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Resumo

Atualmente, existe uma pandemia global, COVID-19, que pode provocar consequências

devastadoras para a saúde humana. Além disso, pessoas idosas têm uma probabilidade

maior de sofrerem os efeitos mais severos da doença. wearable devices podem monitor-

izar parâmetros biológicos/físicos, e uma análise de previsão aos dados resultantes deve

permitir a identificação mais rápida possível de pessoas que possam estar infetadas com

o vírus.

Para criar um sistema com estas capacidades, desenvolveram-se os módulos health

data provider e data analysis para recolher os dados e fazer as previsões, com base nesses

dados, respetivamente. A plataforma FIWARE foi usada para implementar o backend do

sistema, através de módulos open source ready-to-use para gerir os dados no sistema.

Os médicos do Hospital da Terra Quente definiram os parâmetros biológicos/físicos

de interesse e, considerando os diferentes tipos de variáveis, implementaram-se três tipos

distintos de previsões: última observação, estimador linear de tendência e método aditivo

Holt-Winters. As previsões obtidas são usadas para classificar o estado de uma pessoa,

para um cenário de pior caso possível: provável que esteja infetado com o vírus ou provável

que não esteja infetado com o vírus. As regras de classificação foram definidas pelos

médicos do Hospital da Terra Quente.

Os resultados obtidos são promissores e trabalho futuro pode ser feito para melhorar

o sistema na inclusão de mais fontes de dados, ajuste dos métodos de previsão e na

introdução de novas metodologias de classificação final.

Keywords: COVID-19, FIWARE, Dispositivos Wearable, Previsão.
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Abstract

Nowadays, there exists a global pandemic, COVID-19, that may provoke devastating

consequences to human health. Moreover, elder people have a higher probability to suffer

the most harsh effects of the disease. By monitoring biological/physical parameters with

the aid of wearable devices and applying forecast methods to the collected data, it should

be feasible to identify, as soon as possible, people that may be infected with the virus.

To create a system with such capabilities, a health data provider and a data analysis

modules were implemented, to fetch the biological/physical data and to generate forecasts

based on that data, respectively. The backend of the system was implemented through the

FIWARE platform, using open source ready-to-use modules of this platform to manage

the data in the system.

The biological/physical parameters of interest were defined by the medical personnel

of Hospital da Terra Quente and, considering the different type of variables in analysis,

three types of forecasts were implemented: last observation, linear trend estimator and

additive Holt-Winters method. The obtained forecasts are used, combined with a worst

case scenario approach to classify the state of a person: likely to have been infected by

the virus or not likely to have been infected by the virus. The classification rules were

devised by the Hospital da Terra Quente medical staff.

The obtained results are promising and future work can be done to improve the system

in terms of providing extra data sources, fine tuning of the forecast methods and by

introducing new final classification methodologies.

Keywords: COVID-19, FIWARE, Wearable Devices, Forecasting.
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Chapter 1

Introduction

Nowadays, there’s a global pandemic in effect, COronaVIrus Disease of 2019 (COVID-

19), with the most diverse consequences, changing the way people live their lives and,

regrettably, taking people’s lives in great numbers. Moreover, this is a disease that has

strong correlation with people’s age, regarding the influence of the effects it may cause

on people’s health. This implies the existence of groups, within the general population,

that are more easily affected by COVID-19 and/or have a greater probability of suffering

the more devastating effects of the virus. Given the fact that age is a critical factor, the

elderly people are one of those groups. Just like with any other disease, an early diagnosis

can be extremely important to mitigate the virus effects, and live monitoring of these

people can aid to achieve that objective, hence, wearable devices present themselves as

a tool to create a system to monitor patients that may, or may not, be infected with

COVID-19.

Wearable devices are far from the traditional watches people once wore on their wrists.

They still inform about the time but they are also equipped with several different sensing

capabilities that allow them to provide information about other type of variables, such as,

body temperature, heart rate, oxygen saturation, calories, steps, flights, etc. These new

capabilities allow the development of applications in different areas, e.g., fitness, wellness,

healthcare.

The project SMACOVID-19 — Autonomous Monitoring System for COVID-19 (70078
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– SMACOVID-19) [1] involves three institutions and, as the name indicates, has the

purpose of developing a COVID-19 monitoring system. The institutions are:

• MORE – Laboratório Colaborativo Montanhas de Investigação – Associação [2].

Project leader.

• Riskivector, Unipessoal, Lta [3].

• Hospital da Terra Quente (HTQ) [4].

The idea behind the project is to develop an innovative solution that allows users to

monitor their health status and alerts health professionals to potential deviations from

the normal pattern of each user. To that end, data is collected, from wearable devices and

from manual input, to be processed by predictive algorithms, in order to forecast values

for the short-term future, aiding the prediction of the potential worsening of the clinical

situation of the patients.

1.1 Objectives

The SMACOVID-19 project comprises the following objectives:

• To develop an innovative solution that helps to diagnose/identify possible infected

by COVID-19 at an early stage by monitoring biological/physical parameters and

by conducting medical surveys.

• To process the collected data through predictive algorithms in order to analyze the

health status of each person.

• To make the data available to different stakeholders on a platform adjusted to the

profile of each user.

• To allow health professionals to monitor their patients closely and continuously

and quickly identify possible epidemiological situations, but also to allow wearable

wearers to be more aware of their health status.
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All three stakeholders contribute to achieve these objectives:

• MORE is responsible for the data gathering, storage and analysis.

• Riskivector is responsible for platform creation/management and the frontend.

• HTQ is responsible for the biological/physical parameters definition and classifica-

tion. It also states the metric to use to define if a patient is likely to have been

infected with the COVID-19 virus.

Figure 1.1 shows the activities of the SMACOVID-19 project that were defined to

achieve the proposed objectives. The ones marked with the green color represent activities

where there was work done in the context of this thesis: activity 2 was executed in

collaboration with Riskivector; the work implemented in activity 3 resulted in the Health

Data Provider module; the work performed in activity 4 resulted in the Data Analysis

module.

Figure 1.1: SMACOVID-19 project activities.
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In this scenario, this Thesis objectives are:

• to create the backend part of the system, based on the FIWARE platform, to collect

contextual data about variables relevant to COVID-19 infection detection;

• to store efficiently this contextual data;

• to develop/implement predictive algorithms that, based on the available contex-

tual data, generate short-term forecasts, for the variables defined by the medical

personnel, to identify as quickly as possible eventual cases of possible COVID-19

infection.

1.2 Thesis Structure

The remainder of this thesis comprises six extra chapters.

Chapter 2 presents the state-of-the-art.

Chapter 3 discusses elderly monitoring technologies, introducing the wearable devices

used in such type of monitoring. It describes the sensors that are usually incorporated

in the wearable devices and provides a brief explanation of its working principle. This

chapter finishes by providing a description of the FIWARE platform.

The final architecture of the devised system is introduced in Chapter 4, discussing

how the modules work collaboratively to comply with the proposed objectives, finishing

with the presentation of the individual modules that are part of the system, presenting

them in greater detail.

Insight about the defined data model used in the system is provided in Chapter 5.

Afterwards, this chapter continues with details on how the data is acquired and stored,

finishing with the data analysis algorithms and forecast creation.

Chapter 6 presents and discusses the implementation of the system and some of the

obtained results.

In Chapter 7, some conclusions are taken and future work is suggested.
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Chapter 2

State of the Art

Elderly people have seen their numbers grow and are already an important slice of the

general population. For instance, in Portugal, a study from Instituto Nacional de Es-

tatística (INE) and Pordata [5], related to the year 2020, indicates that this age group

(over 65 years) already corresponds to 22.3% of the general population. Furthermore,

data from recent years shows that this is the only age group presently growing in num-

bers. Both young (0 to 14 years) and active adult (15 to 64 years) groups are decreasing,

as shown in the INE report about demographic statistics of Portugal [6]. Beyond their

numbers, this is an age group where people have to deal with some age associated dif-

ficulties. For instance, physical conditions deteriorate with age, consequently, they are

more accident-prone and there are a lot of elderly living alone, in a scenario where, if an

accident happens, they are isolated and without anyone near to help them. In this type of

scenario, elderly monitoring can be implemented for different purposes, however, the idea

behind all approaches is to improve their quality of life. Having this in mind, Ambient

Assistant Living (AAL) is a field of research that includes systems and services designed

to:

• monitor elderly activities (providing help in case of emergency),

• compensate/alleviate the age related physical/psychological limitations,

• provide autonomy and safety to the elderly people,
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• improve their life quality, allowing them to continue their life in their own environ-

ment (with a constant remote supervision),

• monitor particular parameters in case of specific diseases.

