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A B S T R A C T   

The aim of this paper is to bring valuable phase equilibria information for the design and operation of bio
lubricant and related biofuel product processes. As a result, Vapor-Liquid Equilibrium (VLE) measurements, at 
different temperatures, pressures and global compositions, for the ternary systems [Ethanol + 2-Ethyl-1-hexanol 
+ 1-Dodecanol] and [Ethanol + 1-Octanol + 1-Dodecanol], as well as a multicomponent system containing these 
alcohols together with Balanites aegyptiaca fatty acid ethyl esters are reported for the first time (data pressure and 
temperature ranges: 4394–26790 Pa, 306–423 K). The Dortmund modified UNIFAC model showed very high 
accuracy in the prediction of these VLE, with overall average absolute deviations on the liquid and vapor molar 
compositions of 0.007 and 0.0003 for the ternary systems, 0.003 and 0.006 for the multicomponent system.   

1. Introduction 

Biomass harnessing in accordance with the biorefinery and green 
circular economy concepts to generate energy carriers and high value- 
added products from conversion technologies satisfying the eco-design, 
eco-energy and eco-materials criteria is an essential environmental, eco
nomic and social issue [1,2]. Production of biodiesel and biolubricants 
from non-edible oilseed plants by reactive distillation using trans
esterification as conversion route is such an illustration [2,3]. Indeed, 
first, this class of biomass does not bring about indirect land use change 
and even often contributes to soil improvement (erosion prevention or 
biofumigation). It also offers a wide range of applications beneficial for 
human and his environment by using all the biomass (pharmaceuticals, 
feed, biopesticides…) [1,2,4]. Second, the other possible oil conversion 
routes into biolubricants (through estolide formation or epoxidation fol
lowed by acetylation) are economically less favorable than trans
esterification that can be used to produce both bioproducts successively 
(with biodiesel being a precursor of biolubricants) [3,5,6]. Third, thanks 
to its intensification, reactive distillation offers significant savings in terms 
of material and energy consumed and effluents produced [2,7]. Lastly, 
besides reducing dependence on fossil resources and environmental 
footprint thanks to their biodegradability, biodiesel and biolubricants also 

improve the economic and social development of a country through 
employment opportunities and the required education upstream [2,7,8]. 

Compared to the commonly commercialized methyl biodiesel, ethyl 
biodiesel has better biodegradability, higher flash point, improved cold- 
flow properties and oxidation stability, and lower emissions of NOx, CO, 
and ultrafine particles [9,10]; not to mention the possibility of inte
grating the ethanol fermentation industry into the production process of 
biodiesel and biolubricants (by using ethanol and fusel oil respectively) 
[3,8]. Moreover, biolubricants whose fatty acid group is esterified with 
long-chain alcohol such as 2-ethyl-1-hexanol, 1-octanol, or even 1- 
dodecanol exhibit excellent lubricating characteristics, especially for 
metalworking applications [2,3,5]. Non-edible oils with high amounts of 
oleic and linoleic acids (30–40% each) and much lower level of linolenic 
acid, such as oils from Balanites aegyptiaca (BA), cottonseeds, or Indian 
mustard seeds, are considered optimal for producing biofuel and bio
lubricants exhibiting a good balance between thermal-oxidative stabil
ity, viscosity and cold-flow properties [2,6,11]. 

Robust process simulation of biolubricants production from biodiesel 
requires quantitative and reliable information about the vapor–liquid 
equilibria (VLE) of mixtures containing alcohols and fatty acid esters, as 
well as the liquid–liquid and vapor–liquid–liquid equilibria with the 
presence of glycerol, and eventually water, when dealing with the 
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preliminary biodiesel production step [7,12,13]. Nevertheless, despite 
the recently published extensive work on phase equilibria involved in 
biodiesel production [7,13,14], VLE information for the biolubricant 
production operating under low pressure is still lacking. As an illustra
tion, Table 1 [12,15–20] gives an overview of the low-pressure VLE 
related to biodiesel components that were published over the past 10 
years. No similar information was found for biolubricants. 

Accordingly, this paper aims to provide complete experimental VLE 
data for mixtures of relevance for the biolubricant and related biofuel 
industries. Besides, the predictive capabilities of a thermodynamic 
model implemented in most commercial process simulators have been 
evaluated over the investigated ternary and multicomponent mixtures, 
containing BA oil ethyl esters (BAEEs) and/or fat alcohols, such as 2- 
ethyl-1-hexanol, 1-octanol, or 1-dodecanol. It is shown that the phase 
equilibria behavior of the reaction mixture at the start of the BAEE 
transesterification, leading to the BA oil biolubricant, can be accurately 
described. 

2. Material and methods 

2.1. Chemicals and BAEEs production 

The description of the chemicals used in this study as internal stan
dards, solvent, or ternary system formulation is given in Table 2. The 
BAEEs were produced in a batch stirred tank reactor according to 

Nitièma-Yefanova et al. procedure ((i) two-stage transesterification with 
intermediary addition of glycerol after 30 min of reaction, the whole 
carried out for 50 min at 35 ◦C and 1 atm, with 1.0 wt% potassium 
hydroxide as the catalyst and ethanol to oil molar ratio equal to 8; (ii) 
dry-purification using 4 wt% of rice husk ash as adsorbent under 35 ◦C, 
for 20 min) [21,22]). Lastly, a vacuum distillation (180–200 ◦C; 10 
mbar) was carried out to obtain a high-grade BAEE mixture (composi
tion and details of the analysis given in Supplementary Material, 
respectively SM1 and SM2 [23]). 

