growing development of computer software and 
hardware in recent years, Finite Element Methods (FEM) 
has become an essential instrument in computational studies 
(Wang et al., 2019). The vantage of FEM is the lower cost 
and time associated when compared to experimental 
methods (Chiocca et al., 2019; Kik and Górka, 2019). 

Meanwhile, it is not always a simple task to perform a 
finite element transient thermal simulation, for this purpose, 
simplifications are often introduced (Asserin et al., 2011). 
Effects of heat conduction and convection characterize 
these types of problems, resulting from an applied moving 
heat source. Throughout history, researchers have been 
studied this phenomenon, with Rosenthal (1946), where 
proposed a quasi-steady state analytical solution on a semi-
infinite body for thick or thin plates with constant material 
properties. 

After this, Friedman (1975) proposed a numerical 
solution, in which apply a Gaussian distribution of the heat 
source applied to finite elements. Goldak et al. (1984) 
presented a numerical solution in the form of a semi-
ellipsoidal and double-ellipsoidal heat source, and many 
other researchers contributed to the area, just as, Komanduri 
and Hou (2000); Nguyen et al. (1999); Darmadi (2011) for 
example. 

In Nasiri and Enzinger (2019), proposed an analytical 
solution for heating flux in welding called adaptive function. 
They measured temperature values close to the melting line 
and found an overall relative error of less than 5% 
concerning the experimental method.  

In literature review, it was possible to observe studies of 
the thermal distribution using finite elements with the most 
diverse techniques, such as element birth and death 
(Amudha et al., 2019),  Goldak’s 3D ellipsoidal functions 
(Velaga and Ravisankar, 2017) and using other similar 
simulation software like SYSWELD (Ganesh et al., 2014). 
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Fig. 2. Schematic representation of microstructural transformations for low carbon steel alloys, image gently authorized by 
the authors (Winczek, 2017) 

However, there is not much information about studies 
using an extension tool for numerical simulation. Ansys 
Customization Toolkit (ACT) simplifies the simulation 
features of workbench interface, that previously was only 
possible through inserting Mechanical Ansys Parametric 
Design Language (MAPDL) commands, and compresses 
your simulation process (Ansys, 2020). Ansys® has 
demonstrated that this tool has helped some companies to 
develop efficient solutions in their products (Cezario et al., 
2014). 

In 2017, the company launched an ACT extension called 
Moving Heat Source (MHS), whose function is to model a 
moving gaussian heat source for thermal distribution, to 
make simulations involving welding and laser cutting 
processes more straightforward (Cezario et al., 2014). In the 
past, modeling this type of MHS was time-consuming and 
required creating custom commands (Ansys, 2020). 

Based on this, the present study aims to evaluate the FEM 
ACT extension by comparing the simulation results with a 
recently analytical method (Nasiri's adaptive function) and 
classical literature analytical method (Rosenthal's) in 
Matlab. The analysis considered four points close to the 
melt line, both on surface and at the bottom of welded piece, 

also, a steel DINCK20 and aluminum 6082-T6 alloys were 
used for the study. The choice of these alloys is based on the 
fact that the DIN CK20 steel alloy is one of the most 
common and studied in the literature, thus having well-
defined thermal properties. Al6082-T6 aluminum alloy on 
the other hand, belongs to the 6xxx series family that is one 
of the most popular within the industries. With the results, 
it is expected that the numerical extension tool helps to 
reduce the time and complexities of thermal welding 
simulations, even more in industrial solutions, where is 
search less cost and time involved. 

2. MATERIALS AND METHODS

2.1 Rosenthal Analytical Solution 
In the electric arc, the heat introduced into the fusion pool 

is transported by convection and thermal conduction (Feng, 
2005). The heat conduction equation from the energy 
conservation law for moving heat source (Kumar and Sinha, 
2018; Nasiri and Enzinger, 2019; Venkatkumar and 
Ravindran, 2019) is given by Equation (1): 
𝜌𝜌𝜌𝜌 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜈𝜈 ∙ ∇𝑇𝑇� = ∇(𝑘𝑘 ∙ ∇𝑇𝑇) + �̇�𝑄 (1)
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Where, ρ is density (kg/m3), c is the specific heat (J 
/kg·°C), T is the temperature (°C), t is the time, ν is the 
welding speed (m/s), k is the thermal conductivity (W/m·°C) 
and Q is the heat flow (W/s). 