This field of research includes areas such as video surveillance, fall detection, emer-

gency response and sensor-based (wireless and/or environment sensors) systems.

Considering the accident-prone scenario, in which accidents may result in dire con-

sequences, fall detection is a field of investigation where several works have been imple-

mented. In [7] the authors use only acceleration information, from two accelerometers,

one placed on the chest and other placed on the wrist of the person, to infer if a fall

happened. [8] also presents a system that detects falls using the information from an ac-

celerometer placed inside a custom wearable device the person wears on his wrist, coupled

with ground truth data, for fall conditions, recorded with that wearable. They are able

to identify forward, backward and lateral falls. [9] uses infrared technology to detect falls

from the bed by applying a set of infrared sensors on the bed itself. The authors of [10]

developed a wrist worn wearable device containing an accelerometer and a gyroscope and,

based on their readings, determine the acceleration and angular velocity, that are com-

pared with threshold levels to identify a fall. A similar approach was used in [11, 12].

In [13], the authors take another approach and use a Pi Camera recording the environ-

ment the elder person is in combined with image processing: Motion History Image and

C-Motion techniques are used to identify a person’s fall. Other work that also uses image

processing is [14], that proposes a fall detection algorithm based on depth images of the

recorded fall event.

The presented works so far use primordially custom wearable devices worn by the

elderly and projected/implemented according with the needs required by the type of

monitoring being investigated. This customization may be taken a step further and

include sensors able to read physiological/biological parameters of the person. Several

different parameters can be read with the purpose of detecting abnormal values, for these

variables, that may suggest a distressful clinical situation for the person. In this scenario,
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the systems developed usually send some sort of alert (to family members, to medical

personnel), containing the position of the person, so that aid can be presented to the

elderly person as soon as possible. This allows other type of monitorization, namely, of

diseases that may have sudden consequences, e.g., heart attacks, epilepsy, Parkinson, etc.

In [7], data from heart rate and body temperature is collected and, afterwards, is put

available to the healthcare professionals through a website. In [15], a wearable shirt is

presented, capable of reading pulse, frequency of breathing, underclothing temperature,

positioning inside and outside the house. This allows a continued overview of the health

status of the monitored person. A healthcare data collector framework is developed

in [16] to provide healthcare providers information about individuals’ health conditions

and their living environment. To that end, they developed a wearable that contains

an accelerometer, a skin temperature sensor, and two reflective photoplethysmography

sensors to measure heartbeat and oxygen saturation level in the blood. In [17], wearable

data was used to do physical activity recognition, for elderly with Parkinson’s, based

on machine learning algorithms. They used a wearable with a triaxial accelerometer

and a gyroscope for activity recognition — they employed a comprehensive study of

several features and classifiers for recognising different activities. In [18], wearable devices

were used to read the temperature, heart rate and blood oxygen saturation level sending

notifications when a deviation in values is detected. [19] presents a system that integrated

wearable devices capable of sensing temperature, heart pulse and galvanic skin response

with Raspberry Pi and Arduino devices to develop an IoT solution for elderly monitoring.

These two works have the disadvantage that they require multiple wearable devices to be

able to sense the variables they intend to know about. In [20], the authors use the Apple

Watch series 5 as the wearable, using only a single wearable device, and read the heart

rate, blood oxygen saturation, calories burnt, number of hours of sleep vs the number of

hours in bed and the patient’s activity type. All this information is displayed in real-time

to the caregiver. They set rules to trigger alerts based on the values these parameters

have.

Other works present an interaction between wearable devices and a home/environment

7



framework to develop a system to help the elderly. Usually, these works tend to detect falls

and the person position, to detect activities and abnormal behaviour inside the house. An

example of such type of cooperation is the fall detection work performed in [21], in which

a system that couples an accelerometer, a cardiotachometer and ambient environment

sensors information (temperature, humidity) is presented, where they analyse impact

magnitude, trunk angle and after-event heart rate to identify if a fall happened. They

also establish four different levels of emergency to define what type of alert should be sent

and who should receive it (relatives, caregiver, medical emergency services personnel).

Furthermore, a Zonal Intercommunication Global-standard (ZigBee) network is deployed

at the person’s home, to ensure the wearable device connectivity. Another study, [9],

presents an indoor monitoring system that detects, based on infrared technology, bed-

exiting and provides a washroom alarm subsystem, that is triggered when the person is

inside the washroom for a certain period, surpassing a threshold of time set beforehand.

Again, the connectivity of the system is ensured by a ZigBee network deployed at the

house.

Another important aspect to consider is the fact that there are a lot of elderly people

that live alone, thus, activities and behaviour monitoring can be used with wearable

devices to aid these people. [22] presents an AAL system that uses wearable sensors data,

cognitive, medication and motivation information to implement a cognitive assistant for

a physically active lifestyle. Wearable sensors are used to measure vital signs: heart rate,

body temperature, respiration rate, daily steps, posture, to assess the elder’s health status.

With the purpose of encouraging the elder, it is possible to adapt the suggested actions

the elder should perform, from an Exercise Motivations Inventory questionnaire coupled

with the elder’s biological sensed data. The caregiver can also change the suggestions.

In [23], the authors present a system they named “The SafeNeighborhood Approach”, to

monitor outdoor activities performed by the elders, based on both a wearable device with

sensing capabilities (Global Positioning System (GPS), accelerometer, temperature and

light), as well as a trusted neighborhood network, to aid the elder in case an emergency is

detected. It is capable of notifying five different possibilities of state, for the elder person:
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(1) Ok, (2) Fallen — has not gotten back up in a given time period, (3) adverse weather

— has been exposed to rough weather conditions more than a given time interval, (4)

wandering — has been pursuing erratic paths and (5) Risk of getting lost — is getting

away from an acceptable area. In [24], the authors propose a wearable device, with an

accelerometer, a gyroscope and an inertia sensor, capable of recognizing six human daily

activities (walking, walking upstairs, walking downstairs, sitting, standing, and lying)

through a deep learning algorithm using convolutional neural networks.

In terms of healthcare, in addition to the areas already described, other different

aspects of wearable usage have been the case study of researchers. For instance, in [25],

the authors present a system for automated rehabilitation; in [26] big data analysis is

used to define healthcare services; in [27] it is presented a framework to provide real-time

epilepsy detection. The authors of [28] use the random forest supervised learning method

and wearable sensors more easy to use/find like temperature, electrodermal activity, and

acceleration to predict heart rate and blood oxygen level of patients. In [29], wearable

technology is used to track and classify real-time hand strike motion in a combat sport.

In terms of wearable devices, a characteristic that is present throughout the revised

works is that custom wearable devices had to be created, to read certain characteris-

tics of the human body. Only one work,[20], used a ready-to-use commercial wearable.

Moreover, present commercially available wearable devices incorporate numerous sensing

capabilities able to sense the necessary parameters for healthcare solutions to be created.

Thus, given the fact that for this type of applications the wearable device should be used

continuously, it makes sense to use one of the available solutions that people already asso-

ciate with that type of usage. In this work, the Fitbit Sense was used, since it incorporates

skin temperature, Saturation of Peripheral Oxygen (SpO2) levels and heart rate sensing

capabilities.
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Chapter 3

Technologies for Elderly Monitoring

This chapter discusses some of the technologies available to perform elderly monitoring.

Section 3.1 briefly presents the idea behind retirement homes monitoring systems, Sec-

tion 3.2 discusses how wearable devices can be used for elderly monitoring, presenting

some of the available sensors and its working principle and Section 3.3 presents the FI-

WARE platform on which the development of this work was based.

3.1 Retirement Home Monitoring

Technology has been aiding caregivers at retirement homes in elderly monitoring, for

AAL purposes. AAL technologies may contribute to the preservation of the quality of

life of aging population in an affordable way, thus, decreasing the need of social and

health-care services [30]. AAL includes systems and services designed to: compensate

the age related physical and psychological limitations, guarantee autonomy and safety to

the elderly people; constantly monitoring their activities and providing help in case of

emergency; improve their life quality, allowing them to continue their life in their own

environment with a constant remote supervision also in case of specific diseases [31].

In retirement homes, one important field is the Human Activity Recognition (HAR)

field, that plays an important role: an active lifestyle is the basis for a healthy life and

HAR can assess users’ lifestyle by monitoring the amount of daily activity. The data
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gathered from this monitoring can be used to build a behavioral model that can be useful

for the early detection of anomalies relevant to well-being of the elderly people.

