
User Access Control System based
on ESP32 Technology

Vinícius Penckowski

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Industrial Engineering (Electrical Engineering branch).

Work oriented by:

Prof. Dr. Paulo Jorge Pinto Leitão

Prof. Dr. Frederic Conrad Janzen

Bragança

2020

ii

User Access Control System based
on ESP32 Technology

Vinícius Penckowski

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Industrial Engineering (Electrical Engineering branch).

Work oriented by:

Prof. Dr. Paulo Jorge Pinto Leitão

Prof. Dr. Frederic Conrad Janzen

Bragança

2020

iv

Acknowledgement

I would first like to thank my thesis advisors Paulo Jorge Pinto Leitão of the Instituto

Politécnico de Bragança (IPB), and Frederic Conrad Janzen of the Universidade Tec-

nológica Federal do Paraná (UTFPR-PG), for all the support, guidance and ideas given

that made this project become possible to be developed.

I would also like to thank my parents: Mauro Francisco Penckowski and Solange

Maria Penckowski, for all the opportunities given, for the encouragement and inspiration

throughout my years of study, as well as for the base idea and the financial support for

the development of this project.

Lastly, my sincere thanks to the Universidade Tecnológica Federal do Paraná (UTFPR-

PG) and to Instituto Politécnico de Bragança (IPB), and all the professors for all the

knowledge and opportunities given.

v

vi

Abstract

Access Control Systems are systems that are capable of controlling user access with

permission-based databases. The majority of commercial Access Control Systems nowa-

days, even the expansive ones, lacks many advanced features, such as the possibility to

control and configure multiple sectors over Wi-Fi (including illumination), using schedul-

ing based permissions, and without any additional servers.

This project aims to develop an Access Control System costing under US$15, capable

of registering and allowing (or denying) the access of users in multiple sectors, using up

to 49 modules interconnected over Wi-Fi (one being the main module, and the other

the secondary modules), using web-based graphical interfaces, allowing a centralized and

practical way of configuring and setting databases.

The modules use low-range RFID tags to identify users, and are able to control elec-

trical locks, illumination and micro-switches of it’s corresponding sector, and also notify

adjacent sectors of entries and exits.

To keep the project easy to use, all the settings and databases can be accessed, filtered

and edited in a graphical web interface (HTML5 and CSS) provided by an internal web-

server running at the ESP32 controllers, and available to authenticated users.

The result is a low cost Access Control System that is fast, reliable and easy to use

product, presenting advanced features, such as multi-sector control and with wireless

(Wi-Fi) communication.

Keywords: Access control, ESP32, Wi-Fi.

vii

viii

Contents

Acknowledgement v

Abstract vii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Document Structure . 4

2 Context and Technologies 5

2.1 Commercial products . 5

2.2 Related work . 6

2.2.1 ESP32 based Projects . 6

2.2.2 ESP8266 based Projects . 7

2.2.3 Arduino based projects . 8

2.2.4 Other microcontroller based projects 8

2.3 Protocols . 9

2.3.1 SPI - Serial Peripheral Interface . 9

2.3.2 I2C - Inter-Integrated Circuit . 10

2.3.3 IEEE 802.11 (Wi-Fi) . 12

2.3.4 HTTP - Hypertext Transfer Protocol 14

2.3.5 RFID . 15

ix

2.4 Components used . 16

2.4.1 ESP32 . 16

2.4.2 Relay module (2 channels) . 17

2.4.3 RC522 - RFID . 18

2.4.4 DS3231 - RTC . 19

2.4.5 Micro-SD module . 20

2.4.6 Active buzzer . 21

2.5 Methods . 22

2.5.1 Arduino IDE . 22

2.5.2 Geany . 23

2.5.3 HTML - HyperText Markup Language 24

2.5.4 CSS - Cascading Style Sheet . 25

2.5.5 JS - JavaScript . 25

2.5.6 C (Programming Language) . 26

2.5.7 Databases and configuration files 27

3 Architecture and specifications 29

3.1 System specifications . 29

3.1.1 General configuration . 30

3.1.2 Users . 30

3.1.3 Sectors . 30

3.1.4 Schedules . 31

3.1.5 Records . 31

3.2 Architecture . 32

3.2.1 Modules . 32

3.2.2 Intercommunication and databases 34

4 System development 35

4.1 Layout of components . 35

4.2 PCB development and prototype . 38

x

4.3 General operation . 41

4.3.1 Initialization . 41

4.3.2 Loop . 43

4.3.3 Server (core 01) . 44

4.3.4 Navigation bar . 46

4.3.5 Home . 47

4.3.6 Records and analysis . 48

4.3.7 Users . 51

4.3.8 Sectors . 54

4.3.9 Schedules . 57

4.3.10 Settings . 61

4.3.11 Interconnection between modules 69

5 Tests and discussions 75

5.1 Speed tests . 75

5.1.1 Boot time . 75

5.1.2 File modification . 76

5.1.3 Web-server . 77

5.2 Intercommunication test . 80

5.2.1 Files . 80

5.2.2 Information . 82

5.3 Security . 84

5.4 Market analysis . 85

6 Conclusion 87

6.1 Project analysis . 87

6.2 Difficulties . 88

6.3 Suggested future improvements . 89

xi

List of Figures

2.1 Form of connection of the SPI link with multiple slaves 9

2.2 Connections for multiple masters and slaves 11

2.3 Pinout and appearance of the ESP32 30-pin devkit [18] 16

2.4 Pinout and appearance of the 2-channel relay module 17

2.5 Pinout and appearance of the RFID module - RC522 18

2.6 Pinout and appearance of the RTC module - DS3231 19

2.7 Pinout and appearance of the micro-SD card module 20

2.8 Appearance of the active buzzer . 21

2.9 Arduino IDE with empty project . 22

2.10 Geany interface with empty project . 23

3.1 Intercommunication architecture . 32

3.2 Architecture specification . 33

3.3 Implemented architecture . 33

3.4 Databases architecture . 34

4.1 Connections between modules on the main module 37

4.2 Prototype developed on breadboard . 38

4.3 Computational version of the PCB tracks 39

4.4 Copper part of the printed circuit board 39

4.5 Final prototype of the PCB project . 40

4.6 The four secondary modules and the main one 40

4.7 Simplified flowchart of setup function . 42

xii

4.8 Simplified flowchart of loop function of Core 02) 43

4.9 Main panel navigation bar . 46

4.10 Cookie saved to remember the navigation bar of the last page accessed . . 46

4.11 Home of the panel without using an external memory card. 47

4.12 Information received from the server to the home page. 47

4.13 Records page . 48

4.14 Record analysis page . 49

4.15 Records pagination . 50

4.16 Record analysis interface . 50

4.17 Users page . 51

4.18 Add users window . 52

4.19 User edit window . 52

4.20 File that provides information for the users page 53

4.21 Sector page . 54

4.22 Sector add interface . 55

4.23 Sector edit interface . 55

4.24 File that provides information for the sectors page 56

4.25 Schedules page . 57

4.26 Schedules pagination . 58

4.27 Loading interface for schedules page . 58

4.28 Edit and add schedules . 59

4.29 Database format for schedules page . 60

4.30 Settings navigation bar . 61

4.31 Network settings page . 62

4.32 Network database file . 62

4.33 Sector settings page . 64

4.34 Sector database file . 64

4.35 Date and time settings page . 66

4.36 Date and time database file . 66

xiii

4.37 File backup and restore page . 67

4.38 Advanced settings page . 68

4.39 Intercommunication between modules using normal cyclic mode. 70

4.40 Intercommunication between modules using smart cyclic mode. 71

4.41 Intercommunication between modules using update in case of access. . . . 72

4.42 Intercommunication between modules during event record 73

5.1 Boot time . 76

5.2 Download speed for larger files. 77

5.3 Time to load the Schedules page for the first time 78

5.4 Time to load the Schedules page with cache 79

5.5 Broadcast used in Smart Mode to update files 80

5.6 Request send by the secondary modules to check for file changes 80

5.7 Response code 200 when requesting the file “usuarios.csv” 81

5.8 Response code 304 when requesting the file “setores.csv” 81

5.9 Example of real usage of the system . 82

5.10 Network activity of real usage of the system 83

5.11 Example of the recorded events . 84

xiv

Acronyms

AES Advanced Encryption Standard.

CCMP Chaining Message Authentication Code Proto-

col.

CPU Central Processing Unit.

GMT Greenwich Mean Time.

HF High Frequency.

IoT Internet of Things.

LF Low Frequency.

MAC Media Access Control.

MISO Master Output Slave Input.

MOSI Master Output Slave Input.

PCB Printed Circuit Board.

RFID Radio Frequency Identification.

SS Slave Select.

SSID Service Set Identifier .

TKIP Temporal Key Integrity Protocol.

UHF Ultra High Frequency.

xv

xvi

Chapter 1

Introduction

An Access Control System is a device capable of allowing or denying access to someone

in a given location or sector. More advanced systems are also able to take care of several

users, knowing their names, identifiers and expiration dates, in addition to the possibility

to configure permission schedules and control more than one sector.

Using this type of systems, it’s possible to determine patterns in user behaviours,

improve the control over events and guarantee that unauthorized users won’t access places

that they’re not allowed to.

The market for this type of system is quite wide and varied, especially today, when

concerns about safety, and behaviour analysis are increasing. In addition, requirements

such as presence and punctuality also become easier to control when using this systems.

To be able to identify which user is requesting access, there are many technologies

that can be used. One of the most common is the RFID (Radio Frequency Identification),

that is a low cost and easy to use technology based on tags that has their on ID and are

able to store information. By using passive RFID cards, there is no need for batteries on

the tag, and also no need of physical contact between the tag and the RFID reader.

Some examples of the places that this type of systems can be implemented internally

are university, schools, factories, industries, shops in general, commercial buildings, hotels,

hospitals and even inside residences.

1

Also, with the emergence of IoT (Internet of Things) devices, concepts such as con-

nectivity has a high importance nowadays. The use of this technology allowing different

types of systems and devices to be able to intercommunicate and exchange information.

The work presented in this dissertation is a project that focus on using low cost and

highly available components to develop an Access Control System for multiple sectors

(in this case, spaces mainly inside buildings, such as rooms, laboratories, warehouses,

refectories, offices, and many others), with identification based on low-range RFID tags

and intercommunication over Wi-Fi.

1.1 Motivation

The main motivation for the development of this project was the high price of com-

mercial Access Control Systems, and the lack of advanced features in some of them, such

as schedulling permissions, being able to control multiple sectors over Wi-Fi, centralized

and practical way to configure databases, No external hardware needed (such as aditional

servers), web-page based interface, and many others.

This motivation emerged during a research in the market for a similar system to be

applied in a Brazilian company named "Eletro Energia Motores Elétricos LTDA.", which

requested a system that contains all of the features cited above. However, no products

with the requirements proposed were found at the US$10 to US$20 price range.

This way, developing an Access Control System that contains all the mentioned fea-

tures, keeping a price under US$15,with the use IoT technology to allow integration with

other systems and based on Wi-Fi is a promising product to be developed and used in

many applications, as wireless networks are present in a lot of businesses of the most

varied types.

Also, the passive RFID technology has became an easy and cheap way to identify users,

with tags costing less then US$0.2 and being available in different sizes and formats.

In addition, the area of Access Control Systems has a high importance nowadays, when

questions involving privacy and security are on the rise. To solve this, more companies

2

are adopting these types of security systems, thus being a market that tends to grow more

and more.

1.2 Objectives

The general objective of this project is to develop a low cost and high functionality

Access Control System for multiple sectors, using RFID cards to identify users, record

access tries and allow or deny access at certain sectors based on permission schedules.The

project has four main specific objectives, in which the development of the system was

based:

The first one is the inter-connectivity, so that the Access Control System that can con-

trol multiple rooms (sectors) communicating over Wi-Fi. To do this, one of the modules

will be the main one (server), containing all the databases for the secondary modules. In

case of a network failure, the secondary modules must be capable of continue to work and

keep recording the events based on their internal copy of the databases.

The second specific objective of this project is to keep it at a cost under 15US$ (includ-

ing the electronic components, PCB and power supply only), without the need of external

devices for databases manipulation (such as computer running servers), by using wildly

available and conventional components, such as the ESP32, a powerful micro-controller

with built-in Wi-Fi module.

The third specific objective is to develop a highly customizable system, capable to

control other peripherals, such as electrical locks, room illumination, and receive signals

from micro-switches installed on doors.

The fourth specific objective of the project is to develop an easy-to-use and user-

friendly interface in HTML, CSS and Javascript, that can show all the databases and

allow an easy way of editing them using any device connected to the same network that

has a browser.

3

1.3 Document Structure

This document has been divided into the following chapters:

• §1 - Introduction: Presents an introduction for Access Control Systems, as well

as the motivation, objectives and applications of the project;

• §2 - Context and Technologies: Presents the related work, as well as general ex-

planations about the communication protocols, components and methodology used

in this project.

• §3 -Architecture and specifications: Presents the architecture and specifications

about hardware, inter-connectivity and databases of the system.

• §4 - System development: Presents the development stages of project assembly

and programming, including some functions performed by the system, as well as the

graphical interfaces developed.

• §5 - Tests and discussions: Real-world tests and speed tests done after the com-

pletion of development of the project, as well as market analysis, and the results

obtained.