2.2. VLE experiments and procedure 

The VLE experiments were carried out in an all-glass ebulliometer, 
operating between 1 and 100 kPa, with dynamic recirculation of the 
vapor and liquid phases helping to reach more quickly the equilibrium 
conditions in addition to the Cottrell pump (model EEA 3000, Pignat, 
France) [24]. Similar devices have proven to be performant for yielding 
VLE measurements of high level [25,26]. A detailed description of the 
ebulliometer of which a schematic diagram is provided in Fig. 1 is 
available in the paper by Muhammad et al. [12]. The uncertainties on 
the measured temperature and pressure are, respectively, ±0.01 K and 
± 0.013 kPa (±0.1 mmHg). These were determined, prior to any VLE 
experiment series, by checking the calibration of the ebulliometer sen
sors using an external reference thermometer and measuring the vapor 
pressure of ethanol, selected as a reference compound, over a wide 
temperature range. The composition of the vapor and liquid phases were 
determined by gas-chromatography coupled with a flame ionization 
detector (GC-FID 7820, Agilent Technology, USA). Details of the 
equipment, operating conditions, and calibration are given in Supple
mentary Material (SM2) [23]. All compositional analyzes were per
formed by using three internal standards (one specific for the BAEEs, one 
different for short, and another for fat alcohols; SM2). Thus, for the GC- 
FID calibration, standard solutions of well-known composition were 
prepared by weighing the components of the studied system (with ethyl 
oleate as a surrogate of the BAEEs), and the required IS(s). Performance 
of the GC-FID calibration was then checked by analyzing the composi
tion of supplementary standard solutions and was used to estimate the 
mole fraction uncertainty: ±0.002 for the ternary systems, ±0.004 for 
the multicomponent system. 

Table 1 
Overview of the low-pressure VLE information related to biodiesel components published over the past 10 years (no similar information was found for biolubricants).  

System T/K 
range 

P/MPa range Experimental technique Modeling 
information 

Ref. 

Ethanol + Ethyl stearate 313–419 0.017–0.098 Dynamic ebulliometry (recirculation 
of only the vapor phase) 

NRTL, UNIQUAC and 
UNIFAC-Do 

[15] 

Ethanol + Ethyl palmitate 309–422 0.0150–9.300    
Ethyl palmitate + Ethyl stearate 502–520 0.0053 Differential scanning calorimetry Wilson, NRTL and 

UNIQUAC 
[16] 

Ethyl palmitate + Ethyl oleate 502–537 0.0053; 0.0093    
Ethyl palmitate + Ethyl linoleate 514–537 0.0093    
Ethyl myristate + Ethyl palmitate 420–443 0.0005; Dynamic ebulliometry (recirculation 

of both the vapor and liquid phases) 
NRTL, original 
UNIFAC, UNIFAC-Do 

[17]  

435–458 0.0010;     
444–468 0.0015    

Methyl myristate + Methyl linoleate 467–511 0.00533; Differential scanning calorimetry NRTL, UNIQUAC [18] 
Methyl palmitate + Methyl linoleate 491–511 0.00533    
Jatropha ethyl esters a + Ethanol + Water 296–342 0.0067–0.0667; Dynamic ebulliometry (recirculation 

of only the vapor phase) 
UNIQUAC [19] 

Jatropha ethyl estersa + Ethanol + Water 283–329 0.0067–0.0667    
Soybean methyl esters a + Methanol 283–365 0.0067–0.0667; Dynamic ebulliometry (recirculation 

of only the vapor phase) 
UNIQUAC [20] 

Soybean ethyl esters a + Ethanol 295–386 0.0067–0.0667;    
Soybean methyl estersa + Methanol + Glycerol 283–328 0.0067–0.0667;    
Soybean ethyl esters a + Ethanol + Glycerol 296–341 0.0067–0.0667    
1-Octanol + 1-Dodecanol + Balanites aegyptiaca ethyl esters (Ethyl- 

palmitate + Ethyl stearate + Ethyl oleate + Ethyl cis-vaccenate + Ethyl 
linoleate + Ethyl arachidate) 

448–471 0.0080–0.0120 Dynamic ebulliometry (recirculation 
of both the vapor and liquid phases) 

CPA, NRTL, UNIFAC- 
Do 

[12]  

a The mixture of fatty acid ethyl esters was considered as a pseudo-pure component, both for the experimental study and modeling. 

Table 2 
Description of the chemicals used in this study (as internal standards, solvent or 
for ternary systems synthesis).  

Chemical name CAS Source Purity/mass % 

Ethanol 64-17-5 Sigma Aldrich ≥ 99.8 
1-Butanol 71-36-3 Fluka ≥ 99.5 
2-Ethyl-1-hexanol 104-76-7 Sigma Aldrich ≥ 99.0 
1-Octanol 111-87-5 Sigma Aldrich ≥ 99 
1-Decanol 112-30-1 Fluka ≥ 99.5 
1-Dodecanol 112-53-8 Sigma Aldrich ≥ 98 
Ethyl oleate 111-62-6 Sigma Aldrich ≥ 98 
Methyl heptadecanoate 1731-92-6 Fluka ≥ 99 
n-Heptane 142-82-5 Sigma Aldrich ≥ 99  
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Regarding the procedure for generating the VLE measurements, the 
liquid mixture of well-known composition (prepared by weighing the 
required amounts of pure alcohols and/or BAEEs) was loaded into the 
ebulliometer until complete filling the reboiler (total liquid volume 
poured: around 120 mL). After reaching the selected set-point pressure 
under vigorous mixing, the heating power was adjusted to observe a 
satisfactory boiling: 1 drop per second for the condensed vapor phase, 
a semi-continuous flowrate for the liquid phase. When the equilibrium 
state was reached (commonly after 1 to 1.5 h of recirculating for the 
ternary mixtures, 3 to 3.5 h for the multicomponent mixtures), the 
temperature and pressure were noted down, and samples were 
collected for quantification, starting first with the global mixture (via 
the mixing cell septum) and then dealing with simultaneously the 