This type of systems, usually, includes some of the characteristics already mentioned

for AAL systems mentioned in Chapter 2, such as, positioning monitoring, inside the

home, for fall detection, wandering behaviour, number of visits to the bathroom, etc, and

personal monitoring, for fall detection, for getting biophysical readings from the person.

These two sensing capabilities can be combined: the house (motion sensors, cameras, ...)

and the person (wearable device with sensing capabilities), to achieve the final objective

of daily activity recognition.

Usually these systems notify someone (caregiver, relative, medical personnel) when

an abnormal situation is detected, e.g., fall detected, too much time in a given room

(bedroom, for instance), position at an unexpected location.

These systems can greatly improve the quality of life of the elders on the several

different aspects AAL systems work on and, in respect of retirement homes, can free

up human caregivers so they can be as efficient as potentially possible. This allows less

caregivers managing more elders. However, there are some aspects that still have to

be improved: these systems are only effective when the elders agree with its use and,

sometimes, that is not the case, namely, when cameras are used to monitor the elders

location [32]. Furthermore, issues can be raised about the systems accuracy, its privacy

and the reduction of human interaction and hands-on care, worsening social isolation for

older people [32]. The worst disadvantage, however, is the fact that this type of systems

can, in fact, change the behaviour of the elders instead of only monitor it. To reduce

alerts generation, there have been cases reported in which the elders purposely changed

their routines, to be certain no alert would be sent to their relatives [32]. For example,

people stopped sleeping in recliners afraid that would trigger an inactivity alert, or people

were quicker in the bathroom to avoid an alert to be sent because they were there too

much time.
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3.2 Wearable Devices

The vast majority of elderly monitoring uses some kind of wearable device to collect data

about the vital signals of the person. A wearable device can be described as a technological

device that is worn ubiquitously and continuously in close contact by a person, usually

having direct contact with the skin, to allow the necessary data gathering to be performed.

This type of devices, with this type of data gathering capabilities, represents one

of the most important sources of data generation today, since they can record different

types of data continuously, in the most diverse contexts. This allows the development of

applications related to the health or fitness areas.

To be able to read data, these devices incorporate hardware with the most diverse

sensing capabilities. Some of the most used sensors are:

• accelerometers

• gyroscopes

• GPS sensors

• skin temperature sensors

• photoplethysmography sensors

• heart pulse sensors

• other types of sensors [33]

An accelerometer is a device that measures the vibration or acceleration of motion of

an object. The force caused by the vibration or the acceleration impacts the piezoelectric

material of the sensor resulting in a generation of an electric charge, proportional to the

applied force. Since ~F = m~a and the charge is proportional to the force, considering

the constant mass of the piezoelectric material, the charge is also proportional to the

acceleration. Accelerometers are used on a wide array of devices, being one of the most

used sensors in handheld devices: for instance, nowadays, almost all smartphones have an
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accelerometer. In an industry setting, accelerometers help engineers analyze a machine’s

stability and enable them to monitor forces/vibrations the machine is subjected to.

There are two types of piezoelectric accelerometers: high and low impedance. In the

first type, the piezoelectric crystal produces an electrical charge which is connected directly

to the measurement instruments. The charge output requires special accommodations and

instrumentation most commonly found in research facilities. This type of accelerometer

is used in applications with high temperature requirements, T > 120◦C.

A low impedance accelerometer has a charge accelerometer as its front end but also has

a tiny built-in microcircuit and Field Effect Transistor (FET) that converts that charge

into a low impedance voltage that can easily interface with standard instrumentation.

This is the type of accelerometer that is most commonly used in industry.

A gyroscope sensor measures the angular velocity or tilt or lateral orientation of an

object. Measured in degrees per second, angular velocity is the change in the rotational

angle of the object per unit of time. These type of sensors are usually combined with

accelerometers, to achieve a more robust/accurate sensing capability.

Gyroscopes can have multiple axes and depending on the direction, there are three

types of angular rate measurements:

• Yaw — the horizontal rotation on a flat surface when looking at the object from

above;

• Pitch — the vertical rotation when looking at the object from the front;

• Roll — the horizontal rotation when looking at the object from the front.

In order to measure one of these angular rates, the rotation rate of the sensor is converted

into an electrical signal.

In terms of size, from small to large, gyroscope sensors can be defined as Vibration

gyroscopes, Fluid gyroscopes, Fiber-optic gyroscopes and Ring laser gyroscopes. Vibration

gyroscopes are easy to use and have the smallest size, making this type the most popular

one. This sensor consists of an internal vibrating element made up of crystal material in
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the shape of a double T symmetrical structure. This structure includes a stationary part

in the center, with a sensing arm attached to it and a drive arm on both sides.

When an alternating vibration electrical field is applied to the drive arms, continuous

lateral vibrations are produced and, since the drive arms are symmetrical, when one arm

moves to left the other moves to the right, canceling out the leaking vibrations. This

keeps the stationary part at the center of the structure and sensing arm remains static.

This is used when an external rotational force is applied to the sensor, causing vertical

vibrations on the drive arms, creating a rotational force that acts on the stationary part in

the center. The rotation of the stationary part leads to vertical vibrations in the sensing

arms, measured as a change in electrical charge. This change is used to measure the

external rotational force applied to the sensor as angular rotation.

The accuracy of vibration gyroscopes depends upon the stationary element material

used in the sensor and structural differences. Thus, manufacturers are using different

materials and structures to try to increase the accuracy of the sensor.

Almost all smartphones nowadays include a vibration gyroscope, that is able to detect,

e.g., the tilt and orientation of the mobile phone and can also be used to perform motion

sensing for the mobile phone.

A GPS sensor is a receiver that uses communication with a satellite-based navigation

system, with a network of 32 (24 active at a time) satellites that circle the Earth twice a

day in a precise orbit, to provide position and velocity of the object the sensor is attached

to. It also provides timing information.

Each satellite broadcasts different signals which can be tracked by a GPS receiver on

Earth, which are then analyzed by the GPS receiver to determine its precise location. To

achieve that, trilateration is used and, it needs information from at least 4 satellites.

• first — spherical surface,

• second — the intersection of both spherical surfaces results in a circumference,

• third — two points in the circumference are identified,
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• fourth — the final point is selected.

The amount of time it takes to receive a transmitted signal from each satellite is

used by the GPS receiver to calculate the corresponding distances. With, at least, four

available distances, trilateration is used and the position is determined. If more than

four satellites are available, the trilateration accuracy increases. GPS can be used for

different purposes: determining a position (location), getting from one location to another

(navigation), monitoring object or personal movement (tracking), creating maps of the

world (mapping) and taking precise time measures (timing).

The three sensors discussed so far, accelerometer, gyroscope and GPS are the most

common sensors found in handheld devices. However, with technology advancements, new

wearable devices started to appear more focused on health and fitness purposes. These

devices include other type of sensing capabilities, that are now going to be discussed.

The temperature sensors, used in wearable devices to read the body temperature can

be of different types:

• photoconductivity

• infrared

• thermistor

• optical — photodetector

The photoconductivity of a material can be expressed as σph = AIm, where A is

constant, I is the light intensity and m is the light intensity exponent, proven to be

temperature dependant. This is used to read the skin’s temperature by using a known

light intensity.

Infrared temperature sensors have the advantage that they don’t need to have direct

contact with the surface they are measuring, thus, they are a highly efficient solution to

temperature measurement in all kinds of environments. These sensors emit an infrared

energy beam, focused by a lens, onto a surface and use the reflected beam energy to

determine the temperature of the surface.
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A thermistor is a semiconductor, that possesses a resistance that varies with its temper-

ature. This relationship is highly dependent upon the materials from which it’s composed.

To calculate the current temperature, the present thermistor resistance is converted in

temperature, according with the equations defined for the material the thermistor is

made of. Thermistor’s can be Negative Temperature Coefficients (NTC) or Positive Tem-

perature Coefficients (PTC) depending if the variation of resistance is not alligned (or

alligned) with the variation of the temperature, respectively. Thermistors are accurate to

approximately ±0.2◦C within their specified temperature range.

Photodiodes or phototransistors can be used as a photodetector and they can sense

light. Semiconductor-based photodetectors have a pn junction that converts photons into

current, provoking the creation of a reserve current, proportional to the light intensity

being detected, through the pn junction. This current can be used to determine the

temperature.

