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Abstract 

BIOma - Integrated solutions in BIOeconomy for the Mobilization of the Agrifood chain 

project is structured in 6 PPS (Products, Processes, and Services) out of which, a part of 

PPS2 is covered in this work. This work resulted in the second deliverable of PPS2 which 

is defined as PPS2.A1.E2 - IT infrastructure design and graphical interface conceptual 

design. BIOma project is in the early stage and this deliverable is a design task of the 

project. 

For defining the system architecture, requirements, UML diagrams, physical architecture, 

and logical architecture have been proposed. The system architecture is based on 

microservices due to its advantages like scalability and maintainability for bigger projects 

like BIOma where several sensors are used for big data analysis. Special attention has 

been devoted to the research and study for the authentication and authorization of users 

and devices in a microservices architecture. 

The proposed authentication solution is a result of research made for microservices 

authentication where it was concluded that using a separate microservice for user 

authentication is the best solution. 

FIWARE is an open-source initiative defining a universal set of standards for context data 

management that facilitates the development of Smart solutions for different domains like 

Smart Cities, Smart Industry, Smart Agrifood, and Smart Energy. 

FIWARE’s PEP (Policy Enforcement Point) proxy solution has been proposed in this 

work for the better management of user’s identities, and client-side certificates have been 

proposed for authentication of IoT (Internet of Things) devices.  

The communication between microservices is done through AMQP (Advanced Message 

Queuing Protocol), and between IoT devices and microservices is done through MQTT 

(Message Queuing Telemetry Transport) protocol. 

 

Keywords: Authentication, Authorization, BIOma, Food waste, Microservices, 

Monolithic, PPS, Software Development Life Cycle, System Architecture. 
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Chapter 1 Introduction 

1.1. Context 

Integrated solutions in BIOeconomy for the Mobilization of the Agrifood chain – BIOma 

joins together 24 national entities in the agri-food sector to reposition companies of the 

agri-food value chain at more competitive and sustainable levels, promoting strategies 

that foster innovatively, the adoption of integrated bioeconomic solutions. BIOma project 

is structured in 6 PPS (Products, Processes, and Services). BIOma is a collaborative 

project and the proposal in this work is made for one of the deliverables of PPS2.  

PPS2 aims to address challenges associated with food waste, enhancing the reduction of 

the environmental impact of food waste, which results in large economic losses and high 

consumption of resources. PPS2 contains 4 different activities, and this proposal focuses 

on the first design activity of the PPS2, PPS2.A1.E2 – IT infrastructure design and 

graphical interface conceptual design. Activity 1 from PPS2 aims to specify all technical 

and functional requirements, the necessary infrastructure for the FoodSaver modular 

platform, as well as to idealize the concept of the graphical interfaces of the FoodSaver 

modular platform. FoodSaver is an innovative digital platform at an international level, 

mainly in the collective catering segment which will define the selection criteria and 

acquisition of food products, promoting the sustainable consumption of local production 

in public canteens and cafeterias. 

A critical aspect of the design for any large software system is its overall structure 

represented as a high-level organization of computational elements and interaction 

between those elements. The structure of a system has been recognized as an important 

issue of concern in modern days. Software architecture has begun to emerge as an explicit 
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field of study for software engineering practitioners and researchers (Garlan & Perry, 

1995). 

Successful software applications result from a set of decisions that determine user 

acceptance and market success. Such choices can be made early or late in the software 

development life cycle. Identification of such choices in an early stage is generally known 

as waterfall development and delaying these selections until they are needed is defined as 

agile development. 

Requirements evolve over the development lifecycle of a software project which can be 

challenging. To address this challenge, agile practices are designed which shows early 

and continuous progress towards project goals. An agile approach allows stakeholders to 

adapt the scope and capabilities of a development release to changing market needs. Such 

an approach has been recommended for developing the architecture of software systems, 

enabling the design the support current requirements and early release while evolving to 

meet future expectations (Harper & Dagnino, 2014). 

The emerging period of big data is driving us to an innovative way of understanding our 

world and making decisions. Specifically, it is the data analytics that in the long run 

uncovers the potential values of datasets and completes the value chain of big data. Driven 

by increasing Big Data Analytics (BDA) demand, numerous frameworks and tools have 

been developed dedicated to BDA platforms. Such frameworks and tools generally 

combine data processing logics with computing resource management. The current BDA 

implementation still requires a huge effort on environmental configurations and platform 

manipulations (Li et al., 2019). 

When it comes to flourishing the ecosystem with the Internet of Things (IoT), such a 

mechanism will require tremendously extra overhead for big data collection from largely 

distributed sensors/devices for later analytics. With the continuous development and 

evolvement of the IoT, the monolithic application becomes much larger to scale and even 

more complex in structure. IoT-oriented data analytics could eventually become 

inefficient and expensive if we always transfer and process data cumulatively in a central 

repository because many IoT-oriented BDA problems can be addressed without 

combining the originally distributed data (Sun et al., 2017a) and (Li et al., 2019). 
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A microservice is an approach to developing a single application as a suite of small 

services, each running in its process and communicating with lightweight mechanisms. 

Microservice is preferred for several reasons like composing functionality, self-contained 

service, independent scaling, and independent deployment (He & Yang, 2017). 

For any system, authentication and authorization of the end-users or devices are essential. 

It protects the boundaries of the system. Authentication is the process of verifying who 

we are, and authorization is the process of verifying that we have access to something. 

Authentication and authorization in microservice can be imitated like the one in a 

monolithic application. Each service uses its database or shared database that stores 

credential data and implements its function to verify the user or devices independently. 

This is an easy way to understand but it has various challenges. When joining a new 

service in the system, we must re-implement the authorization function for the new 

service. To improve this architecture, and to adapt to the microservice design principles, 

we need to put a separate authentication microservice. The authentication microservice 

focuses on the authentication and authorization of the users and devices. Other services 

authenticate the user’s identity and authority by interacting with this microservice. As a 

result, each service is focused on its own business, while improving the scalability and 

loosely coupling the system. 

1.2. Objectives 

The objective of this work is to propose an infrastructure design for PPS2 of the BIOma 

project. PPS2 of BIOma needs a solution to combat food waste. The objective of PPS2 is 

to develop a modular platform for the reduction of food waste at different levels and, in 

parallel, develop tools to identify the quantities and types of most wasted foods, through 

weighing and image processing. It is divided into various modules, 

• Smart procurement: Promoting sustainable and smart purchases. 

• Smart monitoring: Monitoring the food waste. 

• Smart waste: Management of food waste.  

• Smart education: Consumer awareness and education against food waste. 
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BIOma is a collaborative project, and this work is focused on one of the activities of 

PPS2, PPS2.A1.E2. In this activity, IT infrastructure design and graphical interface 

conceptual design needs to be delivered. The objective of this work is to design the IT 

infrastructure for this activity of the PPS2. 

Requirements are needed to be defined which serve as a basis for designing the use-case 

diagram, user stories, and class diagrams. 

Physical and logical architecture is needed to be also proposed for the system. Physical 

architecture serves to have a general overview of where the food waste happens, who is 

responsible to monitor the waste, and where the sensors are located. Logical architecture 

gives a vision of how the internally connected sensors and services are working. 

This project proposal follows microservices architecture due to its advantage in the 

modern infrastructure of data gathering and analytics. Several IoT sensors are used in this 

project that uploads the readings to other microservices. Employees of an organization 

are also responsible for uploading data from various food units. Before either of them 

accesses the system, they must be authenticated and authorized to perform the actions.  

A solution has to be proposed for how authentication and authorization will be handled 

in a microservices architecture by researching the approaches that have already been 

implemented until the present day and selecting the one that best fits the project. 

1.3. Scope and Limitations 

This work cares about proposing system architecture for BIOma and one of its macro-

activity, PPS2. PPS2 has several activities, and this work is a proposal of IT infrastructure 

design for PPS2.A1.E2. This work also devotes major attention to authentication and 

authorization in microservices. The scope of this project is to define requirements for 

PPS2, create UML diagrams that can visually represent the system, propose a physical 

and logical architecture, and an authentication and authorization mechanism for users and 

devices of this project. 

This project follows an agile approach to development. PPS2 from the BIOma project is 

still in an early stage of development and this work proposes the design task for the first 
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iteration of the project. The architecture that has been proposed might cover most of the 

goals from the PPS2 and give a solution for how to achieve that goal but still, since this 

is a collaborative project, this proposal has to go through evaluations through the partners 

of this project which might introduce changes to the architecture. This initial version of 

the proposal serves as a basis for the development of BIOma and PPS2. 

Despite the multiple authentication strategies already developed and researched, it is 

difficult to have a perfect strategy for microservices authentication because of the inter-

services communication, dependencies, and response time. A suitable mechanism for 

authentication depends upon the requirement of a project and its size. 

1.4. Document Structure 

This work has been divided into 6 different chapters. Chapter 1 focuses on the need for a 

system architecture for a project with the objectives, scope, and limitations of this project 

itself. Chapter 2 gives an overview of BIOma and the problem that this work is supposed 

to solve. Chapter 3 contains the comparison of several software development methods, 

an overview of functional and non-functional requirements, the definition of system 

architecture, a comparison of various authentication approaches in general, and a 

comparison of several studies and research that have been done for the authentication and 

authorization of microservices. 

With chapter 4 comes the solution that has been proposed. This chapter provides the 

requirements for the project, UML diagrams, physical and logical architecture, and 

authentication and authorization strategy for users and devices of project BIOma. 

Alternative solutions are also described for this project with the reasons why they are not 

being used in the current status of the project. Chapter 5 produces the analysis and results 

of the proposed solution and chapter 6 concludes the project. 
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Chapter 2 Problem Statement 

2.1. Introduction 

BIOma–Soluções integradas de Bioeconomia para a Mobilização da cadeia 

Agroalimentar proposes a macro-activity PPS2 which involves the investigation and 

development of the FoodSaver solution that aims to monitor and create favourable 

conditions for the reduction of food waste at the restaurant and catering levels. This 

platform proposes the promotion of sustainable and smart shopping and monitoring daily 

food waste in various sectors. This solution allows systematizing the reasons that are at 

the origin of food waste.  

Food waste can happen in numerous sections like a warehouse, in-site storage, kitchen 

storage, while cooking, after consumption, etc. Such locations are needed to be identified 

precisely and there should be employees who are responsible to control and monitor food 

waste. After food waste occurs, there should be a smart way to handle these food wastes. 

Depending upon the waste type, there should be a solution to treat them treated 

accordingly. Education should also be provided to the general public to be aware of food 

waste. 

For handling these issues, a system can be developed which can ease this task for 

monitoring and controlling food waste. Developing such systems can be problematic as 

plenty of things have to be taken into account. First, the architecture of the system has to 

be discussed and defined. Depending upon the structure, size, and goals of a project, a 

monolithic or microservices architecture are needed to be identified to take advantage of 

the tools and software that are available in the present day.  
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2.2. BIOma 

BIOma is a large association of several companies which reunites 24 national entities 

that fit in the agri-food sector such as fruit, vegetables, wine, and olive oil. Agri-food 

means the preparation, processing, and packaging of agricultural products for human 

consumption. Agri-food sector BIOma works to adjust Agri-Food Value Chain (AFVC). 

Agri-food value change is deeply connected with various challenges that mankind is 

currently facing, 

•  Climate Change 

•  Loss of soil production area  

•  Exponential Population growth. 

In all periods of the AFVC, resources are consumed, organic waste and inorganic waste 

is produced which means greenhouse gas (GHG) releases on an enormous scale. 

Simultaneously, agriculture and also the world food system are being challenged to feed 

an expected worldwide population of 9.7 billion individuals by 2050 with the diminishing 

land and water assets. These situations are compelling the system to search for new and, 

more effective approaches to produce, transform, and devour that regard the 

environmental furthest reaches of the planet. 

BIOma proposes to relocate the companies at more elevated and sustainable levels that 

are serious and supportable, by implementing advanced strategies and an ecosystem that 

innovatively enhances the adoption of integrated Bioeconomics solutions. To accomplish 

the various objective, the themes have been addressed, such as Sustainability, Food waste, 

Valorisation of by-products and Agri-Food waste, Traceability, and Digital Ecosystem. 

Therefore, for the Agrifood esteem chain - Sustainability Index for Bioeconomy, ensuring 

its applicability through sustainable development of an index, programmed examining to 

scan automatically to its critical action points. Secondly, this project BIOma also seeks 

to respond in terms of food waste, through research, and also advancement of an answer 

for monitoring food waste in the different channel which has been given name as HoReCa 

(Hotels, Restaurants, and Catering) channel, and does battle with the food waste, by 

expanding the timeframe of realistic usability of items. Similarly, this project proposes 

the Valorisation of by-products and agri-food waste, through the development and 

implementation of new and different methods of extraction of active substances at the 

industrial level, given their value in the agri-food chain new functional ingredients. This 
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project focuses on Traceability and Digital ecosystems as well. Traceability is conducted 

in response to the challenges of the Agri-Food Value Chain (AFVC) and to investigate 

and to develop a solution to the traceability for the entire AFVC module 

(logistics/transport information, catering, retail, and consumer and primary production). 

Likewise, Digital Ecosystem intends to develop through Digital Ecosystem Innovation 

Hub, an integrative advanced stage upheld by open field strategies for showing 

arrangements in a real environment: Test Before Invest, to enhance the adoption of 

Bioeconomy solutions, as well as the digital transformation of AFVC. 

Through the BIOma project, the association aims to adjust the AAFVC of companies at 

more competitive and sustainable levels, encouraging various techniques and an 

ecosystem that will innovatively improve the adoption of integrated BIOeconomy 

solutions. 

CAMPOTEC is the main organization in the BIOma association which unites 13 

organizations and 11 non-benefit substances of the R&D System, where the MORE – 

Laboratório Colaborativo Montanhas de Investigação, LIPOR, FEUP, FCUP, FFUP, ISQ, 

IPS, IPB, IPVC, UEVORA, UCP that in a collaborative environment and information 

sharing, will complete R&D exercises focused on bringing about new items, cycles, and 

administrations to be embedded in the agri-food esteem chain. As well as adding to the 

impression of the public methodology for the Bioeconomy found in the course, BIOma 

will set out new development open doors and reposition the public AFVC. The venture's 

R&D results will furnish organizations with new abilities, expanding the intensity of 

Portugal as a great provider of problematic answers for supportability, a decrease of 

waste, recuperation of buildups, and discernibility of the AFVC. 

 PPS Definition 

Through the BIOma project, the association plans to reposition the AFVC organizations 

in more serious and feasible levels, advancing procedures and a biological system that 

upgrades creatively the selection of incorporated Bioeconomy arrangements. The 

undertaking project BIOma is organized in 6 PPS (Products, Processes, and Services), 

one of which is Management and Spread, which will occur over a time of a day and a 

half, building up the mechanical limit, advancement, and R&D of organizations in a joint 

effort with ENESII. To accomplish the project destinations, six PPS were planned with 
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the accompanying explicit goals. Each PPS has its meaning which has been mentioned 

below: 

PPS1 siBIO – Solução digital de avaliação de sustentabilidade para a cadeia de valor 

agoralimentar  

It intends to respond to one of the pillars of the Bioeconomy Strategy, specifically the 

sustainability assessment, through the improvement and development of a digital solution 

for the asses of sustainability. Taking into consideration, there is a gap due to the lack of 

sustainability assessment methodologies in each part of the member state. Organizations 

are unknown how they can reach elevated levels of sustainability, also they are unknown 

about the respective environmental, economic, and social effects. Thus, 

Desenvolvimento de Uma solução digital de avaliação de sustentabilidade (siBIO) – 

works in additional to enable the evaluation of sustanability. Additionally, it provides a 

guide of a roadmap to elevate the supportability levels of the companies. 

PPS2 BIOsave – Soluções de combate ao desperdício alimentar 

It plans to address the challenges related to food waste generated along the AFVC, 

enhancing the reduction of the economic, social, and environmental effects of food waste 

and inefficiencies along the chain, which result in large economic losses and high 

consumption of assets. The difficulties will be controlled with the improvement of new 

services and products that will advance the decrease of food waste either by expanding 

the timeframe of realistic usability utilizing new INCs or by utilizing the modular digital 

platform to decrease the unnecessary waste. FoodSaver includes monitoring, 

management, and education solutions to support the commitment to decide on the 

prevention of food waste, problems of loss of quality, and food safety.  

PPS2 is promoted by associations with scientific experience, technological, and relevant 

business sectors in search for the illustrated destinations, to reach these objectives: 

Develop digital platform module to reduce food waste and to work in  FoodSaver; 

Develop natural preservations and additional protection in regard as a support for a 

solution to answers for expanding the timeframe of food. It demonstrates solutions to 

decrease food waste in an operational environment with impact assessment economic. To 

achieve these goals, scientific competencies are ensured by ENESII (IPB, MORE, IPB, 

FEUP, FFUP, FCUP, UCP, ISQ, and MORE). These entities have a huge series of studies 
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and R&D work that address challenges related to waste food, the discovery of new natural 

preservatives, and new ideas to prolong lifespan for useful food. 

PPS3 BIOvalue – Soluções de valorização de resíduos e subprodutos 

agroalimentares  

It plans to carry out techniques that permit to approach of the new valorization solutions 

of waste and food results generated along the AFVC, to uplift the companies. It 

contributes to the waste reduction of the Agri-waste deposited in the landfills, and to 

identify the organic waste with the ability for extracting the functional ingredients. To 

define, standardize, and optimize new and existing strategies for the betterment of this 

field to identify critical phases. 

 

PPS4 BIOtrace – Solução integrada de rastreabilidade para a cadeia de valor 

agroalimentar 

It intends to encourage traceability answer for the entire AFVC, modular (primary 

production, transport/logistics, transformation, retail/catering, and consumer) upheld by 

the platform integrative, interoperable, and tamper-proof which is a wisely designed 

digital platform. These traceability solutions in AFVC, which is characterized by the 

dominance of two patterns emerging, further intensification of farms, and the evolution 

towards chains of supply that directly interconnect producers and consumers (short circuit 

chains agrifood). The PPS4, by addressing the entire AFVC, incorporates the collection 

sets of a huge range of data and indicators provided by PPS1, PP2, and PP3. 

 

PPS5 BIOecosystem – Soluções de Bioeconomia para o mercado através do Digital 

Innovation Hub  

The PPS5 comes to stimulate digital transformation along the entire value chain through 

a digital innovation ecosystem - BIOecosystem. It intends to eliminate existing 

obstructions in the introduction and adoption of solutions in the market, permitting to 

demonstrate the real advantages of adopting integrated solutions for the Bioeconomy, in 

particular for companies, through the Test before Invest methodology. 
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PPS6 Gestão e Disseminação do Projeto 

“Project Management and Dissemination” has a mandatory and transversal nature to the 

whole project, permitting to safeguard the overall coordination of the work connecting all 

the PPS conveyed out in the management of the technical, administrative, and financial 

components. Additionally, in the implementation of initiatives capabilities are associated 

with the promotion, disclosure, and spreading of the results achieved throughout the 

project. 