liquid and condensed vapor phases (via the tubes placed in the sam
pling ports). The equilibrium state was identified when steady tem
perature and pressure were observed for the selected set-point 
pressure, leading then to assume that the composition of both the 
liquid and vapor phases were also constant. After withdrawing for GC- 
FID analysis the required amount of liquid from the collected samples, 
these were re-introduced into the ebulliometer (via the mixing cell 
septum) to keep approximatively the same mixture global composi
tion. Subsequently, this procedure was repeated for higher set-point 
pressures by adjusting both the heating power and the total amount 
of liquid inside the ebulliometer to maintain a satisfactory boiling. 
While the heating power required to be increased, a supplementary 
volume of liquid needed to be introduced in the ebulliometer (allowing 

Number Description 

1 Double envelope adiabatic equilibrium chamber - An optional plug for sampling a potential second liquid 
phase is also provided. 

2 Reboiler: electrical resistance placed in a quartz sleeve (maximum power 500 W) 

3 Glass condenser (comprising a pipe coil arranged inside a double envelope cell with cooling by circulating 
silicone oil operating from -40°C up to 205°C) 

4 Vacuum circuit (comprising pump valves, vent valves, control solenoid valves) 
5 Funnel for loading the liquid fluid to be studied (maximum volume 150 cm3) 
6 Mixing cell equipped with a magnetic stirrer - A plug with septum allows for potential sampling. 
7 Dry ice trap 

8 Glass buffer reserve (capacity: 8 L) used for vacuum balancing in order to stabilize the pressure of the 
device after sampling 

V1 (V2) Valve for sampling the liquid (condensed vapor) phase 
V11 (V21) 3-Way valve of vacuum setting the sampling tube of the liquid (condensed vapor) phase  
V3; V10 Drain valves of the ebulliometer and of the vacuum buffer reserve 8 
V4; V6 Valves of pouring and vent 

V5; V7; V8 Condenser cooling oil flow control valve; vent flow control valve; vacuum flow control valve 
EV1; EV2 Vacuum control solenoid valve; air inlet regulation solenoid valve

SILICONE OIL 

C
O

TT
R
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L 
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M

P 

Fig. 1. Schematic diagram of the dynamic ebulliometer (Pignat Company, France, EEA model 3000) [24].  
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thus operating at nearly constant volume during subsequent experi
ments). This additional liquid (introduced via the loading funnel) was: 
(i) for the ternary systems, the mixture initially loaded in the ebulli
ometer (or the C8-alcohol for the highest pressures); (ii) for the 
multicomponent system, the ternary mixture [Ethanol + 2-Ethyl-1- 
hexanol + 1-Dodecanol] of well-known composition (in order to 
induce a significant change in the global composition of the investi
gated system, without nonetheless perturbing the equilibrium state of 
the ebulliometer radically). 

2.3. VLE modeling 

Given the large number of components present in the reaction 
mixture during the transesterification of biodiesel into biolubricant 
(over 10 typically), the resulting lack of information regarding the VLE 
data for each of the binaries involved, the highly non-ideal thermody

namic behavior of these mixtures, and the operating conditions of the 
production process (low pressure), the excess Gibbs energy (GE) models 
based on the group contribution (GC) concept are the most appropriate. 
Indeed, cubic equations of state with GC-estimated binary iteraction 
parameters were applied successfully to systems involving molecules 
similar to biodiesel or biolubricants, but under moderate to high- 
pressures with supercritical carbon dioxide [27–29]. Among the GE-GC 
approaches, namely original UNIFAC [30] and its variants (Lyngby 
modified UNIFAC [31], Dortmund modified UNIFAC [32–34], linear 
UNIFAC [35]), the regularly updated Dortmund modified UNIFAC 
model [32–34] was selected as it has yielded excellent VLE predictions 
for complex mixtures involving ethyl esters and alcohols [12,14,36]. 
Accordingly, the implicit γ-φ approach leads to express the vapor–liquid 
equilibrium condition by: 

xi⋅γi(T, x)⋅Ps
i (T) = P⋅yi⋅Ii(T,P, y) (1a)  

with Ii(T,P, y) =
φV

i (T,P, y)
φ*

i
(
T,Ps

i
) ⋅exp

(
1

RT
⋅
∫ Ps

i

P
v*

i,L(T,P) dP
)