Photoplethysmography is an optical measurement method that is usually used for

heart rate monitoring purposes. It can also be used for blood oxygen saturation level

determination. It is a non-invasive technology that uses an infrared light source and

a photodetector at the surface of skin to measure the volumetric variations of blood

circulation. The reflected light is proportional to blood volume variations. However, one

of the drawbacks of this technique is its inaccuracy in tracking the photoplethysmography

signals during daily routine activities and light physical exercises, since its very susceptible

to motion artifacts. Usually two types of Light Emmiting Diode (LED) are used: (1)

infrared — to measure the flow of blood; (2) green LED — to calculate the absorption

of oxygen in oxyhemoglobin (oxygenated blood) and deoxyhemoglobin (blood without

oxygen present), since it can penetrate more deeply into the human tissue, thus, providing

more accurate measures.

A pulse wave is the change in the volume of a blood vessel that occurs when the heart

pumps blood, and a detector that monitors this volume change is called a pulse sensor.

Reflection-type pulse sensors emit infrared, red, or green light into the body and mea-

sure the amount of light the body reflects (photodiode or phototransistor). Oxygenated
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hemoglobin present in the blood of the arteries has the characteristic of absorbing incident

light, hence, by sensing the blood flow rate (change in blood vessel volume), that changes

following heart contractions over time, we are able to measure the pulse wave signal.

Red or infrared light sensors are more suitable for indoor environment since they

are affected by the infrared rays contained in sunlight. Green light sensors, has a high

absorption rate in hemoglobin and less susceptibility to sunlight, thus, is preferred for

outdoors usage.

3.3 FIWARE

In their own words [34], “FIWARE brings a curated framework of open source software

platform components which can be assembled together and with other third-party com-

ponents to build platforms that support the development of Smart Solutions faster, easier

and cheaper.”. In essence, FIWARE, defines a set of standards for context data manage-

ment and the FIWARE Context Broker (CB) is the key element of the platform, enabling

the gathering and management of contextual data: the current context state can be read

and the data can be updated. This element is also the only mandatory element for a solu-

tion to be able to be described as a “Powered by FIWARE” solution. Moreover, FIWARE

puts available a set of complementary open source elements that can be used in conjunc-

tion with the CB. These elements cover different areas of functionalities, as presented in

Figure 3.1, devised around the CB management block, reinforcing the importance of the

CB for this kind of implementation.

The Core Context management block has available the following generic enablers to

be used:

• STH Comet — has the capability of storing a short-term history of context data

(typically months) on MongoDB;

• Cygnus — allows context history management created as a data stream that can be

injected into multiple data sinks, including some popular databases like PostgreSQL,
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Figure 3.1: Block diagram representing the functionality areas of the FIWARE framework.

MySQL, MongoDB or AWS DynamoDB as well as BigData platforms like Hadoop,

Storm, Spark or Flink.

• Draco — an alternative for Cygnus. It is based on Apache NiFi and is a dataflow

system, supporting powerful and scalable directed graphs of data routing, transfor-

mation, and system mediation logic. It also offers an intuitive graphical interface.

• Cosmos — permits simpler Big Data analysis over context integrated with popular

Big Data platforms (Spark and Flink).

• QuantumLeap — implements storage of context data into time series database

(CrateDB or Timescale).

The Interface to Internet of Things (IoT), Robotics and third party systems block

possesses generic enablers of IoT agents capable of interfacing with the most used IoT

protocols, such as, LWM2M over CoaP, JavaScript Object Notation (JSON) or UltraLight

over HTTP/MQTT, OPC-UA, Sigfox or LoRaWAN. The objective is to allow an easier

retrieval of the context information from the IoT devices or to trigger them based on
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context updates. These IoT agents that FIWARE developed act as bridges between the

IoT corresponding communication protocol with the NGSI protocol used by the FIWARE

elements. Currently, several extra generic enablers are being developed to support more

protocols such as OneM2M, ROS2, DDS, EPCIS and others.

As the name implies, the next block, Context Processing, Analysis and Visualisation

has available generic enablers to ease the process of processing, analysing and visualising

context information. The generic enablers are the:

• Wirecloud — makes it easier to develop web operational dashboards, highly cus-

tomizable by end users.

• Kurento — alows real-time processing of media streams supporting both the trans-

formation of video cameras into sensors and the incorporation of advanced video

application functions.

• FogFlow — it is a distributed execution framework that supports dynamic process-

ing flows over cloud and edges.

Two extra generic enablers are currently under development:

• Perseo — Complex Event Processing that enables events firing capable to send Hy-

pertext Transfer Protocol (HTTP) requests, emails, tweets, Short Message Service

(SMS), messages, etc.

• OpenVidu — abstraction layer for Kurento, to make media processing easier to

program.

The block Context Data/API Management, Publication and Monetization deals with

different aspects. One of them is the security aspect of an implementation of a FIWARE

solution. For that, it introduces generic enablers, such as, the:

• Keyrock — it is an identity manager that establishes support to secure and pri-

vate OAuth2-based authentication of users and devices, user profile management,
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privacy-preserving disposition of personal data, Single Sign-On and Identity Feder-

ation across multiple administration domains.

• Wilma — supports proxy functions within OAuth2-based authentication schemas.

It also implements PEP functions within an XACML-based access control schema.

• AuthZForce PDP/PAP — supports PDP/PAP functions within an access control

schema based on the XACML standard.

Other aspects this blocks deals with is the publication and monetization of context

data resources aspect. In this case the available generic enablers are:

• CKAN extensions — brings a number of add-ons enabling to extend current ca-

pabilities of the world-leading CKAN Open Data publication platform to allow

publication of datasets matching right-time context data, the assignment of access

terms and policies to those datasets and the assignment of pricing and pay-per-use

schemas to datasets.

• Biz Framework — implements backend support to context Application Program-

ming Interface (API)/Data monetization based on open TM Forum Business APIs.

Current work is being done in extra generic enablers to allow the discovery of open

datasets, to execute API management, to facilitate API access, monitoring and monetiza-

tion, to implement independent FIWARE components security, to manage Users, Groups,

and Roles using the SCIM v1.1 standard and to enable extra security checks over user

passwords.

The final block is the Deployment Tools block. FIWARE modules can be deployed

through standard containerization techniques. Furthermore, the majority of the FIWARE

components are directly available as Docker images, hence, Docker is a preferred container-

ization solution to implement a FIWARE-based system.

Docker is an open source platform that allows the containerization of applications and

uses images and containers to do so. An image is a lightweight, standalone, executable
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package of software that includes everything needed to run an application: code, runtime,

system tools, system libraries and settings [35]. A container is a standardized unit of

software, and includes the code as well as the necessary dependencies for it to run effi-

ciently, regardless of the computing environment where is being run [35]. Images turn into

containers at runtime. The advantage that applications developed using this framework

have is that they will always run the same way, regardless of the used infrastructure to

run them.

Docker’s technology objective is to separate application dependencies from infrastruc-

ture, based on the requirements of developers and system operators. It is similar to a

virtual machine (VM), however, the VM virtualizes the hardware and Docker the Oper-

ating System, making it more portable and flexible.

FIWARE uses the FIWARE NGSI RESTful API [36] to support data transmission

between components as well as context information update or consumption. The usage

of this open source RESTful API simplifies the process of adding extra functionalities

through the usage of one, or more, complementary FIWARE components previously in-

troduced or third-party components. In this work, the version used was the NGSI-v2.
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Chapter 4

System Architecture

The development of the system was based on an open source platform, FIWARE [37],

to deal with the context information, thus, ready-to-use modules of this platform are an

integrant part of the system’s architecture, namely, the CB, the Cygnus and the security

modules (Keyrock, Wilma). As a consequence, communication between modules is per-

formed through REST requests, following the FIWARE NGSI RESTful API. This data

transmission between modules entails both context information update and consumption,

hence, writing into the system or reading from it. For the system to achieve the proposed

objectives, different modules had to be implemented and coupled together with the FI-

WARE modules to create the final version of the system’s architecture. These modules

are the health data provider, responsible for acquiring the health data and sending it to

the CB, and the data analysis module, responsible for reading data from the system and

produce the forecasts based on that data. Implementation-wise, the health data provider

was implemented in Typescript [38] and the data analysis module in Python [39].

In the remainder of this chapter, Section 4.1 presents the final system architecture and

the flow of information within the system. Sections 4.2 – 4.5 discuss the architecture’s

individual modules in more detail.
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4.1 Final Architecture

The system architecture, presented in Figure 4.1, includes both ready-to-use FIWARE

modules as well as the implemented health data provider and data analysis modules,

complemented with the indication of the communication ports used on the different mod-

ules to communicate between one another. The architecture also shows, for comple-

tion reasons, the FIWARE ready-to-use security modules (Keyrock and Wilma), config-

ured by Riskivector, and the mobile app module (Flutter Dashboard), also developed by

Riskivector, to be used by the HTQ personnel to interact with the system. These mod-

ules, however, are out of the scope of this work. All modules are inside the same network,

thus, are able to communicate directly with each other.

