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Abstract—Researchers have been using semantic technologies
as essential tools to structure knowledge. This is particularly
relevant in the biomedical domain, where large dataset are
continuously generated. Semantic technologies offer the ability
to describe data and to map and linking distributed repositories,
creating a network where the searching interface is a single entry
point. However, the increasing number of semantic data reposito-
ries that are publicly available is creating new challenges related
to its exploration. Despite being human and machine-readable,
these technologies are much more challenging for end-users.
Querying services usually require mastering formal languages
and that knowledge is beyond the typical user’s expertise, being
a critical issue in adopting semantic web information systems. In
particular, the questioning of biomedical data presents specific
challenges for which there are still no mature proposals for
production environments. This paper presents a solution to
query biomedical semantic databases using natural language. The
system is at the intersection between semantic parsing and the
use of templates. It makes it possible to extract information in a
friendly way for users who are not experts in semantic queries.

Index Terms—Semantic Data, Semantic Web, Knowledge
Graphs, Question Answering

I. INTRODUCTION

The digitization of science in all research institutions has

transformed science into a set of data-driven activities, en-

abling the exponential advancement of human knowledge [1].

This deluge of digital records resulted in numerous data repos-

itories in the most varied formats, from simple spreadsheets

to sophisticated databases. This situation made the reuse of

data a challenge, emphasizing cases in the long tail of science

where information exists closed and accessible only to the

research group’s elements that produced the data [2]. In the

case of biomedical sciences, we find that the wide variety of

repositories responds to concrete needs. Some examples are

the electronic health record databases [3], data resulting from

genetic studies [4], the massive collections of medical im-

ages [5], or the metadata related to biobanks’ description [6].

Scientific practices established that the secondary use of data

benefits various health research areas, significantly impacting

the population’s quality of life [7]. Therefore, researchers must

have access to the best tools for sharing their data with their

peers for the community’s benefit.

Research in information systems tried solving the integra-

tion and interoperability of data distributed on the Internet

from an early age. The Semantic Web (SW) and Linked

Data (LD) principles responded to those challenges, and its

use gained traction in the biomedical community [8]. Se-

mantic technologies are at the core of many systems used,

for example, in areas as diverse as translational medicine,

system biology, and biopharmaceutics [9]. With the SW, the

structuring of knowledge domains gained a powerful tool for

formalization, the Web Ontology Language (OWL), which

abstractly identifies classes, properties, and individuals [10].

This approach’s success catches evident in the NCBO Bio-

Portal, where many biomedical ontologies and terminologies

are available [11].

The Resource Description Framework (RDF) is the SW’s

data model, establishing a basic structure, the RDF triple of a

subject, a predicate, and an object. This simple way of specify-

ing semantic units of information allows capturing biomedical

data’s richness in a scalable way [12]. The subject-predicate-

object representation, together with ontologies, enables the

annotation of knowledge and the creation of semantic reposito-

ries that can be massive. It is, therefore, necessary to have tools

capable of questioning this data to obtain answers and create

new knowledge. The standard strategy available out-of-the-box

is the use of formal languages such as SPARQL [13]. Formal

languages allow a vast range of options for forming queries,

structured with their logical forms. For example, in SPARQL,

if we need to retrieve variables and their bindings directly, we

use the SELECT clause, and to obtain a boolean indicating a

matching pattern, we ASK. Despite powerful, this and other

constructs are difficult to use by non-IT people, limiting such

systems’ adoption.

One way to overcome the difficulties presented by systems

that use formal languages is by creating interfaces that allow

the use of natural language. This strategy frees users from

the burden of mastering logical formalism and represents

an opportunity for more users to take advantage of stored

knowledge. Despite the benefits that these systems promise,

the technology is not yet mature enough, and there is a need to

investigate new solutions [14]. This paper presents a solution

to query biomedical semantic databases using natural lan-

guage, building on articulating semantic parsing and templates.

We organized the rest of the paper as follows: Section

II overviews the related work in question-answering over

knowledge bases. We present our solution for questioning

semantic data in Section III, integrated into a semantic data

creation tool. In Section IV, we use the tool to transform

and explore data of patients with Huntington disease. Finally,
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Section V rounds up the paper with conclusions.

II. QUESTION-ANSWERING OVER KNOWLEDGE BASES

Generally, we call question-answering (QA) systems those

interfacing databases through natural language (NL) interfaces.

The goal is to obtain precise information supported by the data

without using formal query languages. The implementation of

these systems for the most varied data types has been inves-

tigated, considering the questioned data’s specificities. Thus,

some solutions specialize in conventional relational databases

and other questions unstructured data such as text corpus [15].

In addition to these, a particular set of linguistic interfaces

aims to take advantage of information residing in semantic

databases. Sharing similar Natural Language Processing (NLP)

challenges with the first types of systems, they nevertheless

present particularities deserving to be highlighted [16]. When

the way the entities in the question in NL are diverse from the

forms used in the knowledge base (KB), we are in a lexical gap

(e.g. ”the King”, in the NL question vs. dbp:Elvis Presley, in

DBpedia). The fact that the same phrasal name can represent

several entities gives rise to ambiguity (homographs, e.g.

money bank vs. river bank). Also problematic in specific

contexts is the processing of complex questions that ask for

aggregated, filtered, or ordered outputs. Finally, multilingual-

ism refers to using the same interface to ask questions in

several NLs and/or multilingual KB. Several proposals have

emerged to tackle the enunciated difficulties grouped into the

four architectural styles described in the following subsections.

