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Abstract: In several fields, the need for a joint analysis of brain activity and eye activity to investigate
the association between brain mechanisms and manifest behavior has been felt. In this work, two
levels of attentional demand, elicited through a conjunction search task, have been modelled in
terms of eye blinks, brain activity, and brain network features. Moreover, the association between
endogenous neural mechanisms underlying attentional demand and eye blinks, without imposing
a time-locked structure to the analysis, has been investigated. The analysis revealed statistically
significant spatial and spectral modulations of the recorded brain activity according to the different
levels of attentional demand, and a significant reduction in the number of eye blinks when a
higher amount of attentional investment was required. Besides, the integration of information
coming from high-density electroencephalography (EEG), brain source localization, and connectivity
estimation allowed us to merge spectral and causal information between brain areas, characterizing
a comprehensive model of neurophysiological processes behind attentional demand. The analysis
of the association between eye and brain-related parameters revealed a statistically significant high
correlation (R > 0.7) of eye blink rate with anterofrontal brain activity at 8 Hz, centroparietal brain
activity at 12 Hz, and a significant moderate correlation with the participation of right Intra Parietal
Sulcus in alpha band (R = −0.62). Due to these findings, this work suggests the possibility of using
eye blinks measured from one sensor placed on the forehead as an unobtrusive measure correlating
with neural mechanisms underpinning attentional demand.

Keywords: EEG; brain connectivity; attentional demand; eye blinks

1. Introduction

Attention represents a set of cognitive processes that lead to discriminate useful
information in a pattern of distractors [1]. It has a decisive role in situational awareness and
subsequent decision-making processes: wide pre-attentive processing of environmental
features delivers cues for further focused attention because, due to human finite attentional
capacities, only a limited amount of information can be processed at a high-level [2]. This
is possible thanks to the human ability to move the attentional focus, and this aspect is
quite relevant for each multitasking activity performed during everyday life or in most
operational working contexts since people can notice only changes inside the focus of
attention compatibly with limited cognitive resources [3]. Therefore, both deficits in the
intensity aspect of attention (i.e., alertness or vigilance level), due for example to sleepiness,
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but also issues related to the selective processes, due for instance to distraction caused by
irrelevant sources of information, could have negative effects on decision making.

In this context, it is important to gain a better understanding of attentional processes to
make them measurable, even online, and to predict attentive deficits during everyday activities.

The level of attentional demand (or the amount of attentional investment) could be
assessed by means of questionnaires or by evaluating the subject’s performance. In both
these cases, the measures are made ex-post and cannot be used to predict attentional
defects. The neurophysiological evaluation of attention, mostly employing eye and brain
activity measurement, can allow continuous monitoring of the attention level, acting both
as feedback for the user and to eventually adapt the features of the system he is interacting
with [4,5]. Electroencephalography (EEG), functional near-infrared, functional magnetic
resonance imaging (fMRI), and magnetoencephalography are the techniques typically
used for recording brain activity. On the one hand, techniques like fMRI require room-
sized equipment that prevents them from being usable in everyday activities [6]; however,
fMRI allows investigation of cortical and subcortical activities. On the other hand, the
EEG, thanks to its portability and high time resolution, aids in looking at brain activity
in different oscillatory bands [7]. Moreover, the high-density EEG allows to enhance the
EEG spatial resolution and, thanks to the employment of source reconstruction methods, to
have access to cortical and subcortical structures [8]. Alongside this, eye activity is usually
recorded by means of eye-tracking or electrooculography (EOG). From the instrumental
point of view, these techniques are much less obtrusive than high-density EEG; however,
they cannot give direct access to the neurophysiological process.

In this framework, a joint analysis of brain activity and eye blinks provides an ideal
neuroscientific model to investigate the association between brain mechanisms and behav-
ior [9]. Therefore, this study aimed to jointly analyze brain and eye blinks during a task
eliciting different levels of attentional demand. In the literature, the need for a joint analysis
of brain and eye activity has been felt in several fields. For a multimedia analysis, a joint
analysis would allow merging human perception and brain reactivity, which are considered
both important information sources [10]. In the clinical field, providing new information
on how the structural, functional and behavioral modifications in early attention abilities
reported in Autism Spectrum Disorder patients are connected is crucial [11]. In different
applied contexts, eye movements are assumed to work as distinct points in information
processing, necessary to segment data and perform a time-aligned analysis of brain activ-
ity [12]. In fact, eye and brain activities have been already analyzed jointly in a time-locked
configuration and eye blink-related potentials have provided reliable information on cogni-
tive processing due to the interrelation between eye blinking and the dopaminergic system.
For example: (i) microsaccade-locked event-related potentials have been used to assess
mental workload [13]; (ii) fixation duration, pupil size, and event-related potentials locked
to the onset of fixation or saccade have been used to classify two levels of cognitive task
showing complementary contributions of eye and brain activity measures [14]. Moreover,
the effects of word predictability on eye movements and fixation-related brain potentials
has been demonstrated [15]. Finally, the development of neural mechanisms of attention
shifts during infancy and covert/overt attention in adults was investigated by combining
eye-tracking and event-related potential analysis [16,17].