Following the description of the PPS, this project mainly focuses on creating a solution 

for the problem presented by PPS2 and also proposes a system architecture in general for 

BIOma. 

2.3. System Architecture 

For this project of BIOma, sensors will be used to send the real-time values of the food 

waste which helps in analyzing the food waste data. Such sensors might be located in 

various food units of the organization. Traditional monolithic applications are built as an 

entity that is composed of everything in one piece with interdependent components. When 

using sensors for uploading data from various food units, a monolithic application might 

not be able to respond to the request as expected which can harm the performance of the 

system. Also, if one part of the application goes down, the whole application is needed to 

be turned off. This problem can be solved by the use of microservices architecture but it 

also has its challenges. 

User authentication and authorization are necessary before they have access to any system 

resources. Since this project also uses sensors for measuring weight and image 

recognition, their authentication should also be handled before any readings are registered 

into the database of the system. This is not challenging for monolithic applications but 

for this project, monolithic doesn’t offer scalability. If new components are needed to be 

added to the system either physically or logically, maintainability becomes challenging 

in a monolithic system. Microservices is a better option where big data analytics (Li et 

al., 2019) are needed to be handled and scalability is required but handling authentication 

and authorization is itself challenging in such architecture.  
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Authentication and authorization cannot be handled as easily as in monolithic systems. 

Challenges with authentication might be easier to be solved by using tokens and verifying 

them in each microservice but, verifying roles and permissions which is part of the 

authorization might be complicated with such solutions. There might be a problem with 

a single point of failure, and there should also be a concern regarding performance, 

security, and impact of failure when authentication and authorization are developed for a 

microservice architecture. 
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Chapter 3 Bibliographic 

Review 

3.1. Software project design 

Most of the IT (Information Technology) departments receive the demand for developing 

IT projects whose resources are unable to be supplied by the department. Every decade, 

the business application growth has been exploding, and are challenged to select the 

project which will provide the highest return upon the investment while managing the 

risks alongside. Historically, most of the IT departments have been selecting the projects 

based on first-in, first-out; political clout; or the squeaky wheel gets the grease. Recently, 

IT departments have been collecting the project’s information and mapping such 

information to business goals. Prioritizing, selecting, and monitoring project results have 

been a critical success factor for IT departments which has been facing too many projects 

with too few resources (Dennis et al., 2012a). 

When a project is selected in an organization, it undergoes a thorough process of project 

management. Project management is the process of planning and controlling the project 

within a specified time frame with minimum cost, with the desired outcomes. A project 

manager has the responsibility to manage the hundreds of tasks and roles which should 

be carefully coordinated. Despite the presence of training and software which help project 

managers, unreasonable demands created by project sponsors and business managers can 

make project management a difficult task.  

A crucial success factor for project management is to start with a realistic assessment of 

the work which must be accomplished and then manage the project as per the plan. Such 

success can be achieved by following the basic steps of project management. The project 

manager must first select the system development methodology which fits the project’s 

characteristics. Based on the system size, the time frame estimates should be made and 
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after that, a list of tasks to be performed must be created that forms the basis of the project 

work plan.  

The system request and feasibility analysis are presented to an information systems 

approval committee which decides whether the project should be undertaken. The 

approval committee is responsible for evaluating not only the project’s costs and expected 

returns, but also the technical and organizational risks that are associated with the 

project. They must be selective about where to allocate resources as the 

organization might have limited funds. For example, if there are three potentially high-

payoff projects with high risk, then only one of them must be selected. Once the project 

is selected by the approval committee, it is time for project planning. The project 

management phase generally consists of initiation, planning, execution, control, and 

closure (Dennis et al., 2012a). 

 Development Methods 

The Software Development Life Cycle (SDLC) provides the foundation for the processes 

used to develop an information system. There are several systems development 

methodologies that vary in terms of the progression that is followed through the phases 

of SDLC. A process model represents a development process and indicates the form in 

which it must be organized. The process model helps the software engineers in the 

identification of the relationship between activities and the techniques that are part of the 

development process (Fernandes & Machado, 2016a). When the development process is 

systemized, through the definition of the respective model, one tries to reach the following 

objectives: 

• Identifying the activities that must be followed for system development.  

• Introducing consistency in the development process while ensuring that the 

systems are developed according to the same methodological principles. 

•  Using several control points to evaluate the results obtained and to verify the 

observance of the deadlines and the required resources.  

• Stimulating the bigger reuse of the components during the design and 

implementation phase to increase the productivity of the development teams. 

The software process is a joint set of activities that contains associated information which 

is required to specify, design, implement and test software systems. Each organization 
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consists of its specific software process but these individual approaches usually follow 

some more abstract generic process model (Sommerville, 1996a). There are several 

software processes, but all involve: 

• Specification – the functionality of the software and its operating constraints are 

specified in depth.  

• Design – is a creative activity in which the software components are identified 

and their relationships, based on the requirements of customers. 

• Implementation – is the process of realizing the design as a program.  

• Validation – checks if it satisfies the customer’s needs.  

• Evolution – create changes on the system based on the changes of the client’s 

needs.  

The following section describes the process models focusing more on one of the process’s 

side, the activities. Activities are a set of tasks that must be executed for system 

development. 

3.1.1.1. Waterfall  

The waterfall is the oldest software development process model. It is composed of various 

phases which include analysis, design, implementation, and testing as shown in Figure 1. 

This model has been coined as the waterfall model as it depicts irreversibility. Once one 

of the phases has been completed, it cannot be revisited. It follows a top-down approach 

(from the most abstract to the most concrete) and, in a high-level perspective, the strictly 

sequential progression between consecutive phases (Yourdon, 1988a). 

 

 

Figure 1 The Waterfall process Model 

Source: (Fernandes & Machado, 2016a) 

 

 

During the first phase, analysis, the functioning of the system is specified by identifying 

various requirements which must be considered. The specification document serves as a 
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basis for the upcoming phases, so, ideally, one should use implementation-independent 

notations and allow all stakeholders to clearly understand the intended functionality. 

 The second phase, the design phase happens when the specification document of the 

system under development is accepted. The design phase consists of transforming a 

specification into an architecture. During software development, the most complex 

activity is precisely the transformation of the requirements into an architecture (Bosch, 

2000a). This phase is divided into 2 steps, architectural design, and detailed design. 

Architectural design, which is the first step, describes how the system is constituted and 

is, in many cases, one of the most creative tasks in all the development process (R. Stevens 

et al., 1998a). The second step, the detailed design establishes in detail the components, 

to include enough information to allow its implementation. In this phase, the main 

objective is to define the architecture of the system at hand.  

The major difference between the analysis and design phase is that the analysis phase 

produces an abstract model that mimics the fundamental aspects of the existing needs in 

the problem area whereas, the design phase creates a model that specifies the components 

that structure a particular system solution. In simpler words, the analysis phase describes 

what the system does whereas the design phase describes how it is done. 

The third phase, the implementation phase also considered as codification or 

programming phase converts the models defined in the design phase into executable code. 

This phase is considered as a purely mechanical, simple, and straightforward task by 

many authors (Hatley & I.A., 1987a), (Booch et al., 1999a), (Whytock, 1993a) as the 

intellectual and creative work has already been completed in the analysis and design 

phase. In the implementation phase, the final code must be generated based on the 

specifications obtained in the previous phase. Despite these facts, it has been often found 

that it is not always so easy to deal with this phase. Object-oriented programming permits 

a system development that is organised in a collection of objects. Each object is an 

instance of a class and each class is a member of a structure where there is presence of 

hierarchical relationship. 

The final phase, the testing phase was traditionally executed at the end of the development 

process. This has been changed now since it is realized that it is more than just debugging. 

Testing complex software is estimated to take 40% of the development cost nowadays 

(Ebert & Jones, 2009a). Software testing has its lifecycle which is realized at different 
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distinct levels. It starts simultaneously at the requirements elicitation and from that point 

on, continues in parallel with the development process. For each phase or activity of the 

development process, there is associated testing activity. It is shown in Figure 2 which is 

also known as the V process model. 

 

 

 

Figure 2 The V Process Model 

Source: Own elaboration with the source (Ebert & Jones, 2009a)  

In the V process model, the testing phase starts with unit testing. Unit testing involves 

testing the individual units of functionality using the decisions taken in the detailed design 

as a reference. Component integration testing involves testing the integrated functionality 

of the complete system. When dealing with very large software systems, functions may 

be integrated into a component. Many components are then brought together to form a 

system. In this case, there is the presence of one more level, called component integration 

testing. The purpose of such testing consists in guaranteeing that the interfaces between 

the components have the behaviors estimated during architectural design. In the system 

integration testing, it is verified if the software system fulfills the requirements specified 

in the analysis phase. Finally, the acceptance testing is validated by the end-users. They 

verify if their expectations are met by the software system as contracted. All these phases 
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which are related among them should not be neglected during the development of a 

system. 

3.1.1.2. Spiral  

The spiral model is based on the risk-drive approach rather than the document or the code 

(Fernandes & Machado, 2016b). Risk is the measurement of uncertainty in achieving an 

object or fulfilling the requirements. In this model, the risk is such a potentially adverse 

circumstance that can harm the development process and can affect the quality of the 

system. In this model, the development team starts with a small set of requirements and 

then goes through them individually in the development phase. Therefore, the 

development team has a chance to learn new lessons from the initial iteration (Adel & 

Abdullah, 2015a). 

The various activities are organized in cycles, as shown in Figure 3 The spiral model. 

Each cycle of the spiral is constituted of four main tasks, and each one is represented by 

a quadrant of the diagram. In the diagram, the radius of the spiral represents the progress 

in the process and the angular dimension indicates the accumulated cost in the process. 

 

Figure 3 The spiral model 

Source: (The Spiral Model - The Ultimate Guide to the SDLC, n.d.) 



CHAPTER 3 BIBLIOGRAPHIC REVIEW 

20 

Four activity quadrants of the spiral are further described below, 

• Determine objectives 

In this activity, one identifies the objectives which include performance, functionality, 

easiness of modification, etc. for the system under development, concerning the 

quality levels to be achieved. Alternatives such as build vs. buy, if existing 

components can be reused or subcontract should be made are examined. 

 

• Identify and resolve risks  

In the second activity, one evaluates the alternatives previously identified for the 

objectives and restrictions, which frequently implies the recognition of uncertain 

situations that represent potential risk sources. Identification and resolving all the 

possible risks in the project such as lack of experience, new technology, tight 

schedules, poor process, etc. are also major tasks in this activity. 

 

• Development and test 

During this activity, one should develop and verify the system for the upcoming cycle 

using a risk-oriented strategy. The usual pattern of creating and review design, code, 

inspect code, and test should be followed. 

 

• Plan the next iteration 

In this final activity, one should review the prototype to recognize strengths, 

weaknesses, and risks. The obtained results are reviewed and the next spiral cycle, if 

that is the case, is planned. Requirements for the second prototype should also be 

elicited. 

For systems whose requirements are less clear, several cycles may be necessary to achieve 

the expected outcomes, which results in an incremental and iterative process. The spiral 

model allows the choice of the best combination and composition of the process models 

for each situation that it is applied for. 

3.1.1.3. Rapid Application Development  

Rapid Application Development (RAD) is a collection of methodologies that emerged in 

response to the weakness of waterfall development. It can help to improve the speed and 

quality of systems development but may also introduce a problem in managing user 
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expectations. As the systems are developed quickly and users gain a better experience 

with the system, the user expectations might increase dramatically which results in the 

expansion of system requirements during the project.  

Iterative development is one of the varieties of RAD. It breaks the overall project into a 

series of versions that are developed sequentially. This version is developed quickly by 

the mini-waterfall process, and once implemented, users can provide feedback to be 

incorporated in the following versions. Since users are working with the system, 

important requirements might be identified. During this development, users must accept 

the fact that only the most critical requirements of the system will be available in the early 

versions and must be patient with the repeated introduction of new system versions. 

Iterative development has been represented in Figure 4. 

 

Figure 4 Iterative development 

Source: (Dennis et al., 2012a) 

System prototyping is another variety of RAD which perform the analysis, design, and 

implementation phases concurrently to quickly develop a simplified version of the 

requested system. The system is a “quick and dirty” version of the final system and only 

provides minimal features. The developers reanalyze, redesign, and reimplement a second 

prototype following the reaction and comments from the users. The newer prototype 

corrects the deficiencies and adds more features. This cycle continues until the users, 
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analysts, and sponsors agree that the prototype provides sufficient functionality to be 

installed and used in the organization. Such an approach is helpful with the users who 

have difficulty in expressing requirements for the system. System prototyping is 

represented in Figure 5. 

 

 

Figure 5 System prototyping 

Source: (Dennis et al., 2012a) 

3.1.1.4. Agile Development 

Agile development is a group of programming-centric methods that aims at making the 

SDLC more efficient and effective. Face-to-face communication is preferred more in 

agile development and much of the design and documentation overhead is eliminated. A 

project gives more importance to simple, iterative application development in which each 

iteration is a complete software project that includes planning, requirements analysis, 

design, coding, testing, and documentation. Each cycle is kept short and lasts around 1-4 

weeks, and the development team focuses on adapting to the existing business 

environment. Agile development is also represented in Figure 6. Various approaches like 

extreme programming (XP), Scrum, and Dynamic Systems Development Method 

(DSDM) are popular in agile development. 
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Figure 6 Agile development 

Source: (Dennis et al., 2012a) 

Extreme Programming (XP) underlines customer satisfaction and teamwork. Designs are 

kept simple and clean, and developers communicate with customers and fellow 

programmers. An extreme programming project starts with user stories that define the 

system requirements. After that, programmers code in small, simple modules and test to 

meet those requirements. For small projects with highly inspired, unified, committed, and 

experienced teams, extreme programming should work sufficiently. However, if the 

teams are not bonded and the project size is big, then the success probability for the 

extreme programming project is reduced. Since little analysis and design documentation 

is created with XP, there is only code documentation which results in maintenance of 

large systems nearly impossible. 

3.1.1.5. Project methodologies comparison 

This section focuses on comparing the strengths and weaknesses of the previous Software 

Development Life Cycle Models.  

Table 1 Project Methodologies Comparison 

Source: Own elaboration using the source (Adel & Abdullah, 2015b) and (Dennis et al., 

2012a). 

Model  Strength  Weakness  When to use  

Waterfall  • Easy to understand and 

implement. 

• Known and used widely.  

• All requirements must 

be recognized early.  

• Inflexible.  

• Difficult and expensive 

to visit the previous 

• When quantity is more 

important than schedule 

or cost.  
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• Defined before design 

and designed before 

coding.  

• Easy to implement being 

a linear model.  

• Minimizes planning 

overhead.  

  

phase to solve the 

mistakes.  

• Clients may not be clear 

about what they want.  

• Not preferable for 

complex and object-

oriented projects.  

• Requirements are well 

known, clear, and fixed in 

the early stage.  

• A new version of the 

existing system is 

needed.  

Spiral  • The high amount of risk 

analysis.  

• Strong approval and 

documentation control.  

• Extra functionalities can 

be added later.  

• Project monitoring is 

effective and easier.  

• Suitable to develop a 

highly customized 

product.  

• High cost.  

• Risk assessment 

expertise is required.  

• Time spent on risk 

identification in a low-

risk project is high.  

• Project success is 

dependent on the risk 

analysis phase.  

• Suitable for medium 

to high-risk projects.  

• When risk evaluation 

and costs are important.  

• When significant 

changes are expected.  

• When users are unsure 

about their needs.  

RAD   • Suitable with a short 

schedule.  

• Useful in developing a 

system with schedule 

visibility  

• Unsuitable 

with unfamiliar 

technology.  

• Not useful for a 

complex system.  

• When the user 

requirements are unclear.  

• When the budget 

permits the use of 

automated code 

generating tools.  

Agile 

Development  

• Reduced risks  

• Better control  

• Increased flexibility  

• Improved project 

predictability  

• Difficult planning.  

• Professional teams are 

vital.  

• Problems with 

workflow coordination.  

• When new changes are 

needed to be 

implemented.  

• When there are tight 

deadlines.  

• When there is a team of 

independent thinkers.  
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Until present, despite the various problem that the waterfall model contains, it still is one 

of the most preferred software development processes due to its conceptual simplicity. 

This model is only able to produce a satisfactory result when the requirements are clear 

and the chances of changing them are low. An example could be, while developing a 

compiler, based on a grammar completely defined and which is not likely to change, the 

waterfall model seems perfectly sufficient (Ghezzi et al., 1991a). 

However, for this project, Agile development will be used because of its various 

advantages. In Agile, project requirements can change constantly. In Waterfall, it is 

explained only once by the business analyst. Agile performs testing alongside software 

development whereas, in Waterfall methodology, testing comes after the build stage. In 

an agile project’s description, details can be improved anytime, which is not possible with 

Waterfall. 

 Functional and Non-Functional Analysis   

Requirements 

Requirements are necessary attributes defined for an item before efforts to develop a 

design for the item. Requirement analysis is a structured, or organized, methodology for 

identifying an appropriate set of resources to satisfy a system need and the requirements 

for those resources that provide a sound basis for the design or selection of those 

resources. The basic process decomposes a statement of customer need through a 

systematic exposition of what the system must do to satisfy that need. 

3.1.2.1. Non-functional Requirement  

A non-functional requirement corresponds to a set of restrictions imposed on the system 

to be developed, establishing, for example, how attractive, useful, fast, or reliable it can 

be. The relevance of a non-functional requirement must be discussed and agreed upon 

between the clients and the development team to avoid taking design and implementation 

decisions prematurely. The non-functional requirement can also be known as a quality 

requirement. The criteria of the non-functional requirement have been discussed in this 

section with a few of their examples in a project. 

1. Operational 

Operational requirements describe what the system must do to work correctly in the 

environment where it is inserted(Fernandes & Machado, 2016a). It is relevant to indicate 
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whether a system must be prepared to work. An example could be if a system is prepared 

to work or not in a marine environment where there are high levels of humidity, ripple. 

Following requirements are a few of the common examples to fulfil the operational 

requirement, 

• The use of external dependencies or services should be documented.  

• The application should be able to cope with missing dependencies and log the 

errors as it might deal with databases or web services in cloud environments. 

• After the application upgrade, the previous codebase should be compatible with 

the new environment or the new code base should be compatible with the previous 

environment. 