In this expression, xi (yi) refers to the mole fraction of component i in 
the liquid (vapor) phase; γi (φV

i ) denotes the activity (fugacity) coeffi
cient of component i in the liquid (vapor) phase of composition x (y), 
temperature T and pressure P; Ps

i , φ*
i and v*

i,L are specific to the pure 
component i and refer respectively to its vapor pressure, fugacity coef
ficient, and liquid molar volume. Being concerned with low pressure 
VLEs of mixtures with no molecular association in the vapor phase, the 
latter was assumed perfect (so φ*

i
(
T, Ps

i
)
= 1 and φV

i (T,P, y) = 1), lead
ing to set Ii(T,P,y) = 1. While the activity coefficients γi were estimated 
by the Dortmund modified UNIFAC model (UNIFAC-Do), the vapor 
pressures Ps

i were evaluated according to the following equation: 

ln(Ps
i/Pa) = Ai +

Bi

(T/K)
+Ci⋅ln(T/K)+Di⋅(T/K)

Ei (2)  

of which values of coefficients Ai to Ei, were taken from the DIPPR 
database [37] for all the pure components investigated. Values of these 
coefficient together with the component decomposition into UNIFAC 
structural groups are given in Supplementary Material (SM3 and SM4, 
respectively; [30,32–34,38,39]). Thus, it was possible to calculate the 
compositions of the liquid and vapor phases at a given temperature, 
pressure, and global composition for each investigated mixture. 

Table 3 
Expressions of the deviations used in this work.  

Definition Expression  

• Deviation between the experimental 
and calculated liquid (vapor) mole 
fractions of component i for the data 
set k 

Δxi = xk,exp
i − xk,cal

i  
1a  

(Δyi = yk,exp
i − yk,cal

i )  1b 

•Average absolute deviation between 
the experimental and calculated 
liquid (vapor) mole fractions for 
component i over all the Nsets data sets  

AADi(x) =
∑Nsets

k=1 |Δxi|/Nsets  2a  

(AADi(y) =
∑Nsets

k=1
⃒
⃒Δyi

⃒
⃒/Nsets)  2b 

•Average absolute deviation between 
the experimental and calculated 
liquid (vapor) mole fractions for the 
data set k over all the NC components 
of the mixture 

AADk(x) =
∑NC

i=1 |Δxi|/NC  3a  

(AADk(y) =
∑NC

i=1
⃒
⃒Δyi

⃒
⃒/NC)  3b 

•Overall average absolute deviation 
between the experimental and 
calculated liquid (vapor) mole 
fractions over all the mixture NC 

components and all the Nsets data sets  

AADoverall(x) =
∑Nsets

k=1

(∑NC
i=1 |Δxi|/NC

)/
Nsets  

4a  

(AADoverall(y) =
∑Nsets

k=1

(∑NC
i=1

⃒
⃒Δyi

⃒
⃒/NC

)/
Nsets)  

4b  

Table 4 
Experimental VLE data and predictions by the UNIFAC-Do model for the ternary system [Ethanol (1) + 2-Ethyl-1-hexanol (2) + 1-Dodecanol (3)] (are given at different 
pressures and temperatures: the molar compositions of the global mixture (z) and of the liquid (x) and vapor (y) phases in equilibrium, as well as the deviations between 
the experimental and predicted mole fractions of each component in the liquid (vapor) phase Δxi (Δyi) as defined in Table 3; the experimental uncertainties u are: u(T) 
= 0.01 K, u(P) = 0.013 kPa, u(xi) = u(yi) = 0.002).   

Set 1 Set 2  

P (Pa) = 13574; T (K) = 317.48 P (Pa) = 16878; T (K) = 321.98 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.5917 0.5579 0.9972 0.0088 − 0.0003 0.5895 0.5627 0.9969 0.0147 − 0.0002 
2-Ethyl-1-hexanol 0.2727 0.2901 0.0028 − 0.0109 0.0003 0.2749 0.2927 0.0031 − 0.0099 0.0002 
1-Dodecanol 0.1356 0.1520 0.0000 0.0022 0.0000 0.1356 0.1446 0.0000 − 0.0048 0.0000  

Set 3 Set 4  
P (Pa) = 20182; T (K) = 325.67 P (Pa) = 23486; T (K) = 328.97 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.5847 0.5450 0.9965 − 0.0056 − 0.0003 0.5843 0.5452 0.9962 − 0.0050 − 0.0002 
2-Ethyl-1-hexanol 0.2783 0.3047 0.0035 0.0037 0.0003 0.2786 0.3046 0.0038 0.0033 0.0003 
1-Dodecanol 0.1370 0.1503 0.0000 0.0019 0.0000 0.1371 0.1502 0.0000 0.0018 0.0000  

Set 5       
P (Pa) = 26790; T (K) = 332.06      

Component zi xi yi △xi △yi      

Ethanol 0.5753 0.5415 0.9960 − 0.0039 0.0000      
2-Ethyl-1-hexanol 0.2845 0.3070 0.0040 0.0026 0.0001      
1-Dodecanol 0.1401 0.1515 0.0000 0.0014 0.0000       
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3. Results and discussion 

The comparisons between the experimental and estimated values of 
the vapor and liquid phase compositions (at a given temperature, pres
sure, and global composition of the considered mixture) were performed 
in terms of various deviations described in Table 3. 

3.1. Ternary systems 

For each of the two ternary systems investigated, five VLE data sets 
were measured for pressure and temperature ranging respectively: (i) 
from 13574 to 26790 Pa and 317 to 332 K regarding system [Ethanol 
+ 2-Ethyl-1-hexanol + 1-Dodecanol]; (ii) from 7051 to 23657 Pa and 
306 to 332 K regarding system [Ethanol + 1-Octanol + 1-Dodecanol]. 
This information, as well as the relating predictions obtained with the 
UNIFAC-Do model, were gathered in Tables 4 and 5, and Fig. 2, the last 
displaying additionally the deviations per component (AADi) and per 
data set (AADk). 