• §6 - Conclusion: Final conclusions with objectives analysis, difficulties and sug-

gestions for future improvements.

4

Chapter 2

Context and Technologies

In Chapter 2, some related work are presented for a better understanding of what al-

ready exists and what can be improved, including a price-based comparison with commer-

cial products. Then, the protocols, technologies and additional software used to develop

this project are presented.

2.1 Commercial products

It is important to note that the price of this project (arround 15 US$) is based only on

the cost of the components used (shown in 4.1), not including the time taken to develop

this project, neither additional commercial costs (such as manufacturing the modules,

marketing, taxes, transport or profits).

The majority of products in the market at the same price range of this project (from

US$10/module to US$30/module) aren’t able to be accessed via Wi-Fi nor control mul-

tiple sectors without cables. Most of them aren’t even capable of registering the user’s

names, expiration dates, sector names or permission schedules.

Increasing the price range from US$30/module to US$60/module, a few Wi-Fi mod-

ules starts to appear, but many aren’t capable of creating permission schedules, and most

of them depends on an active separate web-server (another computer running specific soft-

ware, or an online server) to be able to inter-communicate and manipulate the databases

5

and configurations of the whole system.

At the range above US$60/module (up to 4x more than the cost of this project), up

to US$100/module, there are still some modules without Wi-Fi and without scheduling

permissions, and those that has it, usually depends on external software and hardware.

Even at this price, it’s rare to find an Access Control System that is capable of providing

intelligent intercommunication between sectors (illumination control for example) or that

can work even if the main module (server) or network stops working.

2.2 Related work

When searching for Access Control Systems, many papers, projects and products are

available nowadays. Each of them has it’s own particularities, including different features

and protocols for different usages. However, no low-cost system that contains all the

features of this project was found, due to different needs and applications of those other

projects. Also, it’s worth noting that not all the features of the other projects are included

in this project, mainly to to keep the low cost of the system.

2.2.1 ESP32 based Projects

The most recent project found is the “Sistema de controle de acesso utilizando aut-

enticação por RFID e gerenciamento por meio de software WEB” [1], an Access Control

System that is capable of logging access atempts of the registered users of a single sector.

In this project, the back-end was developed using the framework Lumen.

An external server (Amazon EC2 virtual machine) is used to deal with all the process

that involves the registration and changes of tags databases. This implies in more pro-

cessing power and memory available. But it also creates a downside: the proposed system

needs to be connected to the Amazon Server to operate with all the developed features.

6

2.2.2 ESP8266 based Projects

One of the projects that has the most similarities with the proposed project of this

dissertation is the ESP-RFID (https://github.com/esprfid/esp-rfid), an open source Ac-

cess Control System that uses an ESP8266, RFID reader and relay modules to control

electrical locks. Furthermore, the project uses an internal asynchronous web-server to

provide the graphical interface and databases for the administrator.

The ESP-RFID project presents an easy to use interface and multiple functionalities

for a basic access control of a single sector, that allows the administrator to access config-

urations, manage the users registered and visualize the logs and records. It also allows a

wide range of relays to be used, and a pin-based configuration, being an easy to configure

and use for multiple different setups.

Some of the features that the ESP-RFID project lack are the ability to allow scheduling

times of allowance (the project can only set a user as allowed or denied for that sector)

and the lack of intercommunication between multiple modules, as the project is made to

be used as a single-sector system. Also, there are a few components that would make the

project expand it’s applications, such as a RTC module (to keep date and time persistent

in case of a reboot, without needing an active internet connection for NTP usage) and a

micro-sd support for extended memory for logs.

Other project using ESP8266 is the “PROTOTYPE FOR A PATRIMONIAL CON-

TROL AUTOMATION SYSTEM USING RFID TECHNOLOGY” [2], which even though

is not a system to control access from users, it is capable of controlling the movement

of objects between sectors using RFID technology and also indicate it’s position. The

project uses a MC522 RFID, which is used not only for reading the tags, but also for

writing information about the correspondent product or object.

The process of storing information inside the RFID tag is a good alternative for a

multi-sector access control system, and it’s also widely used in parking lots. The downside

of this method is the possibility of data corruption when using contact-less readers that

don’t hold the card for enough time for the process of writing and checking the data.

7

2.2.3 Arduino based projects

Another very interesting project is presented in “RFID-Based Monitoring And Access

Control System For Parliamentary Campus” [3], which aligns a low cost device with

multiple applications by using an MC522 RFID reader, an arduino uno and a Zigbee

module for communication (IEEE 802.15.4). This project used the Zigbee for being a low

cost, low consumption and effective way of communication, supporting up to 255 nodes.

With the technological advances seen on the last years, the price of an Wi-Fi module

such as the ESP32 is almost the same as the combination of an Arduino Uno + Zigbee

module. Also, the ESP32 offers much more processing power and storage capabilities.

Another project is presented in “Based Kindergarten Intelligence Security System”

[4], a project developed in 2012 for usage in schools. This system provides a secure way

to know which students were present in the school every day by using RFID tags for

identification. If the system detects that any child is absent, the project sends a a SMS

(“Your Child is Absent Today”) to his or her parents via a GSM module that is connected

to the Arduino. The system is also capable of limiting the entries and exits of the students,

as each of the RFID cards are only allowed to work once per day.

2.2.4 Other microcontroller based projects

One of the most complex projects found in the area of Access Control Systems that

was implemented in universities is the “RFID Based Security and Access Control System”

[5], developed in 2014. This project uses a combination of RFID tags and a camera to

identify the users and allow or deny access to the room. The microcontroler used is the

AT89C52, for being a low cost and low power consumption device.

The communication between the main controller and the Computer System of the

“RFID Based Security and Access Control System” [5] happens over Serial Connection.

The project uses a GSM module to notify the security van in case of an unauthorized

access attempt.

8

2.3 Protocols

2.3.1 SPI - Serial Peripheral Interface

SPI is a synchronous serial communication protocol, generally used for short distances.

This protocol allows a full duplex communication between the master and the slaves, as

well as the use of more than one “Slave” devices with only one master. The addressing

is done using an input pin on the slaves SS (Slave Select), as it happens exclusively via

hardware. This protocol uses 4 lines for communication, which are:

• CLK: Clock line provided by the master for synchronous communication;

• MOSI (Master Output Slave Input)

• MISO (Master Output Slave Input)

• SS:line for choosing the slave.

For applications where there is a need for multiple slaves on the same bus, the con-

nection shown in the figure 2.1 is recommended.

Figure 2.1: Form of connection of the SPI link with multiple slaves

The data transfer is done as follows[6]:

1. After the clock is generated by the master device, one of the SS lines is selected;

2. The slave device can send information to the master via the MISO line, while the

master can send information via the MOSI line;

3. At the end of the transmission, the master device disables the SS line of the device

whose communication has ended.

9

Thus, it is possible to verify that there is no implementation of an addressing mecha-

nism via software, this being done via hardware. In addition, there is no check for data

receipt and no flow control.

This form of communication has some advantages, including:

• High transmission speeds (MHz);

• Support for multiple slaves, limited by the number of digital ports used as SS.

However, some of the disadvantages are:

• Use of more cables for communication (total of 04 lines);

• Use of additional digital outputs for the slave selection line (SS);

• The master controls all communications, so that slave-slave communication is not

possible directly [6];

• Limit of only one master;

• Low communication distances.

2.3.2 I2C - Inter-Integrated Circuit

The I2C protocol is a synchronous communication specification, developed by Philips

in 1982, whose initial objective was the communication between CPU (Central Processing

Unit) and peripheral chips on televisions [7].

The architecture of this protocol includes the ability to have more than one master on

the same data lines, as well as multiple slaves. In addition, only two cables are required

for communication [8], namely:

• SCL (Serial clock): Provides the clock for synchronous communication;

• SDA (Serial Data): data lines for all the devices.

This lower number of data lines facilitates the assembly of projects with this protocol.

However, data transfer is more complex when compared to other protocols used, being

performed as follows:

1. Start frame: indicates the start of the transmission;

2. Address frame: indicating which device should receive or send the information;

10

3. The last bit of the address will indicate whether it’s a read or write request;

4. Data, whether in the master-slave sense, or vice versa, and this choice is made in

the previous package (read or write);

5. After receiving and sending all data, a stop signal is sent to indicate the end of the

communication.

It is important to note that each byte sent in this protocol includes an additional bit

of Acknowledgement, in order to verify the correct receipt of the data.

The connection between master-slave is simple, being easily expanded to several mas-

ters and/or slaves, as shown in the figure 2.2

Figure 2.2: Connections for multiple masters and slaves

Therefore, this protocol has as a great highlight the possibility of interconnecting

several masters and slaves. Some other advantages of this protocol are:

• Use of fewer data cables (only 2)

• Addresses are set via software;

• Easy to add and remove devices;

• Easy error detection;

• Support up to 1008 slaves (use of 10bits for addressing) [9].

However, the protocol has some disadvantages, such as:

• Lower transmission speeds, usually with the clock operating in the range of a few

kHz;

• More complex software for receiving and sending data;

• Recommended use at low distances.

11

2.3.3 IEEE 802.11 (Wi-Fi)

IEEE 802.11, popularly known as Wi-Fi (registered trademark of the Wi-Fi Alliance),

is a set of specifications that must be followed in order to standardize wireless local area

networks. This technology represented a huge advance in the way devices connect to the

internet wirelessly, as it proved to be a very flexible and viable technology.

The operation of a Wi-Fi network happens over radio waves transmitted by a device,

usually the router, so that other devices within its range can connect if the credentials

are correct.

These radio waves are divided into up to 14 different channels for Wi-Fi networks that

operate on the base frequency of 2.4GHz, which are called channel 01 through channel 14

(in some places this number is lower, as in North America, which goes to channel 11, and

Europa, which goes to channel 13). This division into channels aims to avoid interference

from other networks and devices, in order to offer a less noisy signal.

It is important to highlight that normally choosing channels 1, 6 and 11 tends to be

better choices, as it avoids the phenomenon known as channel overlap, which is basically

a consequence of overlapping frequencies of the other channels [10].

Another important point of Wi-Fi networks is security, even more so today, where

several devices use this technology to exchange important information. Among all the

ways available to configure network security, the following stand out:

• Open network: Network where a password is not required for authentication

• Protection by MAC (Media Access Control) address :Network where only registered

MAC addresses can access. Low usage because it is vulnerable to MAC cloning.

• Hidden network: Hides the name of the network. Not often used because it is easily

discovered with Wi-Fi scan programs.

• WEP (Wired Equivalent Privacy): Developed in the 1990s, it is a type of protocol

with password protection. For encryption, 64-bit or 128-bit keys can be used [11].

However, several security problems have been found and this protocol is being less

used nowadays. [12]

12

• WPA (Wi-Fi Protected Access): Protocol introduced in 2003 to solve problems

in the WEP protocol. With this protocol, a different key is generated for each

information package using TKIP (Temporal Key Integrity Protocol) in addition to

the use of 256-bit encryption keys [11]. However, security issues have been discovered

and this protocol is being replaced by WPA2. [12]

• WPA2 (Wi-Fi Protected Access 2): Launched in 2004, the protocol presents several

improvements in the field of security and creation of cryptographic keys, which is

the model most used in residential applications. In this protocol, the use of RC4

and TKIP is replaced by CCMP (Chaining Message Authentication Code Protocol)

and AES (Advanced Encryption Standard), which provide greater security for the

network. [13]

Among the advantages of this communication protocol, the following stand out:

• Possibility of multiple devices connected;

• Easy to configure and use;

• High popularity (supporting multiple types of devices);

• Easily expandable;

• High mobility, usually used in small devices and without the need for cables;

• Low cost of product development using Wi-Fi nowadays.

However, some disadvantages also exists, including :

• Even though security has improven in the last few years, bruteforcing the key of a

network using a captured handshake is possible, however it’s necessary devices with

high computational power.

• Range dependent of the router.

In view of the large number of advantages, it is easy to understand why this technology

has become so popular in recent years.

13

2.3.4 HTTP - Hypertext Transfer Protocol

The HTTP protocol is a communication protocol used as one of the bases for the

transfer of information on the internet.

This form of communication is done in a client-server manner, where the client can

request files from a server, which then respond the request to the client. It is important

to highlight that it is always the client who initiates requests [14].

The requests are usually composed of 5 basic elements, which are:[14]

• HTTP Method: Niorm GET, POST, DELETE, PUT, OPTIONS or HEAD, how-

ever, more methods are available;

• The internal server path for that specific file;

• The version of the HTTP protocol;

• Headers in general, which can indicate important information about cache and file

versions;

• Body of data, in case of sending data to a server.

The responses have the following elements:[14]

• Version of the HTTP protocol;

• Status code on the requested file and server, and status information in summary

form regarding the code received;

• HTTP headers referring to the request;

• Body of data, when necessary.

In this way, the HTTP protocol becomes quite functional, given that it is capable

of controlling several features, such as cache, authentications, sessions, proxys, among

others, without losing simplicity in the way of communication and the high possibility of

expansion.

14

2.3.5 RFID

RFID is a radio frequency based identification technology. Among the most used

frequencies are:

• LF (Low Frequency):In the range between 125 and 134kHz

• HF (High Frequency):In the 13.56MHz band

• UHF (Ultra High Frequency):In the 433MHz band or between 860 and 960MHz

• Microwave:2.45 GHz and 5.8 GHz

In this technology, a transceiver is used to request the RFID tag code, and the tag

responds with a certain signal, which can represent not only its identification code, but

also stored information.