Figure 4.1: Complete system architecture.

Different types of interactions exist between the architecture modules, for different

functionalities the system must have. For instance, Figure 4.2 shows the sequence diagram

for adding users into the system.
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Figure 4.2: Sequence diagram for creating a new user in the system.

As can be seen, this operation requires collaborative work between four modules of

the system:

• Mobile app — responsible for collecting and sending the necessary data, for the

person creation, to the CB,

• CB — to include the data of the new person, and related entities, into the system,

• Fitbit API — to allow the user to log in into his Fitbit account, associating this

account with the person in the system and to provide access to their data.

• Health data provider — to subscribe new data notifications, from Fitbit, whenever

new data is detected at the Fitbit servers.
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Before introducing a new user into the system, a check should be performed to ensure

that there is only a single user in the system with a given set of Fitbit login credentials,

thus, guaranteeing that a Fitbit account can only be associated with a single person in

the system.

There are two sources of data: (1) mobile app, for manual input data, and (2) health

data provider, for data from Fitbit. Considering the data source, there are slight differ-

ences in the methodology to get the data into the system. For the manual input case, the

sequence diagram that shows the flow of messages used to write data into the system is

presented in Figure 4.3.

Figure 4.3: Sequence diagram for data fetching from the mobile app.

After the mobile app has sent the data to the CB, this module identifies that data

update is occurring and deploys the corresponding notitifications to Cygnus. These no-

tifications include in its body the data related to the entity that was updated, hence,

Cygnus reads that data from the notification and persists it in the MongoDB.

The second data source possibility — Fitbit — requires a different approach. When

Fitbit detects new data availability, the Fitbit API notifies the health data provider about

this, identifying the fitbitId that has the new data available. This allows the system to

identify the person and the corresponding measurement entity, to know what should be

updated in the system. Before data fetching can be executed, a token validity action has

to be performed to verify that data retrieval does not fails due to an invalid token. This
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operation is executed by using the current token in the system to fetch the Fitbit user

profile associated with the identified fitbitId. If invalid, new tokens have to be requested

from the Fitbit API. The next step, implemented by the health data provider, is to fetch

the new data from the Fitbit servers through the Fitbit API. Upon data reception, data

parsing is done to convert the data received from Fitbit to the data model in use by

the system. This allows data to be sent to the CB, that, in turn, notifies Cygnus about

context changes and Cygnus persists the data in the MongoDB. Figure 4.4.

Figure 4.4: Sequence diagram for data fetching from Fitbit servers.

Having in consideration that there are two data sources, with different data fetching

methods associated, and that new data should imply a new forecast should be calculated,
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the data analysis module can be triggered to create a new forecast from two different

perspectives: new data arrived from manual input or new data arrived from the Fitbit

servers.

In the first perspective, new data is sent to the CB and the relevant data, in terms of

forecast execution, is the last observed value. This data can be read from the CB directly,

hence, in order to trigger the forecast execution, when new data arrives at the CB, this

module notifies the data analysis module. The person’s entity id can be read from the

body of this notification and the data analysis module uses this to discover all associated

entities. Having this information, it can request the necessary data, from the CB and the

MongoDB, to perform the forecast.

After forecast execution, the results are sent to the CB. If its the first forecast being

made to that person, it creates the associated Forecast entity, otherwise, it updates the

already existing Forecast entity. Figure 4.5.

In the second perspective, new data arrives from Fitbit and is sent to the MongoDB

through the health data provider. When this module finishes sending the data to the

database, it sends a notification to the data analysis module to inform it that new data

was received from the Fitbit servers. This notification includes the person’s entity id, to

allow related entities discovery, from the CB, in order to allow data fetching from both

the CB and the MongoDB. After collection the data, the module makes the new forecast

and follows the same procedure of the first perspective to create the forecast in the CB.

The steps for this operation can be seen in 4.6

4.2 Context Broker

Each module contributes for the system implementation by performing a set of given

functionalities. The CB is responsible for:

1. keeping within itself the last state of the context information of the entire system;

2. sending notifications to the Cygnus module, whenever there’s an update in the
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Figure 4.5: Sequence diagram for forecast execution triggered by manual input.

contextual information, to allow this module to perform data persistence in the

MongoDB.

3. sending notifications to the health data provider, whenever a new person is inserted

into the system, to allow this module to subscribe new data notifications with Fitbit.

4. sending notifications to the data analysis module, whenever there’s data update in

the system, to allow this module to execute a new forecast.

To be able to execute these actions, the CB needs to communicate with the Cygnus,
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Figure 4.6: Sequence diagram for forecast execution triggered by Fitbit input.

the health data provider and the data analysis modules. To perform the aforementioned

actions, it is necessary to create in the CB:

• a Cygnus subscription for all data changes, regardless of the entity those changes

are related to, for action 2;

• a health data provider endpoint subscription for the person’s Fitbit subscription

execution, for action 3. Since the Fitbit subscription is only done once, per person,

this type of subscription in the CB is a special subscription that can only be triggered

one time — oneshot subscription —, created for a certain Person entity.

• a data analysis endpoint subscription of data update related to the variables used

in the forecast execution. Since data has different sources, different types of sub-

scriptions have to be executed.

FIWARE defines a subscription endpoint that is used to create all the necessary sub-

scriptions through POST requests sent to this endpoint. Figure 4.7 shows the structure of

30



the body of one request of this type, namely, the Cygnus subscription for data persistence.

Figure 4.7: POST request body for the creation of the Cygnus subscription within the
CB.

In the request, idPattern identifies the entity(ies) that the CB will look for data

update, to trigger the notification that will be sent to the endpoint identified in the

url sub-attribute of the notification attribute of the body of the request. Since Cygnus

is a FIWARE module, using the default configuration, this endpoint is already defined

as http://cygnus:5051/notify. This specific subscription, since identifies all entities, is

responsible for the creation of the data persistence in the database, since it will notify the

Cygnus module of all data updates the CB identifies.

The health data provider subscription request can be seen in Figure 4.8. This type of

subscription is triggered only when it detects the first update of a person’s data.

For all manual input variables, sent to the system from the mobile application, a

different type of subscription is created within the CB. These subscriptions are triggered

when a variable associated with them is updated in the CB and a notification is sent to

the data analysis module so that a forecast based on the new data can be calculated.
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Figure 4.8: Oneshot subscription example.

4.3 Cygnus

The Cygnus module is a ready-to-use FIWARE module that uses a subscription based

notification system to send data to a given database. The notification, triggered by the

subscription, sent by the CB, includes in its body the subscriptionId and the entity that

was updated, thus, Cygnus needs to grab this data from the notification and send it to

the database. This means that the Cygnus module needs to be connected to the CB, to

receive the data update notifications, and to the database, to send the data to it.

4.4 Health Data Provider

The health data provider is responsible for all aspects related to data acquisition from

the wearable device. These include:

1. subscribing a new user in the system with the Fitbit services;

2. setting up a notification endpoint, to be used by the Fitbit servers, to deliver noti-

fications about new data existence. The notification Fitbit sends to this endpoint

identifies in its body the Fitbit user(s) that have new data available;
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3. fetching new data, from the Fitbit servers, after availability of data is signalled by

the Fitbit services;

4. sending fetched data into the CB;

5. calling the data analysis module when the fetched data is already in the system, in

the MongoDB.

Actions 1 and 2 are part of the workflow to establish the subscriptions with Fitbit.

Actions 3 – 5 represent activities about the normal operation of the system in data

acquisition and management.

The interaction with Fitbit is done by the implementation of the notification endpoint,

referred in 2, that will act as a callback URL, where near real-time updates are sent.

Figure 4.9 shows the workflow to establish the subscription endpoint with the Fitbit

servers. It is necessary to:

• create/configure a notification endpoint;

• make sure the endpoint is accessible to the Fitbit servers;

• verify the endpoint;

• authenticate users in the implemented mobile application;

• add data subscriptions, per user.

After the implementation of the notification endpoint, the URL needs to be disclosed

to Fitbit, in the Fitbit application configuration, of the developer account that registered

the application with Fitbit. For the verification of the endpoint, Fitbit sends two GET

requests to the created endpoint, as shown in Figure 4.10 and, depending on the received

replies, defines the endpoint as a valid/invalid subscription endpoint. For the endpoint

to be defined as a valid one, it needs to reply with a 204 code to the first GET and with

a 404 code to the second request. If these replies do not occur, the endpoint is signalled

by Fitbit as an invalid one.
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Figure 4.9: Fitbit subscription workflow, from [40].