Not surprisingly, on the basis of the accuracy depicted by the UNIFAC- 
Do model for the binaries [Ethanol + 2-Ethyl-1-hexanol] and [Ethanol +
1-Octanol] (Supplementary Material, SM4 [30,32–34,38,39]), predictions 
obtained for both ternary systems are in very good agreement with the 
experimental data (AADk(x)⩽0.012; Fig. 2); even excellent regarding the 
vapor phase for which the observed deviations are much lower than the 
experimental uncertainty (i.e., 0.001). Fig. 2 also shows that the de
viations on the liquid phase composition are somewhat randomly 
distributed, although the poorest results are obtained for ethanol while 
remaining acceptable (AADi(x)⩽0.015). Globally, the deviations obtained 
for the two ternary systems are AADoverall(x) = 0.007 and AADoverall(y) =

0.0003, which is remarkable considering the structural specificities of 
these mixtures, both on the entropic and enthalpic aspects (molecules 
different in shape and size, with additionally cross-associations). 

3.2. Multicomponent systems 

The investigated system contains 10 components, i.e., the BAEEs 
with ethanol, 2-ethyl-1-hexanol, 1-octanol, and 1-dodecanol. In total, 15 
VLE data sets were measured for this system at various global compo
sitions, for pressures and temperatures ranging from 4394 to 10270 Pa 
and 360 to 423 K, respectively. These measurements, together with the 
corresponding predictions obtained with the UNIFAC-Do model, were 
gathered in Table 6, and Fig. 3 displays additionally the deviations per 
component (AADi) and per data set (AADk). More pronounced 

Table 5 
Experimental VLE data and predictions by the UNIFAC-Do model for the ternary system [Ethanol (1) + 1-Octanol (2) + 1-Dodecanol (3)] (are given at different 
pressures and temperatures: the molar compositions of the global mixture (z) and of the liquid (x) and vapor (y) phases in equilibrium, as well as the deviations between 
the experimental and predicted mole fractions of each component in the liquid (vapor) phase Δxi (Δyi) as defined in Table 3; the experimental uncertainties u are: u(T) 
= 0.01 K, u(P) = 0.013 kPa, u(xi) = u(yi) = 0.002).   

Set 1 
P (Pa) = 7051; T (K) = 306.44 

Set 2 
P (Pa) = 10372; T (K) = 313.74 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.5488 0.4881 0.9989 − 0.0096 − 0.0001 0.5478 0.5091 0.9988 0.0097 0.0002 
1-Octanol 0.2777 0.3152 0.0011 0.0062 0.0001 0.2780 0.3006 0.0012 − 0.0071 − 0.0001 
1-Dodecanol 0.1736 0.1967 0.0000 0.0034 0.0000 0.1742 0.1903 0.0000 − 0.0026 0.0000  

Set 3 Set 4  
P (Pa) = 13693; T (K) = 319.34 P (Pa) = 17014; T (K) = 323.64 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.5437 0.4797 0.9988 − 0.0187 0.0004 0.5374 0.4889 0.9989 − 0.0154 0.0008 
1-Octanol 0.2804 0.3198 0.0012 0.0116 − 0.0004 0.2843 0.3101 0.0011 0.0055 − 0.0007 
1-Dodecanol 0.1759 0.2005 0.0000 0.0071 0.0000 0.1783 0.2010 0.0000 0.0099 0.0000  

Set 5       
P (Pa) = 23657; T (K) = 332.04      

Component zi xi yi △xi △yi      

Ethanol 0.5043 0.4552 0.9985 − 0.0187 0.0012      
1-Octanol 0.3049 0.3350 0.0015 0.0115 − 0.0012      
1-Dodecanol 0.1908 0.2098 0.0000 0.0072 0.0000       

Fig. 2. Deviations between the experimental and predicted liquid mole frac
tions for the ternary systems [Ethanol (1) + 2-Ethyl-1-hexanol (2) + 1-Dodec
anol (3)] (a) and [Ethanol (1) + 1-Octanol (2) + 1-Dodecanol (3)] (b) (the 
deviations observed for the vapor mole fractions are all below the experimental 
uncertainty, i.e. 0.001; the predictions are obtained with the UNIFAC-Do model 
[32–34]; the analytical expressions of the deviations are given in Table 3). 
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Table 6 
Experimental VLE data and predictions by the UNIFAC-Do model for the multicomponent systems [Alcohols + BAEEs] (are given at different pressures and tem
peratures: the molar compositions of the global mixture (z) and of the liquid (x) and vapor (y) phases in equilibrium, as well as the deviations between the experimental 
and predicted mole fractions of each component in the liquid (vapor) phase Δxi (Δyi) as defined in Table 3; the experimental uncertainties u are: u(T) = 0.01 K, u(P) =
0.013 kPa, u(xi) = u(yi) = 0.004).   