Regarding the type of tags, there are 2 main classes:

• Passive: Do not require the use of batteries [15], so the reader is be responsible for

powering the tag through radio waves. Thus, there is no need to recharge or change

batteries, a factor that greatly reduces the dimensions and cost of this technology.

• Active: Includes the use of batteries for electrical supply to the circuit of the tag

[15]. Thus, there is a need to change or recharge the batteries after a certain period

of use. As an advantage over the passive, it is possible to reach greater distances

using this class of tags [16].

However, even with all this diversity that technology offers, some problems are present,

which stand out:

• In the case of small active tags, the short battery life;

• In the case of passive tags, the small reading range (this problem also exists in some

active tags).

• The price, even though low, is still higher than some other technologies (for example,

such as bar codes, for supermarket applications)

• Security issues, where some types of tags can be cloned.

15

2.4 Components used

2.4.1 ESP32

ESP32 is a powerful low-cost microprocessor with integrated Wi-Fi and BLE modules,

a dual core processor with clocks up to 240MHz and a total of 48 pins for general usage.

Some of the main features used in this project of this micro controller are: [17] [18]:

• Integrated Wi-Fi module (IEEE 802.11 standard), with support for operation as

Access point, Client and Access Point + Station;

• Dual-core Processor with 32 bit architecture (up to 240MHz);

• 512KB SRAM memory and 448KB ROM;

• Support for external flash memory (typically 4MB);

• Possibility of generating PWM on all output pins;

• Ability to change SPI and I2C interface pins via software.

In order to simplify the use of the module, some Development Kits were launched, one

of the most recommended being the 30-pin DevKit V1, which combines a small size and

low cost, and it is partially breadboard friendly, as shown in figure 2.3.

Figure 2.3: Pinout and appearance of the ESP32 30-pin devkit [18]

In this development kit, a total of 25 digital pins are available for use, in addition

to supporting input voltages between 5V and 12V, and a 4MB flash memory. Also, the

16

use of ESP32 is simplified due to the CP2102 chip present in this development kit, which

allows the chip to be reflashed via the USB port.

2.4.2 Relay module (2 channels)

The 2-channel relay module makes it possible to connect higher power loads (up to

220VAC/10A) via 3.3V digital signals.

In the case of this relay, the load control is activated with a low signal pulse (below

2V), thus being an active-low type module, making it possible to use it with 5V supply

and 3.3V control signal.

In the case of the module represented in the image 2.4, it is possible to control two

loads separately, as it contains 2 separate channels.

Figure 2.4: Pinout and appearance of the 2-channel relay module

In addition, it is possible to use external power for the relays by removing the jumper

described in the image 2.4, or the possibility of checking the status of the relays of this

module using the leds as indicators.

However, this component has a higher current consumption when compared to the

other components (on average 150mA at 5V), since each relay (SRD-05VDC) used typi-

cally consumes 72mA when activated [19].

The response time is between 5ms and 10ms, which is sufficient for applications that

do not require instantaneous responses.

In this project, all control units have a 2-channel relay module (according to §4.1) for

electrical closing and illumination control, which can be disabled via software.

17

2.4.3 RC522 - RFID

The RC522 is a 13.56MHz RFID reader module that has the MFRC522, from NXP,

as the base chip. Using this module, it is possible to read RFID cards and tags wirelessly,

combining a low energy consumption with a low cost product.

The MFRC522 chip supports I2C, SPI and UART [20] communications. However, the

RC522 board layout is based on the SPI protocol, with the pinouts shown in the figure

2.5.

Figure 2.5: Pinout and appearance of the RFID module - RC522

In addition, some other features make this module highly attractive for use in proto-

types, such as:

• Easy to use in projects with microcontrollers such as Arduinos and ESP32;

• Works with 3.3V microcontrolers;

• Low cost (< 2US$);

• Low power consumption (<30mA);

• Supports several card technologies such as Mifare1 S50, S70 Mifare1, Mifare Ultra-

Light, Mifare Pro and Mifare Desfire;

• Small dimensions and low weight;

• Breadboard friendly.

In this project, this component is used as a way of identifying users from the tags for

inputs and outputs (according to §4.1).

18

2.4.4 DS3231 - RTC

The DS3231 module is a high precision real time clock, with an integrated oscillator

crystal, and a low energy consumption [21].

It is possible to use a CR2032 battery so that, in case of a power failure, date and

time information is maintained, as shown in figure 2.6.

Figure 2.6: Pinout and appearance of the RTC module - DS3231

This module provides time information with precision of seconds, and is also capable of

providing the minutes, hours, days, month and year, in addition to automatically making

corrections such as leap years and months less than 31 days.

It also has some very interesting features, such as:

• Works with voltages between 3.3V and 5V

• Low current consumed (500nA from battery, 1.5mA from external source)

• Circuit for detecting external power failure

• Able to count years from 2000 to 2099

• 32kB AT24C32 memory chip (for additional storage)

• I2C communication, facilitating connections

• Breadboard friendly

• Small, lightweight (8g) and low cost module

• Presence of 2ppm (approximately 1 minute of error per year).

In this project, only the main module uses this module, in order to offer an alternative

way to obtain the date and time, according to §4.1.

19

2.4.5 Micro-SD module

The card module developed by LC Technology supports the use of Micro SD and Micro

SDHC memory cards. The amount of memory supported will depend on the microcon-

troller and libraries used, making it a very powerful and simple to use module.

It uses the SPI communication protocol to provide a high speed for data transmission,

as well as being able to be directly connected to a 3.3V power supply and signal.

Figure 2.7: Pinout and appearance of the micro-SD card module

In addition, this module has several advantages, such as:

• Operation directly at 3.3V (without the need for voltage regulators or circuits for

Level Shifting).

• Reduced size compared to other modules with similar characteristics

• Allows for easy insertion and removal of the memory card

• Easy use and application in projects with microcontrollers

• Support for Micro SD and Micro SDHC cards.

• Low cost, small dimensions and light weight

• Breadboard friendly

In this project, only the main module uses this component in order to expand the

amount of memory available to store the records, according to §4.1.

20

2.4.6 Active buzzer

The buzzer is an electronic device capable of making sounds. In the case of the active

buzzer, the sound is generated by an internal electronic circuit, so that when the buzzer

is energized, it will beep.

Thus, it is an ideal component for use in alerts, alarms and signaling. It has only 2

terminals, one of which is positive, the other negative, as shown in figure 2.8.

Figure 2.8: Appearance of the active buzzer

The operation of buzzers is based on the Piezoelectric effect, in which, briefly, the

application of a mechanical effort is capable of causing the appearance of a potential

difference in some types of crystals. In the case of buzzers, this effect is the opposite,

where the application of tension causes a deformation in the internal crystal of the buzzer,

making it possible to emit sounds based on the displacement that the crystal is subjected

to.

This is a small and low cost component, but it has great applications due to the

fact that it is capable of emitting sound. In this project, all modules have an active

buzzer (according to §4.1) for indications and alerts in general, which can be disabled via

software.

21

2.5 Methods

2.5.1 Arduino IDE

The Arduino IDE is an open-source [22] Integrated Development Environment devel-

oped in Java and based on open-source software (such as Processing). This IDE provides

an easy-to-use interface and a fast way to compile and upload code to an arduino board

with only a few clicks.

The figure 2.9 shows a general view of the Arduino IDE:

Figure 2.9: Arduino IDE with empty project

For this project, the Arduino IDE was used as a text editor, compiler and bridge to

send the compiled binaries to the ESP32 of all the code in C programming language.

To be able to use the Arduino IDE to interface with the ESP32, it is necessary to in-

stall the tools provided by ESPRESSIF. This is a simple process done by adding the URL

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_

esp32_index.json to the Additional Board Manager URLs field (located at the prefer-

ences window of Arduino IDE).

22

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

2.5.2 Geany

Geany is a fast, small and easily customizable programming text editor that supports

many filetypes, including all the programming languages and files used in this project

[23].

The figure 2.10 shows a general view of the Geany interface:

Figure 2.10: Geany interface with empty project

For this project, Geany was chosen due to it’s organized and simple interface, with

multiple features, such as:

• Auto-closing of HTML tags;

• Syntax highlighting;

• Auto-completion and lists for symbol names;

• Built-in system to compiler;

• Project management sidebar;

• Easy HTML execution (F5 key) in external web-browser;

For this project, Geany was used as a text editor for the HTML, CSS and Javascript

files, as well as reading and creating the structure for the databases and configuration

files (CSV).

23

2.5.3 HTML - HyperText Markup Language

The Hypertext Markup Language (HTML) is one of the most common markup lan-

guages used to develop web pages. This language is used to describe to the web browser

the structure of a page, including data about the appearance of the document that will

be rendered in the client’s computer.

The use of HTML facilitates the process of structuring a web page that contains

multiple types of elements (such as text, images, tables, buttons...) by allowing the

developer to use structural semantics to create structured documents [24].

The HTML elements are represented by tags, which label pieces of content. These

tags are used by the browsers to render the page structure and elements correctly. Some

of the HTML elements used in this project are:

• <head> - Indicates the headers of the HTML page;

• <script> - Allows the scripts to be written directly in the HTML file

• <style> - Allows CSS styling to be written directly in the HTML file

• <body> - Contains all the graphical elements of a HTML page;

• <h1> - Text formatted as a title in the rendered page;

• <div> - Container usually used for grouping multiple HTML elements.

• <label> - Used as a caption for an item in the user interface

• <input> - Inputs of text/options at the graphical interface;

• <button> - Buttons that the user can interact with;

• <form> - Group of multiple elements with fields for user input;

• <table> - Used to create a table to show information organized by rows and lines;

•
 - Indicates a line break;

• <a> - Used to create a clickable hyperlink.

Adittionaly to all the advantages cited above, this language was chosen for it’s pop-

ularity and the wide range of functionalities provided. Also, HTML can embedded with

other languages, such as CSS for better styling and JS, for interactive functions.

For this project, each graphical interface (presented in 4.3.3) has it’s own HTML page.

24

2.5.4 CSS - Cascading Style Sheet

The CSS is a language capable of describing how the elements of a HTML page should

be displayed at the web-browser of a client [25].

The use of a global CSS file for all the webpages of a system allows the developer

to create multiple pages with a similar style without the need to rewrite the desired

characteristic of the structure in every document. This also allow all the webpages to keep

a pattern and simplifies the process of changing characteristics of them simultaneously.

The process of loading an external CSS file inside a HTML page is very simple and

done with one line of code in the HTML headers, as shown in the following example

(file.css represents the path and name of the CSS file):

<link href="file.css" rel="stylesheet" type="text/css">

It’s important to note that a webpage can have it’s own CSS specifications without

a separate file. This is done by using a HTML block called <style>. Also, A HTML

element can have a individual styling. This is done by using the indicator “style=” inside

the element’s delimiter.

For this project, the default styling for the majority of elements are inside a global

CSS file, loaded by all the HTML pages. Some page-specific styling options are present in

some HTML files, as well as some inline element styling (for example, on different colors

for the same type of element).

2.5.5 JS - JavaScript

Javascript is a high-level programming language, usually compiled in real-time that

can be integrated with HTML. This programming language has multiple functionalities,

(such as prototype-based object-orientation and first-class functions), making it a very

powerful tool to be used in web-pages.

One of the main advantages of using JavaScript as a programming language to control

the HTML files is it’s high integration with the elements of a HTML page. This makes

possible, for example, to execute a JS function by simply pressing a HTML button [26].

25

The process of loading an external JavaScript file inside a HTML page is very simple

and done with one line of code in the HTML headers, as shown in the following example

(file.js represents the path and name of the JS file):

<script src="file.js"></script>

The <script> element can also be used for JS code to be written inside a HTML file.

For this project, some JS scripts are built-in inside HTML pages (to avoid overloading the

webserver with multiple requests at the same time), while other scripts are in separated

from the HTML files for better organization and smaller file sizes.

2.5.6 C (Programming Language)

C is a procedural programming language developed between 1972 and 1973 for com-

puters, that is vastly used to program micro-controllers nowadays. This programming

language has multiple features that was used in this project, including:

• Full set of control flow primitives for conditions and loops (such as if, else, for, while,

switch...);

• Allows easy arithmetic and logic operations and comparisons;

• Allows the use of Functions to execute tasks and return values;

• Support for Arrays and matrices of elements;

• Easy Low-level access to computer memory with pointers;

• The code files can be separately compiled and be linked together afterwards;

• Static data typing (with implicit conversions possible).

The C language was chosen to be used in the ESP32 programming part of this project

due to it’s high integration with the majority of libraries made for Arduino. Also, because

it is a pre-compiled language, it allows micro-controllers to execute the majority of tasks

faster than real-time compiled languages.

Another advantage of C programming for ESP32 is the large support offered by Espres-

sif ®in the arduino-esp32 project (Arduino core for the ESP32), available at https:

//github.com/espressif/arduino-esp32.

26

https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32

2.5.7 Databases and configuration files

For this project, all the databases and configuration files are of the “.csv” (Comma-

separated values) filetype. As CSV file format is not completely standardized, it is possible

to adapt the contents and structure of this type of file to the desired application.