•  Where possible, hard-coding values must be avoided as the application moves 

between different environments and need to configure the application for each 

environment.  

• Feature flags should be used upon every added feature as they allow to easily back 

out some errors without having to roll back the entire code base and assists in 

controlling performance and scalability. 

 

2. Load and Performance  

Performance refers to the capacity of a system to respond to its stimulus, that is, the time 

necessary for responding to the events or the number of events processed by the time unit. 

It is the degree to which a system can accomplish its functionalities within a given set of 

constraints. The performance of a system is related to the processing time of the tasks, 

the response time of the operations, accuracy of the results, reliability, availability, fault-

tolerance, storage capacity, scalability (Romano et al., 2009a). Following requirements 

are a few of the common examples to fulfill load and performance. 

• Answer the request of users at the appropriate time.  

• Support simultaneous access.  

• Depend on the server and technology. 

Various metrics should be used for the calculation of the load and performance with the 

help of a load balancer which helps in generating the virtual clients. Following metrics 

are some of the recommendations. 

• Load size: Number of virtual clients running during the reporting interval. 
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•  Throughput: The average number of bytes per second transmitted from the 

system to the virtual clients running the test script.  

• Receive time: Time elapsed while receiving the first byte and the final byte.  

• Connection time: Time is taken for the virtual client to connect to the server. 

•  Failed hits: Total number of times virtual client made the HTTP request but did 

not receive the correct HTTP response.  

• DNS Lookup time: Time spent to resolve the host name and convert to IP by 

calling the DNS server. 

• Following the tests, it should be concluded if the application is stable or not with 

simultaneous interaction of the virtual clients. 

 

3. Navigability  

Following enumerations are some examples commonly used to fulfill navigability criteria 

(Romano et al., 2009a). 

• Do not have broken links on the page.  

• Every page should be reachable from the home page.  

• Following metrics are some of the recommendations for software testing,  

• Unreachable Pages: Number of total pages in the server that cannot be reached.  

• Not found Pages: Number of pages that return 404 Error – Not Found.  

• Reachable Pages through Main Page: Total number of pages in the server that 

cannot be reached from the main page.  

• Closed Cycles Identification: Identification of a cyclic sequence of steps in which 

it is possible to return to the initial page.  

 

4. Security  

Security is a measure of the ability to resist unauthorized attempts to access while 

continuing to provide its services to authorized users. It is related to access, 

confidentiality, protection, and integrity of the data. Confidentiality is a set of rules that 

prevents restricted information from reaching the wrong people and ensures that the 

authorized ones can receive the information. Integrity is related to the reliability and 

accuracy of the information. Following requirements are a few of the common examples 

to fulfill security (‘A Basic Non-Functional Requirements Checklist’, 2014),  
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• The application must recover quickly or withstand in the face of attacks.  

• The application shall reject the introduction of incorrect data. The application’s 

behaviour must be accurate and predictable. 

• The application must ensure the integrity of the customer account information.  

• Access permissions for application data should only be changed by the system’s 

data administrator.  

• Users with specific roles should be confined to specific functionalities. 

• Password should be fulfilling the requirements such as length, special characters, 

2FA, expiry, recycling policies. 

• All external communication between the system’s data server and clients must be 

encrypted. 

 

5. Cultural 

Cultural requirements are factors related to the stakeholder’s culture and habits. Such 

requirements are relevant when product serves different professional groups, due to 

differentiated cultures that exist from profession to profession(Fernandes & Machado, 

2016a). It is also critical when the product is commercialized in different countries. 

Following enumerations are some examples to refer to while writing the cultural 

requirements.  

• The system should be designed with a concurrent multilingual system as it can 

support multiple languages at the same time.  

• The application should not contain any text, images, or media that offend any 

culture or countries that have access to it.  

• The application should not display religious symbols or words associated with 

mainstream religions.  

 

6. Legal 

Any system, regardless of the technology, is bounded to respect the established laws. 

Legal requirements are laws, rules, and standards that apply to the system so that it can 

operate. General Data Protection Regulation (GDPR) is a regulation in EU law that came 

to force on 25 May 2016 and applied since 25 May 2018 (Data Protection in the EU, 

2021). It governs the data protection and privacy in the European Union (EU) and 
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European Economic Area (EEA). To comply with GDPR, it must be ensured that the 

appropriate checks and balances are put in place in the application. Development teams 

should consult lawyers, legal advisors, and jurists, for knowing whether any law or rule 

is being broken by the system. The following aspects could be taken as an example for 

legal requirement fulfillment (GDPR and Cookie Consent | Compliant Cookie Use, 

2020).  

• Ensure that the user is informed about the intentions at or before the data 

collection.  

• Encryption and pseudonymization of personal data.  

• Establishing a process for regular security testing and assessment of the 

effectiveness of security practices and solutions in place.  

• In the case that a user refuses data processing, no unessential cookies must be set- 

Essential cookies will be set regardless of the user accepts or refuses.  

• Inform the users regarding the purpose of individual cookies separately to ensure 

that specific consent for each cookie objective is obtained.  

• Once valid consent from a user is obtained, it is free to collect and process personal 

data for the purposes that the user was informed of before.  

• The application should permit a user to remove personal information.  

 

7. Reliability & Scalability 

Reliability is the capacity of a system to remain in operation over time and is associated 

with the possibility of a system producing correct results in a certain period. There is a 

various business that relies completely on computer-based systems that support them, 

being expectable that those systems are always accessible and dependable. Scalability is 

the ability of a system to continue to show a high quality of service, even when subjected 

to a higher number of requests. It can be correlated with the capability to serve more users 

simultaneously, treat a higher volume of information and respond to more requests 

(Fernandes & Machado, 2016a). Various examples of such non-functional requirements 

could be, 

• The application should not cause crashes, unhandled exceptions, or script errors.  

• When various limits are exceeded in the application, it should be recorded how it 

copes with such limits.  

• After a fatal error in the application, it should be recoverable and usable.  
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• The application’s behavior should be predictable, trustworthy, and consistent.  

• All types of data should remain intact throughout the application.  

• Despite the highest workloads, the system should continue to meet the 

performance requirements.  

 

3.1.2.2. Functional Requirement  

A functional requirement describes functionality to be made available to the users of the 

system, characterizing partially its behaviour as an answer to the stimulus that it is subject 

to. Such type of requirement does not mention any technological issue. The set of 

functional requirements must be complete and coherent. It is considered complete if it 

considers all the necessities that the client wishes to see satisfied and coherent if there are 

no contradicts among its elements. 

Functional requirements define a system or its component and what a system should do. 

Functional requirements are defined at a component level and are captured in a use case. 

It also helps to verify the functionality of the software. 

Well-documented requirements maintain all developers, designers, and QA testers on the 

same page and working towards the same goal while avoiding misunderstandings. When 

the team has a shared understanding and a written record, the need for regular meetings 

is avoided. Projects can also become more predictable with the help of functional 

requirements as the team can estimate the development time and cost more accurately. 

Problems can be identified in earlier phases while thoroughly capturing the functional 

requirements (A Guide to Functional Requirements (with Examples), n.d.). 

3.2. System Architectures 

A system architecture is a conceptual method that defines the structural and behavioral 

views of a system. It encompasses decisions on where to place a specific software 

component, and if the components should be on the same or different machines. An 

enterprise may have a specific high-speed processing server or high-end reliable storage 



CHAPTER 3 BIBLIOGRAPHIC REVIEW 

31 

facility which they want to leverage for specific components. Such decisions will lead to 

several architectural organizations.  

Physical and logical architecture defines and documents the physical and logical 

components of a system, respectively, to provide clarity around how those component 

elements relate to one another (System Modeling: Understanding Logical and Physical 

Architecture - Data Science Central, 2021). The following subsections further discuss the 

physical and logical architectures. 

 Physical Architectures 

Physical architecture is a structural design that provides sufficient detail to implement 

and deploy a solution. What makes physical architecture differ from logical architecture 

is that logical architecture concerns with identifying functional elements of the system 

whereas, physical architecture specifies the actual devices that those functional elements 

execute on. Several items identified in logical architecture can physically reside in the 

same location or devices. When developing a physical architecture, the following key 

activities are performed, 

• Analysis of the physical architecture and the appropriate allocation,  

• Analysis of the constraint requirements,  

• Identification and definition of physical interfaces and components, and  

• Identification of critical attributes of the physical components which also includes 

design budget like weight, reliability, etc.  

The 3-tier web application’s logical architecture as identified in Figure 7 can be validly 

implemented as different physical architectures are logically identical. The only 

limitations are the performance and capabilities of the physical device. 

 Logical Architecture  

Logical architecture is a structural design that provides as much detail possible without 

constraining the architecture to a particular technology or an environment. The purpose 

of logical architecture is to plan and communicate architecture. The development of a 

particular system is more concerned with logical architecture than with physical 

architecture. Several systems follow the same common 3-tier structure with a request-

response cycle which are provided as follows, 
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• The user requests the presentation tier which is handed off to the application tier.  

• The application retrieves any required data from the data tier.  

• The application tier then generates a response and hands it back to the presentation 

tier.  

• Finally, the presentation tier returns the response to the user. 

The above progress cycle is represented in Figure 7. 

 

Figure 7 Three-tier structure 

Source: (System Modeling: Understanding Logical and Physical Architecture - 

Data Science Central, 2021). 

Various tiers can be found in Figure 7 which are common in web applications in which,  

• The presentation tier is the webserver,  

• The application tier is code called by, and generating responses to, the web server, 

written in any language or framework, and  

• Data-tier is a back-end data-store variant that persists application data between 

the requests.  

3.2.2.1. Microservices  

With the continuous growth of the Internet of Things (IoT), monolithic applications have 

become much larger in scale and possess complex structures. This results in poor 

scalability, extensibility, and maintainability. For resolving this issue, microservice 

architecture has been introduced to the IoT field which has the advantage of flexibility, 

lightweight, and loose coupling (Sun et al., 2017a). 
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In the monolithic architecture, the system is deployed as a single application, in which 

functionally differentiated aspects are all interwoven. It has natural advantages like 

module independence, uniform standards, and technology. With the growth of system 

functions, IoT becomes more complex than ever in the distributed environment. This 

results in inevitable defects in a monolithic architecture. First, the whole system is a 

united application where only multiple deployments can improve the performance of the 

system, while the overloaded functions create a bottleneck, which is a waste of computing 

resources. Second, in any case of changes, changing a function may impact other 

functions due to high dependencies. Such architecture also brings complexity for re-

deployment, maintenance, and continuous integration.  

To overcome these drawbacks from the monolithic architecture, researchers are starting 

to adopt the microservice architecture (Sun et al., 2017a). Microservice architecture is a 

new software design pattern that suggests that a single large complex application should 

be further divided into groups where each group deals with the related services. Each 

service can be dedicated to an individual business function and as a result, it can be easily 

deployed and released internally to the production environment in isolation, and 

modifying or maintaining one service will not impact the performance of the whole 

system.  

The design of the new generation IoT framework considers the reuse of existing 

information service systems with high cohesion and loose coupling in open and scalable 

platform design. The main idea of the design is to adapt the microservice architecture to 

the existing IoT system, reconstructing all the business functions by decoupling them into 

individual and independent services. The design also focuses on using lightweight 

communication between services with a minimal overload.  

Microservices is a logical architecture, and it does not require the use of any specific 

technology. Also, when microservices are physically implemented as a single service, 

process, or container, the parity between business microservice and physical service isn’t 

necessarily required in all cases when a large and complex application is built that 

contains dozens or hundreds of services (nishanil, 2021).  The logical architecture of a 

system does not necessarily map one-to-one to the physical architecture. This is what 

makes the difference between physical and logical architecture. Coincide between logical 

and physical architecture can happen but often it does not. This is not important but what 
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matters the most is that a business microservice must be autonomous by allowing code 

and state to be independently versioned, deployed, and scaled.  

A microservice might contain several processes or services which could be using any web 

service or HTTP protocol. Such services could share the same data if they are united 

concerning the same business domain. This is also shown in Figure 8.  

 

Figure 8: Business microservice with several physical services 

Source: (nishanil, 2021) 

In a microservices architecture, there should be an effort to minimize the communication 

between the internal microservices. The fewer communications, the better. In many cases, 

there’ll somehow be the necessity to integrate the microservices. When this is done, the 

critical rule is that the communication between them should be asynchronous. It doesn’t 

mean that a specific protocol should be used but it just means that the communication 

between microservices should be done only by propagating data asynchronously 

(doodlemania2, 2019). 

Asynchronous messaging has some advantages that can be used in microservice 

architecture like, 

• Reduced coupling – the sender doesn’t need to know about the consumer. 

• Failure isolation – If the consumer fails, the sender can still send messages. The 

message will be picked when the consumer recovers. 

• Responsiveness – An upstream service can reply faster if it does not wait on 

downstream services. If there is a chain of service dependencies, waiting on 

synchronous calls can add an unacceptable amount of latency. 

Due to these advantages, asynchronous messaging is preferred in microservices 

architecture over synchronous messaging. 
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3.3. Microservices Authentication and Authorization 

Security is a requirement that guarantees the confidentiality, integrity, and availability of 

user, application, device, and network information and physical resources (McCabe, 

2007a). The security component architecture defines how system resources are to be 

protected from theft, damage, denial of service, or unauthorized access. 

This contains the procedures used to apply security, which may include such hardware 

and software capabilities as Virtual Private Networks (VPNs), encryption, firewalls, 

routing filters, and network address translation (NAT).  

Creating security procedures that can protect all parts of a complex network while having 

a limited effect on the simplicity of use and performance is one of the most significant 

and troublesome tasks related to network design. Security design is confronted by the 

complexity and permeable nature of modern networks which include public servers for 

e-commerce, extranet connections for business partners, and remote-access services for 

users reaching the network from home (Developing Network Security Strategies > 

Network Security Design | Cisco Press, 2010a).  

The security and privacy architecture is important as it describes to what extent security 

and privacy will be fulfilled in the network, where the critical areas that need to 

be protected are, and how it will influence and relate with the other architectural 

mechanisms. 

Solving the problem of authentication and authorization can be challenging in terms of 

microservices. Such strategies need to be developed and tested to be applied in a 

microservice-based project. Accordingly, various research performed and developed has 

been provided. 

 User and Device authentication 

Authentication is an integral part of how most applications are interacted with. It is 

important to recognize several authentication strategies, evaluate, and use them as per the 

system needs. Since the infrastructure of this project is based on microservices, 

authentication of the client devices and sensors should also be handled appropriately. 

Various authentication strategies can be applied for fulfilling the need for microservices 

authentication. 
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3.3.1.1. SSO Server 

Single sign-on (SSO) is a session and user authentication service in which users can have 

access to multiple services using one login credential (Ayoub, 2018). In this 

authentication mechanism, the user requests access to the resource’s server. To obtain the 

resource that the user requires, the user needs to provide the login credential to the SSO 

server. SSO server will verify the credentials and return the user with a token. After the 

user obtains a token, user requests the access to resources. The resource server verifies 

the token that the user has supplied with the SSO server. Once the SSO server validates 

the token and replies resource server about this validation, the user can get access to the 

required resource. This has also been represented in Figure 9. 

In an SSO server, the one-time login that the user has made is usually opaque. Every time 

user requests access to any of the resource servers, the token needs to be validated with 

the SSO server.  

 

 

Figure 9 SSO server timing diagram 

Source: Own elaboration with the help of (Ayoub, 2018) 
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IAM (Identity and Access Management) standards have been developed to support all 

authentication and authorization activities at a corporate level. There are various IAM 

standards available, of which, the established and effective are SAML, OAuth, and OIDC 

(Naik et al., 2017). Analysis and comparison of SAML, OAuth, and OIDC are as follows, 

1. SAML 

Security Assertion Markup Language (SAML) is a version of the SAML standard for 

exchanging authentication and authorization identities between security domains. It 

enables web-based, cross-domain SSO, which helps in reducing the administrative 

overhead of distributing multiple authentication tokens to the user (SAML v2.0 Technical 

Overview, 2008). The common flow of SAML is shown in Figure 17 of Appendix A. 

The scenario of SAML flow is described as following, 

• A - user opens a browser and tries to access a website where his personal 

information is stored. The website here is represented as Client. This client doesn’t 

handle the authentication on its own. 

• B – for authentication of the user, the client constructs a SAML Authnrequest, 

signs it, and encodes it. The client then redirects the user’s browser to the identity 

provider for authentication. The identity provider receives the request, decodes it, 

and verifies the signature.  

• C – with a valid Authnrequest, the identity provider will request the user to 

provide the login credentials. 

• D – once the user is authenticated successfully, the identity provider generates a 

SAML token that includes user information. The user is redirected back to the 

client with the token. 

• E – client verifies the SAML token, and extracts the identity information of the 

user which reveals the user’s roles and permission for the website. The client then 

logs the user into its system in a form of cookies and sessions. 

HTTP Redirect and HTTP POST binding are defined in the SAML 2.0 specification. 

HTTP Redirect is great for short SAML messages, but it is not recommended for longer 

messages such as SAML assertions (Choosing an SSO Strategy, 2013). The SAML 

assertion is the XML document that the identity provider sends to the service provider 

which contains the user information. There are 3 types of SAML assertions which are 

authentication, attribute, and authorization decision. 
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2. OAuth2.0 

OAuth 2.0 is a standard designed to permit a website or application to access resources 

hosted by other web applications on behalf of a user. It focuses on client developer 

simplicity while providing specific authorization flows for web applications, mobile 

phones, and living room devices (OAuth 2.0 — OAuth, n.d.). OAuth defines four roles, 

• Resource Owner/User 

• Resource server 

• Authorization server 

• Client/Application 

The flow of OAuth2 is shown in Figure 18 of Appendix A, 

1. User requests resource access from a client using a browser. 

2. The client forwards this request to the authorization server and the request includes 

client id, redirect URI, response type, and scope. 

3. The authorization server presents an authentication form to the user and the user will 

provide his credentials. 

4. After the user credentials are verified, the authorization code is provided to the client. 

5. The client exchanges the authorization code for token and this time, the request 

includes client id and client secret. 

6. Authorization replies with an access token to the client. 

7. The client uses the access token to request access to the resource server. 

8. The resource server validates the token with the authentication server. 

 

After the token validation is completed, the resource server provides the requested 

resource to the client. 

The communication from the authorization server to the client and resource server is done 

over HTTP Redirects with the token information that is provided as query parameters. 

OAuth doesn’t require signing the messages by default. 