From Equation (1), Rosenthal used some assumptions to 
derive the analytical solution, which are; (i) Heat flow at 
steady state; (ii) a point source of heat; (iii) constant thermal 
properties; (iv) negligible melting heat; (v) no thermal 
losses on the surface; (vi) no thermal convection in the 
fusion pool. Thus, the final equation form founded is 
presented according to Equation (2): 

𝑇𝑇 = 𝑇𝑇0 + 𝑄𝑄
2𝜋𝜋𝜋𝜋𝜋𝜋

𝑒𝑒�
−𝜌𝜌𝜌𝜌𝜌𝜌
2𝑘𝑘 (𝜋𝜋+𝜉𝜉)�       (2) 

Where, T0 is the initial temperature (K), Q the heat flow 
(W) R is the heat source distance presented by the Equation
(3), ξ is the relation for the relative coordinate as a function
of time for the quasi-stationary state according to Equation
(4):
𝑅𝑅 = �𝑥𝑥2 + 𝜉𝜉2 + 𝑧𝑧2   (3) 
𝜉𝜉 = 𝑦𝑦 − 𝜈𝜈 ∙ 𝑡𝑡   (4) 

2.2 Adaptive Function Solution 
The solution proposed by Nasiri and Enzinger is based on 

the development of a function that can measure 
temperatures close to the fusion line, through geometric 
parameters of the weld pool. The first step of the solution is 
to approximate R to an ellipsoidal function Rp, presented by 
Equation (5): 

𝑅𝑅𝑝𝑝 = �� 𝑥𝑥
𝑎𝑎𝑚𝑚
�
2

+ � 𝜉𝜉
𝑏𝑏𝑚𝑚
�
2

+ � 𝑧𝑧
𝑐𝑐𝑚𝑚
�
2

+ 𝑑𝑑𝑚𝑚
2   (5) 

The parameters am, bm, cm and dm are calculated using 
information about the melt pool geometry, in which they are 
represented through points P1, P2, P3 and P4 according to 
Fig. 3(a). The dimensions of the base material and the 
welding direction are shown by Fig.3 (b). 

In addition, the deductions for these geometric 
parameters are presented according to Equation (6) to (9). 
The variables Lf and Lr are geometric parameters taken from 
the melt pool and, parameter B is a dimensionless factor 
presented in Nasiri’s final equation. 
𝑎𝑎𝑚𝑚 = 𝑊𝑊

�� 𝑒𝑒−𝐵𝐵𝐵𝐵
(𝑇𝑇𝑚𝑚−𝑇𝑇0)�

2
−𝑑𝑑𝑚𝑚2

  (6) 

𝑏𝑏𝑚𝑚 = 𝐿𝐿𝑓𝑓

�� 𝑒𝑒
−2𝐵𝐵𝐿𝐿𝑓𝑓

(𝑇𝑇𝑚𝑚−𝑇𝑇0)�
2

−𝑑𝑑𝑚𝑚2

  (7) 

𝜌𝜌𝑚𝑚 = 𝐷𝐷

�� 𝑒𝑒−𝐵𝐵𝐵𝐵
(𝑇𝑇𝑚𝑚−𝑇𝑇0)�

2
−𝑑𝑑𝑚𝑚2

  (8) 

𝑑𝑑𝑚𝑚 = 1
(𝜕𝜕𝑚𝑚−𝜕𝜕0)

�
�𝑒𝑒−2𝐵𝐵𝐿𝐿𝑓𝑓�

2
−�

𝐿𝐿𝑓𝑓
𝐿𝐿𝑟𝑟
�
2

1−�
𝐿𝐿𝑓𝑓
𝐿𝐿𝑟𝑟
�
2   (9) 