For data structuring in this project, the CSV files are separated by tabs (“\t”), for

the data of a individual dataset, and newlines (“\n\r”) for different datasets inside the

same database.

This datatype was chosen due to some advantages, such as:

• Easy to read and write, as it’s a plain text file;

• Easy to load directly to arrays and matrices (for the ESP32 processing and for the

graphical interface);

• No additional libraries needed to manipulate this files;

• Easy to download and manipulate at almost any text editing program;

• Compatibility with many datasheet manipulation programs;

• Great performance for reading and editing;

The downside of using this filetype is that most of the process of finding and editing

a specific line should be developed for each one of the databases.

The configuration files have a similar structure and uses the same filetype, the dif-

ference is that as the datasets are composed by only one data each, they are divided in

newlines only, as shown in 4.3.10.

27

28

Chapter 3

Architecture and specifications

InChapter 3, a general overview about the proposed specifications and architecture of

this project are presented, including both hardware and software parts, as well as general

capabilities about inter-connectivity, events logging (records), settings and all databases

used in the system, such as users, sectors and schedules.

3.1 System specifications

The general specifications of the project are:

• Maximum number of registered users: 499;

• Multiple sector control, supporting up to 49 sectors simultaneously with 49 modules;

• Maximum number of schedules: up to 24.500 (500 per sector);

• Maximum number records/logs: 500.000 with extended storage;

• Illumination and electrical locks control, as well as micro-switch support.

• Centralized and easy to use web-based graphical interface in the main module;

• Intercommunication between multiple modules for user movements, as well as data

and file exchange.

The maximum number of sectors and users was limited to allow all the information

to be stored in the internal RAM of the ESP32, allowing a better responsiveness of the

system. With the chosen specifications, 90% of the available static RAM memory was

29

used (other processes, such as hash encryption and network related functions uses the

heap memory, which is dynamically allocated).

Detailed specifications are presented in the following subsections.

3.1.1 General configuration

The system is capable of connecting to Wi-Fi that uses open, WEP, WPA and WPA2

(personal) security modes. It’s also capable of using static IP address or DHCP.

For the external components, it supports electrical locks that works with relays (both

active-high and active-low); illumination control that doesn’t exceeds 250V/10A. For

micro-switches, both active-high and active-low are supported. The buzzer can be disabled

for usage in quiet ambients.

To keep date and time updated, it’s possible to configure the system to use NTP when

internet is available, or use the internal date and time RTC module.

3.1.2 Users

Given that several of the applications to this system requires a considerable number

of registered users, a total of 499 users can be registered in the system, which include

information such as:

• User identification code (between 01 and 499);

• Full name of the user;

• User identification UID number;

• User expiration date.

Those information can be changed using the graphical interface of the main module.

3.1.3 Sectors

The number of sectors is limited based on the ESP32’s processing power and available

memory. For the project, this number was limited to 49 sectors, so each main module

can support up to 48 active secondary modules.

30

In the case of sectors, it is possible to register the following information:

• Sector code (between 01 and 49);

• Sector name;

• IP of the central responsible for the sector.

3.1.4 Schedules

It is possible to register up to 24.500 schedules per week (500 schedules per sector

per week), a number that should be sufficient for most of the project’s applications.

• Indication of which sector is allowed;

• Indication of which user is allowed;

• Initial date and time of the permission (weekly);

• End date and time of permission (weekly).

3.1.5 Records

The records are saved in a “.csv” format file, with data separations using tabs for data,

and a new line for the records, which can be:

• Allowed access attempt (Entry/Exit);

• Denied Access attempt;

• Alarm triggered;

• Alarm disarmed;

• System reboot.

The main module stores all records from all modules. For this, a Micro-SD card can

be used, in order to avoid limitations due to the internal storage space of ESP32 (detailed

in §2.4.1). To keep the stability of the system, the limit of 1.500 records was chosen

for analysis in real time on the web interface (more details in §4.3), and up to 500.000

records to extract via backup.

The secondary modules also has in its internal memory a records file to register the

events of the corresponding sector and of the next sector, supporting up to 30.000 records.

31

3.2 Architecture

3.2.1 Modules

The system has two types of modules, both capable of controlling the access of users:

• Main module: Only 1 main module per system. This module contains all the

databases, records and graphical interfaces of the system. This module is also

responsible for serving databases and general information to the secondary modules.

Also, it’s the only module capable of changing the users, sectors and schedules

databases via it’s web-based graphical interface.

• Secondary modules:Optional, limited to 48 secondary modules. These modules

only have they’re own databases, logs and it’s individual settings page, and is re-

sponsible for request databases and notify events to the main and adjacent modules.

They are only capable of changing its own records and settings files.

The modules work in a server-client communication over Wi-Fi, supporting up to 49

active modules simultaneously, as shown in figure 3.1.

Figure 3.1: Intercommunication architecture

A generic concept of the system is shown in figure 3.2.

The system components chosen for this project are 1x ESP32 (DevKit), 2x RFID

RC522 (one for entries and other for exits), 1x Dual-channel relay module (for illumination

32

Figure 3.2: Architecture specification

and electrical lock control), 1x Buzzer, 1x Input for micro-switches, 1x RTC DS3231 (main

module only), 1x Micro-SD card slot (main module only), and are grouped together as

shown in figure 3.3.

Figure 3.3: Implemented architecture

The RC522 module was chosen due to it’s low cost and low range, ensuring that only

users that intentionally approximate their tags (within 3 centimeters of the reader) will

activate the system and record the event.

33

3.2.2 Intercommunication and databases

The main module works as the server, providing all the databases to the the secondary

modules (clients).

An external secure Wi-Fi network with internet is required for full system functionality,

but the main module is capable of generating it’s own local network for smaller ambients

(limited to 4 secondary modules). If the security of the external network cannot be

guaranteed, the system provides a "Secure Mode" function, explained at §4.3.10.5.

Two secondary modules can intercommunicate directly using the information provided

by the sectors database, which contains all the information needed for any module to know

which one is responsible for each sector. This intercommunication informs the movements

of users between sectors, which allows the modules to be able to control the illumination

of a sector, even if the user has left one sector through the entry of another one (example

at 5.2.2).

All the databases and files used in the web-server are stored in the internal 4MB flash

memory of the ESP32. The databases are saved in “.csv” filetype, as described in 2.5.7.

Figure 3.4: Databases architecture

34

Chapter 4

System development

In Chapter 4, an overview about the development of the project is presented, includ-

ing the hardware part (layouts, assembly and final prototype), as well as the software part

(including the some routines done by the system during and after booting, the web-server,

intercommunication and the graphical interfaces).

4.1 Layout of components

The components and modules used in this project are connected in order to take

advantage of the maximum available pins of the ESP32 microprocessor, avoiding those

which usage are not recommended.

In summary, each module is composed by:

• 1x ESP32 (DevKit) - Used for information processing and network communication;

• 2x RFID RC522 - Used for reading RFID cards (one module for entry, and another

for exit);

• 1x Relay module - Used to control electrical locks and lighting;

• 1x Buzzer - Used for alarms and indications (access allowed with 1 beep, access

denied with 2 beeps).

• 1x Borne/button - Used to simulate the entry of a user (can be connected to a

micro-switch installed on the door);

35

• 1x RTC DS3231 - Used to obtain date and time offline;

• 1x Micro-SD card module (main module only) - Used to increase the available

storage space.

Thus, the pinouts used for the modules and other components were based on the

DevKit layout, in order to facilitate the future development of PCB (Printed Circuit

Board), and are arranged as follows:

• Pin 01 - Pin used for DEBUGING (TX)

• Pin 02 - Development board LED (DevKit)

• Pin 03 - Pin used for DEBUGING (RX)

• Pin 04 - SS line for the micro-SD card (SPI communication)

• Pin 13 - Relay control (electric lock);

• Pin 14 - Relay control (illumination);

• Pin 18 - MISO (SPI communication)

• Pin 19 - MOSI (SPI communication)

• Pin 21 - SCK (SPI communication)

• Pin 22 - SS of RC522 01 (SPI communication)

• Pin 23 - SS of RC522 02 (SPI communication)

• Pin 25 - Input terminal (for micro-switches)

• Pin 26 - SDA (I2C Communication)

• Pin 27 - SCL (I2C Communication)

• Pin 32 - RST (for MC522 module initialization)

• Pin 33 - Buzzer

It is important to note that some of the recommended standard pins have been changed

via software, as is the case of SPI and I2C communication. This change was made in

order to use sequential pins to match the RC522 pinout and to avoid crossing paths in

the manufacturing of the PCB. Due to the high processing power of the ESP32, all pins

that supports digital output can easily operate on all protocols used in this project.

Even though there are two types of modules in this system (main and secondary),

36

the connections and pinouts are the same, the only differences in the hardware part are

that the secondary modules do not have the micro-SD card modules nor the RTC-DS3231

module, which are exclusive to the main module.

Figure 4.1: Connections between modules on the main module

In addition, the following system inputs and outputs can be configured:

• Relay control: Allows use in “default open”, “default closed” or “disabled”. It is

also possible to configure a maximum timeout for the relay that controls the locks;

• Micro-switch control: Allows use in “default open”, “default closed” or “disabled”.

In addition, it is possible to configure the maximum time that the micro-switch can

be active before triggering the alarm;

• Buzzer: Allows "enabled" or "disabled" mode;

The power source of the project is made through the micro-USB connector of the

ESP32 development board, with 5VDC. This power will be used directly in the relay

module (which operates at 5V). The other components use the 3.3V voltage generated by

the regulator of the development board used.

37

4.2 PCB development and prototype

The development of the project was initially made on a breadboard, with the purpose

of an easy configuration and available pin tests. Bearing in mind that the ESP32 devel-

opment kit used is not completely breadboard friendly, as it is not possible to use all the

pins on a conventional breadboard (10 pins width), a special breadboard with 12 pins was

used for the initial tests, as shown in figure 4.2.

Figure 4.2: Prototype developed on breadboard

However, it was necessary to migrate to the PCB due to the devices that uses SPI

communication, which began to present contact problems and possible interference, caused

by the high speed communication (8MHz).

Thus, according to the arrangement of the components presented in §4.1, it was pos-

sible to develop a simple small PCB (15cm x 8.5cm). The same PCB is used in the main

module and in the secondary modules.

The trails and islands were scaled in order to occupy the largest available space,

without compromising the processes of welding and placement of components. In addition,

38

two different hole sizes were used, considering that some components have larger terminals

than other, as shown in figure 4.3. In addition, grounding mesh was used on the negative

terminal of the components to reduce the area of copper removed.

Figure 4.3: Computational version of the PCB tracks

In total, five printed circuit boards were made according to the PCB in figure 4.4.

Some unused pins have tracks that are a few centimeters long to prevent the islands from

being damaged during welding.

Figure 4.4: Copper part of the printed circuit board

In addition, only regions close to where the welded terminals would be inserted had

the extra copper removed to avoid problems during welding.

39

Then, female terminals were soldered to the plate, in order to allow the removal of the

most expensive components in case of failures. With the welded terminals, the components

were then inserted and resulted in the final prototype shown in the figure 4.5.

Figure 4.5: Final prototype of the PCB project

It is worth mentioning that the second RC522 module is directly connected to the

board. However, for real application outside a door, it could be connected using a set of

male-female cables.

The secondary modules have a similar layout, with differences only in not having the

DS3231 and micro SD card modules installed, as shown in figure 4.6.

Figure 4.6: The four secondary modules and the main one

40

4.3 General operation

4.3.1 Initialization

During the initialization of the control panel, several actions are taken to guarantee

the functioning of the system.

The first action performed initializes the ESP32 internal memory and the memory

card (if it exists), in order to collect the configuration files that will be used during the

system initialization.

The system then checks whether the configuration files exist. If they do not exist, files

with the default settings are generated. If they exist, these settings are loaded. More

information about the existing settings is described in §4.3.10.

With the settings loaded, it’s then possible to define the output types for the pins and

for the components, such as the RC522, relays, buzzer, micro-switch, and also initialize

the DS3231 module (if it’s present).

Then, the module’s Wi-Fi communication is initiated, based on the loaded configura-

tions, defining how the module should work (connect to a network, or generate a network),

the network credentials, and other information such as IP, gateway, netmask and DNS.

After that, the asynchronous server is started, where more than 20 pages interconnects

the graphical interface and the webserver (detailed in §4.3.3). In addition, all GUI pages

and files required for HTML pages, such as scripts and databases becomes available.

When all pages are initialized, the default HTTP headers of all files are instantiated.

The memory used by users is cleared and the existence of the user database is checked.

If it does not exist, a file with null information is generated for each user. If it exists,

the informations (user name, RFID tag identifier and expiration time) are loaded into

variables in RAM to speed up the use during the RFID authentication process.

Subsequently, the system reads sector information from the system’s database. If it

does not exist, a file with null information is generated for each of the sectors. If it

exists, the informations (sector name and IP of the module responsible for this sector)

41

are loaded into variables in RAM for quick use during the recording of events and inter-

communications (detailed in §4.3.11).

The system then reads the schedule database for its respective sector and for the next

sector (for which the module is responsible) and saves in RAM the required data.