 

3. OpenID Connnect (OIDC) 

OpenID Connect is a framework that transmits the identity using RESTful APIs and is 

developed as a profile of OAuth 2.0. It uses two main tokens, an Access token, and an ID 

token. The flow of the OIDC use case is represented in Figure 19 of Appendix A. 
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OIDC is a platform-independent, vendor-neutral, and open standard. OIDC token 

contains user identity information but not credentials. It uses JSON, HTTP, and REST 

protocols and supports both web and native mobile applications (Naik et al., 2017). 

 

4. Conclusion 

This subsection presented three different identity and access management standards for 

protecting the applications. SAML has many legacy features that are not compatible with 

mobile phones as it was developed before smart mobile phones were introduced (Naik et 

al., 2017). SAML token contains the user identity information because of the signing. For 

OAuth2, this information can only be retrieved after the resource server has validated the 

token with the authentication server. With OAuth2, an access token can be invalidated on 

the authorization server, preventing further unauthorized access to the resource server.  

SAML and OAuth both allow for SSO opportunities. SAML handles authentication 

whereas OAuth handles authorization. Both of them can be used combined to grant access 

and to allow access to a protected resource (Choosing an SSO Strategy, 2013). 

OpenID is best suitable for mobile computing and communication as it fulfills their 

requirements. Despite being the most suitable among the three, OpenID is still a 

developing standard and is not as widely compatible as OAuth and SAML (Naik et al., 

2017). 

3.3.1.2. Client-Side SSL Certificates 

Device authentication is a key aspect of IoT security. If device authentications are not 

made correctly, it can lead to a serious security breach and an unauthorized person can 

do anything that the device has permission to. An entire infrastructure could even crash 

with a single IoT device. 

Using the authentication for a device ensures that a trusted set of devices are used in the 

infrastructure. Several mechanisms can be used for device authentication like password 

authentication, token authentication, and client-side SSL. 

Uploading digital certificates to IoT devices is the best solution as it is a lightweight 

solution that can be outfitted without being concerned about efficiency. Certificates 

require a small amount of space in the device and provide strong authentication. 
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Client-side SSL is one of the most secure authentication mechanisms as the device owns 

the secret instead of the server. The only way for a person to impersonate the device is by 

having the physical device and extract the private key data from it. Client-side SSL 

validates the identity of a client. The client could be an individual IoT device. Instead of 

the client verifying the identity of the server, in client-side SSL, the server verifies the 

identity of the client. Client-side SSL uses Public Key Infrastructure (PKI) for 

authentication. Client certificates don’t encrypt any data, instead, they’re installed for 

validation purposes only (IoT Device Authentication: Benefits of Client-Side SSL, 2019). 

3.3.1.3. RSA and ECDSA Cryptography 

Asymmetric cryptography is a branch of cryptography where a secret key can be divided 

into two parts, public key, and private key. The public key is given to anyone whereas, 

the private key is kept secret. Asymmetric cryptography can be used for authentication 

and confidentiality. Using asymmetric cryptography, messages can be signed with a 

private key, and then anyone with the public key can verify that the message was created 

by someone who possesses the corresponding private key (Asymmetric Algorithms — 

Cryptography 35.0.0.Dev1 Documentation, n.d.). Asymmetric cryptography uses 

encryption algorithms like RSA and ECDSA to create public and private keys. 

RSA (Rivest-Shamir-Adleman) algorithm is an asymmetric cryptographic algorithm that 

works on the private and public keys. RSA is used in fields of SSL/TLS certificates, 

cryptocurrencies, email encryption, and a variety of other applications. RSA uses the 

prime factorization method for one-way encryption of the message. In this method, two 

large-sized numbers are chosen randomly and multiplied to create another huge number. 

Determining the original two prime numbers from this result is almost impossible 

ECDSA (Elliptic Curve Digital Signature Algorithm) is an asymmetric cryptography 

algorithm that is constructed around elliptical curves and an underlying function which is 

known as a “trapdoor function”. In ECDSA, a number on the curve is multiplied by 

another number and, as a result, produces a point on the curve. Despite the knowledge of 

the original point, figuring out the new point is challenging.  

ECDSA is better in terms of key generation as well as in signature generation when 

compared with RSA whereas, while verifying a signature, RSA has better performance 

than ECDSA. ECDSA provides optimal security with shorter key lengths. It requires a 
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lesser load for network and computing power which as a result, is great for devices with 

constrained power and resources (Toradmalle et al., 2018). 

RSA and ECDSA do not provide user or device authentication themselves but they can 

create the public and private keys when asymmetric cryptography is being used for user 

or device authentication. 

 Research on Microservices Authentication 

Various research and implementations have been made until the present day for solving 

the challenge for microservices authentication and authorization. Each of the solution 

focus on the project’s goal and structure. This sub-section focuses on describing the 

research that has been made in the recent past few years to solve this challenge. 

3.3.2.1. Authentication Orchestrator 

An authentication and authorization orchestrator has been used in research made by 

(Bánáti et al., 2018). This solution was implemented for a healthcare application. Since 

the data in such fields are extremely sensitive, the major focus of the study was on user 

authentication. This solution also uses microservices architecture and it helps the doctor 

to track and monitor the state of a patient or even to make a diagnosis remotely based on 

the database. 

In this research, the writers have compared various security solutions which include 

Security Assertion Markup Language (SAML), Authentication, Authorization, and 

Accounting (AAA), User/Password, Certificate, and JWT/OAuth2/OpenID/SSO. After 

comparing these authentication mechanisms, they found JWT/OAuth2/OpenID/SSO the 

best fit for their solution. 

To avoid authentication by microservices each time a request is made, they implemented 

a service that realized this function which is represented in Figure 10. They used SSO for 

a unified authentication process. They designed an Identity and Access Management 

(IAM) module that would authenticate the user and generate a JWT token on their behalf 

that would be appended in every request. This token contained the user’s username and 

email, and timestamps. IAM also had abilities to issue and withdraw tokens and to 

determine the roles of the users represented by the tokens. They also designed an IAM 
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authentication module in the REST part of the microservice which could determine the 

token’s validity. 

 

 

 

 

Figure 10 Authentication and Authorization Orchestrator 

Source: (Bánáti et al., 2018) 

One of the good parts about this research was how well they were handling the traffic for 

this orchestrator. Since every JWT token has an expiry time, they also had a default expiry 

time of 5 minutes. When the load increased, the timer was set to a higher value to prevent 

frequent refresh. They also developed a client API that was capable of providing 

authentication and authorization information to the microservice without the need for 

changing the internal logic of the microservices itself. For improving the performance, 

they also built a cache into the API which resulted in less load on the orchestrator 

microservice and decreased security overhead of the microservices. 

The problem with this solution is that it is difficult to implement and manage. Each 

microservice has an IAM authentication module that can determine the token validation. 
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If something needs to be changed in the system, each IAM module inside microservices 

must be changed as well. This results in inconvenience while managing or expanding the 

system. 

 

3.3.2.2. Unified Authentication 

A solution created by (ShuLin & JiePing, 2020) has focused on unified authentication, 

improving the efficiency of authority verification, and accelerating the system 

development speed under the microservice architecture. The writers have focused on 

implementing unified authentication because for a microservice architecture, every 

microservice needs to write an authentication module, which is not only troublesome but 

also inconvenient for unified management and expansion. 

In this research, writers have used OAuth2 for verifying user login credentials. OAuth2 

can authenticate users but cannot generate a token that carries user information. The 

resource server needs to contact the authorization server every time resource access is 

requested from the user. To solve this issue, as soon as authentication is validated by 

OAuth2, JWT tokens are generated. JWT tokens can verify the signature, they can contain 

useful user information, and the token verification can be done in the resource server 

itself.  

JWT adopts asymmetric encryption and uses RSA to generate public and private keys. In 

this solution, Zuul gateway has been used which is a gateway service that provides 

dynamic routing, monitoring, resiliency, and security. Along with Zuul, the Eureka server 

is also used whose purpose is to register every microservice.  

When users try to access any resource server, they have to pass through the Zuul gateway. 

If they have not authenticated yet, they are redirected to the OAuth 2.0 authorization 

server for authentication and authorization. Login will be handled by OAuth2 and when 

login is successful, public and private keys are generated along with JSON token. The 

authorization server uses the private key to sign and encrypt the JWT. The private key is 

stored in the authorization server and the public key is stored in Zuul and other 

microservices. 



CHAPTER 3 BIBLIOGRAPHIC REVIEW 

44 

After the user has JWT, the user carries this JWT to visit the resource server. Zuul 

decrypts the JWT using the public key previously provided by the authorization server 

and if verification is passed, the request will be released for the microservices. When the 

request arrives at the microservices, the microservice parses JWT with the public key for 

obtaining the user information without accessing the authorization server. This has been 

represented in Figure 11. 

 

 

 

Figure 11 Unified authentication 

Source: Own elaboration using (ShuLin & JiePing, 2020) 

This technique of authentication enables unified authentication and improves efficiency. 

With the use of JWT, the resource server doesn’t need to communicate with the 

authentication server for the verification of the tokens as they can verify it themselves 

using the public keys. This reduces the payload for the authentication server and improves 

performance. Zuul gateway also realizes unified authentication, which is convenient for 

authentication management. 

3.3.2.3. Microservices hierarchical authentication 

In a research made by (Yang et al., 2021), the author considers the user authentication 

challenges faced by the microservices architecture and proposes the concept of 
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microservices hierarchical authentication. In this research, the security level of services 

in microservices has been split into first-grade and second-grade authentication. The first-

grade authentication method decrypts the client’s token, verifies the token’s validity, and 

passes the verification if it is within the valid period. Second-grade authentication checks 

the abnormal user list in the Redis cluster after the first-grade authentication has passed. 

The system hierarchical authentication model is shown in Figure 12. 

The system storage is divided into Redis cache and MySQL database. Redis cache stores 

the abnormal users' list, using a bitmap data structure in Redis. Each unit in the data can 

store either 0 or 1 as an array in bits. The primary key of the user corresponds to a binary 

bit in the Redis system. If the value is 1, it means that the user is locked and cannot apply 

multiple tokens. 

 

Figure 12 System hierarchical authentication model 

Source: (Yang et al., 2021) 

In this authentication solution, the API gateway performs second-grade authentication 

with high availability on all requests, as the public entrance for the microservices. The 

authorization server responds to the user’s login credential and returns a JWT token if the 

login is successful. Redis cache server caches users with abnormal status in the 

microservice where the cached object is the user’s primary key. 

The authentication before API gateway adopts the second-grade authentication for higher 

security because all the services exposed by the API gateway need to be exposed publicly. 
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Since the requests after intercepted by the API gateway are the request for access to 

microservice’s resources and this interaction is frequent, the first-grade authentication is 

used here. Using second-grade authentication beyond API gateway also increases 

network expenses and hardware costs. 

In this authentication mechanism, a client sends the login request. This request is 

forwarded to the authentication server by the API gateway. When the credentials are 

validated, the authentication server sends the token to the API gateway which is 

forwarded to the user. When the client receives the token, they send a request for access 

to the microservice resources. Before the request arrives at microservices, the second-

grade authentication is performed. The API gateway verifies the validity of the token. If 

the token is valid, it requests Redis's abnormal list to check if the user is in that list. When 

both of these verifications pass, the API gateway forwards the resource request to the 

microservices and then the first-grade authentication comes into action. After the 

microservices receive the token, they check the token’s validity. When this is confirmed, 

they return the resources to the client. 

Using different grades authentication in this model ensures the security of the entire 

system by gradually filtering out risky requests. This solves the challenge of fast user 

authentication which is faced by microservice architecture. 

3.3.2.4. Client token with API Gateway 

This solution was presented by (Ayoub, 2018) where the author provides a solution for 

invalidating JWT on the server-side. Whenever JWT is used in a microservices 

architecture for user authentication and authorization, such tokens cannot be revoked 

from the server code on-demand and the tokens can still be valid despite user logout. 

There is no control over the expiry time of the token. 

In this solution, an API gateway is used where every request of the user passes through 

this gateway. In this approach, when a user requests access to the resource server, it is 

first checked if the user has a valid token. If the request is made appending a token but 

the token is invalid or expired, the user is unauthorized for the resources. If the request 

has been made for the first time without the token, the user is redirected to the 

authentication server by the API gateway. 
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Figure 13 Client token with API Gateway 

Source: Own elaboration with the help of (Ayoub, 2018) 

Once the user authenticates himself successfully through OAuth2 by using his preferred 

identity provider or, by supplying the login credentials, the authentication server replies 

with a valid JWT token. This token is taken to the API gateway and the API gateway 

translates the JWT token to an opaque token that only it can resolve. API gateway replies 

to the user with an opaque token and when a user requests the resource with the opaque 

token, the API gateway maps the opaque token to the origin token and forwards the 

request to the resource server. The resource server upon receiving the origin token 

validates the token and replies with the resources. This flow can be seen in Figure 13.  
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With this transfer of the JWT token to an opaque token, the token relationship in the API 

gateway can be removed and when a user requests to logout, the API gateway can revoke 

the user’s token and also adds extra protection to the token from being decrypted by 

hiding it from the client.  

 

With this solution, the JWT tokens can be revoked from the server-side and also offers 

better security as the user outside the system doesn’t have access to the original token. 

Despite these advantages, the API gateway needs to make this translation of opaque token 

to auth/JWT token and vice-versa. This mapping of the token is only done through the 

API gateway and when the API gateway receives a lot of requests, the response time for 

a resource is higher than usual. 

3.3.2.5. Wilma PEP Proxy 

A Policy Enforcement Point (PEP) is a component of policy-based management which 

might be a Network Access System (NAS). When a user tries to access a file on a network 

or server that uses policy-based access management, the PEP describes the attributes of 

the user to other entities on the system. The PEP gives the PDP (Policy Decision 

Point) the job of deciding whether to or not to authorize a user based on the description 

of attributes that have been provided. The user’s roles, the action, the resource, and the 

application ID are forwarded to the Authorization PDP server which compares the request 

with the set of access policies that are stored in the server (CPS Wi-Fi Configuration 

Guide, 2016a). 

A PEP Proxy acts as a gatekeeper and is found in front of a secured resource. It is an 

endpoint found at a public location. Users who want access to the secured resources must 

supply sufficient information to the PEP Proxy. When PEP Proxy verifies the 

information, it passes the request to the real location of the secured resource. The outside 

user who makes the request is unknown about the actual location of the resource. 

FIWARE is an open-source initiative defining a universal set of standards for context data 

management that facilitates the development of Smart solutions for different domains like 

Smart Cities, Smart Industry, Smart Agrifood, and Smart Energy. In a smart solution, 

there is a need to gather and manage context information, processing that information, 

and informing external actors, enabling them to actuate and therefore alter or enrich the 
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current context. FIWARE context broker is the core component of the FIWARE platform. 

It enables the system to perform updates and access the current state of the context. 

FIWARE Wilma is an implementation of PEP Proxy which combines works with 

FIWARE Keyrock Generic Enabler. When a user requests to access the 

resources, PEP proxy describes the user’s attributes to the Policy Decision Point (PDP), 

requests a security decision, and enforces the decision which will be Permit or Deny. The 

authorized users receive the same response as they had direct access to a resource with 

minimal disruption whereas unauthorized users are returned a 401 – Unauthorized 

response (FIWARE PEP Proxy, n.d.).  

Keyrock is the FIWARE component that is responsible for Identity Management. With 

the help of Keyrock together with PEP Proxy, it enables us to add OAuth2-based 

authentication and authorization security for our services and application. The following 

objects are common within the Keyrock Identity Management database,  

• User: They are the users who register themselves to the application and can make 

identification with their email and password. They can be assigned rights 

individually or as a group.  

• Application: It is the securable FIWARE application. It has the client role in the 

OAuth 2.0 architecture and requests protected user data. Applications define roles 

and permissions to manage the authorization of users and organizations. Roles and 

permissions can be created within an application as needed. It can also register 

IoT agents, and PEP Proxy for the protection of backends.  

• Organization: Organization is the group of users that share the resources of an 

application which includes roles and permissions. Users of an organization can be 

either members or owners of that organization.  

• OrganizationRole: In an organization, users can either be an admin or a member. 

Admins can add or remove the users from the organization whereas members only 

get the roles and permissions of an organization. With such rules, the need for 

super-admin is removed as each organization can be responsible for its members.  

• Role: A role is considered as a descriptive bucket for a set of permissions. Provider 

and purchaser are the default roles in Keyrock IDM and inside the role provider, 

there is a set of permissions which are,  

o Get and assign all internal application roles. 
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o Manage the application. 

o Manage roles. 

o Manage Authorizations. 

o Get and assign all public application roles. 

o Get and assign only public-owned roles. 

New roles can be created, and more permissions can be added to them. Each permission 

is composed of HTTP action and the resource it permits the access to (Example: action: 

GET, resource: Login). Roles can be assigned either to an individual or an organization. 

When the users are authenticated with their credentials, they get all the permissions from 

their roles, plus the roles which are associated with their organization. The roles of a user 

in an application can be either purchaser or provider. New roles can be defined within an 

application. 

Solution of Wilma PEP proxy can be used for authentication and authorization in a 

microservices architecture. Keyrock IDM could be a separate microservice solely 

dedicated to authentication and authorization purpose. Whenever a request arrives in the 

form of a token at an application secured by the Wilma PEP proxy, the PEP proxy can 

verify the validity of the token with Keyrock IDM and extract roles and permissions of 

the user with PDP which is also a part of the Keyrock. With a valid token, roles, and 

permissions, PEP proxy can provide resources requested by external users. 
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3.3.2.6. Security Solution Analysis 

This section compares all the previously discussed authentication researches that have 

been made for microservices authentication and authorization. 

Table 2 Comparative study of authentication methods 

Solution Easily 

Scalable 

Cost and 

complexity 

Authentication 

mode 

Tokens User 

Authorization 

Authentication 

Orchestrator 

No High OAuth2 JWT No 

Unified 

Authentication 

Yes Medium OAuth2 JWT Yes 

Microservices 

Hierarchical 

Yes High User-Password JWT No 

Client Token 

with API 

Gateway 

Yes Medium OAuth2/User-

Password 

JWT + 

Opaque 

Tokens 

No 

Wilma PEP 

Proxy 

Yes Low OAuth2/User-

Password 

OAuth 

Tokens 

Yes 

Concluding the results from Table 2, we can analyze and adapt the advantages of each 

authentication solution to this BIOma project. We can either use the RSA-signed JWT 

tokens from the idea of Unified Authentication or use the idea of Wilma PEP proxy by 

FIWARE as both of the solutions offer user authorization. 