Upon having a valid subscription endpoint classification, the endpoint can be used by

Fitbit to signal new data availability. For this to happen, the user must give consent for

the application to be able to access his data. This is done in the authorization stage: the

user logs in with his Fitbit account details and is presented with a screen as the one of

Figure 4.11. In this screen, the user can choose which scopes he authorizes the mobile

app to collect data.

Figure 4.10: Fitbit subscription endpoint validation, adapted from [40].
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Figure 4.11: Data scope authorization to provide data access for the application [41].

The access token generated in the authorization stage provides an association between

user and application, by one side, and, by other side, it is a data access token, valid for

the allowed scopes. This fact is used for the new data subscriptions creation with Fitbit.

To create a subscription with Fitbit, for a new user, through the Fitbit API, a POST

request is sent, without body, using the syntax present in Figure 4.12. In this syntax,

[collection-path] identifies the data collection to receive notifications about. In this work,

the collection of interest is activities. The [subscription-id] value has to be unique and

provides a way to associate an update with an user — when a notification is sent about

this user, the [subscription-id] is an attribute of the JSON notification body. This allows

for data fetching to be controlled through the fitbitId or through the subscription-id. We

control it using the fitbitId.

Figure 4.12: REST request syntax for subscription creation [40].

User association is performed in the request headers by the inclusion of the access

token in one of the headers that have to be sent in the request. In fact, there are three

mandatory headers:
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• Accept: ’application/json’

• Authorization: ’Bearer accessToken’

• Content-Length: 0

The Authorization header includes the user’s access token and, despite the fact that

the request has no body, the Content-Length header has to be explicitly set to 0, otherwise,

the Fitbit servers won’t create the subscription.

After subscription creation, Fitbit sends notifications, to the configured endpoint,

identifying new data availability, so that the system can respond accordingly, by fetching

the new data from the Fitbit servers. The process of data fetching will be discussed in a

more detail in Section 5.1.

4.5 Data Analysis

This module is responsible for reading updated data from the system and to produce

forecasts based on that data. The data is stored both in the CB and in the MongoDB, thus,

this module needs to connect to both modules. Furthermore, the health data provider

must signal the data analysis unit when new data is collected from the Fitbit servers. This

means that connectivity to the health data provider is also necessary. In conclusion, the

data analysis module connects to the CB, the MongoDB and the health data provider.

This module is activated based on subscriptions that trigger notifications whenever

a data update is detected on the attributes identified at the subscription creation. The

subscriptions used to trigger the data analysis module identify changes in the relevant

variables to the forecast, thus, there are different subscriptions aligned with the different

data sources:

• CB:

– Questionnaire entity, for the relevant attributes → anosmia, contactCovid,

cough and dyspnoea
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– Measurement entity, using the measurementType value to implement different

subscriptions: blood pressure, diarrhea, oxygen saturation and body tempera-

ture.

• health data provider:

– notification identifying new heart rate data and the person associated with

that data.

Upon notification reception, this module performs the necessary steps to read the data

from the system, creates a new forecast, based on this new data, and sends the recent

calculated forecast mark to the CB.
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Chapter 5

Data Model and Analysis

The FIWARE NGSI-v2 API is used to deal with data representation in the system. This

API establishes rules for entity definition and, per those rules [42], an entity has to have

mandatory attributes, namely, the id and the type attributes. The id is created according

with the format “urn:ngsi-ld:<entity-type>:<entity-id>” and represents an unique Uni-

form Resource Name (URN). In this work, the entity’s type is identified in each entity

definition, as can be seen in the data model presented in Fig. 5.1. Hence, the used entity

types are Person, Questionnaire, Measurement, Organization and Forecast.

Given the fact that each id has to be unique, the <entity-id> part of the URN was

created by using a Universally Unique IDentifier (UUID) version 4 generator. Using these

rules, a person’s entity id may be, for instance:

urn:ngsi-ld:Person:4bc3262c-e8bd-4b33-b1ed-431da932fa5

These rules, logically, are applied to all different entities in the system.

To define the data model, extra attributes were used, in each entity, to convey the

necessary information between modules. Attribute naming conforms to the NGSI-v2 API

guidelines [42]. The Person entity has attributes to specify the user characteristics and

to associate the person with his Fitbit account. It also identifies the medical facility the

patient is associated with. The Measurement entity represents the acquired data values,
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Figure 5.1: Data Model

its corresponding time of observation and the identification of the person those measure-

ments belong to. This entity is used to specify information regarding the temperature,

oxygen saturation, blood pressure, heart rate and daily number of diarrhea occurrences.

The measurementType attribute is used to indicate what type of variable is being used

on that specific entity. To ensure maximum interoperability possible, the Fast Health-

care Interoperability Resources (FHIR) specification of Health Level Seven International

(HL7) [43] was used to define terms, whenever possible. This resulted on the following

terms being used:

• temperature: bodytemp

• oxygen saturation: oxygensat

• blood pressure: bp

• heart rate: heartrate
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• number of dayly diarrhea occurrences: diarrhea (FHIR non-compliant)

The Questionnaire entity specifies data that has to be acquired through the response

of a questionnaire, by the user, through the mobile application. It identifies variables

that are read manually into the system and provides an observations attribute, to allow

the medical staff to enter notes that are relevant to the medical condition of the patient.

Finally, it also has a relationship attribute to associate the Questionnaire entity with a

Person entity.

The Organization entity identifies the medical facility that the person is associated

with, thus, has usual identification attributes used for an institution description. The

Forecast entity provides the forecast mark value, calculated according with the classifica-

tion table defined by the HTQ personnel, and the corresponding time of calculation. It

also relates the Forecast entity with a Person through the relationship attribute refPerson.

5.1 Data Acquisition

Some aspects of data acquisition were already discussed in Section 4.4, such as, the fact

that there are two different data sources that have to be taken into account.

The mobile application is responsible for manual data gathering, sending this data

to the CB through POST requests. For instance, data related to the attributes of the

Questionnaire entity is sent to the CB using this methodology. Fetching data from this

source implies entity identification, using the NGSI-v2 API queries to that effect, based

on the entity’s id that had a data update, and entity’s content reading, from the CB, to

get the data.

Considering the second data source, Fitbit provides an API for data acquisition

that, when new data is uploaded to the Fitbit servers, sends notifications to a config-

ured/verified subscriber endpoint. These notifications are similar to the one represented

in Fig. 5.2 and its reception allow the system to start the data fetching process, from the

Fitbit servers. As can be seen in Figure 5.2, the notification identifies both the fitbitId

(ownerID) of the person that has new data available and the subscriptionId (defined in the
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subscription creation stage), thus, allowing the system to fetch data from the identified

user.

Figure 5.2: Example of a notification Fitbit sends to notify the application about new
data availability in the Fitbit servers [40].

This results in the following workflow, to get the data into the system:

1. create a Person entity;

2. associate Fitbit account with that person;

3. make a oneshot subscription (it is only triggered one time — oneshot) for that

Person entity, notifying the Fitbit subscription endpoint;

4. update the Person entity with the Fitbit details;

5. create the fitbit subscription upon the oneshot notification reception;

6. get new data from Fitbit web API after receiving a notification from Fitbit: collect

the fitbitId from the notification and use it to get the data from the Fitbit servers,

from the last data update instant up until the present time.

The reception of such notification at the health data provider, triggers the endpoint

responsible for acquiring new data from the Fitbit servers. The content of the notification

is read to get the fitbitId associated with the new available data, thus, allowing the

identification of the person who generated that data. The next step is to fetch the data,

and, to that end, the operations identified in the workflow depicted in Figure 5.3 are

executed in the presented order.
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Figure 5.3: Data fetching workflow.

In Figure 5.3, the operations related to entities identification are done through the

NGSI-v2 FIWARE API, by making queries to the CB. The first query, to get the Person

entity, is on a one-to-one relationship, while the second, to get the Measurement entity,

is on a one-to-many relationship and the idea is to read information from parent to child

entity, resulting in the syntax presented in Figure 5.4.

Figure 5.4: GET requests syntax for Person and Measurement entities identification.
Adapted from [44].

The last action of the workflow, getting the data from the Fitbit Web API, involves in

itself a set of steps that have to be followed to ensure correct data retrieval. These steps

are shown in Figure 5.5.