With all the necessary information loaded from the internal memory, the system gen-

erates a 16-byte SHA1-HMAC Hash for each file, which will be used in the future to

verify changes in the databases. These Hashes are saved in RAM memory and are sent

via HTTP to the main module, which checks whether it is necessary to update the file

(detailed in §4.3.11).

Finally, the system checks whether the connection was successful. If not, the ESP32

starts an Access Point. If successful, the date and time is collected from the internet via

NTP or RTC module.

The secondary modules also checks file hashes with the main module to confirm that

the databases are correct and up to date. Otherwise, the databases are updated and

reloaded in the internal variables.

After initialization is completed, the ESP32 DevKit’s LED is turned off until further

processing is required. A simplified flowchart of the setup is shown in figure 4.7.

Figure 4.7: Simplified flowchart of setup function

42

4.3.2 Loop

After booting, the system is placed in loop. As that the ESP32 processor has 2

cores that can be used individually, the first one is responsible for all network and server

processes, as well as functions that collects data from the HTML graphical interface.

The other functions are executed in the second core, as shown in figure 4.8. Among

them, are the reading and processing the RC522 modules status. In case a tag is detected,

it’s identifier is read and compared with the database to check if it corresponds to any

user. If positive, a function to check if the user is authorized is called, in order to allow

or deny the user’s entry and record the occurrence. Then, the function that controls the

external components is called, in order to check the number of people in the sector for

illumination control, electrical lock control and status of the door’s micro-switch.

Figure 4.8: Simplified flowchart of loop function of Core 02)

Then, the update functions runs, and an optimization process runs to check if the

core 01 has requested core 02 to run any intensive processing task (such as reading or

editing databases or settings) in order to avoid slowing down network functionality, and

to improve the performance of the server.

43

4.3.3 Server (core 01)

For functions related to providing files and data an asynchronous server is executed

internally in the ESP32. This server, in addition to providing the necessary files for the

graphical interfaces, also bridges the communication between the user and the ESP32,

and between modules.

Some of the pages that perform this “bridge” are:

• “/adicionarUsuario” - Receives via GET request the data of the user number to be

edited or created, such as name, UID and expiration date;

• “/adicionarSetor” - Receives through GET request the data of the sector number

to be edited or created, the name of the sector and it’s IP address;

• “/adicionarHorario” - Receives through the GET request all the information for the

schedules databases (such as sector, user, and allowance times);

• “/limparRegistros” - Request to delete stored records;

• “/limparUsuarios” - Request to delete user databases;

• “/limparSetores” - Request to delete sector databases;

• “/limparHorarios” - Request to delete all the schedules databases;

• “/status” - Indicates the current system status in all modules, used in the system

status page, and in the sectors web-page (to indicate if the module is working)

(§4.3.8);

• “/info” - Provides information about memory for the system’s home page (detailed

in §4.3.5);

• “/NTP” - Provides the EPOCH time for module synchronization.

• “/backup” - Requests through a GET type request that a system backup or restora-

tion be made with files from the micro-SD card.

• “/solicitarSetor” - Used for intercommunication between modules to define which

module becomes responsible for each of the sectors (detailed in §4.3.11).

• “/registrar” - Used for intercommunication between modules for registering and

accounting users by sector (detailed in §4.3.11);

44

• “/configRede” - Receives the network configuration data from the module via GET

request (detailed in §4.3.10);

• “/configNTP” - Receives the date and time configuration data for the system via

GET request (detailed in §4.3.10);

• “/configSetor” - Receives configuration data for the sector via GET request (detailed

in §4.3.10);

• “/reboot” - Reboots the system.

In order to be able to access any of the system pages, it is necessary to login with an

username and password via web browser. This authentication is also used by the modules

to be able to communicate with the others, so the password of all modules must be the

same and known by the operator. The configuration of passwords is described in §4.3.10.

In addition, all the files necessary for the graphical interface are then made available

by the web-server, including all the HTML, CSS, JS files, and also the databases and

configuration files in CSV. All of these files also requires authentication to be accessed.

Static files, such as HTML, CSS and JS use HTTP headers to inform to the browser

that the files must be saved permanently in cache (to avoid needing to reload the same

files at each request).

For most of the non-static files, such as databases, a 16-byte hash identifier is generated

and sent with the file. Thus, when requesting these files, the browser (or another module)

sends this hash to the server, which checks if there was any changes with the files based

in this hash. In case of changes, the server responds with the HTTP 200 code (OK), and

sends the new file and the new hash. If the file has not been modified, the server responds

with HTTP code 304 (not modified), and the browser (or secondary module) uses the

existing file in memory.

The hash identifier is also used for integrity and security checks, as it uses SHA1-

HMAC with a cryptography key. This key needs to be the same at all the modules, so

they can check if the file is safe to be used.

45

4.3.4 Navigation bar

In order to facilitate navigation between the system pages, a “Navigation bar” was

implemented, which is always present at the top of the screen and presents the main pages

of the graphical interfaces.

It is only present in the main module, since the secondary ones have access only to

the “Settings” page.

Figure 4.9: Main panel navigation bar

The navigation bar presents the main pages of the system, and keeps the currently

active page in green. In the right corner of the bar, it is possible to check the time of the

module, in order to check if it’s correct, and if needed, it can be changed in the settings

tab (§4.3.10).

In addition, a system of cookies is used to register the last page visited, so when

reloading the page, the same tab is loaded. This is done using a variable called num is

used which indicates the number of the last page accessed (from 0 to 6, corresponding to

the pages indicated in the navigation bar).

Figure 4.10: Cookie saved to remember the navigation bar of the last page accessed

The Upload page is available in this project for direct upload of files to the main server.

In the case of commercial use of the system, this page must be disabled to avoid security

problems and improper files.

46

4.3.5 Home

It is the first page of the panel, and it is the default startup page after the system

configuration. The first information on the page is the title (“Bem vindo a central de

controle de acesso!”), and the IP of the module.

Then, some important information is presented, such as the amount of internal memory

available (for records and times), the amount of memory available on the external memory

card, if installed, and the available heap memory, the which is responsible for keeping the

server stable.

Figure 4.11: Home of the panel without using an external memory card.

On this page it is also possible to request that the system be restarted via software.

All information passed through this page is also available through the “/info” location,

which is the data source for this page. These data are arranged so that the first column

indicates the available memory and the second the total memory, and the lines respectively

represent the internal, external and heap memories, as shown in figure 4.12.

Figure 4.12: Information received from the server to the home page.

47

4.3.6 Records and analysis

The second page of the system is the Records page, which contains the following

system logs:

• Access attempt allowed (Entry/Exit);

• Access attempt denied;

• Alarm triggered;

• Alarm disarmed;

• System restart.

The page has the title “Registros do Sistema”, followed by three buttons, which allow,

respectively, the records to be downloaded in the .csv format, the records to be deleted,

and the records to be analyzed.

Then, there is the possibility of filtering the records based on the type of record, user

and sector, as well as filtering by dates of occurrence. If any filtering is requested, the

table is updated in real time. It’s also possible to select the order of the events by crescent

or decrescent order.

Figure 4.13: Records page

Then comes the spreadsheet, which join the correspondent events, so that for each

48

entry, the respective exit is found and both are grouped on the same line, then the

duration of the event is calculated. In addition, the spreadsheet shows actions that

requires attention in different colors (such as alarms and denied accesses).

When selecting the option “Download records”, the file obtained shows each event

saved separately. This way, the permanence calculation doesn’t appear. This choice was

due to the processing limitations of ESP32 with large files.

The option “Detailed analysis” opens a floating window on the page and allows the

selection of a user to be analyzed, and the range of days. With that, a table that indicates

the total permanence by sector, and the number of occurrences is presented. In addition,

alarms, incomplete accesses (entries without exits, or exits without respective entries),

and improper access attempts are also indicated.

With this data, the top 10 sectors where the selected user had the longest permanences

are used to generate a graph in order to provide a better visualization of that user’s

behavior. The generated graph also shows the percentage values for each of the sectors.

Figure 4.14: Record analysis page

Due to the fact that the module is capable of displaying up to 1,500 records, a pag-

ination was implemented, where it is possible to choose between 10, 25, 50, 100 or 200

records per page, with the objective of not overloading the graphical interface, as shown

49

in the image 4.15, which is located at the bottom of the page.

Figure 4.15: Records pagination

For the operation of this page, the file “Registro.csv” is loaded, as shown in the image

4.16. This file is then divided into a data matrix, which is analyzed for the purpose of

correcting formatting, grouping entries and exits, calculating permanences and coloring

each line accordingly.

A special hash of the records file is requested once each 2 seconds, and if the hash

changed, the records are reloaded. This way, if any event occurs, the page automatically

refreshes it’s data, and new events are displayed.

Figure 4.16: Record analysis interface

For the development of this page, more than 500 lines of code were produced, including

HTML, CSS and mainly JavaScript.

50

4.3.7 Users

The third page of the system is the users web-page, in which it is possible to add, edit

and remove users from the users database.

This page is composed of the title “Usuários Registrados”, followed by three buttons,

which respectively allow:Add a new user, download the file from the user database or

delete all users.

Then, it is possible to perform a search filter based on the user code, name or the

corresponding RFID card identifier. The spreadsheet is updated in real time if any filtering

is requested.

If an RFID tag is detected at the main module while this page is open, the RFID

identifier is automatically inserted in the search field and the user is located. This feature

is ideal for finding out to which user a particular tag belongs.

Figure 4.17: Users page

The length of the user names is limited to 30 characters due to limitations of the

internal memory available in RAM of the modules.

To add new users, the “Adicionar Usuário” button can be used, which results in the

popup shown in figure 4.18 to select the number of the user, followed by the 4.19 window.

51

A new user can be also added by passing a card that has not yet been registered at the

main module RFID reader.

Figure 4.18: Add users window

In each line of the table, there is the option to edit individually or remove the cor-

responding user. When selecting the option to edit, a floating window is opened on

the screen (figure 4.19), allowing information such as username, RFID tag identifier or

expiration date to be changed.

Figure 4.19: User edit window

When saving any modifications, the system verifies if there were no repetitions in

names or tags, and if the information is valid. If so, this new data is sent to the server

that requests changes in the ESP32 RAM variables, and are than saved in the database

file, allowing the page to reload and show the new values in the spreadsheet. If any of

52

the information is not valid, a warning page is displayed with the message “Error: The

number must be between 1 and 499, the names and even the RFIDs cannot be repeated”.

The data used on the users page comes from the file “users.csv”, which can be down-

loaded through the button “Baixar Usuários”. This file is loaded on the page (figure 4.20),

and its data is divided into a matrix. This matrix is then analyzed in JavaScript and the

spreadsheet is generated, splitting the data in 5 rows, indicating the code of the user, the

name of the user, the RFID tag, expiration date and buttons for editing and removing an

user from the databases.

The expiration date is given in seconds since the year 2000 (modified EPOCH system),

so this information must be converted before being displayed. In case the expiration date

of a user user has expired, it’s information is kept, however the line of the table is colored

in red.

Figure 4.20: File that provides information for the users page

The file “users.csv” is part of the files whose hash is generated at startup. Thus, it is

sent via headers during transmission as a ETAG of the file. Thus, if there was no change

53

in the file, the browser loads the same from the cache itself, thus consuming less module

processing and speeding up the page loading.

4.3.8 Sectors

The fourth page of the system is where it is possible to get and edit the sectors

database. Right after the title “Setores Registrados”, there are three buttons, which

respectively allow the addition of new sectors (“Adicionar setores”), download the sectors

database (“Baixar setores”) and delete all sectors (“Limpar setores”).

Then, a filtering label allows the search for a specific sector by its registered name.

The spreadsheet is updated in real time in case any filtering is requested.

Figure 4.21: Sector page

The spreadsheet contains five rows. The first indicates the sector code. The second

indicates the name of the sector, which can be changed on the page itself through the

“Editar” button. The third indicates the IP address of the module responsible for this

sector, which can be easily accessed by clicking on it. The fourth row indicates the status

of the module, which can be:green (online), red (offline), or gray (no module registered in

this sector). The last row allows the editing and removal of a sector.

54

The status indicators are updated sequentially, taking between 100ms to 1000ms each,

depending on the status of the module. In this way, it is possible to monitor in real time

the status of all registered modules. To check if the modules are online, a request is sent

via HTTP with a GET parameter to wait for response. If the response is correct, the

indicator in the fourth row turns green, otherwise it turns red.

When requesting the addition of a new sector, the window of the figure 4.22, so that

the sector number is inserted. The rest of the sector creation process becomes the same

as the edition process (figure 4.23), it is only necessary to insert the sector name and save,

so that the sector information can be changed in the module database .

Figure 4.22: Sector add interface

When clicking on the option to edit a sector, the floating image window 4.23 appears,

allowing the sector name to be changed.

Figure 4.23: Sector edit interface

The size of the sector names is limited to 30 characters due to limitations of the

internal RAM memory available in the modules.

55

When requesting to change the name of a sector, the information is checked to verify

that an existing name has not been used, or that the sector value does not exceed the

maximum number of 49 sectors. If everything is right, the database is changed. Otherwise,

the following warning message is displayed:“Error: The number must be between 1 and

49, and the sector names cannot be repeated.”

The data used in the sectors page comes from the file “sectors.csv”, which can be

downloaded through the button “Download Sectors”. This file is loaded on the page

(figure 4.24), and its data is divided into a matrix. This matrix is then analyzed and the

page spreadsheet is then generated.