 Conclusion 

Various authentication solutions have been researched and implemented until the present 

day. Each of them has its advantage depending upon the goal of the research and structure 

of the project. A solution like Wilma PEP Proxy might be easy to implement but might 

contain issues with performance and a single point of failure when the number of requests 

on the authentication server is high.  
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A solution like Authentication Orchestrator and Microservices Hierarchical is more 

reliable but expensive to implement, difficult to manage, and they don’t provide user 

authorization. Solution of Unified authentication along with Client token with API 

Gateway offers token verification in each microservice, user authorization, and token 

invalidation on demand but also adds the dependency on the API gateway for token 

translation.  

Analyzing this research and implementation for microservices authentication and 

authorization, it can be concluded that all these solutions help with user authentication 

but only Unified Authentication and Wilma PEP Proxy can help with the authorization. 

We can take advantage of identity and access management from Wilma PEP proxy and 

if needed, a separate module for token verification can be developed in each microservice 

as used in the solution of Authentication Orchestrator for reducing traffic in 

authentication microservice.
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Chapter 4 Proposed System 

Architecture 

This chapter intends to demonstrate the system architecture defined for the PPS2 of the 

BIOma project. The work presented in this chapter is done as a design task during the 

first iteration of the BIOma project. This is the first proposal for the infrastructure design 

which might receive changes throughout the project development. The work done in this 

chapter is a result of the discussion with the collaborators of this project. 

4.1. Location and user identification 

This section describes the identification of locations and users for tracking food waste. 

This identification is important to recognize the locations where the food waste happens, 

and the users who are responsible to monitor and minimize it. The result of the 

identification has been shown in Figure 14. The following list describes the identifications 

made, 

• Inventory Manager/Administrator: The inventory manager is present in several 

locations of the product storage which might include off-site warehouse, on-site 

warehouse, and kitchen storage. His prime responsibility is to register the 

products, move products between storages, make purchase suggestions, and track 

waste that happens during the storage. He is also responsible for making a 

sustainable purchase from the suppliers following sustainability and responsible 

production certifications and labels. The labels and certifications which are one of 

the evaluation criteria of the suppliers are represented in Figure 20 of Appendix 

B. 
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• Menu Manager/Unit Manager: The menu manager is responsible to create the 

food menus for the organization. He creates the menu based on the food history 

and products that are approaching the expiry date. Food history means the meal 

that was mostly wasted in the previous menus. 

 

Figure 14 Food waste locations and actors 

• Cooks/Unit Collaborator: Cooks work in the preparation zone. They also access 

the products based on the expiration date and cook based on food history. They 

are responsible for tracking the waste that happens while storing in the preparation 

zone. 

• Attendant/Unit Collaborator: Attendants work in the plating zone and also in the 

canteen. They are responsible for serving the foods to the consumer. Their 

responsibility is to track the amount of food waste in the plating zone and canteen. 

This waste happens due to an excessive amount of food prepared compared to the 

number of consumers. Attendants also work in the dishwashing room who tracks 

the food waste from the consumer. This is the amount of food that was not 

consumed after serving to the customers. 

From this analysis, the responsibility of workers in their locations is identified and it is 

easier to keep track of food waste based on various locations. 



CHAPTER 4 PROPOSED SYSTEM ARCHITECTURE 

55 

4.2. System Requirements 

This section enumerates the system requirements for 5 different packages of PPS2. 

1. Management package 

1.1. The system should manage three user roles: administrator, unit manager, and unit 

collaborator. 

1.2. The system should manage or access external databases (or Web API) to import 

food units. 

1.3. The system should assign users to food units. 

1.4. The system should access external databases (or Web API) to import Common 

Procurement Vocabulary (CPV) classification system, General Standard for Food 

Additives (CODEX GSFA) Codes; United Nations Central Product 

Classification (UN CPC) System; Global Product Classification (GPC) codes; 

United Nations Standard Products and Services Code (UNSPSC) codes. 

1.5. The system should manage product classification. 

1.6. The system should manage or access external databases (or Web API) to import 

purchase information of products, suppliers, producers, cost, weight, and meal 

products by food unit. 

1.7. The system should register or access external databases (or Web API) to import 

meals sold and served by the unit. 

1.8. The system should register or access external databases (or Web API) to import 

organizations that receive donations. 

2. Smart procurement package 

2.1. The system should manage certifications/labels. 

2.2. The system should manage the best production practices in the sector. 

2.3. The system should define supplier policies for sustainable purchases and supplier 

criteria typology and evaluation methods. 

2.4. The system should manage suppliers, their policies, and evaluation results. 

2.5. The system should present reports of product purchases in value amount and 

weight in tons, by-product typology, product family, certifications, labels, and 

best practices. 

2.6. The system should present reports of product purchases in value amount, by the 

supplier, producer, and geographical origin. 

2.7. The system should present reports of supplier policies and evaluations. 
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2.8. The system should order or assign a score to each supplier based on the 

certifications, best practices, product origins, supplier policies, and submitted 

evaluations. 

3. Smart monitoring package 

3.1. Waste generation sub-package 

3.1.1. The system should register in situ or access external databases (or Web 

API) to import weight of waste and additional information by unit, type of 

waste material (Urban, biodegradable, paper/cardboard, packages (plastic, 

metal, ECAL), glass, OAU, other residues and danger residues)  and type of 

measurement (weighted, eGAR), destination type (valorization, disposal or 

waste-product) 

3.1.2. The system should register the amount of reused waste per unit type in situ 

or by accessing external databases. 

3.1.3. The system should collect data from external connected sensors to 

measure the weight of waste. 

3.2. Food waste sub-package 

3.2.1. The system should register in situ or access external databases (or Web 

API) to import weight of food waste and additional information by unit, life 

cycle phase (Reception, Storage, Preparation, Confection, Distribution of 

Main Meals, Distribution of Intermediate Meals, Consumption), type of 

material (edible, non-edible) and meal type. 

3.2.2. The system should collect data from external connected sensors to 

measure weight and photos of food waste by unit, life cycle phase, type of 

material (edible, non-edible), and meal type. 

3.3. Food donations sub-package 

3.3.1. The system should register the number of donated meal doses and 

estimated weight by unit, unit type, meal type (soup, main course, dessert), 

and receiver organization. 

3.3.2. The system should notify organizations that receive donations about 

available meals. 

4. Smart waste package 

4.1. The system should define thresholds for waste weight by life cycle phase and 

issue alerts. 
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4.2. The system should present reports of waste by unit, unit type, type of waste 

material, and destination. 

4.3. The system should present a normalized waste index per meal. 

4.4. The system should present reports of food waste by unit, unit type, life cycle 

phase, per cost, type of material, and estimated value. 

4.5. The system should present a normalized waste index per cost and sold meal. 

4.6. The system should present reports of donated meal doses by unit type, meal type, 

and receiver organization. 

5. Smart education package 

5.1. The system should register or access external databases (or Web API) to import 

different types of actions (initiatives, sensibilization) to different targets 

(consumers, the public) by the food unit. 

5.2. The system should fire events of the actions to major social networks (channel) 

and retrieve visualizations. 

5.3. The system should present events of the actions to the end-users as an educational 

portal. 

5.4. The system should register individuals present in educational events per 

geographical region. 

5.5. The system should register or access external databases (or Web API) to import 

training actions to collaborators by food unit. 

5.6. The system should present reports of the actions by unit, unit type, target, and 

channel, and determine an impact index. 

4.3. UML Diagrams 

 Use-case Diagram 

This section presents the use-case diagram for 5 different packages of PPS2. The actors 

participating in these use-case diagrams are Administrator, Manager, Collaborator, 

Sensor, and Web API. This diagram is designed based on the requirements presented in 

section 4.2. The representation of the diagrams is done per package and the packages are, 
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1. Management Package 

This package for use-case is designed based on the requirements from 

Management Package. Every use case from this package is performed by the actor 

Administrator. For every use case except Manage product classification, and 

Assign user to food units, actor Web API  also interacts with the use cases for 

importing or exporting data from or to the system. The management package use-

case is represented in  Figure UC 1 of Appendix C. 

In this package, the Administrator can manage different user roles which can 

include administrator, unit manager, or unit collaborator. The administrator can 

import food units, import classification systems, manage the classification of the 

product, import purchase information of products, suppliers, producers, cost, 

weight, and meal products by food unit, import meals sold by the unit, and import 

donation receiving organization by accessing external Web API or database. 

2. Smart Procurement Package 

The use cases defined in this package are based on the Smart Procurement 

Package defined in the system requirements. Use cases are divided among two 

actors, administrator, and manager. The actor Administrator can manage 

certifications or labels, manage best production practices in the sector, can 

manage supplier policies for sustainable purchases, and can manage suppliers and 

their policies and evaluation results. The smart procurement package use-case is 

represented in Figure UC 2 of Appendix C. 

The actor Manager can define supplier policies, evaluation methods, and supplier 

criteria per typology. For all these actions, it should be verified if similar entries 

already exist in the system or not.  

This actor can view reports of product purchases in value amount and weight in 

tons, by-product typology, family, certifications, labels, and best practices. The 

system also permits this actor to view reports of product purchases in value 

amount, by the supplier, producer, and geographical region.  

Reports of supplier policies and evaluations can also be viewed by this actor and, 

he can assign a score to each supplier based on certifications, best practices, 

product origin, supplier policies, and submitted evaluations. 
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3. Smart Monitoring Package 

This use case is based on the requirements from the Smart Monitoring Package 

and its sub-packages. Actors Manager, Collaborator, Sensor, and Web API 

participate in this package. Web API actor is responsible for importing and 

exporting data from or to the system. In this use case when the Collaborator 

registers the donated meal, the receiving organization is notified about this meal 

donation. The sensor here is responsible for registering weight and photographic 

readings to the system. The Smart Monitoring Package use case is represented in 

Figure UC 3 of Appendix C. 

In this use case, the actor Manager can register waste weight and additional 

information by unit, type of waste material (Urban, paper, plastic, glass, etc.),  

type of measurement (manually weighted, eGAR), and destination type (disposal, 

waste-product) in the system by accessing the external database or Web API. He 

can also register the amount of reused waste per unit type, and register food waste 

by unit, life cycle phase (Reception, Storage, Preparation, etc.), type of material 

(edible and non-edible), and meal type. Managers can measure weight and photos 

of food waste by unit, life cycle phase, type of material, and meal type with the 

help of externally connected sensors. 

Actor collaborator can register the number of donated meal doses and estimated 

weight by unit, unit type, meal type, and receiver organization. Upon this 

registration, the receiver organization is notified about it. 

4. Smart Waste Package 

The smart waste package use case is based on the system requirements of the 

Smart Waste Package. Actors Administrator, Manager, and Collaborator 

participate in this package. The Smart Waste package use case is represented in 

Figure UC 4 of Appendix C. 

In this package, the actor administrator can define a threshold for waste weight by 

life cycle phase and issue alerts accordingly. Actor Manager can view reports of 

waste by unit, unit type, type of waste material, and destination. 

Actor Unit Collaborator can view normalized waste index per meal, reports of 

food waste by unit, unit type, life cycle phase, per cost, type of material, and 
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estimated value, and view reports of donated meal doses by unit type, meal type, 

and receiver organization. He can also view a normalized waste index per cost 

and sold meal. 

5. Smart Education Package 

The use cases defined in Smart Education Package are based on the system 

requirements defined in the Smart Education Package. Actors Manager and Web 

API participate in this package. Web API is responsible for importing or exporting 

the system data. In this package, the system permits the actor Manager to register 

actions to consumers or employees by the food unit, register the individuals 

present in the education events per region and he can also view reports of the 

actions by unit, unit type, target, and channel, and determine an impact index. The 

smart education use case is represented in Figure UC 5 of Appendix C. 

 

 User Stories 

User stories are a simple description of a product feature told from the perspective of the 

person who wants that feature. The team can work in a collaborative environment and 

decide how to best serve the user and meet the goal specified. 

User stories mentioned here will help the developers to identify for whom are they 

developing the feature and for what purpose. Table 3 contains user stories for PPS2 based 

on the system requirements and use-case specified. Each package has been labeled by the 

numbers where, 

• Package 1 is the Management Package, 

• Package 2 is the Smart Procurement Package, 

• Package 3 is the Smart Monitoring Package, 

• Package 3.1 is the Waste generation sub-package, 

• Package 3.2 is the Food waste sub-package, 

• Package 3.3 is the Food donations sub-package. 

• Package 4 is the Smart Waste Package, and 

• Package 5 is the Smart Education Package. 
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Table 3 User stories PPS2 

Package As a I want to So that I can 

1 Administrator Manage user roles Each user can get permissions 

based on their roles. 

1 Administrator Import food units Monitor the food waste in each 

unit and personnel assigned to it. 

1 Administrator Assign user to food 

units 

Prevent unauthorize access. 

1 Administrator Import CPV 

classification system 

Assign codes to the products. 

1 Administrator Manage product 

classification 

View products based on family 

and sub-family 

1 Administrator Import purchase 

information 

manage the sustainable 

purchases made for the 

organization. 

1 Administrator Import meals sold by 

unit 

Monitor the flow of food 

consumption per unit 

1 Administrator Import donation 

receiving organizations 

Assign donation amount per 

organization 

2 Administrator Manage certifications 

and labels 

Permit the organization to view 

the most relevant certifications 

and labels that fits their 

sustainable purchase policy. 

2 Administrator Mange the best 

production practices in 

the sector 

Increase product purchases from 

producers who follow best 

production practices. 

2 Administrator Manage suppliers’ 

policies 

Check if their policies are 

eligible for organizational 

purchases. 

2 Administrator Manage supplier’s 

evaluation result 

Check the number of purchases 

made from eligible evaluated 

suppliers and non-eligible 

suppliers. 



CHAPTER 4 PROPOSED SYSTEM ARCHITECTURE 

62 

2 Manager Define supplier policies Assign policies that each 

supplier follows. 

2 Manager Define evaluation 

methods 

Evaluate suppliers. 

2 Manager Define supplier criteria 

typology 

Classify suppliers based on the 

typology. 

2 Manager View product purchase 

report in value amount 

and weight per product 

typology, per 

certification and label, 

per family, and best 

practice 

Manage important financial 

costs from the organization and 

analyze the growth in purchases 

following the organization’s 

sustainable purchase policy. 

2 Manager View product purchase 

report in value amount 

per supplier, per 

producer, and 

geographical region 

Manage organizational 

purchases promoting the local 

producers and suppliers that fit 

the best sustainable policy. 

2 Manager View supplier policies 

and evaluation report 

Prioritize and increase purchase 

amounts from the highest 

evaluated suppliers and the ones 

that fit the organization’s 

purchase policy. 

2 Manager Assign a score to 

suppliers 

Check if they are eligible for 

organizational sustainable 

purchase policy.  

3.1 Manager Register waste weight 

per unit, per waste 

material, per 

measurement type, and 

destination type. 

Categorize each recorded waste. 
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3.1 Manager Register reused waste Compare the weight of reused 

waste with the total 

organizational waste per unit. 

3.1 Manager  View waste weight 

tracked by sensors 

Record the wastes that were 

read from sensors and registered 

manually. 

3.1 Manager Register food waste by 

unit, lifecycle phase, 

type of material, and 

meal type 

Organize and analyze each food 

waste. 

3.2 Collaborator Register the weight of 

donated meals based on 

meal type and receiver 

organization 

Record which organization 

benefitted the most and what 

meal-type was most fitted for 

human consumption even after 

the waste. 

3.3 Collaborator Receive donations 

notification alongside 

with targeted 

organization 

Ensure that the donations are 

being received in the correct 

places. 

4 Administrator Define waste weight 

threshold in lifecycle 

phases 

Prevent over-accumulation of 

food waste in each lifecycle 

phase. 

4 Manager View waste report based 

on unit, unit type, waste 

material type, and 

destination. 

Analyze the type of waste 

generated by the organization 

and create an attempt to reduce 

or reuse it. 

4 Collaborator View normalized waste 

index per meal 

Track progress towards the 

reduction of food waste. 

4 Collaborator View normalized waste 

index per cost and sold 

meal 

Help organizations manage 

financial information. 
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4 Collaborator View donated meal 

report by unit type, meal 

type, and target 

organization. 

Acknowledge the amount of 

edible food waste and the 

organization's benefitted from it. 

5 Manager Register training actions 

to collaborators 

Ensure each collaborator from 

the organization is getting 

training against food waste. 

5 Manager Register various 

initiatives based on the 

target group by food 

unit 

Track the number of people 

being aware of food waste. 

5 Manager Notify various target 

groups on social media 

regarding major events 

Ensure that end users are 

missing such important events. 

5 Manager Register individuals 

present in event per 

geographical region 

Track effectiveness of such 

events per geographical region. 

5 Manager View reports of the 

events based on type, 

target, and impact index 

Manage future events and 

actions to reduce food waste. 

 Class Diagram 

This section presents and describes the class diagram for PPS2 of the BIOma project. An 

overview of the class diagram is shown in Figure 21 in Appendix D. The class diagram 

is divided into 4 different packages which include Common Management, Smart 

Monitoring/Smart Waste, Smart Procurement, and Smart Education. Each package is 

further classified into sub-packages and each of them will be discussed in this section. 

1. Common Management 

I. Meal Management 

This package focuses on different types of meals cooked and served. Various 

recipes can be used for cooking different kinds of meals. It also monitors the 

amount of planned and served doses. All this information can help monitor what 
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meals were more wasted than the others and can also check the difference between 

planned and served doses to check the number of food wastes. The class diagram 

for this package is shown in Figure C1 1 of the Appendix D. The classes and their 

relationship in this package are as follows, 

• Recipe 

This class is for the recipe of the food meal. It contains 2 attributes, a name, and 

a description of the recipe. It has 1 to many relationships with ‘RecipeMealTypes’, 

1 to many with ‘ScheduledMealRecipeMealType’, many to 1 with ‘MealPart’, 

and 1 to many with ‘RecipeProduct’ classes. 

• RecipeProduct 

It is the relational link class between ‘Recipe’, and ‘Product’. This class has 

attributes of quantity and order. This class defines what quantity of the product 

has to be used and in what order for a recipe. It has many to 1 relationship with 

the classes ‘UnitOfMeasure’ and ‘Product’, and many to 1 relationship with the 

class ‘Recipe’. While defining the quantity, the relationship with the class 

‘UnitOfMeasure’ defines what measurement unit is used for defining the quantity. 

• MealPart 

This class has 2 attributes - name and order. It defines the part of the meal like 

soup, main course, dessert, etc. It has 1 to many relationship with the class 

‘Recipe’. 

• RecipeMealTypes 

It is the relational link class between ‘Recipe’ and ‘MealType’. It has 1 attribute - 

order. It has Many to 1 relationship with both classes. 