Nevertheless, for an exact correspondence between the 
function and the fusion line, a dimensionless parameter ω is 
necessary to cause the adaptation of the function f. The 
parameter ω changes the scale from normal length to a scale 
in fusion pool dimensions and is expressed by the 
proportion of the coordinate of the point of interest. 
Equation (10) shows how this parameter can be defined. 
𝜔𝜔𝑥𝑥 = 𝑥𝑥

𝑊𝑊
;  𝜔𝜔𝜉𝜉𝜉𝜉 = 𝜉𝜉

𝐿𝐿𝑓𝑓
;  𝜔𝜔𝜉𝜉𝜉𝜉 = 𝜉𝜉

𝐿𝐿𝑟𝑟
;  𝜔𝜔𝑧𝑧 = 𝑧𝑧

𝐷𝐷
(10) 

Fig. 3. (a) Geometric parameters (b) Schematic dimensions and weld direction 
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Another important factor is that the modification function 
must be equal to 1 at any point in the fusion line, this will 
not change the fusion isotherm, this is defined by means of 
ω = ± 1. So, the modification function is given by Equation 
(11) and the final modification function is shown according
to Equation (12). 
𝑓𝑓(±1) = 1  (11) 
𝑓𝑓(𝜔𝜔) = �𝑀𝑀𝜔𝜔2 −𝑀𝑀√𝜔𝜔2 + 1�

𝑁𝑁
(12) 

The values of M and N are stipulated through initial 
parameters, thus in this way, causing the adaptation of the 
function, in order to clarify how the algorithm is performed, 
Fig. 4 shows how the iterative method works. Then, the final 
form of the adaptive function is presented according to 
Equation (13) and (14): 

2.3 Input Data for Analytical Solutions 
For this investigation, DIN CK20 steel and 6082-T6 

aluminium alloy were used, that in Table 1 is present the 
input data. The software used was Matlab® R2018.a, in a 
computer with AMD A9-9410 RADEON R5 5 Core 2 C+3 
G processor at 2.90 GHz and a total RAM memory of 8 GB. 

The parameter B is a dimensionless factor presented in 
Nasiri and Enzinger final equations, Q is the heat amount in 

(W) necessary to cause the melt of the addition metal during
the welding process, Tm is the melting temperature of the
material in (°C), η is the welding efficiency and t is the time
interval in (s).

To evaluate the numerical simulation, 4 points were 
defined next to the weld pool, where is presented by Fig. 5. 
The geometrical parameters used were, W = 5 mm, Lf  = 
2.5 mm, Lr = -7.5 mm e D = -3 mm, these values correspond 
to a welding pass.  

Table 2 shows the values for the variables M, Nx, Nef, 
Ner and N during the calculation of thermal distribution for 
the DIN CK20 and the Al6082-T6. 

2.4 Finite Element Solution 
The welding simulation was performed using the ACT 

extension moving heat source, in which DIN CK20 steel 
and Al6082-T6 were used as the base materials for 
simulation. The thermal properties for the FEM are 
presented by the Fig. 6, that the equations for steel were 
obtained from Eurocode 1993-1-2 (2005, 2005) (Design of 
Steel Structures – Verification of Fire Resistance) and for 
Aluminium, Eurocode 1999-1-2 (2007, 2007) (Design of 
Aluminium Structures – Structural Fire Design). 

ξ≥0, 
𝑇𝑇 = 𝑇𝑇0 + 1

��𝜉𝜉� 𝑥𝑥𝐵𝐵�∙ 𝑥𝑥𝑎𝑎𝑚𝑚
�
2
+�𝜉𝜉� 𝜉𝜉

𝐿𝐿𝑓𝑓
�∙ 𝜉𝜉𝑏𝑏𝑚𝑚

�
2
+�𝜉𝜉�𝑧𝑧𝐵𝐵�∙

𝑧𝑧
𝜌𝜌𝑚𝑚

�
2
+𝑑𝑑𝑚𝑚

𝑒𝑒−𝐵𝐵(𝜋𝜋+𝜉𝜉) (13) 