Figure 4.24: File that provides information for the sectors page

The file “sectors.csv” is also part of the files whose hash is generated at startup. Thus,

it is sent via headers during transmission as a ETAG of the file. If there was no change

in the file, the browser loads the same from the cache itself, thus consuming less module

processing and speeding up the loading of the sectors page.

56

4.3.9 Schedules

The fifth page of the system is the interface for adding, editing and removing schedules.

Below the title “Horários Permitidos” there are two buttons, the first being “Adicionar

horários” (used to add new schedules) and the second “Limpar horários” (used to clear

all the schedules).

Then three filtering options are available through selectors. The first one allows to

filter by sector. The second selector makes it possible to filter by user. The third allows

to choose the day of the weekday to be analyzed. The spreadsheet is updated in real time

in case any filters are applied. Multiple filters can be used at the same time.

In order for these selectors to be generated, the page needs to load the users and

sectors databases, thus being the system page that loads the largest amount of files for

full operation.

The spreadsheet with the information is generated, and shows all the permission times

of all modules (up to 49 schedules databases files loaded and decoded).

Figure 4.25: Schedules page

The spreadsheet consists of five rows, four with information, which respectively indi-

cate the time sector, the user, the start time and the end time of the permission. The fifth

57

row allows easy editing and deletion of a specific time. The system only allows permis-

sions that the starting time is earlier than the end time compared to Sunday 00:00. This

happens because the schedules happens on a weekly basis, resetting on Saturday 23:59.

Due to the possibility of having up to 24.500 hours registered in total (500 schedules

in each of the 49 sectors), a paging system similar to the one existing on the records page

was implemented, as shown in figure 4.26.

Figure 4.26: Schedules pagination

Due to the fact that several database files must be loaded, a loading interface was

implemented for aesthetic reasons, which indicates which file is being loaded, as shown in

figure 4.27

Figure 4.27: Loading interface for schedules page

All database files (times, users and sectors) use ETAG based on the 16-byte hash, to

avoid overloading the ESP32 server. In addition, schedules are requested synchronously

without blocking the graphical interface. This choice was due to limitations of the ESP32

in processing multiple requests for files in a short period of time.

58

When selecting the option of editing or creating a schedule, the floating window of

the figure 4.28 is displayed. If the schedules are kept blank, the system considers this

schedule to be of the "Total Allowance" type, so any time turns into access allowed for

that user and sector. If the hour fields are filled, the authorization only happens within

the chosen time range for that sector and user.

To change sectors or users, selectors are used in order to only allow values within the

database of sectors and users to be used, avoiding incompatibilities and errors on the page

or in internal processing.

Figure 4.28: Edit and add schedules

The data used for the spreadsheet on the page comes from the time databases of each

sector. An example of sector 01 schedules is shown in the figure 4.29. In this case, it is

possible to note that the lines have a fixed size (24 bytes), so that it is possible to edit the

file without having to completely rewrite it, speeding up the process of editing schedules.

In addition, the fields indicate the users and sectors numerically. To be displayed

according to the figure 4.25 it is necessary an additional processing step, which converts

the numbers of users into their names.

The number of the file represents the number of the sector. Within this file, three

rows are used, the first indicating the permission user number, the second row indicating

the starting time of the permission and the third row indicating the end time of the

59

permission. These times are represented in minutes since Sunday 00:00, as a way to

standardize the file size.

Figure 4.29: Database format for schedules page

Thus, whenever a user requests access to a module, the system calculates the current

time in minutes since 00:00 on Sunday and compares it with the values of the databases.

Knowing that the number of users does not exceed 3 digits, and that with this form of

time representation, the maximum value is 10079 (equivalent to 23:59 on Saturday), it

was possible to make this database the only one of the system with a number of characters

per line fixed without wasting too much storage.

Due to the large number of databases on this page, it is not possible to download all of

them simultaneously. However, it is possible to download them individually by accessing

the file’s address. It is also possible to backup of all the schedules on a micro-SD card

using the settings page, at tab “Arquivos” (detailed in §4.3.10).

Due to the high processing power required for the analysis of all the multiple databases,

more than 500 lines of code were developed in JavaScript, C and C ++, making it one of

the most complex functionalities to be implemented.

60

4.3.10 Settings

The sixth page of the system centralizes the settings and configurations of the system.

This page is also the only one available in the secondary modules.

The page consists of the title, followed by the IP address of the module that is being

configured. Then, an internal navigation bar is used to separate and organize all existing

configurations, as shown in figure 4.30. The existing tabs contains the settings related to:

Network, Sectors, Date and time, Files (backup and restore) and Administrative access.

Figure 4.30: Settings navigation bar

4.3.10.1 Network Settings

The first settings tab refers to the network settings of the module (figure 4.31). In

this tab, the following information can be changed:

• Modo do Wi-Fi - In this selector, it is possible to configure the ESP32 to connect

to a Wi-Fi network, or to generate a Wi-Fi network;

• Nome da rede - SSID (Service Set Identifier) of the generated or connected network;

• Senha da rede - Password of the generated or connected network;

• IP da central - Static IP used by the module on the network;

• Máscara de rede - Netmask of the network;

• Gateway da rede - Gateway of the connected network;

• DNS da rede - DNS that should be used for internet access;

• IP da central principal - IP of the main module. If the module is the main one, this

field is disabled;

• Alta velocidade - ESP32 high speed mode, which speeds up the response time of

requests, but can cause overheating.

In addition to the settings, the page features two buttons, one for saving changes and

one for canceling changes. In case of saving, the panel is restarted with the new settings.

61

Otherwise, the page is reloaded with the previous values.

Figure 4.31: Network settings page

All information presented on this page is provided by a configuration file, as shown in

figure 4.32, which indicates each of the configuration options respectively. In the case of

selectors, the number indicates the position of the selector.

Figure 4.32: Network database file

62

4.3.10.2 Sector settings

The second settings tab refers to the sector settings whose module is responsible, as

shown in the figure 4.33. In it, the following information can be changed:

• Registrar evento ao sair - Allows exits from the sector to also be registered as entries

in the next sector.

• Setor ao entrar - Sector whose center is responsible. It is only possible for one

module to be responsible for each of the sectors. The selection is made based on a

selector generated with the sectors database.

• Setor ao sair - Sector whose entry is registered on leaving the sector configuring

previously. The selection is made based on a selector generated with the sectors

database. If the option “Log event on exit” is disabled, this selector is also inactive.

• Controle de fecho - Allows the use of electrical locks on sector doors through the

relay. It is possible to disable the relay, or to enable it as default high or default

low.

• Controle de iluminação - Allows the control of lights of the sector through the relay.

It is possible to disable the relay, or to enable it as default high or default low.

• Sensor de entrada - Allows the use of micro-switches to detect movements between

sectors. It is possible to disable it, or enable it as a default high or default low.

• Tempo limite para entrada - Defines the maximum time, in seconds, between the

card swipe and the user entering the sector. After this time, the access is blocked

again.

• Tempo limite no sensor - Defines the maximum time, in seconds, that a user can

remain in the sensor (of the door) before triggering the alarm (in order to prevent

the door from being kept open for longer than necessary)

• Efeitos sonoros - Allows the sound effects of the buzzer to be activated or deactivated

according to the needs of the sector.

• Armazenamento - Defines the storage location of the module.

In addition to the settings, the page also has two buttons, one for saving changes

63

and one for canceling changes. When saving, changes are implemented and the primary

module is also notified of the changes.

Figure 4.33: Sector settings page

All information presented on this page is provided by a configuration file, as shown in

figure 4.34, which indicates each of the configuration options respectively. In the case of

selectors, the number indicates the position of the selector.

Figure 4.34: Sector database file

64

4.3.10.3 Date and time settings

The third settings tab refers to the date and time settings, as shown in figure 4.35. In

it, the following information is requested:

• Usar NTP - Allows the use of NTP (clock synchronization protocol over the net-

work). For this feature to work correctly, the module needs an internet connection,

or a local NTP server on the network.

• Servidor NTP - Indicates the address of the NTP server, either local or online. This

option can only be configured if the “Usar NTP” setting is active.

• Fuso Horário - Represents the time zone in relation to the GMT (Greenwich Mean

Time) time. This option can only be configured if the “Usar NTP” setting is active.

• Horário de verão - Selector that allows enabling or disabling daylight saving time

for the module. This option can only be configured if the “Usar NTP” setting is

active.

• Inserir data - Allows manual insertion of the date in the format DD/MM/YYYY.

This option can only be configured if the “Usar NTP” setting is inactive.

• Inserir hora - Allows manual entry of time in HH:MM:SS format. This option can

only be configured if the “Usar NTP” setting is inactive.

For the use of NTP over the internet, it is necessary to configure a valid DNS in the

network tab. In case the NTP is inactive, the main module uses the RTC-DS3231 module

to maintain the time, and the secondary modules access the “/NTP” page of the main to

collect and sync the time.

The modules can be configured in different ways. However, the records are made based

on the time of the module that the event happened, therefore, it is recommended that all

use the same parameters.

In addition to the settings, the page also has two buttons, one for saving changes and

one for canceling changes. When saving, changes are implemented without requiring a

restart. If the “Usar NTP” setting is disabled, a new button appears, allowing the module

to collect the time of the browser that is accessing the page, in order to synchronize with

65

the device.

Figure 4.35: Date and time settings page

All information presented on this page is provided by a configuration file, as shown in

figure 4.36, which indicates each of the configuration options respectively. In the case of

selectors, the number indicates the position of the selector.

Figure 4.36: Date and time database file

66

4.3.10.4 Files

The fourth settings tab allows backups and restores of configurations and databases

in the system, as shown in the figure 4.37.

Figure 4.37: File backup and restore page

The following functions are available:

• Download: Records, users and sectors;

• Backup and restore;

• Delete: Records, users, sectors and schedules.

The Backup and restore functions require a micro-SD memory card connected to

the module to be performed. During the backup, the system status page is shown and

indicates which file is being processed.

In addition, this tab also allows the download and removal of the database files in-

dividually, a useful feature in secondary modules, which do not have the other system

interfaces to perform these operations.

In case of database corruption, or problems to load the graphical interfaces (caused

by a file), it is possible to clean them on this page without the need to load them, as a

way to solve the problem.

67

4.3.10.5 Advanced

In the fifth tab of the page, it is possible to set the administrator’s password for

accessing the graphical interfaces, configuration files and databases. In addition, these

credentials are also used for intercommunication between modules, so that all must use

the same password to exchange files and information.

It’s also possible to change the cryptography key and enable "Secure Mode". When

this mode is active, the databases and settings can be only changed when the module is

accessed via a Wi-Fi network generated by the ESP32, so all the communication happens

securely using the encryption of a separate WPA2 network. When accessing the module

via the Wi-Fi network that the module is connected to, the databases can only be read.

In this tab, the following information is requested:

• Alterar senha administrativa - Field used to change the admin password.

• Modo Seguro - Field used to enable or disable secure mode.

• Alterar chave de criptografia - Field used to change the cryptography key.

When saving, all the passwords are compared internally to the original ones, and the

changes are implemented and the system is rebooted.

Figure 4.38: Advanced settings page

By default the username and password “admin”, “admin” are used, and allow access

to the settings of the panel until the credentials are changed.

68

4.3.11 Interconnection between modules

In order to make it possible to intercommunicate all the modules in case of a database

changes, new record events or when there is a movement between sectors, it is necessary

to implement some form of synchronization of files and information between the modules.

In order to optimize the databases update process, the secondary modules generates

hashes of their files and send them as “ETags” for comparison before receiving the database

files. This way, in case the databases are already updated, the main module responds with

code 304 (Not-Modified), and the secondary module continues to use the files already in

the internal memory. Thus, only if the databases has changed the files will be sent (and

the server will respond with code 200).

For the databases intercommunication, secondary modules requests the database files

from the primary module through two types of update, the “Cyclic update” and the

“Update in case of access”.

In the case of Cyclic Update, when booting the system, the modules determine the

number of total active modules registered and enumerates each one. With this infor-

mation, it is possible to know the total update period in seconds, which is equal to the

number of total modules(T). Thus, it is possible to determine when each module must be

updated based on the individual number (according to the formula 4.1).

N = T%t (4.1)

• N - Individual number of a module;

• T - Total of active modules;

• t - Instant of time (EPOCH).

For the following graphical examples (figures 4.39, 4.40, 4.41), the first module (Module

0) is the main one, and the other three (Module 01, 02, 03) represents the secondary ones.

The file that changed is only needed for the modules 01 and 03 (for example a schedule

that only affects them). Each blue connection represents checking for changes of the 4

databases (“usuarios.csv”, “setores.csv”, schedules of the sector, schedules of the next

69

sector to allow exiting).

The image 4.39 represents an example of what happens when a file changes using the

Cyclic Update in normal mode.

Figure 4.39: Intercommunication between modules using normal cyclic mode.

In this example, when N=1, the module 01 checks if any files needs to be updated,

and the server responds with the new file. When N=2, the module 02 checks if any files

needs to be updated, and the server responds 304 (file not-modified). When N=3, the

module 03 checks if any files needs to be updated, and the server responds with the new

file. Then the cycle restarts, this time all the modules are updated and the server will

respond 304 (not-modified) to the requests.