Set 1 
P (Pa) = 10270; T (K) = 416.93 

Set 2 
P (Pa) = 10270; T (K) = 418.73 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.0178 0.0058 0.2164 0.0038 0.0414 0.0167 0.0000 0.1987 − 0.0017 0.0463 
2-Ethyl-1-hexanol 0.2624 0.2381 0.6174 0.0138 − 0.0238 0.2570 0.2281 0.6324 0.0146 − 0.0175 
1-Octanol 0.0535 0.0505 0.0947 0.0014 − 0.0026 0.0530 0.0492 0.0951 0.0015 − 0.0060 
1-Dodecanol 0.4211 0.4390 0.0710 − 0.0159 − 0.0132 0.4310 0.4475 0.0733 − 0.0208 − 0.0208 
Ethyl Palmitate 0.0397 0.0419 0.0004 − 0.0017 − 0.0001 0.0409 0.0428 0.0005 − 0.0025 − 0.0002 
Ethyl Stearate 0.0297 0.0313 0.0000 − 0.0013 − 0.0002 0.0305 0.0320 0.0000 − 0.0018 − 0.0002 
Ethyl Oleate 0.0786 0.0834 0.0000 − 0.0031 − 0.0008 0.0802 0.0853 0.0000 − 0.0037 − 0.0009 
Ethyl Cis-Vaccenate 0.0019 0.0020 0.0000 − 0.0001 0.0000 0.0019 0.0020 0.0000 − 0.0001 0.0000 
Ethyl Linoleate 0.0946 0.1071 0.0000 0.0031 − 0.0007 0.0880 0.1121 0.0000 0.0144 − 0.0008 
Ethyl Arachidate 0.0008 0.0008 0.0000 − 0.0001 0.0000 0.0008 0.0008 0.0000 − 0.0001 0.0000  

Set 3 Set 4  
P (Pa) = 10270; T (K) = 420.93 P (Pa) = 10270; T (K) = 421.93 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.0167 0.0000 0.1601 − 0.0014 0.0281 0.0149 0.0000 0.1586 − 0.0013 0.0331 
2-Ethyl-1-hexanol 0.2523 0.2156 0.6578 0.0168 0.0142 0.2424 0.2020 0.6419 0.0102 − 0.0116 
1-Octanol 0.0524 0.0473 0.0993 0.0018 − 0.0054 0.0510 0.0453 0.1047 0.0010 − 0.0011 
1-Dodecanol 0.4368 0.4576 0.0823 − 0.0232 − 0.0245 0.4410 0.4655 0.0942 − 0.0160 − 0.0178 
Ethyl Palmitate 0.0415 0.0441 0.0005 − 0.0029 − 0.0003 0.0420 0.0451 0.0006 − 0.0020 − 0.0002 
Ethyl Stearate 0.0310 0.0330 0.0000 − 0.0021 − 0.0002 0.0314 0.0337 0.0000 − 0.0015 − 0.0003 
Ethyl Oleate 0.0813 0.0877 0.0000 − 0.0043 − 0.0010 0.0826 0.0897 0.0000 − 0.0029 − 0.0011 
Ethyl Cis-Vaccenate 0.0019 0.0021 0.0000 − 0.0001 0.0000 0.0020 0.0021 0.0000 − 0.0001 0.0000 
Ethyl Linoleate 0.0851 0.1117 0.0000 0.0153 − 0.0008 0.0919 0.1157 0.0000 0.0126 − 0.0009 
Ethyl Arachidate 0.0008 0.0009 0.0000 − 0.0001 0.0000 0.0008 0.0009 0.0000 0.0000 0.0000  

Set 5 Set 6  
P (Pa) = 10270; T (K) = 423.02 P (Pa) = 6966; T (K) =360.02 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.0140 0.0000 0.1303 − 0.0012 0.0151 0.0728 0.0524 0.9429 0.0191 0.0521 
2-Ethyl-1-hexanol 0.2381 0.1944 0.6514 0.0092 − 0.0035 0.2781 0.2830 0.0509 − 0.0041 − 0.0412 
1-Octanol 0.0504 0.0441 0.1088 0.0009 0.0014 0.0544 0.0559 0.0054 − 0.0006 − 0.0064 
1-Dodecanol 0.4458 0.4711 0.1087 − 0.0161 − 0.0103 0.3854 0.3986 0.0008 − 0.0051 − 0.0045 
Ethyl Palmitate 0.0426 0.0459 0.0007 − 0.0020 − 0.0001 0.0360 0.0372 0.0000 − 0.0005 0.0000 
Ethyl Stearate 0.0318 0.0343 0.0000 − 0.0015 − 0.0003 0.0268 0.0278 0.0000 − 0.0003 0.0000 
Ethyl Oleate 0.0836 0.0912 0.0000 − 0.0028 − 0.0011 0.0703 0.0724 0.0000 − 0.0013 0.0000 
Ethyl Cis-Vaccenate 0.0020 0.0022 0.0000 − 0.0001 0.0000 0.0017 0.0017 0.0000 − 0.0001 0.0000 
Ethyl Linoleate 0.0909 0.1159 0.0000 0.0136 − 0.0010 0.0738 0.0702 0.0000 − 0.0071 0.0000 
Ethyl Arachidate 0.0008 0.0009 0.0000 0.0000 0.0000 0.0007 0.0007 0.0000 0.0000 0.0000  