• MealType 

This class is for the type of meal that will be cooked. This class has 2 attributes, 

name and order. The meal type could be breakfast, lunch, dinner, etc. It has 1 to 

many relationship with the classes ‘RecipeMealTypes’ and 

‘ScheduledMealRecipeType’ 
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• ScheduledMeal 

This class is for the meals that have been scheduled to be cooked. It has 2 

attributes, date and planned_doses. It has 1 to many relationship with 

‘ScheduledMealRecipeType’ and many to 1 with ‘FoodUnit’. This class defines 

the date of scheduled meals in different food units with the number of planned 

doses. 

• ScheduledMealRecipeType 

It is the relational link class between the classes ‘ScheduledMeal’, ‘Recipe’, and 

‘MealType’. It has many to 1 relationship with ‘ScheduledMeal’, ‘Recipe’, and 

‘MealType’, 0 or 1 to many with ‘StockMovement’, 1 to many with 

‘MealDonation’, and 1 to many with ‘FoodWasteMeasurement’. It has 1 attribute 

– served_doses. This class defines the served doses for the meal using a particular 

recipe of a meal type, on a scheduled date. 

II. User Management 

This package handles the user-related information which includes the information 

of the user, his roles, and sets of permission assigned to a role. The class diagram 

for this package is shown in Figure C1 2 of the Appendix D. The classes and their 

relationship in this package are as follows, 

• User 

This class is for the user of the system. It has 3 attributes – username, email, and 

password. It has 1 to many relationship with the classes ‘Staff’ and’UserRole’. 

• Role 

This class defines the role of the user and the permission that each role has. A role 

can have sets of permissions and permission can belong to many roles. It has 2 

attributes – name and description and has 1 to Many relationship with 

‘RolePermission’. A role in this system could be an administrator, manager, or 

collaborator. 
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• Permission 

This class defines the permission that a role has. It has attributes name and 

description, and 1 to many relationship with the class ‘RolePermission’. 

• UserRole 

This is a relational link class between ‘User’ and ‘Role’. It has many to 1 

relationship with both of the classes. 

• RolePermission 

This is a relational link class between ‘Role’ and ‘Permission’. It has many to1 

relationship with both of the classes. 

III. Media Management 

This package focuses on media management which includes the management of 

photographic images that is used throughout the organization. The class diagram 

for this package is shown in Figure C1 3 of the Appendix D. The class in this 

package is as follows, 

• Media 

This class cares about storing pictures, videos, or pdf to any entity. Examples 

could be logos for standards, pictures for articles, and photos of the photographic 

sensors or cameras. It has attributes name, size, and type. It has 1 to many 

relationship with the classes, ‘EventMedia’, ‘ArticleMedia’, 

‘FoodMeasurementPhoto’, ‘StandardLogos’, and ‘SupplierSustainablePolicy’. 

IV. Location Management 

This package is focused on managing the location which can be used to be 

assigned to a staff, producer, supplier, etc. This location is hierarchically managed 

which orders in the way of the continent, country, region, city, and address. The 

class diagram for this package is shown in Figure C1 4 of the Appendix D. The 

classes and their relationship in this package are as follows, 
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• Continent 

This class defines the continent in the world. The attributes are name and code. 

Examples could be Europe, Asia, Australia, etc. It has 1 to many relationship with 

‘Country’. 

• Country 

This class represents a country and also stores the continent it belongs to. It has 2 

attributes - name and country and has 1 to many relationship with ‘Region’ and 

many to 1 relationship with ‘Continent’. 

• Region 

This class specifies the region of a particular country. It has attributes name and 

code and 1 to many relationship with ‘City’. 

• City 

This class specifies the city of a particular region. It has an attribute – name. This 

class has 1 to many relationship with the class ‘Address’. 

• Address 

This class describes the address in a particular city. This class has 4 attributes – 

address1, address2, postcode, and place. It has 1 to many relationship with the 

class ‘FoodUnit, 0 or 1 to many relationship with ‘Staff’, Many to 1 with the class 

‘Producer’,  1 to many with the class ‘Supplier’, and many to 1 with the class 

‘City’. 

V. Food Units Management 

This package is responsible for the management of the food units. Here the 

information about the food unit is managed which includes the storage of the 

products, types of storage units, movement of products inside or outside the food 

units, the staff responsible to work here, lifecycle phase, size of the food unit, and 

type of the food unit. The class diagram for this package is shown in Figure C1 5 

of the Appendix D. The classes and their relationship in this package are as 

follows, 
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• Storage 

This class has two attributes, name and code. This class defines the type of storage 

in each food unit. It has many to 1 relationship with the classes ‘StorageType’ and 

‘FoodUnit’, and 1 to many relationship with the class ‘StockMovement’. 

• StorageType 

This class defines the type of storage that the organization has. It could be dry, 

fridge, or freezer storage. This class has 3 attributes – name, min_temperature, 

and max_temperature. It has 1 to many relationship with the class ‘Storage’. 

• StockMovement 

This class defines the movement of the food product stock. It has 4 attributes -  

quantity, sign, date, and price. It has many to 0 or 1 relationship with 

‘ScheduleMealRecipeMealType’, many to 1 with ‘Staff’, many to 1 with 

‘Storage’, many to 1 with ‘Product’, and 1 to many with ‘StandardStockProduct’. 

• Staff 

This class is defined for the staff of an organization. This class has 3 attributes – 

name, phone, and alternative_email. This class has 1 to many relationship with 

the class ‘StockMovement’, 1 to many with ‘FoodUnitStaff’, Many to 0 or 1 with 

‘Address’, and many to 1 with the class ‘User’. 

• FoodUnit 

This class defines the food units. It is a location that was identified where 

monitoring of food waste was necessary. This class defines the size and type of 

food unit alongside the location. It has 4 attributes – name, code, cost_center, and 

client_name. This class has 1 to many relationship with ‘ScheduledMeal’, many 

to 1 with ‘Address’, 1 to many with ‘FoodUnitMeasurement’, 1 to many with 

‘EventFoodUnit’, many to 1 with ‘FoodUnitType’, many to 1 with 

‘FoodUnitSize’, 1 to many with ‘FoodUnitStaff’, and 1 to many with the class 

‘Storage’.  
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• FoodUnitStaff 

This is a relational link class between ‘FoodUnit’ and ‘Staff’ and defines the role 

of a staff belonging to a food unit. It also has a relationship with the class ‘Role’. 

This class contains many to 1 relationship with all the classes it relates with. 

• FoodUnitType 

This class defines the types of food units. It has 1 to many relationship with the 

class ‘FoodUnit’ and contains an attribute, name. 

• FoodUnitSize 

This class defines the size of a food unit and has 1 to many relationship with the 

class ‘FoodUnit’ and contains attributes – name and code. 

• FoodUnitLifeCyclePhase 

This class defines the life cycle phase of the food unit. The life cycle phase could 

be the reception, storage, preparation, confection, distribution of the main meals, 

distribution of the intermediate meals, and consumption. This class has 1 to many 

relationship with the class ‘FoodWasteMeasurement’ and contains 2 attributes, 

name and order. 

VI. Product Management 

This package is responsible for the management of the product inside the 

organization. This package includes the information of the product which includes 

the Common Procurement Vocabulary, if the product is a generic product or a 

branded product, brand information can be extracted, the unit of measurement is 

also covered in this package, product’s typology, and family are also included 

here. The class diagram for this package is shown in Figure C1 6 of the Appendix 

D.  The classes and their relationship in this package are as follows, 

• CommonProcurementVocabulary 

This class focuses on CPV (Common Procurement Vocabulary) which is a single 

classification system for public procurement aimed at standardizing the references 

used by contracting authorities and entities to describe procurement contracts 

(Anonymous, 2016). It has a self-association that establishes a hierarchy. This 
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class contains 2 attributes – name and code. It also contains a 0 or 1 to many 

relationship with the class ‘GenericProduct’.  

• Product 

This class defines the products of an organization. It has 8 attributes which include 

name, code, description, is_active, importance, UPC, EAN13, and weight. UPC 

and EAN13 are the 12 and 13 digits barcode symbols respectively. It has a 

generalization relationship with the class ‘Pack’ where ‘Pack’ is the child. 

It has 1 to many relationship with the class ‘RecipeProduct’, many to 1 with 

‘ProductLot’, 1 to many with ‘StockMovement’, 1 to many with 

‘ProductSupplier’, many to 1 with ‘UnitOfMeasure’, and 1 to many with ‘Pack’. 

• Brand 

This class defines the brand of a product and the producer that uses this specific 

brand. It has 2 attributes – name and code and 1 to many relationship with the 

class ‘Product’ and many to 1 with ‘Producer’. 

• Pack 

It is a child class of ‘Product’. It carries all the attributes, operations, and 

relationship from ‘Product’ but it has one distinct attribute which is quantity. 

• ProductLot 

This class defines the lot for products. It has 3 attributes – code, date_produced, 

and date_expiry. It has 1 to many relationship with the class ‘Product’. 

• UnitOfMeasure 

This class defines the measurement unit. It has 2 attributes – name and 

short_name. It has 1 to many relationship with ‘FoodUnitMeasurement’, 1 to 

many with ‘Product’, 1 to many with ‘UOMConversion’, and 1 to many with 

‘RecipeProduct’. 

• UOMConversion 

This class permits to specify how one unit of measure will be converted to another 

unit of measure. It has many to 1 relationship with the class ‘UnitOfMeasure’ and 
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contains an attribute ‘conversion_function’. This attribute defines the function 

that is used for the unit of measurement conversion. 

• ProductFamily 

This class defines the family and sub-family of the product. Examples of family 

could be fruit, pork meat, fish, etc. and subfamily could be olive, olive imported, 

potatoes, freshly prepared potatoes, etc. This class has 2 attributes – name and 

level. This class has a self-association that establishes a hierarchy and also has a 

1 to many relationship with the class ‘ProductTypology’. 

• ProductTypology 

ProductTypology defines a group of products that fulfill a similar need for a 

market segment or market as a whole. It could be consumer goods, oils, chemicals, 

packaging, pulp, glass, etc. It has many to 1 relationship with the class 

‘ProductFamily’ and 1 to many with ‘GenericProduct’. It has an attribute called 

name. 

• GenericProduct 

This class defines generic products. It has many to 0 or 1 relationship with the 

class ‘CommonProcurementVocabulary’, many to 1 with ‘ProductTypology’, 1 

to many with ‘Product’, and 1 to many with ‘StandardAppliedToGenericProduct’. 

It contains an attribute – name. 

2. Smart Monitoring and Smart Waste 

I. Food Donations 

This package helps to monitor the amount of edible food waste that was donated. 

Information about the receiver organization can be stored here. The class diagram 

for this package is shown in Figure C2 1 of the Appendix D. The classes and their 

relationship in this package are as follows, 

• MealDonation 

This class defines the meal that was donated to an organization with the donated 

doses. It contains an attribute donated_doses. This class has many to 1 relationship 
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with the class ‘ScheduledMealRecipeMealType’ and many to 1 with 

‘DonatedOrganization’.   

• DonationOrganization 

This class defines the organization which benefited from the donation. It has 1 to 

many relationship with the class ‘MealDonation’ and contains 3 attributes – name 

email, and contact. 

II. Waste Measurement 

This package focuses on the waste measurement. The amount of food or non-food 

waste can be stored here using several units of measurement. Also, photographic 

images can be stored in this package. The class diagram for this package is shown 

in Figure C2 2 of the Appendix D. The classes and their relationship in this 

package are as follows, 

• FoodUnitMeasurement 

This class defines the measurement of the food units. It has attribute value and 

date. It generalizes two classes, ‘FoodWasteMeasurement’ and 

‘WasteMeasurement’. It has many to 1 relationship with the class 

‘UnitOfMeasure’, many to 1 with ‘FoodUnit’, and many to 1 with 

‘ThresholdContext’. 

• FoodWasteMeasurement 

This class defines the measurement of food waste and is a child of the class 

‘FoodUnitMeasurement’. It has 1 to many relationship with the class 

‘FoodMeasurementPhoto’, many to1 with ‘FoodUnitLifeCyclePhase’, many to 1 

with ‘TypeOfMaterial’, and many to 1 with ‘ScheduledMealRecipeMealType’. 

• WasteMeasurement 

This class defines the measurement of the waste and is a child of the class 

‘FoodUnitMeasurement’. It has many to 1 relationship with the class 

‘WasteDestionation’, many to 1 with ‘WasteMeasurementType’, and many to 1 

with ‘WasteType’. 
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• FoodMeasurementPhoto 

This class is responsible for handling the photos of the food waste measurement. 

It has many to 1 relationship with the class ‘FoodWasteMeasurement’and class 

‘Media’. 

III. Waste Generation 

This package focuses on the management of waste generation. Information about 

waste generation is covered by this package which includes the destination of the 

waste, waste type, and the method that was used for waste measurement. The class 

diagram for this package is shown in Figure C2 3 of the Appendix D. The classes 

and their relationship in this package are as follows, 

• WasteDestination 

This class defines the destination of the wastes. It has an attribute, name. The 

weight destination could be valorization, disposal, or waste-product. It has 1 to 

many relationship with the class ‘WasteMeasurement’. 

• WasteType 

This class defines the type of wastes. It has an attribute, name. The type of wastes 

can be urban, biodegradable, paper, glass, etc. It has 1 to many relationship with 

the class ‘WasteMeasurement’. 

• WasteMeasurementType 

This class defines the type of the waste measurement. The waste measurement 

type could be manually weighted or eGAR. eGAR is governmental legislation that 

defines an electronic waste transport document. It has an attribute, name, and 1 to 

many relationship with the class ‘WateMeasurement’. 

IV. Waste Alert System 

This package focuses on providing an alert system for waste management. Several 

food units might have sensors that are used in the garbage can for warning about 

the food waste threshold. When the garbage can is almost full, the sensors alert 

the employees to replace the garbage bag in each unit. The class diagram for this 
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package is shown in Figure C2 4 of the Appendix D. The classes and their 

relationship in this package are as follows, 

• ThresholdValue 

This class defines the value of the thresholds. Such thresholds could be used while 

measuring the wastes in various food units. This class has an attribute, value and 

contains many to 1 relationship with the class ‘ThresholdLevel’. 

• ThresholdLevel 

This class defines the level of the thresholds. Such a level of thresholds could be 

used while measuring the wastes in various food units. This class has an attribute, 

name and contains 1 to many relationship with the class ‘ThresholdValue. 

• ThresholdContext 

This class defines the context of the thresholds. Such a context of thresholds could 

be used while measuring the wastes in various food units. This class has an 

attribute, name and contains 1 to many relationship with the class 

‘ThresholdValue and ‘FoodUnitMeasurement’. 

V. Food Waste 

This package keeps the record of the amount of food waste by material that could 

be edible or non-edible. The class diagram for this package is shown in Figure C2 

5 of the Appendix D. The classes and their relationship in this package are as 

follows, 

• TypeOfMaterial 

This class contains the type of material of the waste. It could be edible or non-

edible waste. Edible food waste is sent to various organizations for donation. This 

class has an attribute, name and establishes a 1 to many relationship with the class 

‘FoodWasteMeasurement’. 

3. Smart Procurement 

I. Sustainable Standards 
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This package focuses on the various standards that are followed by the suppliers 

in an organization. Keeping information about standards is important to make 

sustainable purchases in the organization by analyzing the supplier’s policy. The 

class diagram for this package is shown in Figure C3 1 of the Appendix D. The 

classes and their relationship in this package are as follows, 

• Standard 

This class defines the standard for a product. It has 2 attributes – name and weight. 

It contains 1 to many relationship with the classes ‘StandardLogos’, 

‘StandardAppliedToGenericProduct’, and ‘StandardStockProduct’. It also 

consists of many to 1 relationship with the class ‘StandardType’. 

• StandardType 

This class defines the type of standards which could be certification, label and 

best practice. It has an attribute, name and contains 1 to many relationship with 

the class ‘Standard’. 

• StandardLogos 

This class defines the logos of the standards that the organization establishes. It 

has an attribute, order and has many to 1 relationship with the classes ‘Standard’, 

and ‘Media’. 

• StandardAppliedToGenericProduct 

It is a relational link class between the class ‘Standard’ and ‘GenericProduct’. This 

class contains many to 1 relationship with both of the classes. 

• StandardStockProduct 

It is a relational link class between the class ‘Standard’ and ‘StockMovement’. 

This class has many to 1 relationship with both of the classes. 

II. Supplier and Producer Management 

This package focuses on the management of the supplier and the producers for the 

organization. They are also evaluated with several evaluation criteria and this 

package holds all those information. Evaluation of such entities helps for better 
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management of future organizational purchases. The class diagram for this 

package is shown in Figure C3 2 of the Appendix D. The classes and their 

relationship in this package are as follows, 

• Supplier 

This class defines the supplier of the organization. This class has an attribute, 

name, and relationship with multiple classes. It has 1 to many relationship with 

the class ‘EvaluationTopicSupplier’, 1 to many with ‘SupplierSustainablePolicy’, 

1 to many with ‘ProductSupplier’, and many to 1 with the class ‘Address’. 

• ProductSupplier 

It is a relational link class between ‘Product’ and ‘Supplier’. This class contains 

an attribute ‘active’ and contains many to 1 relationship with both of the classes. 

• SustainablePolicy 

This class defines the sustainable policy of a supplier from the organization. It has 

an attribute name, and has a 1 to many relationship with the attribute 

‘SupplierSutainablePolicy’. 

• SupplierSustainablePolicy 

It is a relational link class between ‘Supplier’ and ‘SustainablePolicy’. This class 

contains many to 1 relationship with both of the classes. 

• Evaluation 

This class is used for defining the evaluation of a supplier. It has an attribute 

‘name’ and contains 1 to many relationship with a relational link class, 

‘EvaluationTopicSupplier’. 

• EvaluationTopic 

This class defines the evaluation topic for a supplier. It has an attribute called 

name and contains many to 1 relationship with the class ‘EvaluationtopicGroup’ 

and 1 to many relationship with the class ‘EvaluationTopicSupplier’. 

• EvaluationTopicSupplier 
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This class defines the evaluation of a supplier in an evaluation topic. It is a 

relational link class between ‘Evaluation’, ‘Supplier’ and ‘EvaluationTopic’. This 

class contains an attribute - value, and many to 1 relationship with all 3 classes. 

• EvaluationTopicGroup 

This class defines the evaluation topic group for a supplier. Evaluation topic group 

could be criteria typology, method evaluation, etc. It has 1 to many relationship 

with the class ‘EvaluationTopic’. It has an attribute – name. 

• Producer 

This class defines the producer for the organization. It has an attribute called name 

and has relationship with 2 classes. It has 1 to many relationship with ‘Brand’ and 

the same for ‘Address’ as well. 