A Smart Cyclic Update mode is also present, and uses less requests when the files

aren’t modified. It uses a broadcast from the main module to indicate the number of

the database that changed. This way, only the modules that needs these databases will

70

request them.

The Smart Cyclic Update is represented in image 4.40.

Figure 4.40: Intercommunication between modules using smart cyclic mode.

In this example, the first step is a broadcast sent by module 0 to indicate which files

changed. Then, when N=1, the module 01 knows that it needs to be updated and asks

for the files, and the server responds with the new database. When N=2, the module 02

already knows no file has changed and doesn’t ask. When N=3, the module 03 knows

that it needs to be updated and asks for the files, and the server responds with the new

databases. Then the cycle stops until another broadcast is sent.

In update in case of access, data is requested whenever a card is detected. In this

case, the following update order is used:

• When detecting a card, the user databases are updated to verify that the card is

registered with one of the users;

• If so, the panel updates the schedules database of the attempted access sector (either

the inbound or outbound sector).

• The sector database is then updated, so that it is possible to record the allowed or

71

denied event, and to communicate the next movement centers that occurred, for the

control of the lighting relay modules and for records.

In the example of 4.41, only when an access attempt is made, the modules check if

any of the files has changed.

Figure 4.41: Intercommunication between modules using update in case of access.

The information intercommunication happens between two secondary modules in real

time, without the primary module being used. This saves processing power from the main

module and speeds up the process. To make this possible, the sectors database has to

know the IP of all the modules responsible for each sector.

The most used information refers to the movement of users (the entry or exit of a user

in a sector), and it’s used to communicate to the next sector if the lights may be turned

on or off, and to record the event in both modules.

In the intercommunication of real-time events, the module where the event happened

72

sends to the module responsible for the event (e.g.: next sector) the following parameters:

(figure 4.42)

• Type of the record (TIPO): Numbers between -2 and 3, representing the type of the

event (respectively: alarm, stop alarm, reboot, entry, exit, denied attempt);

• User: The number of the user of the event;

• Sector (SETOR): The number of the sector of the event;

• Time of the event (HORA): EPOCH time of the event

• Hash: An integrity and security hash using all the above data to check if the request

is reliable.

If the communication was successful, the destination module responds with a code

200. If the communication fails, the sender module tries again (limited to 5 tries).

Figure 4.42: Intercommunication between modules during event record

In the case of new events to be recorded, the main module is also notified to be able to

record the event too. This way, the main module will record all the events that happened

in all the sectors.

73

74

Chapter 5

Tests and discussions

In Chapter 5, a test simulating a real-world usage of the system is presented, includ-

ing speed tests for booting time, file manipulation, and web-server responses, as well as

discussions about the network packets generated by the system in each situation, and a

market analysis for access control systems.

5.1 Speed tests

For all the speed tests of this section, the main module is working at it’s full capacity

to make sure the results correspond to the worst scenario in therms of databases size.

This means that the system is using databases with a total of 499 users, 49 sectors and

24500 schedules (500 schedules per sector).

5.1.1 Boot time

The boot time of the system includes the time taken to:

• Configure the ESP pins and components (RFID, SD card, RTC and relay);

• Load the 4 configuration files (Network, sectors, time and passwords);

• Checks if the module will run as main or secondary module;

• Start the web-server;

75

• Load the databases (users, sectors, schedules);

• Generate the hash for all the databases;

• Connect to the Wi-Fi network;

• Update date and time from the internet (NTP);

Figure 5.1: Boot time

All this actions, are done in 2.3 seconds (figure 5.1). This means that, in case of a

reboot, or energy restoration, the modules will be online and running in under 3 seconds,

an impressive time that was achieved after a lot of improvements.

5.1.2 File modification

The time taken to read, write and generate the hash of the files was also measured

and represents the time used by the system when the system needs to get information of

a file, or change it. These approximate times are shown in table 5.1:

Table 5.1: Time taken to process files.
Read speed Write Speed Hashing (SHA1-HMAC)

Users database ∼200ms ∼1,2s ∼40ms

Sectors database ∼100ms ∼800ms ∼40ms

Schedules database ∼100ms ∼500ms ∼40ms

Configuration files ∼100ms ∼200ms -

The configuration files doesn’t generate hashes due to it’s reduced size.

76

The size of the databases and datasets used in the system are shown in table 5.2:

Table 5.2: Databases and datasets size
Users Sectors Schedules Records

Maximum datasets 499 49 500 per sector 500.000

Datatype csv csv csv csv

Maximum dataset size 62 B 60B 24B 100B

Maximum database size ∼31kB ∼3kB 12kB (per sector) ∼50MB

The ESP32 flash memory installed in this module has 4MB, allowing all the databases

(including all the 49 schedules databases in the main module) to be stored internally. The

records must be stored in an external micro-SD card if it exceeds the available internal

memory of the system.

5.1.3 Web-server

The web-server was also highly improved, since it’s used not only for the user’s graph-

ical interface, but also for modules intercommunication.

This improvements can be seen in the loading times of the pages. For example, one of

the most resource intensive pages is the schedules page, which needs all the 49 schedules

database files, and also the users and sectors database. It also needs to download the

HTML, CSS and the javascript files that controls the page.

When downloading large files (such as the records file), the average download speed

is arround 300KB/s (2.4 Mbps) as shown in figure 5.2.

Figure 5.2: Download speed for larger files.

77

The download speed depends on multiple factors, such as the network dimensions, the

devices connected, the bandwidth available and the available resources of the network. A

separate network was generated using a computer to avoid external interference during

the speed tests.

When loading the page for the first time (no cache in destination browser), the page

takes only 4 seconds to load and process all the 58 files (figure 5.3).

Figure 5.3: Time to load the Schedules page for the first time

When reloading the page, only changed files needs to be downloaded. The change of

the files is checked with the web-server via ETags. In case the file hasn’t been changed,

the web-server responds with 304 code, taking only around 16ms per file. This way, the

same page can be loaded in under 1.5 seconds when using the browser’s cache (figure 5.4).

78

Figure 5.4: Time to load the Schedules page with cache

It’s possible to predict the average download time of any database with any amount

of data using formula 5.1.

t[ms] = (size[B]/300) + TTFB + M. (5.1)

Where:

• t - Time taken to download a file (microseconds);

• size - Size of the file to be downloaded (Bytes);

• TTFB - Time to first byte, depends on the network and the time taken by the

ESP32 to find the file (usually between 15 and 100ms).

If the file is already ETag-cached, the “size” can be considered equals to zero, and the

time taken to the system respond is approximately equal to the TTFB (as the server will

only respond with a 304 message). This effect can be seen in figure 5.4.

79

5.2 Intercommunication test

5.2.1 Files

When using Smart mode for files update, the first step of the communication between

modules is the broadcast sent by the main module indicating that a file has changed.

This broadcast is shown in 5.5, and it’s composed by two bytes in hexadecimal that, when

converted to ASCII, indicates the number of the file that has changed. The broadcast is

sent to the address “239.1.2.3” via UDP.

Figure 5.5: Broadcast used in Smart Mode to update files

When requesting a file, the secondary modules uses a simple GET request with the

path of the file needed, the login credentials and a "If-None-Match" containing the hash

of the file. (figure 5.6)

Figure 5.6: Request send by the secondary modules to check for file changes

If the credentials are correct and hash sent by the client doesn’t match with the server,

the main module sends the new file and new hash (ETag) (figure 5.7). This hash is then

80

generated again at the secondary modules and checked if it matches with the hash sent

by the main module o check the file integrity and security.

Figure 5.7: Response code 200 when requesting the file “usuarios.csv”

If the credentials are correct and the hash matches with the file, the server responds

with a 304 code, indicating that the file hasn’t changed (figure 5.8).

]
Figure 5.8: Response code 304 when requesting the file “setores.csv”

Other web-server responses configured are:

• 401 (Unauthorized) - When the credentials are incorrect, or when the logout button

is used (at the graphical interface)

• 404 (Not Found) - When the requested file doesn’t exists

81

5.2.2 Information

For the tests of this example, the modules were configured to allow access to the user

"Usuário 01" at the "Setores 01, 02, 03 and 04". The user "Usuário 02" is only allowed

to access the Sector 01. The update mode selected is Cyclic Update, with Smart Mode

enabled. The displacement of the modules and sectors are represented in figure 5.9. The

main module is the first one ("Setor 01"), and the others are the secondary modules.

Figure 5.9: Example of real usage of the system

Every time a movement involves more than one sector, network packets are generated

to notify the main and adjacent modules. For the example below, the packets are shown

in figure 5.10, and are composed of pairs of data information (respectively request and

response).

• Movement 01 - "Usuário 01" enters the "Setor 01" - No packets are exchanged, since

all the movements only affects the sector controlled by the main module;

• Movement 02 - "Usuário 01" enters the "Setor 02" (exiting from "Setor 01") - Packets

09/10, 18/19;

• Movement 03 - "Usuário 01" enters the "Setor 04" (exiting from "Setor 02") - Packets

36/37, 45/46, 53/54;

• Movement 04 - "Usuário 01" enters the "Setor 02" (exiting from "Setor 04") - Packets

62/63, 70/71, 78/80;

82

• Movement 05 - "Usuário 01" enters the "Setor 01" (exiting from "Setor 02") - Packets

89/90, 97/98;

• Movement 06 - "Usuário 01" exits the "Setor 01" - No packets are exchanged, since

all the movements only affects the sector controlled by the main module;

• Movement 07 - "Usuário 02" enters the "Setor 01" - No packets are exchanged, since

all the movements only affects the sector controlled by the main module;

• Movement 08 - "Usuário 02" attempts to access the "Setor 02" - Packets 112/113;

• Movement 09 - "Usuário 02" exits the "Setor 01" - No packets are exchanged, since

all the movements only affects the sector controlled by the main module;

As an example for better understanding the packets, when the "Movement 03" happens,

the module responsible for the "Setor 04" needs to inform the module that controls "Setor

02" that someone has left the sector and who it was (packets 45/46), so the illumination

of the "Setor 02" can be turned off if there is nobody there. Also, the main module needs

to be notified of the exiting of a user from "Setor 02" (packets 36/37) and the entry in

"Setor 04" (packets 53/54) to record these events.

Figure 5.10: Network activity of real usage of the system

The final events records are shown in the records page of the main module(figure 5.11).

83

Figure 5.11: Example of the recorded events

5.3 Security

In therms of security, there are a few points that may be highlighted. The first one is

the buffer overflow protection for databases. This is done using size-limited char arrays

instead of the usual (for ESP32) Strings. Also, the data received via web requests are

also verified before the system changes any variables in RAM or in the databases.

The second point is that there is no asynchronous web-server for ESP32 that supports

HTTPS (SSL/TLS) and that has all the functionality needed for this project. This results

in data being sent in plain-text with a Basic Authentication method for login with cookies.

The possible use of HTTPS also implies on many other problems, such as self-signed

certificates, security warnings or DNS routing, since this system is planned to be used

inside a local network.

To use HTTP in a more secure way, all the files and intercommunication that happens

between the modules has an encrypted hash. This hash is used in the modules to check

if the request was made by a trusted source (that knows the encryption key of the hash).

Also, the databases also contain an encrypted ETag hash for integrity and security check.

To solve the authentication security of the system, a Secure Mode was developed. This

way, when this mode is active, accessing the graphical user interface by the externally

generated Wi-Fi network only allow the visualization of the databases and files, not being

possible to request changes in those files. The only way to request files changes is by

accessing the module using it’s own generated network, which has all the protection and

encryption provided by the WPA2 cyphers and encryption.

84

Knowing that nowadays the UID and all the information of a RFID tag can be cloned,

the system is recommended to be used only in the inside of places that are already

restricted to known and reliable users. Even though this method of authentication has

it’s flaws, it requires specific hardware and access to the UID of the wanted tag to become

a security problem. This way, the use of RFID can be considered safer than many metallic

keys or holed cards (used in some hotels), as those can be cloned with a single picture.

In case of Denial of Service(DOS) attacks, simulated via multiple simultaneous file

requests, the TCP stack gets full and the system tries to respond all the requests. If the

attack continues and the web-server isn’t capable of responding to all the requests, the

watchdog timer triggers and the system reboots.

5.4 Market analysis

The final cost of production of this project in low scale, as done during it’s development

is around US$15/module. When comparing this project with the majority of the available

products at the market, it’s possible to split them in two groups: the products at a similar

price range, and the higher-cost products.

The majority of the similar cost products (up to 30US$/module) usually lacks multiple

features found in this project, such as:

• Wi-Fi communication;

• Multi-sector control;

• Schedulling system;

• Illumination control with intercommunication between modules;

• Web-based graphical interface with filters;

• No additional hardware/software needed;

• Micro-switch support to check the door state;

• Expiration date for users

• Timeouts for open doors;

• Events grouping in graphical interface (corresponding entries and exits);

85

• Realtime spreadsheets and graphs for users behaviour.

It’s important to note that some low cost products has a numerical keypad for pass-

words, configurations and databases manipulation. This is not used in this project as all

the configurations are done via the web-based graphical interface, and the system uses

only RFID tags to allow or deny the access.

Also, some of them supports more users than this project. This limitation exists to

keep the size of the databases smaller than the available free memory, as they are sent via

Wi-Fi to all the modules, and those then calculate the hashes of the files for integrity and

security checks. Also, some of the products only allow a basic register of users, without

full names or expiration dates, as well as not needing to keep the databases synchronized

with other modules.