ξ<0, 
𝑇𝑇 = 𝑇𝑇0 + 1

��𝜉𝜉� 𝑥𝑥𝐵𝐵�∙ 𝑥𝑥𝑎𝑎𝑚𝑚
�
2
+�𝜉𝜉� 𝜉𝜉𝐿𝐿𝑟𝑟

�∙ 𝜉𝜉𝑏𝑏𝑚𝑚
�
2
+�𝜉𝜉�𝑧𝑧𝐵𝐵�∙

𝑧𝑧
𝜌𝜌𝑚𝑚

�
2
+𝑑𝑑𝑚𝑚

𝑒𝑒−𝐵𝐵(𝜋𝜋+𝜉𝜉) (14) 

Table 1. Matlab input data for MAG/TIG welding and alloys 
Variables DIN CK20 Al6082-T6 

ρ 7870 kg/m³ 2710 kg/m³ 
cp 420 J/kg·°C 935 J/kg °C 
k 47 W/m·°C 174 W/m °C 
T0 22 °C 22 °C 
Tm 1410 °C 575 °C 
v 2.5e-3 m/s 2.5e-3 m/s 
B (ρ·cp·v) /2·k (ρ·cp·v) /2·k 
η 0.7 0.7 
I 110 A 120 A 
V 22.8 V 13.3 V 
Q η·V·I η·V·I 
t [0:0.4:60] s [0:0.4:60] s 

Table 2. Matlab input data for M and N variables 
Material M Nx Nef Ner N 

DINCK20 0.45 0.45 -0.25 -0.22 -0.9
Al6082-T6 0.01 0.45 -0.55 -0.22 -0.9
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Fig. 4. Adaptive function iteration flowchart in matlab 
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Fig. 5. Illustration of the 4 points studied in the analytical-numerical comparison 

Fig. 6. Thermal conductivity and specific heat for DIN CK20 and 6082-T6 alloys 



International Journal of Applied Science and Engineering 

Marques et al., International Journal of Applied Science and Engineering, 18(5), 2021006 

https://doi.org/10.6703/IJASE.202109_18(5).014     8 

Fig. 7. Illustration of the moving heat flux calculation performed by the ACT extension 

Table 3. Input data for ACT moving heat source 
MAG TIG 

Velocity 2.5 mm/s 2.5 mm/s 
Electric Beam Radius 5 mm 5 mm 

Source Power Intensity 23 W/mm² 14 W/mm² 
Time 60 s 60 s 

Melting Temperature 1410°C 575°C 
Number of Subdivisions 150 150 

Minimum Subdivision for Cooling 15 15 

Table 4. Mesh refinement by simulation 
Simulation Element Dimension for Base Material Element Dimension for Weld Pool 

S1 5 mm 2 mm 
S2 2.5 mm 1 mm 
S3 1 mm 0.5 mm 

The extension feature provides two types of solutions: (1) 
moving heat flux and (2) moving heat energy. For this 
research, it was used moving heat flux, due to the variable 
inputs being known welding parameters, such as speed, 
welding radius, and heat flow. The mathematical 
formulation of (1) is presented by the Equation (15): 

𝑞𝑞 = 𝑃𝑃 ∙ 𝑒𝑒−
�(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2+(𝑧𝑧−𝑧𝑧0)2�

𝑟𝑟2 (15) 
Where q is the heat flow on the surface, P is the intensity 

power of the heat source (W/mm2), r is the radius of the 
beam (mm), (x0, y0, z0) it is the instantaneous position of the 
heat flow in the path given by the product of the speed of 
the heat flow and time. 

The interface performs the calculation according to the 
image shown in Fig. 7, in which a point is defined as the 

beginning, a path (so that the welding is developed) as a 
function of the welding speed ν and time t. 

The element used in the simulation was SURF152 with 4 
nodes with three degrees of freedom and the input data for 
the numerical simulation are presented according to Table 
3. To evaluate the mesh convergence during the simulation,
three different meshes refinements were proposed, they are
presented according to the Table 4 and Fig. 8.

The boundary condition is a tabular data temperature 
versus convection coefficient (stagnant air – horizontal 
cycle) presented by Fig. 9. 