Set 7 Set 8  
P (Pa) = 6966; T (K) = 377.29 P (Pa) = 6966; T (K) =404.65 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.0509 0.0223 0.7739 0.0068 0.0490 0.0158 0.0000 0.2244 − 0.0019 0.0401 
2-Ethyl-1-hexanol 0.2860 0.2890 0.2002 0.0001 − 0.0302 0.2759 0.2463 0.6252 0.0014 − 0.0260 
1-Octanol 0.0560 0.0569 0.0206 − 0.0005 − 0.0087 0.0557 0.0518 0.0921 − 0.0007 − 0.0020 
1-Dodecanol 0.3975 0.3989 0.0053 − 0.0187 − 0.0098 0.4220 0.4374 0.0579 − 0.0138 − 0.0108 
Ethyl Palmitate 0.0371 0.0371 0.0000 − 0.0020 − 0.0001 0.0398 0.0415 0.0003 − 0.0015 − 0.0001 
Ethyl Stearate 0.0277 0.0276 0.0000 − 0.0015 0.0000 0.0300 0.0310 0.0000 − 0.0014 − 0.0001 
Ethyl Oleate 0.0721 0.0735 0.0000 − 0.0024 − 0.0001 0.0777 0.0826 0.0000 − 0.0015 − 0.0006 
Ethyl Cis-Vaccenate 0.0017 0.0018 0.0000 0.0000 0.0000 0.0018 0.0020 0.0000 0.0000 0.0000 
Eth△yl Linoleate 0.0703 0.0922 0.0000 0.0183 − 0.0001 0.0805 0.1066 0.0000 0.0195 − 0.0004 
Ethyl Arachidate 0.0007 0.0007 0.0000 0.0000 0.0000 0.0008 0.0008 0.0000 − 0.0001 0.0000  

Set 9 
P (Pa) = 6966; T (K) = 404.85 

Set 10 
P (Pa) = 6966; T (K) =405.95 

Component zi xi yi Δxi Δyi zi xi yi Δxi Δyi 

Ethanol 0.0160 0.0078 0.2191 0.0061 0.0421 0.0171 0.0000 0.1996 − 0.0018 0.0216 
2-Ethyl-1-hexanol 0.2787 0.2511 0.6321 0.0060 − 0.0262 0.2683 0.2382 0.6404 0.0062 − 0.0091 
1-Octanol 0.0557 0.0523 0.0924 0.0001 − 0.0022 0.0546 0.0508 0.0965 0.0002 0.0006 
1-Dodecanol 0.4141 0.4308 0.0560 − 0.0137 − 0.0124 0.4274 0.4447 0.0631 − 0.0161 − 0.0117 
Ethyl Palmitate 0.0390 0.0408 0.0003 − 0.0016 − 0.0001 0.0404 0.0424 0.0004 − 0.0018 − 0.0001 
Ethyl Stearate 0.0296 0.0305 0.0000 − 0.0017 − 0.0001 0.0302 0.0317 0.0000 − 0.0014 − 0.0001 
Ethyl Oleate 0.0768 0.0810 0.0000 − 0.0025 − 0.0006 0.0789 0.0841 0.0000 − 0.0022 − 0.0006 
Ethyl Cis-Vaccenate 0.0018 0.0019 0.0000 0.0000 0.0000 0.0019 0.0020 0.0000 − 0.0001 0.0000 
Ethyl Linoleate 0.0876 0.1029 0.0000 0.0076 − 0.0005 0.0806 0.1053 0.0000 0.0170 − 0.0005 
Ethyl Arachidate 0.0008 0.0008 0.0000 − 0.0001 0.0000 0.0008 0.0008 0.0000 0.0000 0.0000  

Set 11 
P (Pa) = 4394; T (K) = 400.12 

Set 12 
P (Pa) = 4394; T (K) =402.92 

Component zi xi yi Δxi Δyi zi xi yi Δxi Δyi 

Ethanol 0.0216 0.0050 0.1477 0.0039 − 0.0137 0.0040 0.0000 0.0416 − 0.0003 − 0.0056 
2-Ethyl-1-hexanol 0.2473 0.1767 0.6839 − 0.0093 0.0182 0.2268 0.1880 0.7500 0.0050 0.0155 
1-Octanol 0.0378 0.0309 0.0841 − 0.0012 0.0074 0.0468 0.0419 0.1161 0.0006 0.0049 
1-Dodecanol 0.4317 0.4876 0.0840 0.0064 − 0.0101 0.4357 0.4624 0.0917 − 0.0019 − 0.0128 

(continued on next page) 
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deviations are observed compared to the ternary systems, particularly 
for the vapor phase compositions, which are now predicted by the 
UNIFAC-Do model with much less accuracy than the liquid phase 
compositions. Nonetheless, the overall deviations remain very accept
able for both phases: AADoverall(x) = 0.003 and AADoverall(y) = 0.006. 
These results are likely due to the large amounts of alcohols in the vapor 
phase for these multicomponent mixtures, particularly ethanol, which 
was already the poorest represented among the substances studied in the 
ternary systems previously investigated (here for ethanol: AADi(y) =

0.05 max). Furthermore, in the liquid phase, the cross-association 
involved by the alcohols might be mitigated by the presence of the 
BAEEs, although the mixture studied here also contains a structural 
complexity on the entropic aspect with molecules differing in size and 
shape. These two aspects can be realized looking at the activity co
efficients in the SM5 section (Supplementary Material) [32–34]. More
over, the deviations on the liquid and vapor phase compositions are 
rather randomly distributed, particularly at the lowest pressure (4394 
Pa), for which the very good prediction results are worthy of being 
stressed (AADk(x)⩽0.002 and AADk(y)⩽0.005, for all data sets measured 
at 4394 Pa). Lastly, let mention that, in that case, the assumption of the 
ideal liquid solution yields rougher predictions of the liquid and vapor 
phase compositions (AADk(x) and AADk(y) up to 0.004 and 0.008, 
respectively), with a deviation on the vapor mole fraction AADi(y) up to 
four times larger for ethanol (which agrees with the bad results obtained 
when assuming the ideal liquid solution for the investigated ternaries 
involving alcohols; Supplementary Material, SM5). At higher tempera
tures, the activity coefficients are closer to one, and consequently, for 
the system [Alcohols + BAEEs], better predictions are found assuming 
ideality. 