As can be seen:

• the access token is read from the previously identified Person entity;

• this token is verified by using it to request the corresponding Fitbit profile of the

person. If successful, token is valid, otherwise it is invalid.
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Figure 5.5: Workflow to get new data from Fitbit servers.

• if the token is invalid, new access and refresh tokens are requested from Fitbit and

updated within the system. This is done by sending a specific REST request to the

Fitbit servers defined in the Fitbit API.

• after guaranteeing that the tokens are valid, the last update date (date up until

there’s already data in the system) is read from the Measurement entity and is used

to read new data from that point in time up until the present instant.

The process of reading data from Fitbit conforms to the Fitbit Web API, that estab-

lishes four possible syntaxes to get data from their servers. These syntaxes are the ones

presented in Figure 5.6.

Figure 5.6: GET syntax to fetch heart rate data from Fitbit servers [45].
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In these syntaxes, date/end-date is in the format yyyy-MM-dd or today, detail-level

represents the sampling period, start-time/end-time is in the format HH:mm.

A period of observation can be defined using these variables, to establish the interval

to get data from the Fitbit servers. After some tests, we took the decision to use a five

minute sampling period (detail-level takes the value 5min) and to get the data in daily

batches. To achieve that purpose, data fetch methods were implemented to deal with the

different possible intervals that may appear for data synchronization:

• last day:

– start of synchronization is on a previous day → on the present day, data has

to be collected from 00:00 up until the present instant.

– start of synchronization is on the same day → data is collected from last

synchronization time up until the present instant.

• multiple day interval

– two days interval → collect data from last synchronization time up until 23:59

of the start day and collect the present day data.

– more than two days interval → repeat the process of two days, but collecting

in between the data from each intermediary day (00:00 → 23:59).

Data is received in a JSON, placed in a dataset array inside an activities-heart-intraday

attribute. An example of such response is presented in Figure 5.7, where the first samples

of the response are displayed. A data parser was implemented to read this data from the

JSON response from Fitbit and forward this data to the CB, updating the corresponding

Measurement entity value by value. Before executing this data forwarding, the data

parser needs to do some pre-processing on the data, namely, on the observation time,

because Fitbit provides the date and the time separately and the data model represents

it jointly, according with ISO 8601 [46] in the format YYYY-MM-ddTHH:mm:ss.mmmZ,

e.g., 2021-06-25T11:35:45.000Z.
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Figure 5.7: Fitbit response example of fetching heart rate data.

After parsing all data, the health data provider notifies the data analysis module about

the existence of new data, to allow it to produce a new forecast, based on this new data.

The notification’s body include two attributes:

• subscriptionId: identification of the source of the data → fitbit;

• person’s entity id: identification of the person the data belongs to by sending the

corresponding person’s entity id URN.

5.2 Data Analysis and Forecast Execution

When new data arrives into the system, the data analysis module is called to perform a

forecast, based on the new available data. Given the data sources at hand, there are two

methods to call this module: (1) subscription based from the CB or (2) notification from

the health data provider.

In the first method, subscriptions are created within the CB to notify the data analysis

module about data change. This method is used with the Questionnaire andMeasurement

entities. For the latter, individual subscriptions have to be created for each possible

measurementType value: oxygen saturation (oxysat), blood pressure (bp), number of daily

diarrhea occurrences (diarrhea) and temperature (bodytemp). With this methodology,

every time new data arrives at the CB about any of these variables, the subscription
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is triggered and the CB sends the notification to the forecast endpoint, identifying the

subscriptionId, which this module uses to perform a correct identification of the entities

it needs to look after, to collect the data, and the content of the entity that triggered

the subscription. These subscriptions only need to be created once, at system start up.

Examples of subscription creation, at the CB, for the Measurement (blood pressure) and

Questionnaire entities are shown in Figure 5.8.

(a) Measurement entity (blood pressure example).

(b) Questionnaire entity.

Figure 5.8: CB subscription, to send notifications to the data analysis module about
context changes in the Measurement and Questionnaire entities.

The second method is used when there’s new data from the Fitbit servers. Upon data

collection from the Fitbit servers, the data is sent to the CB, being persisted by Cygnus
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in the database. Afterwards, the data analysis endpoint is called with a notification sent

by the health data provider, as stated in Section 4.4, that includes a static subscriptionId

defined as fitbit and the person’s entity id URN, as depicted in Figure 5.9.

Figure 5.9: Notification sent by the health data provider to the data analysis module.

Considering the body of the notification received by the data analysis module, the

flowchart presented in Figure 5.10 is executed to perform the forecast.

Figure 5.10: Flowchart of the operations the data analysis module executes to create
forecasts.

After reading the Person’s URN, queries to the CB are implemented to get the URNs
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of all Measurement and Questionnaire entities related with that person, to allow data

collection from the system about all variables: (1) anosmia, (2) contactCovid, (3) cough,

(4) dyspnoea, (5) blood pressure, (6) numberDailyDiarrhea, (7) oxygen saturation, (8)

temperature and (9) heart rate.

Data history of a certain variable is used to forecast that variable:

• variables 1 – 4 are boolean variables that tend to maintain the value in consecutive

observations, however, they may have sudden and unpredictable changes in value.

This type of behaviour configures the random walk model, for which the advised

forecast consists in the last observed value [47], that can be read from the CB. This

implies the forecast is the one presented in Equation 5.1:

ŷt+1 = yt (5.1)

• variables 5 – 8 are variables with slow variation and small dynamic range. In terms of

forecasting, the trend is a regular, slowly evolving change in the series level and can

be modeled by low-order polynomials. Given these two facts, the forecast used for

these variables was a linear trend estimator, based on least squares estimation [47].

The least squares principle provides a way of choosing the coefficients effectively by

minimising the sum of the squared errors, identified in Equation 5.2:

T∑
t=1

ε2
t =

T∑
t=1

(yt − β0 − β1xt)2 (5.2)

The resulting coefficients, β̂0 and β̂1, are then used to make the forecast according

with Equation 5.3:

ŷt+h = β̂0 + β̂1xt+h (5.3)

• variable 9 has a seasonal variation that can be observed on a daily basis, thus,

a forecast algorithm that can take seasonal effects into consideration had to be

used. To choose one method, it was considered the usage of a neural networks,
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AutoRegressive Integrated Moving Average (ARIMA) models and the additive Holt-

Winters method. Based on the results accuracy and computation time, the additive

Holt-Winters forecast method [47] presented in Equations 5.4 – 5.5.

`t = α(yt − st−m) + (1− α)(`t−1 + bt−1)

bt = β∗(`t − `t−1) + (1− β∗)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−m,

(5.4)

In Equation 5.4, `t represents the level, bt the trend and st the seasonality compo-

nents. The forecast is performed using these values and is illustrated in Equation 5.5.

ŷt+h|t = `t + hbt + st+h−m(k+1) (5.5)

The next step in the flowchart is to read the last observed values of the Questionnaire

attribute values from the CB and use them as the forecast for those variables.

An observation interval of 15 days is set, based on the current time. Next, the process

of forecasting, that includes reading the data from the MongoDB and forecast execution

based on that data, is repeated for each numerical variable in play.

In this step, when forecasting the heart rate, the Holt-Winters method needs to be fed

with periodic data in order to make the forecast and has to have at least data related to

two seasons (two days). This means that data pre-processing has to be executed to ensure

that this requirement is met. For instance, when the wearable device is being charged, it

cannot, of course, read the patient’s data, creating gaps that have to be processed before

passing the data to the forecast algorithm. Hence, when a new forecast is executed, data

is collected from the database, the data is verified to determine if there are gaps in the

data and, if the answer is positive, forward and backward interpolation are used to fill

those gaps. The final data, without gaps, is, afterwards, passed to the forecast method.

Holt-Winters parameter optimization is executed first, using, to that end, the last known

hour data, coupled with a Mean Absolute Error (MAE) metric. The optimized parameters
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Table 5.1: Classification metrics for COVID-19 level identification provided by HTQ.

Variable 0 Points 1 Points 2 Points
Systolic Blood Pressure (mmHg) 120 ≤ x ≤ 140 100 ≤ x ≤ 119 x ≤ 99

Heart Rate (bpm) 56 ≤ x ≤ 85 86 ≤ x ≤ 100 x ≥ 101
or 50 ≤ x ≤ 55 or x ≤ 49

Oxygen Saturation (%) x ≥ 94 90 ≤ x ≤ 93 x ≤ 89
Body Temperature (ºC) x ≤ 36.9 37 ≤ x ≤ 39.9 x > 39.9

Dyspnoea No N/A Yes
Cough No N/A Yes
Anosmia No N/A Yes

Contact COVID+ No N/A Yes
Diarrhea No N/A Yes (minimum

of 5 times/day

are then used to make the forecast for the defined forecast horizon.