The machine used for simulations presents an AMD 
EPYC 7351 16-core processor with 16 CPUs with 2.4 GHz 
and 16 GB of memory. The version of FEM software is 
Ansys 2019 R3 -Academic Research Mechanical and CFD. 
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Fig. 8. Finite element mesh for the three refinements 

Fig. 9. Convection coefficient (stagnant air – horizontal cycle) 

Table 5. Time and memory elapsed for transient thermal simulations 
S1 S2 S3 

Simulation Time ~45 s ~84 s ~786 s 
Memory Used 558 MB 740 MB 2753 MB 

3. RESULTS AND DISCUSSION

3.1 Mesh Refinements 
The results of the computation time and total memory 

used in the numerical simulations is presented in Table 5, 
where it is shown that the S3 was the most time demanded 
(around 13 minutes). 

In Fig. 10, is displayed the time temperature evolution for 
MAG process. S1 presented an average temperature 
distribution lower than the other refinements, around 
1748°C, an inverse situation for S2, with values above 
2040°C. 

The S3 presented a value in the midst of S1 and S2, with 
a medium temperature of 1836°C. Furthermore, it exhibited 
a more refinement behaviour than the other curves, in other 
words, the best-suited mesh for the study.  

The maximum temperature values for each simulation 
(S1, S2 and S3) were respectively, 2166°C, 2567°C and 
2376°C. These data are important in welding practices 
situations, due the highest temperature parameter reached 
be a crucial value for sizing project. 

For the TIG solution, the results are present according to 
the Fig. 11, where the temperature is a medium of 660°C 
and again it was verified that the S3 simulation showed the 
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Fig. 10. Results for temperature time-history for MAG welding simulation 

Fig. 11. Results for temperature time-history for TIG welding simulation 

best adaptive behavior than compared to S1 and S2. The 
maximum temperature reached for the simulations were 
respectively, 1034°C, 1090°C and 1087°C. 

3.2 Temperature Distribution and Metallurgical 
Transformations 

In the temperature distributions, Fig. 12 illustrates the 
behavior at the end of time for MAG process and the Fig. 
13 shows the metallurgical transformations in the weld pool. 

The images reveal where the addition metal melts in fusion 
zone, the temperature reaches values at intervals of 2000°C 
– 1500°C. In the Heat-Affected Zone (HAZ) there is a
variation next to 600°C – 1300°C.

For the situation of Al6082-T6 alloy, a greater thermal 
distribution is observed, situation explained because of the 
high coefficients of thermal conductivity and specific heat. 
Besides that, in Fig. 14 a melting temperature of 
approximately 630°C is also noted. The temperatures of the 
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HAZ are consistent with that verified in the literature, with 
the phases of fusion (over 600°C), solubilized region 

(between 600°C and 500°C) and the over-aged region (at 
intervals of 500°C and 200°C). 

Fig. 12. Results for temperature time-history for MAG welding simulation 

Fig. 13. S3 equivalence with metallurgical transformations for steel 

Fig. 14. S3 equivalence with metallurgical transformations for aluminium 6XXX 
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3.3 Analytical-Numerical Evaluation 
In Fig. 15 are presented the graphical results for 

analytical and numerical responses, that it is possible to see 
in P1 a numerical behavior closest with adaptive function, 
which is not verified for Rosenthal equation that show a 
proximity only in the first 30 seconds. Moreover, in the time 
between 30~60 seconds, the adaptive solution presents 
values slightly higher than FEM. 

For the P2 point, the numerical solution still shows some 
proximity to the adaptive function, however, at 30 to 60 
seconds, the value found in the FEM is higher than adaptive 
function, a situation opposite to that occurred in P1. Another 
factor notorious is that Rosenthal solution becomes more 
divergent than the previous situation.  

At points P3 and P4, the Rosenthal solution becomes 
practically outdated, observing only similarity between the 
FEM and adaptive function. It seen that in P3 the time 
interval (30-60 seconds) the adaptive function presents 
values higher than FEM, observing an encounter by the two 
functions only in the four final seconds. In P4, at interval of 
30-60 seconds, the FEM curve becomes higher than the
analytical function.

For the TIG welding, the points P1, P2, P3 and P4 are 
represented by the Fig. 16, where show in both points, the 
Rosenthal solution is totally at odd with the graphical 
response of the numerical and adaptive function solution. In 
P1, the adaptive function and FEM present a close 
encounter the interval of 25-32 seconds, and the highest 
temperature reached was in adaptive function (615.48°C) 
compared to FEM (614.28°C). 