When comparing with higher cost products, still many of them don’t present all the

cited above features of this project (such as an interconnected illumination control and

wireless connectivity). However, those products also usually comes with some advantages,

such as:

• Built-in display;

• Facial recognition / fingerprints scanners;

• More memory (for logs, records and databases);

• Online access of the databases and records;

• Support for a wider variety of electrical locks.

When using Access Control Systems for multiple sectors, the price can be a determi-

nant factor. As an example, if a company needs to control 30 sectors, will spend around

US$450 by using this project. This price can easily be higher than US$1500 when using

other commercial products, some with them lacking some features present in this project.

This way, even though this project has some particularities (including both advantages

and disadvantages), it presents a lot of advanced features and a low price, allowing this

project to easily compete with other low-cost products, and even with the higher-cost

products available at the market.

86

Chapter 6

Conclusion

In Chapter 6, both the general and specific objectives of this project are analysed,

and the difficulties found during the development of the system is presented. Finally,

some suggestions for future improvements are proposed.

6.1 Project analysis

The development of this project shows that it’s possible to create an Access Control

System that contains multiple advanced features (such as multi-sector control, scheduling

times, illumination control, web-based graphical interface, and many other) using stan-

dard components, being a good alternative to the market products available nowadays.

This was possible due to the advances in the low-cost components used in this project,

such as the ESP32, as well as the easy access to information needed to use those compo-

nents and protocols.

The general objective of this project was achieved: developing an Access Control

System based on ESP32 that is capable of controlling multiple sectors. Also, the specific

objectives were achieved:

• Inter-connectivity: All the modules are capable of exchanging information and

files in a secure and optimized way, without the need of external servers, by using

hashes and HTTP headers.

87

• Low-Cost: It became possible to keep the project price under the US$15 by using

conventional components highly available in the market;

• Customization: The system supports the use of a wide range of electrical locks

and micro-switches and is capable of controlling illumination. It’s also possible to

set how long the doors can be kept open before the alarm triggers;

• User friendly interface: The final result of the graphical interface was kept sim-

ple and intuitive to be easily accessed through any modern internet browser (with

HTML5 support), and allows the administrator to view and edit the databases of

the system (information about the registered users, sectors and schedules), and also

analyze or download the records, as well as configure the modules.

The system has also proven that it’s possible to use conventional and low cost com-

ponents to create an Access Control System that includes many functionalities that are

only present in commercial products that costs much more, such as Wi-Fi communication,

multi-sector control and weekly schedules for access allowance.

Also, the performance of the final system was better than initially expected, with the

system booting and being ready to be used in under 3 seconds. Furthermore, most of

the communication between modules and browser happens in fractions of a second. The

time taken to read and write files were also improved, making the system be capable of

handling multiple databases without losses in stability.

Lastly, this project shows how the technology is evolving rapidly and getting each day

cheaper and more powerful. This is seen in devices such as the ESP32, being able to easily

handle complex projects, supporting multiple protocols, components and technologies.

6.2 Difficulties

The main difficulty of the development of this project is how big and complex the

system became. The end project has more than 4.000 lines of code (C, C++, HTML, JS

and CSS) produced by the author. It also contains more than 50 databases (with more

than 25.000 datasets in total), 5 configuration files, 35 web-server pages (10 pages with

88

graphical interface and 25 used for requests and other data acquisition).

The second main difficulty is the development of a system that it composed by multiple

modules, which need to exchange information and files in a highly optimized way, to avoid

overloading the main module (server). This inter-communication requires both the server

and the client to be synchronized to guarantee the security of the data sent.

Other difficulties include some data corruptions in the internal ESP32 memory during

firmware upgrades, wrong memory addressing for files in the file-system, limitations of the

ESP32 memory and the learning of techniques to improve the performance of the system.

Also, learning and using for the first time multiple protocols and technologies, such

as HTTP Headers, keyed-hashes with message authentication code, SPI lines sharing,

HTML, JS and CSS to develop a complex project is a challenging experience.

6.3 Suggested future improvements

For future improvements of the Access Control System, some of the suggestions are:

• HTTPS implementation - When the asynchronous web-server support it, imple-

mentation of HTTPS to improve the security of the system intercommunication by

using the encryption and integrity check provided by TLS/SSL;

• Increase in system’s specifications - Increase in the number of records, users,

sectors and schedules that can be saved in the modules by improving the memory

management;

• External cover and PCB improvements - Manufacturing of an external cover

or box of the modules, as well as a smaller and double-sided PCB;

• User Interface over internet - When HTTPS gets implemented, the access of

the system outside of the local network (via internet), providing an easy and secure

way to configure the system from anywhere;

• DOS Attack Protection - Better limitation of HTTP requests in the web-server

to avoid 0-day exploits caused by buffer-overflows and avoid unnecessary reboots;

89

• Additional authentication methods - The use of multiple authentication meth-

ods, such as facial recognition, to ensure that the card wasn’t cloned or stolen;

• Notifications - Pop-ups in the graphical interface to show real time events, such

as user movements, denied accesses and alarms;

• Mobile web-pages - Development of a mobile version of the web-pages, to improve

user usability in smaller screens.

90

Bibliography

[1] V. R. Gonçalves, “Sistema de controle de acesso utilizando autenticação por rfid e

gerenciamento por meio de software web.”, 2019.

[2] E. F. Weles, “Protótipo para um sistema de automação de controle patrimonial

utilizando tecnologia rfid”, Revista Brasileira de Mecatrônica, vol. 1, no. 4, pp. 1–

10, 2019.

[3] S. T. R. Htun, S. S. Y. Mon, and H. M. Tun, “Rfid-based monitoring and access

control system for parliamentary campus”, Intl. J. Sci. Technol. Res, vol. 4, 2015.

[4] Z. Fang, L. Wei, W. Chen, and Y. He, “A rfid-based kindergarten intelligence se-

curity system”, in 2012 IEEE Ninth International Conference on e-Business Engi-

neering, IEEE, 2012, pp. 321–326.

[5] U. Farooq, M. Hasan, M. Amar, A. Hanif, and M. U. Asad, “Rfid based security

and access control system”, International Journal of Engineering and Technology,

pp. 309–314, Jan. 2014. doi: 10.7763/IJET.2014.V6.718.

[6] S. Electronics, Serial peripheral interface (spi). [Online]. Available: https://learn.

sparkfun.com/tutorials/serial-peripheral-interface-spi.

[7] J. M. Flynn, “Understanding and using the i2c bus”, EE Times-India, vol. 1, no. 1,

pp. 01–02, 1997. doi: ftp://ftp.propeller-chip.com/PCMProp/Chapter_10/

Docs/i2c/I2C_bus.pdf.

[8] H. S. Mendonça, Spi e i2c. [Online]. Available: https://paginas.fe.up.pt/~hsm/

docencia/comp/spi-e-i2c/.

91

https://doi.org/10.7763/IJET.2014.V6.718
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://doi.org/ftp://ftp.propeller-chip.com/PCMProp/Chapter_10/Docs/i2c/I2C_bus.pdf
https://doi.org/ftp://ftp.propeller-chip.com/PCMProp/Chapter_10/Docs/i2c/I2C_bus.pdf
https://paginas.fe.up.pt/~hsm/docencia/comp/spi-e-i2c/
https://paginas.fe.up.pt/~hsm/docencia/comp/spi-e-i2c/

[9] L. George, I2c – inter-integrated circuit. [Online]. Available: https://electrosome.

com/i2c/.

[10] CISCO, Enterprise mobility 8.5 design guide. [Online]. Available: https://www.

cisco . com / c / en / us / td / docs / wireless / controller / 8 - 5 / Enterprise -

Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide/

wlanrf.html.

[11] J. Scarpati, Wireless security protocols: The difference between wep, wpa, wpa2.

[Online]. Available: https : / / searchnetworking . techtarget . com / feature /

Wireless-encryption-basics-Understanding-WEP-WPA-and-WPA2.

[12] A. Sari and M. Karay, “Comparative analysis of wireless security protocols: Wep

vs wpa”, International Journal of Communications, Network and System Sciences,

vol. 8, pp. 483–491, Dec. 2015. doi: 10.4236/ijcns.2015.812043.

[13] F. Katz, “Wpa vs. wpa2: Is wpa2 really an improvement on wpa?”, Jul. 2019.

[14] M. e colaboradores individuais, Uma visão geral do http. [Online]. Available: https:

//developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview.

[15] R. Want, “An introduction to rfid technology”, IEEE Pervasive Computing, vol. 5,

no. 01, pp. 25–33, Jan. 2006, issn: 1536-1268. doi: 10.1109/MPRV.2006.2.

[16] S. E. Sarma, S. A. Weis, and D. W. Engels, “Rfid systems and security and privacy

implications”, in Cryptographic Hardware and Embedded Systems - CHES 2002,

B. S. Kaliski, ç. K. Koç, and C. Paar, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003, pp. 454–469, isbn: 978-3-540-36400-9.

[17] Espressif, Esp32 series datasheet. [Online]. Available: https://www.espressif.

com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[18] M. Lab, Esp32 pinout – how to use gpio pins? [Online]. Available: https : / /

microcontrollerslab.com/esp32-pinout-use-gpio-pins/.

[19] S. RELAY, Srd-05vdc-sl-c datasheet. [Online]. Available: https://datasheetspdf.

com/pdf-file/720556/Songle/SRD-05VDC-SL-C/1.

92

https://electrosome.com/i2c/
https://electrosome.com/i2c/
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-5/Enterprise-Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide/wlanrf.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-5/Enterprise-Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide/wlanrf.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-5/Enterprise-Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide/wlanrf.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-5/Enterprise-Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide/wlanrf.html
https://searchnetworking.techtarget.com/feature/Wireless-encryption-basics-Understanding-WEP-WPA-and-WPA2
https://searchnetworking.techtarget.com/feature/Wireless-encryption-basics-Understanding-WEP-WPA-and-WPA2
https://doi.org/10.4236/ijcns.2015.812043
https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview
https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview
https://doi.org/10.1109/MPRV.2006.2
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://microcontrollerslab.com/esp32-pinout-use-gpio-pins/
https://microcontrollerslab.com/esp32-pinout-use-gpio-pins/
https://datasheetspdf.com/pdf-file/720556/Songle/SRD-05VDC-SL-C/1
https://datasheetspdf.com/pdf-file/720556/Songle/SRD-05VDC-SL-C/1

[20] NXP, Datasheet - mfrc522. [Online]. Available: https://www.nxp.com/docs/en/

data-sheet/MFRC522.pdf.

[21] M. integrated,Ds3231. [Online]. Available: https://datasheets.maximintegrated.

com/en/ds/DS3231.pdf.

[22] ARDUINO, Arduino - software. [Online]. Available: https://www.arduino.cc/

en/main/software.

[23] T. G. contributors, Geany - the flyweight ide. [Online]. Available: https://www.

geany.org/.

[24] Mozilla, Html: Linguagem de marcação de hipertexto. [Online]. Available: https:

//developer.mozilla.org/pt-BR/docs/Web/HTML.

[25] ——, Css. [Online]. Available: https://developer.mozilla.org/pt-BR/docs/

Web/CSS.

[26] ——, Javascript. [Online]. Available: https : / / developer . mozilla . org / pt -

BR/docs/Web/JavaScript.

93

https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.geany.org/
https://www.geany.org/
https://developer.mozilla.org/pt-BR/docs/Web/HTML
https://developer.mozilla.org/pt-BR/docs/Web/HTML
https://developer.mozilla.org/pt-BR/docs/Web/CSS
https://developer.mozilla.org/pt-BR/docs/Web/CSS
https://developer.mozilla.org/pt-BR/docs/Web/JavaScript
https://developer.mozilla.org/pt-BR/docs/Web/JavaScript

	Acknowledgement
	Abstract
	Introduction
	Motivation
	Objectives
	Document Structure

	Context and Technologies
	Commercial products
	Related work
	ESP32 based Projects
	ESP8266 based Projects
	Arduino based projects
	Other microcontroller based projects

	Protocols
	SPI - Serial Peripheral Interface
	I2C - Inter-Integrated Circuit
	IEEE 802.11 (Wi-Fi)
	HTTP - Hypertext Transfer Protocol
	RFID

	Components used
	ESP32
	Relay module (2 channels)
	RC522 - RFID
	DS3231 - RTC
	Micro-SD module
	Active buzzer

	Methods
	Arduino IDE
	Geany
	HTML - HyperText Markup Language
	CSS - Cascading Style Sheet
	JS - JavaScript
	C (Programming Language)
	Databases and configuration files

	Architecture and specifications
	System specifications
	General configuration
	Users
	Sectors
	Schedules
	Records

	Architecture
	Modules
	Intercommunication and databases

	System development
	Layout of components
	PCB development and prototype
	General operation
	Initialization
	Loop
	Server (core 01)
	Navigation bar
	Home
	Records and analysis
	Users
	Sectors
	Schedules
	Settings
	Interconnection between modules

	Tests and discussions
	Speed tests
	Boot time
	File modification
	Web-server

	Intercommunication test
	Files
	Information

	Security
	Market analysis

	Conclusion
	Project analysis
	Difficulties
	Suggested future improvements