The final forecast mark is computed by adding all individual marks, calculated ac-

cording with the rules specified in Table 5.1, defined by the medical personnel of HTQ [4].

This value is used with the following classification, to generate alerts:

• value ≤ 4 points → unlikely COVID-19 → 24 hour vigilance;

• value ≥ 5 points points → likely COVID-19 → patient should be directed quickly

into the emergency room.
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Chapter 6

Implementation and Results

Docker is used to turn the system online using a docker-compose.yml configuration file in

which services are defined for each architecture module. As an example, Figure 6.1 shows

the service definition for a FIWARE ready-to-use module, the context broker, Orion,

and for an implemented module, the health data provider. This methodology has the

advantage that allows the system to implement modularity, thus, allowing functionality

separation between modules. As a consequence of this modularity, the system is easily

scalable: to put more sources into the system there’s only need to implement other health

data provider modules, e.g., to add other brand of wearable devices.

Figure 6.1: Service definition for docker set up to run the system.

For the ready-to-use modules, the service identifies the base image the module should

use. For instance, in the case presented in Figure 6.1, the FIWARE orion image, version

2.5.2 is being used. For the implemented modules, the source code path is identified as

well as the necessary commands to build that code. Both services identify the ports in
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use for that module.

Two modules were implemented:

• health data provider

• data analysis

Health data provider module is responsible for fetching data from the Fitbit API,

thus, methods were implemented in this module that coupled together can achieve this

objective:

• security methods for data access: get tokens; refresh tokens when they are invalid;

• data fetching methods: subscription creation with Fitbit; endpoint creation to re-

ceive new data notifications from Fitbit servers; data fetching for a given interval

(daily-based fetching).

Data analysis module is responsible for creating forecasts. To that end, it was neces-

sary to implement methods for:

• identifying the entities related to the necessary data;

• fetching data from the context broker and the MongoDB;

• implementing the forecast for the individual variables;

• implementing the final forecast based on the individual forecasts;

• sending the calculated forecast in the context broker.

In terms of forecasting results, there are three different types of forecast being executed,

for the different type of variables at play:

• boolean variables with a random walk behaviour. As explained previously in Sec-

tion 5.2, the forecast for this type of variables is the last observed value. This type

of forecast is used with the following variables: anosmia, contactCOVID+, cough

and dysponea;
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• variables with slow variation and/or small dynamic range. Given these character-

istics, a linear trend estimator was used with this type of variables, namely, the

number occurrences of daily diarrhea, the body temperature, the blood pressure

and the oxygen saturation level. Figure 6.2(a), that showcases the number of daily

diarrhea occurrences example, in which the forecast value determined is for the next

day. Other variable that also uses this type of forecast, but with a different fore-

cast horizon (two hours), is the oxygen saturation level. An example is shown in

Figure 6.2(b).

(a) Daily diarrhea example. (b) Oxygen Saturation example.

Figure 6.2: Trend estimator forecasting.

• variables with seasonal variation, namely, heart rate. The Holt-Winters additive

method was used and needs parameter optimization.

For the last scenario, the Holt-Winters forecasting of the heart rate, two different

metrics were used for the parameters optimization: MAE and Root Mean Square Error

(RMSE) values. Table 6.1 presents the obtained results for the values of these metrics,

for different data (days) of the same person.

Different simulations present different days/hours and data fetching situations: data

is almost complete for the analysis scenario or data has considerable gaps (simulations

four and five). MAE and RMSE values remain almost the same, for both metrics, and

produce the same type of variation: an increase in MAE corresponds to an increase in

RMSE. The exception is simulation four, that has the lowest MAE but does not have
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Table 6.1: Simulations of different heart rate data input for Holt-Winters parameters
optimization using different metrics.

Simulation MAE metric RMSE Metric
[α∗, β∗, γ∗] MAE* RMSE [α∗, β∗, γ∗] RMSE* MAE

1 [0.6114, 0.0019, 0.6505] 4.1224 5.5443 [0.5859, 0, 0.7246] 5.5311 4.1327
2 [0.4790, 0, 0.7860] 4.3682 5.8456 [0.4866, 0, 0.7770] 5.8454 4.3685
3 [0.6236, 0, 0.2667] 4.7648 6.7430 [0.7457, 0, 0.7352] 6.7067 4.7732
4 [0.6841, 0.0005, 1] 3.2325 5.2630 [0.6508, 0.0004, 1] 5.2498 3.2343
5 [0.6167, 0, 0.7068] 3.6561 5.1768 [0.6950, 0, 0.686] 5.1426 3.6715
6 [0.7084, 0, 0.8121] 3.9354 5.5081 [0.6799, 0, 0.6823] 5.5010 3.9408
7 [0.7039, 0, 0.6790] 3.6291 4.9786 [0.7538, 0, 0.9987] 4.9662 3.6328

the lowest RMSE. This can be explained by the fact that this is a simulation in which

the data retrieval interval includes a somewhat long data gap, indicating that in this

type of situations, choosing the MAE metric can yield better results. Table 6.1 also

shows that the difference in MAE and RMSE values, for both metrics, is negligible, with

the minimum values occurring in the corresponding metric. Looking into the optimized

parameters, most of the simulations have similar values using both metrics, however, there

are simulations with different values, for each optimization metric. Despite this, however,

the characterization of the MAE and RMSE for all these cases is still in accordance with

the other simulations. Furthermore, from the simulation graphs presented in Figure 6.3,

one can verify that there isn’t a significative difference between the usage of both metrics,

thus, the MAE metric was chosen to be used to define the optimization of the input

parameters of the additive Holt-Winters method.

In order to achieve the final classification, as defined by the medical personnel of HTQ,

the worst case scenario is the one that was considered. This means that minimum and

maximum forecasted values are used together with the classification metrics defined in

Table 5.1 to achieve the individual forecast marks, for each variable.

These marks are added to define the final mark and predict, according with the medical

personnel criteria presented in Section 5.2, if the person is likely infected, or not, with

COVID-19.
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(a) Simulation 1 — MAE. (b) Simulation 1 — RMSE.

(c) Simulation 3 — MAE. (d) Simulation 3 — RMSE.

(e) Simulation 6 — MAE. (f) Simulation 6 — RMSE.

Figure 6.3: Forecast of heart rate for different scenarios.
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Chapter 7

Conclusions

The technology development in wearable devices and its corresponding sensing capabilities

facilitates the usage of this type of devices for elderly monitoring. Furthermore, there is

nowadays a global pandemic in effect, with dire consequences for the elderly people.

Within this context, this work presents the development of a system to monitor persons

that may be, or not, infected with COVID-19, in order to forecast the situation that each

person is in as soon as possible.

FIWARE platform modules were used, namely, the context broker and cygnus com-

bined with a MongoDB and two implemented modules: health data provider and data

analysis. The health data provider is responsible for getting data from the Fitbit servers

and the data analysis is responsible for reading data from the system and use that data to

create health status forecasts. To create the system, all these modules were containerized

using Docker.

Three type of forecasts were implemented, considering the different type of variables

that have to be taken in consideration: boolean variables, with a random walk behaviour

are forecasted through the last observation; slow variation and/or small dynamic range

variables are forecasted using linear trend estimators; variables with seasonal variation

are forecasted by the additive Holt-Winters method, with input parameter optimization

performed using a MAE metric.

The forecasts for the individual variables are taken into consideration to, in conjunction
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with the classification defined by the medical personnel, determine individual classification

marks. These marks are added to calculate the final classification mark that defines if the

person is likely to be, or not, infected by COVID-19.

The determination of the individual marks is based on a worst case scenario. This

means that maximum and minimum values are taken (depending from the variable) from

the forecasted values to apply the classification. By one side, this is the methodology to

identify the most COVID-19 cases. However, since it is the worst case scenario, it is the

methodology that is more prone to identify false positive cases.

The obtained results so far are encouraging, however, future work can be done to

improve the system:

• the modularity of the system provides scalability to it. Work can be done to take

advantage of this system characteristic, for instance, increasing the existing data

sources of the system — only a new health data provider has to be implemented for

a new data source, e.g., another wearable device with other sensing capabilities.

• other forecast methods can be taken into consideration to compare them with the

current methods in use at the moment, to verify if accuracy can be improved.

• other final classification methods, other than the worst case scenario, should be

investigated/implemented to check if it is possible to improve the results in terms

of correct identification vs false positives.
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