Fig. 15. Graphs of numerical and analytical responses for MAG welding 

P1 P

P P
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Fig. 15. Graphs of numerical and analytical responses for MAG welding 

For P2, the FEM curves become higher than the adaptive 
solution between 30-60 seconds, and in P3 and P4, the 
adaptive function starts up than FEM, however, for the time 
of 40s to P3 and 36s for P4 until the end, the numerical 
response becomes superior.  

For these results, it is possible to assume some 
prepositions, being them; the points that correspond to the 
base metal surface, P1 and P3, in MAG situation, showed a 
behavior of the adaptive function higher than the FEM, 
nevertheless, the points correspond to the bottom of the base 
metal, P2 and P4, the FEM curve that showed the greatest 
behavior.  

In the TIG results, the curves did not follow the same 
pattern seen in the MAG case, in all the responses the curves 
tend to invert positions, either at the beginning or at the end, 
with most of the encounters at the middle of the time. 

3.4 Errors and Comparisons 
To compare the thermal solution presented by the 

numerical extension tool, was calculated the relative error, 
taking into account the response of adaptive function as 
exact value, because as mentioned before, it is an 
experimentally validated method. Fig. 17 presents the 
relative error for points P1, P2, P3 and P4 for the MAG 
welding simulation. 

The FEM showed the smallest errors for points P1 and P3, 
which corresponds to the surface of the base material, 
however, despite the values of P2 and P4 being slightly 
higher, the values are on average, bellow 10%. In case of 
Rosenthal solutions, the error value was between 40-46%. 

For TIG welding, the results are presented in accordance 
with Fig. 18, that for the aluminum alloy the errors are 
greater than that of steel (an increase between 6 ~ 13%). The 

P1 P

P P
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Fig. 17. Relative error of FEM and rosenthal with respect to adaptive function – MAG 

Fig. 18. Relative error of FEM and rosenthal with respect to adaptive function - TIG 

points that showed the lowest errors for the FEM were P1 
and P2. Furthermore, the Rosenthal equation increased the 
global error value when compared to MAG process, being 
75% in TIG. 

4. CONCLUSION

The ACT Moving Heat Source tool proved to be effective
and with a relatively short calculation time, and its viability 
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can be verified by comparing 4 points near the fusion line 
with the adaptive function analytical solution, which, in turn, 
has already it been experimentally valid; 

Thermal simulations also showed results very close to 
reality in relation to the metallurgical transformations of the 
alloys. In addition, a lower error was found when it is 
intended to analyse points on the surface of the part, where 
P1 and P3 showed fewer errors than the points at the bottom 
of the part (P2 and P4). 

In general, the finite element method applied to the 
simulation of MAG and TIG welding processes, presents a 
lower error value in the case of the simulation involving 
steel (error between 3 ~ 10% at points P1, P2, P3 and P4) 
than in aluminium alloy case (error between 15 ~ 18% at the 
same points). 

Analytically, Rosenthal's mathematical solution did not 
prove to be a good comparative method, despite being one 
of the classic resources in the literature, recent solutions 
such as the one presented in this study showed better results. 

Finally, when ACT compared to other numerical methods 
such as Goldak's semi-ellipsoidal and double-ellipsoidal the 
main advantages are; (i) There is no need to program an 
algorithm for modelling the fusion pool; (ii) Simple and 
intuitive interface, which saves time; (iii) Relatively low 
solution time; (iv) Metallurgical transformations well 
defined in the simulations. Regarding the disadvantages we 
can mention; (i) The other methods have more reliable 
results, since they have already been experimentally 
validated; (ii) needs a weld pool geometry well defined in 
the CAD model; (iii) Necessity to calculate thermal 
parameters to enter in the software.  