4. Conclusions 

VLE measurements, at different temperatures, pressures, and global 
compositions, for the ternary systems [Ethanol + 2-Ethyl-1-hexanol + 1- 
Dodecanol] and [Ethanol + 1-Octanol + 1-Dodecanol], as well a multi
component system containing these alcohols together with Balanites 
aegyptiaca fatty acid ethyl esters are reported for the first time. The 
Dortmund modified UNIFAC model showed very high accuracy in the 
prediction of these VLE, with overall average absolute deviations on the 
liquid and vapor molar compositions of 0.007 and 0.0003, respectively, 
for the ternary systems, and 0.003 and 0.006 for the multicomponent 
systems. The VLE experiments and modelling carried out in this work 
bring valuable information for the design and operation of bioproduct 
production processes under low pressures. 
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Table 6 (continued )  

Set 1 
P (Pa) = 10270; T (K) = 416.93 

Set 2 
P (Pa) = 10270; T (K) = 418.73 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethyl Palmitate 0.0398 0.0457 0.0004 0.0001 − 0.0001 0.0436 0.0467 0.0005 − 0.0006 − 0.0001 
Ethyl Stearate 0.0298 0.0342 0.0000 0.0000 − 0.0002 0.0326 0.0350 0.0000 − 0.0004 − 0.0002 
Ethyl Oleate 0.0796 0.0913 0.0000 0.0002 − 0.0007 0.0871 0.0936 0.0000 − 0.0010 − 0.0009 
Ethyl Cis-Vaccenate 0.0019 0.0022 0.0000 0.0000 0.0000 0.0021 0.0022 0.0000 0.0000 0.0000 
Ethyl Linoleate 0.1097 0.1256 0.0000 − 0.0001 − 0.0007 0.1203 0.1292 0.0000 − 0.0014 − 0.0009 
Ethyl Arachidate 0.0008 0.0009 0.0000 0.0000 0.0000 0.0008 0.0009 0.0000 0.0000 0.0000  

Set 13 Set 14  
P (Pa) = 4394; T (K) = 403.12 P (Pa) = 4394; T (K) =403.12 

Component zi xi yi △xi △yi zi xi yi △xi △yi 

Ethanol 0.0122 0.0000 0.1073 − 0.0007 − 0.0036 0.0234 0.0037 0.1293 0.0028 0.0013 
2-Ethyl-1-hexanol 0.2217 0.1718 0.6930 0.0036 0.0120 0.2594 0.1665 0.6886 − 0.0019 0.0082 
1-Octanol 0.0417 0.0355 0.1009 0.0001 0.0047 0.0367 0.0278 0.0808 − 0.0004 0.0044 
1-Dodecanol 0.4415 0.4792 0.0982 − 0.0010 − 0.0110 0.4271 0.4989 0.1007 0.0038 − 0.0118 
Ethyl Palmitate 0.0430 0.0477 0.0006 − 0.0003 − 0.0001 0.0385 0.0461 0.0005 − 0.0006 − 0.0001 
Ethyl Stearate 0.0322 0.0357 0.0000 − 0.0002 − 0.0002 0.0289 0.0346 0.0000 − 0.0005 − 0.0002 
Ethyl Oleate 0.0861 0.0955 0.0000 − 0.0005 − 0.0009 0.0771 0.0923 0.0000 − 0.0012 − 0.0009 
Ethyl Cis-Vaccenate 0.0021 0.0023 0.0000 0.0000 0.0000 0.0018 0.0022 0.0000 0.0000 0.0000 
Ethyl Linoleate 0.1187 0.1314 0.0000 − 0.0011 − 0.0009 0.1063 0.1271 0.0000 − 0.0020 − 0.0009 
Ethyl Arachidate 0.0008 0.0009 0.0000 0.0000 0.0000 0.0008 0.0009 0.0000 0.0000 0.0000  

Set 15       
P (Pa) = 4394; T (K) = 404.52      

Component zi xi yi △xi △yi      

Ethanol 0.0054 0.0000 0.0473 − 0.0003 − 0.0016      
2-Ethyl-1-hexanol 0.2287 0.1764 0.7410 0.0065 0.0142      
1-Octanol 0.0437 0.0369 0.1090 0.0005 0.0040      
1-Dodecanol 0.4394 0.4749 0.1021 − 0.0027 − 0.0142      
Ethyl Palmitate 0.0430 0.0474 0.0006 − 0.0006 − 0.0001      
Ethyl Stearate 0.0322 0.0355 0.0000 − 0.0004 − 0.0002      
Ethyl Oleate 0.0860 0.0949 0.0000 − 0.0011 − 0.0010      
Ethyl Cis-Vaccenate 0.0020 0.0023 0.0000 0.0000 0.0000      
Ethyl Linoleate 0.1186 0.1307 0.0000 − 0.0018 − 0.0010      
Ethyl Arachidate 0.0008 0.0009 0.0000 0.0000 0.0000       
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Coulibaly YL, Nébié RHC, et al. Dry purification by natural adsorbents of ethyl 
biodiesels derived from nonedible oils. Energy Fuels 2015;29(1):150–9. https:// 
doi.org/10.1021/ef501365u. 
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