A. Semantic Parsing Pipelines
The most common QA systems process data from input

to output sequentially. The information passes through a

pipeline’s elements and transforms until it reaches a logical

form digestible by the conventional SPARQL query engine.

The typical architecture for this type of solution is shown

in Figure 1 and consists of several blocks, commonly called

filters.

Fig. 1. Semantic parsing pipeline. The NL question is processed sequentially
until a formal query is produced to obtain the answers.

Several architecture blocks correspond to known NLP ele-

ments, and many implementations are available to build tailor-

made solutions. When creating the parse tree, we usually do

tokenization, named-entity recognition (NER), part-of-speech

(POS) tagging, and dependency parsing [17]. This way of

doing, system improvements can emerge from improving

particular components.

The next transformation is entity linking (EL) [18]. Al-

though we have good solutions for constructing the parse tree

for EL, demanding challenges arise when dealing with lexical

gaps and ambiguities. As Ruseti et al. did, we can use an

ontology to reduce ambiguity [19], but often none is available.

Once the EL process is closed, a final module is responsible

for transforming the parse tree with the entities and relations

correctly linked into a SPARQL query.

B. Subgraphs Matching

One way to avoid difficulties with the semantic pipeline’s

last filters is to replace them with an architectural block for

constructing subgraphs, as depicted in Figure 2.

Fig. 2. Subgraphs matching. The generation of a subgraph replaces the query
generation module.

Usually, this kind of solution builds upon realising that

executing a formal query is equivalent to finding a subgraph

[20]. Beyond this observation, it is possible to construct the

answer to a question by navigating the semantic graph nodes

to collect triple candidates for the final solution. Therefore,

we are dealing with a search problem in a space that can be

prohibitively large without considering appropriate heuristics

[21]. At the end of the process, we need a strategy for selecting

the most likely response.

C. Template-based QA

When looking for the answer to complex questions, the pre-

vious systems are not the most suitable. The challenges posed

by the lexical gap and ambiguity cannot always be solved

satisfactorily by strict semantic pipelines. The possibility of

using templates allows a more accurate operation in fighting

these problems [22]. A template is a query skeleton with an

arbitrary degree of complexity, fitting the KB, and has slots

to fill with information from entities and relations. Figure 3

outlines this type of solutions.

The creation of templates is performed offline, analysing

the questions to be asked and the KB data. Solutions with a

manual annotation component are common, being an obvious

limitation. To have more templates is better, but the quality is

also essential. Therefore, for fully automatic template genera-

tion systems, we carry on carefully. One way is to use textual

information that extends the KB [23]. The online phase is easy

to describe: a question is matched with a template to produce

a logical form.
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Fig. 3. Template-based QA. NL questions are mapped into pre-existing
templates to be transformed into a formal query.

D. QA based on Information Extraction

When we proceed to the direct extraction of triples, we are

in the presence of information extraction systems were we

completely bypass the creation of a logical form. The use of

machine learning techniques to create vector representations

is usual (see Figure 4).

Fig. 4. QA based on information extraction. Answers are obtained directly
without using a formal query.

Multiple examples in the literature rely on neural networks,

as Lukovnikov et al. have done, with a character-level question

encoder to handle new and rare words on the fly [24].

III. SCALEUS-FD FOR QUESTION-ANSWERING

SCALEUS-FD is a semantic web tool developed to allow

data integration [25], and it is available as open-source at

https://github.com/bioinformatics-ua/scaleus-fair. Quickly, we

can list some of its main features:

• Very easy to deploy and start using;

• Ontology-independent;

• RDF resource loading (.ttl, .rdf, .owl, .nt, .jsonld, .rj, .n3,

.trig, .trix, .trdf, .rt);

• Supports importing data from spreadsheets (.xlsx, .xls,

.ods);

• Support for multiple datasets;

• Text search;

• SPARQL queries;

• Query federation to the available data;

• Inference support;

• Metadata creation allowing search engine indexing;

• Web services API.

The application offers semantic data for remote access

allowing indexation by search engines crawling Data Catalog

Vocabulary (DCAT)1 descriptions. Figure 5 shows the software

architecture.

Fig. 5. SCALEUS-FD architecture.

The interface with users is via a graphical interface, and

a web services API enables machine-to-machine operations.

Next, in the first subsection, we outline features related to cre-

ating semantic data and metadata (Data Handler and Metadata

Handler). In the second subsection, we cover the QA Module.

A. Semantic Data and Metadata Modules
The Data Handler module is responsible for transforming

the information provided in a non-semantic format, such as

data tables. The creation of semantic data maps the input data

entities to the triples and store them in the KB. The user is free

to establish a semantic scheme by creating convenient relations

between data. The freedom to choose semantic prefixes is

complete, and they can be created and stored for future use.