However, for solutions that must be taking in account the 
cost and time, ACT has shown, for welding processes in 
steel and aluminum alloys, it can be a versatile and effective 
tool. 
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	1. INTRODUCTION

	Nevertheless, the thermal non-uniformity has consequences of the material equilibrium stress-strain state, that can lead to residual stresses (Knoedel et al., 2017), fatigue failures (Lahtinen et al., 2019), stress corrosion and fracture (Vicente et a...
	Fig. 1. Schematic representation of microstructural transformations for aluminium alloys, image gently authorized by the authors (Ambriz and Jaramillo, 2014)
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	2. Materials and Methods
	2.1 Rosenthal Analytical Solution


	In the electric arc, the heat introduced into the fusion pool is transported by convection and thermal conduction (Feng, 2005). The heat conduction equation from the energy conservation law for moving heat source (Kumar and Sinha, 2018; Nasiri and Enz...
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	The welding simulation was performed using the ACT extension moving heat source, in which DIN CK20 steel and Al6082-T6 were used as the base materials for simulation. The thermal properties for the FEM are presented by the Fig. 6, that the equations f...
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	Fig. 4. Adaptive function iteration flowchart in matlab
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	The extension feature provides two types of solutions: (1) moving heat flux and (2) moving heat energy. For this research, it was used moving heat flux, due to the variable inputs being known welding parameters, such as speed, welding radius, and heat...
	Where q is the heat flow on the surface, P is the intensity power of the heat source (W/mm2), r is the radius of the beam (mm), (x0, y0, z0) it is the instantaneous position of the heat flow in the path given by the product of the speed of the heat fl...
	The interface performs the calculation according to the image shown in Fig. 7, in which a point is defined as the beginning, a path (so that the welding is developed) as a function of the welding speed ν and time t.
	The element used in the simulation was SURF152 with 4 nodes with three degrees of freedom and the input data for the numerical simulation are presented according to Table 3. To evaluate the mesh convergence during the simulation, three different meshe...
	The boundary condition is a tabular data temperature versus convection coefficient (stagnant air – horizontal cycle) presented by Fig. 9.
	The machine used for simulations presents an AMD EPYC 7351 16-core processor with 16 CPUs with 2.4 GHz and 16 GB of memory. The version of FEM software is Ansys 2019 R3 -Academic Research Mechanical and CFD.
	Fig. 8. Finite element mesh for the three refinements
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	Table 5. Time and memory elapsed for transient thermal simulations
	3. Results and Discussion
	3.1 Mesh Refinements


	The results of the computation time and total memory used in the numerical simulations is presented in Table 5, where it is shown that the S3 was the most time demanded (around 13 minutes).
	In Fig. 10, is displayed the time temperature evolution for MAG process. S1 presented an average temperature distribution lower than the other refinements, around 1748 C, an inverse situation for S2, with values above 2040 C.
	The S3 presented a value in the midst of S1 and S2, with a medium temperature of 1836 C. Furthermore, it exhibited a more refinement behaviour than the other curves, in other words, the best-suited mesh for the study.
	The maximum temperature values for each simulation (S1, S2 and S3) were respectively, 2166 C, 2567 C and 2376 C. These data are important in welding practices situations, due the highest temperature parameter reached be a crucial value for sizing proj...
	For the TIG solution, the results are present according to the Fig. 11, where the temperature is a medium of 660 C and again it was verified that the S3 simulation showed the
	Fig. 10. Results for temperature time-history for MAG welding simulation
	Fig. 11. Results for temperature time-history for TIG welding simulation
	best adaptive behavior than compared to S1 and S2. The maximum temperature reached for the simulations were respectively, 1034 C, 1090 C and 1087 C.
	3.2 Temperature Distribution and Metallurgical Transformations

	In the temperature distributions, Fig. 12 illustrates the behavior at the end of time for MAG process and the Fig. 13 shows the metallurgical transformations in the weld pool.
	The images reveal where the addition metal melts in fusion zone, the temperature reaches values at intervals of 2000 C – 1500 C. In the Heat-Affected Zone (HAZ) there is a variation next to 600 C – 1300 C.
	For the situation of Al6082-T6 alloy, a greater thermal distribution is observed, situation explained because of the high coefficients of thermal conductivity and specific heat. Besides that, in Fig. 14 a melting temperature of approximately 630 C is ...
	HAZ are consistent with that verified in the literature, with the phases of fusion (over 600 C), solubilized region (between 600 C and 500 C) and the over-aged region (at intervals of 500 C and 200 C).
	Fig. 12. Results for temperature time-history for MAG welding simulation
	Fig. 13. S3 equivalence with metallurgical transformations for steel
	Fig. 14. S3 equivalence with metallurgical transformations for aluminium 6XXX
	3.3 Analytical-Numerical Evaluation