4. Smart Education 

I. Actions 

This package focuses on keeping information about several initiatives and 

sensibilization given in the form of events to the organization’s employees and 

the general public to combat food waste. Information about such actions can help 

to check the effectiveness of the events by analyzing the difference of the food 

waste before and after the events. The class diagram for this package is shown in 

Figure C4 1 of the Appendix D. The classes and their relationship in this package 

are as follows, 

• ActionType 

This class defines the types of actions which might include initiatives, 

sensibilization, etc. It has 1 to many relationship with the class ‘Action’. It has an 

attribute – name. 

• Action 

This class is a child of the class ‘Event’ and includes all the attribute from this 

class which include title, description, start_date, end_date, duration, and 

is_recurring. This class has many to 1 relationship with ‘ActionType’ and 1 to 

many with ‘ActionTarget’. 
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• Target 

It class defines the various target group of the actions which can include 

consumers, the general public, employees, etc. This class has 1 to many 

relationship with the class ‘ActionTarget’. It has an attribute – name. 

• ActionTarget 

It is a relational link class between ‘Action’ and ‘Target’. This class contains many 

to 1 relationship with both of the classes. 

II. Common 

This package provides information about the events that happened or are 

scheduled to happen for providing education to people about food waste. 

Notification of such events is also provided on several social media platforms 

which can include Facebook. Twitter etc. The class diagram for this package is 

shown in Figure C4 2 of the Appendix D. The classes and their relationship in this 

package are as follows, 

• Event 

This class defines the educational event that occurs for various target groups for 

awareness of food waste and contains attributes - title, description, start_date, 

end_date, duration, and is_recurring. This class has 1 to many relationship with 

‘EventFoodUnit’, ‘EventSocialNetwork’, and ‘Event Media’. This class also has 

children in 2 different packages, Training, and Action. One child is the class 

‘Action’ and the other is ‘Training’. 

• SocialNetwork 

This class defines various social networks like Facebook, Twitter, etc., and 

contains attributes – name and provider_id. This class has 1 to many relationship 

with the class ‘EventSocialNetwork’. 

• EventSocialNetwork 

This class is a relational link class between ‘Event’ and ‘SocialNetwork’ thus 

containing many to one relationship with both of them. 
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• EventFoodUnit 

This class is a relational link class between ‘Event’ and ‘FoodUnit’ thus 

containing many to one relationship with both of them. 

• EventMedia 

This class is a relational link class between ‘Event’ and ‘Media’ thus containing 

many to one relationship with both of them. It has an attribute – order. 

III. Training 

This package provides information about the training given to the employees of 

the organization at certain events. It also keeps track of the number of employees 

that participated. The class diagram for this package is shown in Figure C4 3 of 

the Appendix D. The classes and their relationship in this package are as follows, 

• Training 

This class defines the training events for the organization employees with the 

number of participants in such events to combat food waste. It is a child of the 

‘Event’ class and contains all the attributes that the parent posses with a distinct 

attribute, num_participants. 

IV. Articles 

This package focuses on the articles in a form of news that were created by the 

organization and its staff towards food waste and the initiatives done by them to 

reduce and control it. The class diagram for this package is shown in Figure C4 4 

of the Appendix D. The classes and their relationship in this package are as 

follows, 

• Article 

This class serves the purpose of writing an article for an organization. It has 

attributes –title, description, and date. It also has 1 to many relationship with the 

class ‘ArticleMedia’, many to 1 with ‘ArticleType’, and many to 1 with ‘Staff’. 
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• ArticleType 

This class defines the types of the article. The different types can be news, 

recommendation etc. It has an attribute, name and contains 1 to many relationship 

with the class ‘Article’. 

• ArticleMedia 

This class is a relational link class between ‘Article’ and ‘Media’ thus containing 

many to one relationship with both of them. 

4.4. Physical Architecture 

A physical architecture describes the whereabouts and connection of several necessary 

components in the system. Such a diagram helps the reader to easily identify how various 

components are interrelated and how their purpose is being served for a system to work. 

Figure 22 of Appendix E describes several components from the project and where they 

are supposed to be located. The diagram has been divided into 6 different segments. The 

segments are, 

• Production and storage, 

• Food Unit, 

• Waste Generation, 

• Sensor, 

• Data Inputs, and 

• Data Processing. 

 

1. Production and storage  

Food products are produced by various producers who might be foreign or domestic. 

The products are distinguished by the origin of the product. Producers supply these 

products to national or foreign suppliers. National and foreign suppliers might have 

their facility at any location of the country. They store the products provided by the 

producers. Suppliers are distinguished or identified by their tax numbers. They are 

responsible to provide the products necessary for the kitchen. The products provided 
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by suppliers are stored in an off-site warehouse that might be near, but not 

necessarily, to the designated kitchen. 

 

2. Food unit 

A food unit is a canteen or a restaurant inside a school, hospital, or social service. This 

is the unit with various phases of food waste. In every food unit, there is the presence 

of a data reading node which is demonstrated in Figure 23 of Appendix E. This node 

is responsible for weight measurement and taking the images. This node will be 

further described after this description of the physical diagram. Food waste can 

happen in any of the following described 6 different phases, 

I. Reception: This is the first phase of the food unit where the products from 

the off-site warehouse are received. 

II. Storage: In this phase, the products that have been received are stored. It 

is divided into dry and freezer storage. The products are stored at the 

necessary temperatures. 

III. Preparation: This phase involves the preparation of food. It includes large-

scale equipment for baking, steaming, and cooking foods. Equipment 

selection highly affects menu variety and types of foods served. 

IV. Confection: This is the phase where food is made up of a variety of 

ingredients or materials.  

V. Distribution: This phase is the distribution of the meals. It is further into 2 

different types, intermediate meals distribution, and main meals 

distribution. Intermediate meals include breakfast, snack and, supper 

whereas main meals include lunch and dinner. 

VI. Consumption: This is the final phase of the food unit. Here, the customer 

receives the food for consumption. 

 

3. Waste Generation 

This is the segment that exists in every kitchen type previously mentioned. This 

segment keeps track of the food waste generated from the food unit. Such waste could 

be inedible waste or leftovers. The leftovers are transported for donation. The waste 
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generation segment might consist of a weight sensor for automated weighing of food 

waste or manually weighing machines. 

 

4. Sensor 

As mentioned in the Waste Generation, a weight sensor/manual weighing is present 

for the measurement of food waste. 

The Weight of food waste can be measured in 2 different approaches, either manually 

or in an automated manner. To measure the waste manually, the food waste will be 

taken to a measuring scale by the kitchen employees and the data will be recorded by 

the end of each day. To measure it in an automated manner, the sensors will be 

embedded into the measure bin/scale and the food waste data will be sent to the IoT 

agent. This has also been further described in Figure 23. 

 

5. Data Inputs 

Data will be collected with the help of other segments. To start, the in-site inventory 

which is located near every kitchen helps to provide data about the stock of the 

product. Data of the in-site inventory is managed by the inventory manager. When 

food waste occurs, the leftovers are sent for donation. The track of the amount of 

donation should also be made. Various awareness and educational programs are 

conducted for employees and the public to make aware of the food waste. The track 

of waste before and after the awareness program should also be made per typology to 

observe the relevancy of such programs. 

 

6. Data Processing 

The previously recorded data are managed from the web or mobile application. Users 

can view or update the stocks in an inventory, get the readings from the various 

sensors, and amount of food waste and the donations made. All these data are stored 

in the data center which consists of a database and web server and can be in any part 

of the country. Users can retrieve or upload the data into the database with the help of 

the application. 
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In this project, we need to register the weight of food waste and the images for AI 

analysis. This is one of the requirements that has been specified in the project. For 

achieving this goal, two approaches have been created which can be seen in Figure 

23. In the first approach, everything will be automatic. The kitchen staff will take the 

weight to the weighing scale and, the weight value and the image will be automatically 

sent to the server. In the second approach, staff will use their tablets to capture images, 

select the meal type and send the weight to the server. Regarding how we can achieve 

such a goal has been described in the following paragraphs.  

In the first scenario, as shown in Figure 23 of Appendix E, a Load cell is used as a sensor. 

A Load Cell is a forcer sensor that is principally used for measuring weight. It transforms 

force or pressure into electrical output. The magnitude of this electrical output is directly 

proportional to the force which is being applied. Load cells have a strain gauge, which 

measures strain using a change in resistance. The strain gauge deforms when pressure is 

applied. It generates an electrical signal as its effective resistance changes on deformation 

(Load Sensors, 2020). 

The electrical signal generated by the Load cell is in few millivolts and they should be 

further amplified. Such amplification is performed by HX711. HX711 is a precision 24-

bit analog-to-digital converter designed for weighing scales and industrial control 

applications to interface directly with a bridge sensor (‘24-Bit Analog-to-Digital 

Converter (ADC) for Weigh Scales’, n.d.). HX711 module amplifies the low electric 

output of Load cells and then this amplified and digitally converted signal is sent to 

Arduino. 

When the Arduino receives the reading combined from the Load cell and HX711, the 

ESP32-CAM comes into play. ESP32-CAM is a full-featured microcontroller that also 

has an integrated video camera and microSD card socket. This camera will also be 

connected to Arduino and when the weight results are received from the other sensor, it 

captures an image, and then it is sent to Arduino. Both Load cell and ESP32-CAM will 

be attached to a rig to facilitate the weight measurement and image capture process. 

Inside the Arduino, ESP32 is connected which is a series of low-cost, low-power systems 

on a chip microcontroller with integrated Wi-Fi and Bluetooth. ESP32 will be used here 

for its Wi-Fi capabilities. For sending the HX711’s reading and image, both sensors will 

be authenticated against the PEP proxy. ESP32 will send a POST request to the PEP proxy 
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with the credentials of the sensors. Sensors are already registered in the identity manager 

with their respective credentials. Upon successful authentication, PEP returns an OAuth2 

token. This OAuth2 token is used again by ESP32, and a new POST request is made to 

the PEP proxy with the readings and images that were generated by the sensors. Since the 

sensors might have limited bandwidth and memory resources, it uses Ultralight protocol 

which is a lightweight text-based protocol for constrained devices. The body of this new 

POST request will be based on Ultralight protocol and later when the IoT agent receives 

it, the syntax will be converted into the one that API supports. In this case, NGSIv2. 

In the second scenario, the staff sends the data manually to the server. This has to be done 

when there is any problem with the sensors, or the readings are incorrect. In this case, 

staff first authenticates to the system from an input device like a tablet. Upon successful 

authentication, staff will be granted an OAuth2 token, and they will be prompted to a new 

screen where they can manually input these values. They can select the meal type, capture 

the images from their tablet and, they will receive the weight measured by sensors directly 

into their application. 

To receive the values from Arduino to the tablet, the staff’s tablet will be connected to 

Arduino via Bluetooth. Arduino will receive Bluetooth abilities with the help of HC-06. 

HC-06 is a Bluetooth module designed for establishing short-range wireless data 

communication between two microcontrollers or systems. The Bluetooth capabilities 

from ESP32 could have been used for this purpose but while the ESP32 is 

sending/receiving a Bluetooth packet, it cannot listen or send a Wi-Fi packet.  

When the staff receives the sensors reading successfully and they provide the required 

user input, they will send all these values with the OAuth2 token to the PEP proxy. After 

the access token is validated, the PEP proxy forwards the user inputs to the IoT Agent. 2 

PEP proxies have been shown in the figure to visualize things easily but they are the same 

PEP proxy that stands before the IoT agent. 

In case of PEP proxy not being used for authentication, digitally signed certificates issued 

by a Certificate Authority (CA) will be sent to the server along with the readings made 

by the IoT devices. Readings made by the devices will be signed using the private key of 

the certificate and this signature can only be verified with the corresponding public key. 

Once the signed message arrives at the server, the server verifies the signature of the 

message using the public key and then registers the readings. 
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4.5. Logical Architecture 

This section focuses on describing the logical architecture designed for the microservices 

architecture of PPS2. This architecture focuses on the workflow of client applications and 

sensors interacting with the microservices. Figure 24 in Appendix E represents the 

diagram for the logical architecture of PPS2.  

The users can interact with the system using their mobile device, tablet, or computer. 

When they try to access any resources, they first need to identify themselves to the system. 

Before they interact with any microservices directly, every request is handled by the API 

gateway and is forwarded to the targeted resource server.  

API gateway first verifies if the user has a valid token to make the request or not. If the 

user is not authenticated yet, his request will be forwarded to the IDM(Identity Manager) 

microservice where OAuth2 will be used for the authorization. OAuth2 will redirect him 

to his identity provider where he will provide his credentials and authenticate himself. 

Upon successful authentication, an access token will be generated on his behalf. This 

token is forwarded to the user by the API gateway. After the user receives the token, they 

can make the request again to access the resources appending the token they received 

from the Identity Manager. API gateway verifies the token and forwards the request to 

the targeted microservice. When microservices receive the request for resource access, a 

PEP proxy from that specific application verifies the token and check if the user is 

authorized to access the requested resource. If the authorization is valid, they reply with 

the resource to the clients. 

The communication between the microservices is handled using an AMQP broker. Each 

microservice can be a producer, consumer, or both depending upon the communication 

that is needed to be handled.  

Whenever a publisher microservice sends a message, they are published to exchanges, 

which are often compared to post offices or mailboxes. Exchanges then distribute the 

copies of messages to the queues. After the copies are received in the queues, the broker 

delivers the message to the consumers who are subscribed to queues. Consumers can also 

pull messages from queues on demand rather than broker sending them automatically. 

Sensors here are denoted by the Reading Node which already has been represented in 

Figure 23 of Appendix E. Communication between the reading node and microservice is 
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done through the MQTT broker which uses publish/subscribe messaging protocol. MQTT 

has been used while communicating between the microservice and IoT devices because 

it is a lightweight protocol that allows it to be implemented on both heavily constrained 

device hardware as well as high latency/limited bandwidth networks. Its flexibility also 

makes it possible to support diverse application scenarios for IoT devices and services 

(‘What Is MQTT?’, 2017). 

MQTT broker filters all the incoming messages from the publisher and distributes them 

correctly to the subscribers who are subscribed to a topic. In this scenario, both weight 

and image sensors are publishers and, the Stream Analytics Microservice is the 

subscriber. The readings sent through sensors can be accessed by different microservices 

or users using stream analytics API gateway. 

Stream Analytics Microservice has the representation of Apache Kafka which is an event 

streaming platform. It can publish or subscribe streams of events, store streams of the 

event for the required duration, and process streams of events as they occur. This event 

streaming platform in this project helps to continuously capture and analyze sensor data 

from IoT devices.  

4.6. Authentication Solution 

Analyzing several security solutions for microservices authentication and authorization 

from various studies and research in chapter 3.3, this section describes a proposed solution 

for user and IoT devices authentication and authorization in the microservice architecture 

of project BIOma.  

 User Authentication and Authorization 

This solution secures the user’s identity as their credentials are not stored in this system, 

and access tokens are used alongside the proxy for access to several resources. Figure 15 

visually represents the flow of user authentication and authorization solution. 

This solution is based on the idea of FIWARE’s Wilma PEP proxy with Keyrock IDM 

(Identity Management). A separate microservice called Identity Manager is dedicated for 

the sole purpose of handling the authentication and authorization of the system. Several 



CHAPTER 4 PROPOSED SYSTEM ARCHITECTURE 

88 

authentications and authorization solutions were described in chapter 3.3.2 but this 

solution was the most preferrable one due to its simplicity and the IAM (Identity and 

Access Management) it offers. This solution offers full control over user’s roles and 

permissions. Such roles and permissions can be revoked or modified at any time. Every 

time a user wants to access a particular resource, the PEP proxy verifies the request with 

the IDM (Identity Manager) and PDP (Policy Decision Point) if he possesses sufficient 

permissions to access the resource. Each application can have a PEP proxy and users 

authorized to that application with their roles and permissions in this solution.  

Arguably, JWT could be used for roles and permissions in the form of JWT claims and 

tokens could be validated in each microservice as used in the ‘Authentication 

Orchestrator’ solution but it cannot be controlled when the token expires. Even after the 

user has logged out, an app cannot kill it with the server code. This problem can be solved 

using the combination of the ‘Client token with API Gateway’ solution but this solution 

also has a drawback in the performance as the API gateway needs to make the token 

translation every time the request is made. 

In this proposed solution for user authentication and authorization, whenever a user 

requests access to the system’s resources, his request is first handled by the API Gateway. 

The API gateway checks if the user has an access token to make this request. If the user’s 

request is not appended with a token, he will be redirected to the Identity Manager. The 

user’s identity will be managed using OAuth2.  

The flow of OAuth2 and choosing OAuth2 over SAML and OIDC is briefly described in 

subsection ‘SSO Server’. Users can authenticate using their preferable identity providers 

like Google, GitHub, or FIWARE, and authorize OAuth2 to use their personal 

information. After a user is successfully authenticated using his identity provider and user 

information is obtained, an access token is generated on behalf of the user. The access 

token is forwarded to the user through the API Gateway. 
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Figure 15 BIOma user authentication 

After the user receives the access token, he again requests to access the resource in the 

system. This time, API Gateway can confirm that the request has been made appending 

an access token and the request is forwarded to the respective PEP proxy. Each 

application in the system has its PEP proxy. After the request reaches the PEP proxy, it 

sends a request to the Identity Manager for the access token verification. Here, the Identity 

Manager also includes the PDP (Policy Decision Point) which is responsible for verifying 

the user’s permission to access the resource of the request. After the verification is done 

by the Identity Manager, it provides PEP proxy the user information, roles that the user 

has for that application, HTTP verb that he can use, and the resource path of the 

application that he is authorized to. 

After all this information is received by the PEP proxy, it forwards the resource request 

to the microservice depending upon the user’s roles and permissions. This resource 

location is unknown to the outside users. After the information is retrieved from the 

resource server, it is passed back to the user. 

 Device Authentication 

The scope of this device authentication solution is to authenticate the IoT devices to the 

server. Device authentication is handled by certificate-based authentication where Digital 

Certificates are used to identify the devices before granting access to the resources. 

Certificate-based authentication is used here for device authentication as it is stronger 

compared to password authentication (SSL/TLS Client Authentication – Know How It 
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Works, 2018). The certificate of each device should be signed by the CA (Certificate 

Authority) and should contain information of digital signature, expiration date, name of 

the CA, and device ID as CN (Common Name). 

MQTT (Message Queuing Telemetry Transport) will be used for communication between 

the microservice and IoT devices. MQTT server should be configured to use certificates 

so that while the devices want to publish any message on a specific topic, only devices 

with valid certificates can perform this action. Moreover, since the CN of the certificate 

will be the device ID, it should also be stored on the server for additional verification.  