Naturally, all transactions with the application’s databases

must ensure data integrity. The transaction database (TDB)

components prevent data from being corrupted when dealing

with creating, reading, updating, and deleting operations.
The metadata module ensures that data is Findable, Acces-

sible, Interoperable, and Reusable, following the FAIR princi-

ples [26], commonly adopted in data stewardship. We ensure

interoperability by using HTTP URIs to identify resources

uniquely. We use the DCAT specification to characterize

different layers of machine-readable metadata for describing

the organizational schema catalog-dataset-distribution, which

allows automatic indexation by search engines. Both data and

metadata services are available through a REST API.

1https://www.w3.org/TR/vocab-dcat-2/
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B. QA Module

The QA module allows querying the stored semantic data.

On the one hand, we can operate in the traditional way by

using SPARQL. This option enables advanced users to exploit

all the power that a logical query language offers to construct

very complex queries. On the other hand, the possibility

of asking questions in natural language (in English) allows

users less familiar with formal query languages to consult the

knowledge stored in the KB. We integrated into the module

the linguistic processing tools that allow us to do semantic

parsing. Thus, the information is processed by transforming

the NL question into a formal query that is then used internally

to obtain the answers. But the strength of the solution is

the possibility of using templates in the information retrieval

process.

We can create templates in two ways. On the one hand, it is

possible to provide curated lists, manually crafted. This way of

doing has the advantage of capturing more precisely the users’

intentions. However, it also has significant limitations. This

strategy does not scale conveniently in production environ-

ments where the questioning needs give rise to new questions

not covered by the previously created listings. A more efficient

approach is to automate the creation of templates as carried

out by the QA module (Figure 6).

Fig. 6. Deep template-based QA.

As we can see in the figure’s right branch, the system’s

online phase operates to transform the question in natural

language into an intermediate form to pair with the appropriate

template. A query is created in a formal language after filling

in the slots with specific entities and relations. After this

process, the final answer derives from a SPARQL query

generated internally by the system.

In the offline phase, we train a deep learning model to create

templates automatically. This way, we acquire more contextual

information about the KB. A typical example of this procedure

is the use of Wikipedia texts to expand DBpedia’s knowledge.

This stage is challenging since success depends on the careful

choice of the set of texts we use. For instance, for a KB created

by automatically extracting triples from some text corpus, this

corpus can be reused to create the templates.

IV. QUESTIONING SEMANTIC BIOMEDICAL DATA

To test the tool, we started by loading and transforming

to the semantic format a spreadsheet with data from patients

with Huntington disease (HD). For the sake of security and

privacy, this cohort’s data has been anonymized. For this

example, we decided to select only a small set of headers:

subject, gender, and the columns related to the Problem

Behaviours Assessment (PBA-s) items [27]. We used concepts

from the Dublin Core Metadata Initiative2, FOAF Vocabulary

Specification3, and the Human Phenotype Ontology4. Table I

shows the mapping we performed.

TABLE I
SEMANTIC NAMESPACE

Column URI
subject http://purl.org/dc/terms/identifier/
gender http://xmlns.com/foaf/spec/#term gender/
PBA-s Depression https://hpo.jax.org/app/browse/term/HP:0000716/
PBA-s Irritability https://hpo.jax.org/app/browse/term/HP:0000737/
PBA-s Psychosis https://hpo.jax.org/app/browse/term/HP:0000709/
PBA-s Apathy https://hpo.jax.org/app/browse/term/HP:0000741/

With the data transformed and adequately loaded, we can

ask questions using a graphical interface (see Figure 7).

Fig. 7. QA interface.

The SPARQL queries and the NL questions use the same

form for simplicity since the system recognizes the input type

processing it transparently.

2https://dublincore.org/
3http://www.foaf-project.org/
4https://hpo.jax.org/app/
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V. CONCLUSION

The conversion of biomedical data into a semantic format

allows the sharing of relevant information between research

groups. However, in addition to this essential data processing

step, the systems’ ability to ease retrieving information is

also critical. Interfaces accepting inputs in a natural language

enhance adhesion to semantic solutions. In this paper, we have

proposed a tool for creating semantic data which allow us to

pose questions in natural language. We believe that this tool

can become part of the researchers’ toolbox for their sharing

of data.
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[8] P. Sernadela, L. González-Castro, C. Carta, E. van der Horst, P. Lopes,
R. Kaliyaperumal, M. Thompson, R. Thompson, N. Queralt-Rosinach,
E. Lopez, L. Wood, A. Robertson, C. Lamanna, M. Gilling, M. Orth,
R. Merino-Martinez, M. Posada, D. Taruscio, H. Lochmüller, P. Robin-
son, M. Roos, and J. L. Oliveira, “Linked registries: Connecting rare
diseases patient registries through a semantic web layer,” BioMed
Research International, vol. 2017, p. 1–13, 2017.

[9] H. Chen, T. Yu, and J. Y. Chen, “Semantic Web meets Integrative
Biology: a survey,” Briefings in Bioinformatics, vol. 14, pp. 109–125,
04 2012.
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