	In Fig. 15 are presented the graphical results for analytical and numerical responses, that it is possible to see in P1 a numerical behavior closest with adaptive function, which is not verified for Rosenthal equation that show a proximity only in the...
	For the P2 point, the numerical solution still shows some proximity to the adaptive function, however, at 30 to 60 seconds, the value found in the FEM is higher than adaptive function, a situation opposite to that occurred in P1. Another factor notori...
	At points P3 and P4, the Rosenthal solution becomes practically outdated, observing only similarity between the FEM and adaptive function. It seen that in P3 the time interval (30-60 seconds) the adaptive function presents values higher than FEM, obse...
	For the TIG welding, the points P1, P2, P3 and P4 are represented by the Fig. 16, where show in both points, the Rosenthal solution is totally at odd with the graphical response of the numerical and adaptive function solution. In P1, the adaptive func...
	Fig. 15. Graphs of numerical and analytical responses for MAG welding
	Fig. 15. Graphs of numerical and analytical responses for MAG welding
	For P2, the FEM curves become higher than the adaptive solution between 30-60 seconds, and in P3 and P4, the adaptive function starts up than FEM, however, for the time of 40s to P3 and 36s for P4 until the end, the numerical response becomes superior.
	For these results, it is possible to assume some prepositions, being them; the points that correspond to the base metal surface, P1 and P3, in MAG situation, showed a behavior of the adaptive function higher than the FEM, nevertheless, the points corr...
	In the TIG results, the curves did not follow the same pattern seen in the MAG case, in all the responses the curves tend to invert positions, either at the beginning or at the end, with most of the encounters at the middle of the time.
	3.4 Errors and Comparisons

	To compare the thermal solution presented by the numerical extension tool, was calculated the relative error, taking into account the response of adaptive function as exact value, because as mentioned before, it is an experimentally validated method. ...
	The FEM showed the smallest errors for points P1 and P3, which corresponds to the surface of the base material, however, despite the values of P2 and P4 being slightly higher, the values are on average, bellow 10%. In case of Rosenthal solutions, the ...
	For TIG welding, the results are presented in accordance with Fig. 18, that for the aluminum alloy the errors are greater than that of steel (an increase between 6 ~ 13%). The
	Fig. 17. Relative error of FEM and rosenthal with respect to adaptive function – MAG
	Fig. 18. Relative error of FEM and rosenthal with respect to adaptive function - TIG
	points that showed the lowest errors for the FEM were P1 and P2. Furthermore, the Rosenthal equation increased the global error value when compared to MAG process, being 75% in TIG.
	4. CONCLUSION

	The ACT Moving Heat Source tool proved to be effective and with a relatively short calculation time, and its viability can be verified by comparing 4 points near the fusion line with the adaptive function analytical solution, which, in turn, has alrea...
	Thermal simulations also showed results very close to reality in relation to the metallurgical transformations of the alloys. In addition, a lower error was found when it is intended to analyse points on the surface of the part, where P1 and P3 showed...
	In general, the finite element method applied to the simulation of MAG and TIG welding processes, presents a lower error value in the case of the simulation involving steel (error between 3 ~ 10% at points P1, P2, P3 and P4) than in aluminium alloy ca...
	Analytically, Rosenthal's mathematical solution did not prove to be a good comparative method, despite being one of the classic resources in the literature, recent solutions such as the one presented in this study showed better results.
	Finally, when ACT compared to other numerical methods such as Goldak's semi-ellipsoidal and double-ellipsoidal the main advantages are; (i) There is no need to program an algorithm for modelling the fusion pool; (ii) Simple and intuitive interface, wh...
	However, for solutions that must be taking in account the cost and time, ACT has shown, for welding processes in steel and aluminum alloys, it can be a versatile and effective tool.
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