 

Figure 16 Device authentication 

In Figure 16, the IoT device has been represented as Reading Node. Each IoT device 

should possess a certificate issued by the CA and a private key of that certificate. When 

the device wants to publish the sensor reading to a specific topic in the MQTT broker, it 

should first digitally sign the data using the ECDSA private key.  

ECDSA key pair has been used over RSA during device authentication as ECDSA 

provides optimal security with shorter key lengths which are optimal for IoT devices. It 

also requires a lesser load for network and computing power as mentioned in section 

‘RSA and ECDSA Cryptography’.  

The data and the digital signature constitute evidence of the private key’s validity. The 

digital signature can be created only with that private key and can be validated with the 

corresponding public key against the signed data. The device sends both certificate and 

the evidence to the MQTT broker. 

When the message reaches the designated topic, the server uses the certificate and the 

evidence to authenticate the device’s identity. After the device is validated, the message 
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that it has published will be distributed to all the clients that are subscribed to that topic. 

Subscribing clients will be the Stream Analytics Microservice in this case.  

 Proposed Authentication Solution Discussion 

A solution is proposed for solving the authentication challenge in microservices one for 

the user, and the other for IoT devices. For user authentication, the problem is solved 

using a microservice that is responsible for identity and access management. This section 

discusses further in-depth the possible outcomes of each authentication solution. 

I. User authentication and authorization 

A separate microservice is used for access control management of users in the application. 

This microservice gives greater control of user access and decreases the effort required to 

manage the identity and access management tasks. Each application is protected with a 

PEP proxy which works alongside the identity manager to enforce access control to the 

applications. 

Using identity manager, applications can be registered with the users authorized to access 

that application. Users in any application can be assigned roles and permissions. A role 

can be added, edited, or removed using identity manager and any single role can have a 

set of permissions. Such permissions can have a name, description, HTTP verb, and 

resource rule. 

Whenever a request is made to access the resource from the resource server, the PEP 

proxy validates this request with the identity manager, gets the appropriate roles and 

permissions of the user in that application, checks if he is authorized to make this request, 

and gets the resources from the resource server on user’s behalf. 

With this solution, user authentication and authorization are well handled for 

microservices, but it also comes with some issues. This solution is proposed in the first 

iteration of the project. The number of users having access to the application is 

undetermined. Having a greater number of application users or requests might bring 

performance issues. 

If several users try to access the application at the same time, PEP proxies from different 

microservices will make token validation requests with a single microservice. Not only 

this, but some requests might also require resources from more than one microservice. 
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All these requests are taken to the identity manager microservice. If network traffic high 

in a single microservice, the latency of this microservice will affect the performance of 

every other depending upon it. 

Alternative solution 

An alternative to this solution could be the use of JWT tokens instead of access tokens. 

JWT can be signed using RSA. RSA is preferred over ECDSA in terms of signature 

verification as discussed in “RSA and ECDSA Cryptography”. Roles and permissions 

can be assigned to the JWT token in the payload. This alternative eliminates the use of 

PEP proxy and the JWT token signature is verified by the microservices themselves. 

Microservices can decode the token, check the permissions, and provide the resources as 

requested after the signature has been verified. 

This alternative itself has problems as well. If each microservice can validate the JWT 

token and some changes related to token and security are introduced to the system, such 

changes are needed to be executed in each microservice individually. Roles and 

permission management with such tokens can be complicated. Each user might have 

different roles and permission for each application. Generating a token that is fit for every 

authorized request can be complex to implement. Moreover, authorization will be more 

scattered around multiple services. When having a lot of roles that change frequently, it 

becomes tiring to manage (Authentication and Authorization in Microservices | The 

Startup, 2020). 

When microservices are making the token validation, tokens cannot be revoked on 

demand. In situations like change in user’s roles and permission, remote logout request 

by the user, or user’s account deletion, the token cannot be invalidated. The token remains 

valid until the expiry time has been reached despite the user logout. Moreover, eliminating 

the use of proxies and users getting direct access to the resource server might increase 

vulnerabilities in the system. 

JWT tokens have several vulnerabilities in themselves as well. Since the signature of the 

token is verified based on the algorithm defined in the header, if someone intercepts the 

token, changes the algorithm to ‘none’, changes the payload, and sends the token to the 

resource server, the server will check if there is an algorithm for signature verification 
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and finds that the algorithm is set to none. The system passes the token as valid without 

having a look over the signature. 

In another scenario, someone can intercept the token and change the algorithm to HMAC 

(Hash-based Message Authentication Code) which uses symmetric keys. The attacker can 

use the public key to sign the token and forward it to the resource server. The resource 

server when receives this token, verifies the signature with the public key and passes the 

token as valid. 

To solve the issues for the alternative solution, algorithm verification should always be 

performed when a token is received. It should be ensured in the system what algorithm 

will be used for the signature verification. The header should not determine the algorithm 

of the token. If performance is required in JWT, ECDSA can be used but to avoid brute 

force, RSA should be used. There should be a balance between performance and security. 

Additional claims like ‘nbf’ - not valid before, ‘iat’ - issued time, ‘jti’ - unique JWT 

identifier can be used for security, but each claim should always be validated. 

The solution proposed in ‘Client token with API Gateway’ can be used to invalidate 

tokens on demand and add an extra layer of security in the API gateway but with this 

solution, if multiple requests are received in the API gateway, the response time for a 

resource will be higher due to token translation. Such solutions are difficult to implement 

and manage which adds complexity to the project. 

 

II. Device Authentication 

Client-side SSL is proposed as an authentication solution for IoT devices in this project. 

This solution is secure as it is based on public and private keys where private keys are 

stored in the device itself. With the use of client authentication, the identity of the device 

is validated using a trusted CA which permits for centralized management of certificates 

and makes revocation of the certificate easier. 

Before any messages are published in the MQTT server, the publisher (IoT device) should 

possess a valid certificate issued by the CA. The CN in the certificate will be the device 

id and this CN in the certificate should be stored in the MQTT server as well. Later when 

the device presents the valid CA certificate, the CN name will also be verified in the 
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MQTT server. This ensures that the microservices in the system are only receiving the 

data from authenticated sensors. 

While using client certificates issued by the CA, an extra level of security is added but 

such certificates aren’t issued for free. They add extra cost to the project and since 

individual devices have unique certificates, the cost increases with the increase in the 

number of IoT devices. 

While using client certificates, it is important to manage the lifecycle of the client 

certificates. If the organization doesn’t have a PKI (Public-Key-Infrastructure), managing 

hundreds of client certificates like certificate revocation and certificate renewal can be a 

difficult task. 

Alternative solution 

If cost and management should be considered in an organization, FIWARE’s solution can 

be used for authenticating the IoT devices as well which was the initial proposed idea that 

has been represented in the data reading node of chapter 4.4.  

When any sensor sends a reading, they first need to authenticate themselves with the PEP 

proxy. PEP proxy verifies the credentials with the IDM and sends them the access token. 

Upon receiving the access token, the request is made again appending the token and upon 

successful token validation, the request is forwarded to the IoT agent. The readings are 

sent in form of UltraLight syntax which is a lightweight syntax used by IoT devices. IoT 

Agent converts the UltraLight syntax into the one that API supports and forwards the 

request to the specific topic in the MQTT broker. Stream analytics microservice will be 

subscribed to the same topic and then will receive the readings from the sensors. 

Password authentication is less secure than certificate authentication. If the attacker 

somehow gets the credentials of the IoT devices, he can impersonate as an IoT device and 

send malicious data in the network. This balance between cost and security should be 

well thought before implementing any authentication solution. 
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Chapter 5 Analysis and Result 

Discussion 

5.1. Introduction 

This chapter aims to discuss the work that has been done for proposing the architecture 

of BIOma and PPS2. This work has focused on proposing the system requirements, UML 

diagrams, physical and logical architecture, and especially on authentication solutions. 

Such architectures are always needed to be defined in the initial phase of a project. This 

work is analyzed thoroughly by collaborators involved in this project and necessary 

changes are introduced to the system as the iteration goes by. Changes could start from 

the system requirements. If the requirements are changed drastically, the UML diagrams, 

physical architecture, and logical architecture of the system will also need a change. 

5.2. Analysis and result of the proposed architecture 

The solution in this work has been proposed as per the problem description of BIOma and 

PPS2. Discussion with the project collaborators was made in the initial month of the 

project, October 2020 to identify more clearly what technologies had to be used and what 

was the goal of the PPS2. Following such meetings, this project has been started and 

solutions have been proposed. 

For the initial phase of the project, the locations were identified where the food waste 

could happen. Every location was taken into consideration during location identification 

for monitoring and controlling the waste amount. Employees for each location with their 

purpose were also identified.  

Following the location identification, system requirements were defined for the project. 

While specifying the system requirements, it went through several revisions, and they 
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were categorized into packages and sub-packages. These system requirements are not still 

considered as the final version because despite including the goals of the project and being 

passed through several revisions, they can still go under evaluation by the collaborators 

of this project and there might be requirements which are needed to be further changed.  

While developing this work, after the requirements were specified, use case diagrams 

were designed based on the requirements. Use case diagram included 3 major actors, 

administrator, unit manager, and unit collaborator. This diagram was divided into 

packages following the order of user requirements.  

After the use case diagrams were finished, user stories were written based on what 

features were needed in the system, for whom, and why. User stories and use case 

diagrams did not go through several iterations as requirements did, but they were designed 

considering the requirements and goals of the PPS2 system.  

After the use case and user stories were created, class diagrams were designed for the 

deliverable. Class diagrams in this work have also been categorized into packages. Each 

package corresponds to the package of the system requirements with an extra package 

which is Common Management. Several classes, attributes, and relationships are 

identified which fulfills visualizing the system graphically. If changes are introduced in 

the system requirements class diagrams are subject to change as well. 

Writing requirements and creating these UML diagrams already gives an overview of 

what is needed for the system. Even if these requirements and diagrams might not be 

perfect and might need some changes, anyone joining this project can figure out what this 

project intends to do. 

After the UML diagrams were created, physical and logical diagrams were created for the 

project. Since waste could happen in various locations, they were already identified in the 

initial phase of the project. These locations were defined as food units, and they were 

represented visually in sequential order in the physical diagram. This project also uses 

several IoT sensors to send readings to the server. In every food unit, some users or 

sensors interact with the data in the system. Such users and sensors were represented in a 

separate diagram as the data reading node. This separation of diagrams allowed to briefly 

represent how staff or sensors were interacting with the data inside each food unit. 
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This work proposes the BIOma and PPS2 project to use microservices architecture as 

such architecture offers independent deployability, scalability, and also offers better 

security. The logical architecture of this project represented how the microservices were 

working, how they would communicate with each other, and how users or sensors were 

interacting logically with the system. The logical architecture was designed based on 

documentation by (nishanil, n.d.-b). After reading this documentation, it was concluded 

that asynchronous protocol is better for communication between services in a 

microservices architecture. 

A separate stream analytics microservice was dedicated for sensors because, in the case 

of PPS2, there are only 2 different types of sensors identified so far but in the case of 

other PPS of BIOma, there might be sensors that can continuously upload data in the 

server. Apache Kafka was used as an event streaming platform to continuously analyze 

and capture the stream of data that is generated by the sensors. This microservice and 

sensors communicate through the MQTT broker. 

Physical and Logical architecture both went through several iterations by being evaluated 

by the project’s supervisor. The physical and logical architecture presented in this work 

is the latest version of the model at the time this solution was proposed. 

Authentication and authorization were another major part of this work. Researches done 

for microservices authentication were discussed in chapter 3.3.2. These researches were 

extracted from IEEE Xplore, FIWARE’s documentation, and the web. Based on the study 

made from these researches, an authentication mechanism for user authentication and 

authorization was proposed. After analyzing the advantages, complexity, security 

approaches of each research, FIWARE’s solution was concluded as the optimal solution 

for the current structure of the project. This selection was made based on the goal of the 

project. The problem with authentication was easier to handle than authorization. An 

Identity Manager was proposed for this project’s architecture to tackle issues of access 

management and authorization in microservices. 

While discussing the device authentication in the reading node of chapter 4.4, the initial 

idea was to use the PEP’s proxy solution. The PEP proxy was handling the device’s 

authentication and the IoT agent was used to convert the UltraLight syntax used by IoT 

sensors to the syntax that the API supports. This solution didn’t offer a good level of 

security. To resolve this issue, the solution of PEP proxy for IoT devices was eliminated 
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and digital certificate authentication was proposed for the authentication of IoT devices 

despite increased costs and the need for PKI infrastructure deployment. Security is 

ensured with the help of client certificates as sensors can validate their identity with the 

MQTT broker. 

While developing this work, I had little knowledge about the differences between 

monolithic and microservices architecture. Microservice was completely a new topic to 

me and I didn’t know how it was working. After reading the documentation from 

Microsoft as per the recommendation of the project’s supervisor, I had a general 

knowledge of what it was and when we should use it. I also had to develop few projects 

that were based on microservices architecture just to know its principles and inter-services 

communication. RabbitMQ was used during the study for communication between the 

services and the applications were deployed in the Docker container. With the help of this 

study, it gave me a better idea of how I could move forward in this project. This helped 

me create the system architecture for the project and better understand the challenges of 

authentication in a microservices architecture. 

5.3. Conclusion 

There can always be an alternative to this solution that has been proposed. This solution 

cannot be considered as a perfect solution of the project architecture because requirements 

can still change for the project, the need of the partners and stakeholders might change 

which will consequently affect the architecture of the system. As described in chapter 

4.6.3, there still are alternatives that could be used for various issues with user 

authentication. Each solution has its advantages and disadvantages. With the current 

status and for the first iteration of this project, this architecture has been proposed for 

BIOma and PPS2. 
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Chapter 6 Conclusions and 

Future Work 

6.1. Conclusion 

This work intended to propose a system architecture for BIOma and one of its macro-

activities, PPS2 for combating food waste. The proposed work has resulted as a 

deliverable for PPS2.A1.E2. The work that has been proposed in this solution is done at 

the early stage of the project and is done as a design task. Further changes are normal to 

happen throughout the evaluation and discussion of the project’s collaborators. 

In terms of authentication and authorization, it was divided into 2 different parts, one for 

user authentication and authorization, and the other for IoT device authentication. 

FIWARE’s PEP proxy solution has been initially proposed in this work for solving the 

issues with user’s authorization to various microservices. As an alternative, JWT with 

RSA signature was also discussed but it comes with vulnerabilities and complexities for 

authorization. For device authentication, a solution with client-side certificate 

authentication was proposed. MQTT server validates the certificate of the devices and 

after the validation, it allows to publish the readings on a specific topic. This solution for 

devices is costly but this price has to be paid for better system security.  

As a result of this work, with the problem that BIOma and PPS2 presented, an architecture 

for a system was designed that would serve as a base for solving this problem. A solution 

has been proposed that would promote sustainable purchases in an organization. The 

system permits the evaluation of suppliers according to their sustainable policy, producers 

at local and national levels are promoted, and food waste is identified in several locations 

with measures to control and monitor them. Various events can also be registered and 
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organized with the help of this system which aware the general public of the need for food 

consumption, and the impact of food waste. 

6.2. Future Work 

The next works will be devoted to implementing the system once the requirements and 

proposed architecture go until the final iteration and are accepted by the collaborators 

from this work. The initial version of the system architecture has been described in this 

work. While developing the system, authentication and authorization should be kept as a 

major focus as it is a crucial part of the system. Once there is an actual estimation of the 

sensors and active users that will participate in the system, the authentication strategy 

should be followed accordingly for better performance. 

There might be an adjustment to the requirements as the requirements submitted in this 

deliverable is at the early stage. This is a collaborative project and is gone through several 

iterations and evaluations by the project’s collaborators. Adjustment to such requirements 

might require changes to the use case diagram, user stories, class diagrams, and also to 

the system’s physical and logical architecture. 

Solutions for authentication and authorization have been proposed by the research that 

was made during this work was done. In the coming years, there might be more relevant 

research and implementation that will be worth studying for better management of user 

and device authentication and authorization in a microservice architecture. 
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Appendix A Identity and Access Management 

Standards 

 

Figure 17 SAML2.0 Flow 

Source: (Choosing an SSO Strategy, 2013) 
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Figure 18 OAuth2 Flow 
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Figure 19 OIDC Use Case 

Source: (Naik et al., 2017) 
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Appendix B Certificates and Labels 

 

Figure 20 Certificates and Labels 

Logo Certifications/Labels

4C (The Common Code for the Coffee Community)

Agricultura Biológica (EU Organic Logo)

Aquaculture Stewardship Council (ASC)

Blue Angel

Comprovativo de Compra em Lota (CCL) 

Denominação de Origem Protegida (DOP) / Indicação geográfica 

protegida (IGP) / Indicações geográfica (IG)

Dolphin Safe

Energy Star

EU Ecolabel

Fair for Life - Social & Fair Trade certified / For Life Social 

Responsibility certified

Fair Trade Certified

FairTrade International

Forest Stewardship Council (FSC)

GlobalG.A.P.

Global Organic Textile Standard (GOTS)

Marine Stewardship Council (MSC)

Oeko-Tex Standard 100

Portugal sou Eu

Rainforest Alliance / UTZ

Roundtable on Responsible Soy (RTRS)

Roundtable on Sustainable Palm Oil (RSPO)

RSPCA Assured

UEBT UTZ

V-Label
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Appendix C Use Case Diagrams PPS2 

 

Figure UC 1 Management Package 
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Figure UC 2 Smart Procurement Package 
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Figure UC 3 Smart Monitoring Package 
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Figure UC 4 Smart Waste Package 
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Figure UC 5 Smart Education Package 
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Appendix D Class Diagrams PPS2 

 

Figure 21 Class Diagram PPS2 

Here, each class diagram has a label where, 

• C1 – Package 1 Common Management  

• C2 – Package 2 Smart Monitoring and Smart Waste 

• C3 – Package 3 Smart Procurement 
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• C4 – Package 4 Smart Education 

 

Figure C1 1 Meal Management 

 

Figure C1 2 User management 

 

Figure C1 3 Media Management 
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Figure C1 4 Location Management 

 

Figure C1 5 Food Units Management 
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Figure C1 6 Product Management 

 

Figure C2 1 Food Donations 

 

Figure C2 2 Waste Measurement 
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Figure C2 3 Waste Generation 

 

Figure C2 4 Waste Alert System 

 

Figure C2 5 Food Waste 
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Figure C3 1 Sustainable Standards 

 

Figure C3 2 Supplier/Producer Management 
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Figure C4 1 Actions 

 

Figure C4 2 Common 
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Figure C4 3 Training 

 

Figure C4 4 Articles 
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Appendix E System Architecture 

 

 

Figure 22 Physical Architecture PPS2 
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Figure 23 Data reading node 
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Figure 24 Logical Architecture 