In our study, eye blinks and brain activity have been analyzed jointly without imposing
a strict timing task, the need for which has already been expressed in [18]. This approach is
particularly valuable to show how brain dynamics underlying perceptual and cognitive
processes over time. In this regard, the number of works is as far as lower than the
aforementioned time-aligned based analysis. One of the first works has shown an inverse
correlation between eye blink rate and EEG alpha power after sleep deprivation [19]. More
recently a correlation between saccade amplitude, saccade velocity, and blink rate with
EEG power in delta, theta and alpha band during a vigilance task has been analyzed [20].
It was found that saccade measures, frontal midline theta and frontal theta to parietal
alpha ratio correlate positively with vigilance level, while blink rate and relative delta
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power correlate negatively with vigilance level. Liu et al. analyzed time series of eye
movement and EEG channel activity acquired while subjects were watching a movie trailer.
They found that eye and brain activity are more correlated when a higher quality movie
trailer is watched [10]. In the clinical field, an opposite association between theta-beta
ratio with look duration for typically developing children and children affected by Autism
Spectrum Disorder has been found [21]. Finally, not only EEG power but also the coherence
between brain activities has been correlated with eye-tracking measures (fixation duration)
to investigate the neurophysiological underpinnings of gaze processing [11].

In order to achieve our goal, attentional demand was manipulated using a Conjunction
Search Task (CST), a stimulus set paradigm based on the recognition of a target object in
a pattern of similar distractor objects with a low influence on memory load and general
cognitive functions [22]. The target differentiates from others for one or more features. If the
object can be recognized with one feature (i.e., shape or color) the recognition happens in a
pre-attentive state, because the object has a “pop-out” effect and it does not need, or at least
involves only a few, attentional resources [23]; its presence could also be detected covertly
(i.e., without gazing at the stimulus itself). The necessity to recognize the “conjunction” of
more than one feature implies that an attentive state will be used to recognize the object and
a serial searching (overt attention) of the objects, and more attentional resources are usually
required [24]. Higher attentional demand has been associated with conjunction search due
to top-down voluntary allocation of attention to features, opposite to “pop-out effects” [25].
According to the Feature Integration Theory [26], the conjunction search corresponds to
the high attentional demand level because noticing the “conjunction” of more than one
feature would demand more attentional investment than that required during the one
feature search. This hypothesis has also been experimentally confirmed by [27] and it has
been used to analyze two long-term attentional states in [28]. Thus, CST allows a very
different behavioral response at the two levels using comparable visual information.

From the perspective of ocular activity, task demand modulates the numbers and
duration of eye blinks, saccadic movements, and gaze fixation [29]. Among these, we focus
herein on eye blinks because they are easy to measure without additional instrumentation
and their relationship with task demand has been deeply demonstrated. Several conflicting
results have shown that there is not an unambiguous effect of task demand and stimulation
on eye blink frequency and duration. A decrease in blink rate has been associated with
increased information processing [30], whereas an increase in blink rate has been associated
with both a low [29] and high [31] cognitive demanding task. In fact, the latter depends
on the nature of the task itself [31]. For example, during an auditory task the blink rate
increases as the difficulty increases [32]; eye-blink rate decreases due to the increase of
difficulty during a mental arithmetic task but not during a letter-search task [33]. Similar
unconverging results have been found for blink duration: a higher blink duration has been
associated with less demanding tasks [29] and with a higher visual load [34], whereas de-
creasing blink duration has been associated with greater visual information processing [34].
Therefore, we hypothesized that because low and high levels have been characterized by
a comparable visual load, both eye blink rate and duration should vary according to the
task demand during a visual stimulation; that is, they should decrease during the high
demanding condition.

Largely due to fMRI-based experimental protocols, it is already known that the
different behaviors associated with the two CST levels reflect specific neural correlates
in terms of both brain activity and connectivity [35]. The top-down voluntary allocation
of attention is guided by the dorsal attention network (DAN) centered in the frontal eye
fields (FEF) and intraparietal sulcus (IPS). IPS and the FEF exert influence over the visual
area, and more in general over sensory areas of the brain, during spatial orienting [36]
and top-down processes [37]. When relevant stimuli occur unexpectedly or they appear
outside the cued focus of spatial attention, the attention-related processes are guided by a
ventral attention network (VAN) consisting of temporoparietal junction (TPJ) and ventral
frontal cortex [36,38]. The TPJ has been considered to be like a filter, allowing goal-driven
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behavior [36] and it plays a hub role when eye movements and attention are disassociated
or when attention is not directed towards the focus [35]. From the perspective of brain
activity, the conjunction condition implies an overall increase in IPS and FEF activation and
a decrease in the ventral brain areas and TPJ activation [25,39]. EEG-based evidence found
that tasks requiring enhanced top-down processing are coupled with increased beta activity
and decreased alpha activity [40]. Moreover, several works have found that increased
activity of DAN in the theta band is associated with increased task demand [41,42]. In the
current work, high-density EEG recordings enabled the application of a standardized low-
resolution brain electromagnetic tomography (sLORETA) [43] method for reconstructing
the brain activity in the aforementioned regions of interest (ROIs). In parallel, the analysis
of brain activity at the scalp level has been performed. Due to the similarity of our
experimental design with that described in [28], their results obtained at the scalp level are
noteworthy. They found a significant increase in brain activity over the frontal, central and
parietal regions in the theta band during the high demand condition compared to the low,
whereas they did not find a modulation of brain activity in the alpha and beta band even if
it had been hypothesized.

Due to these findings, we hypothesized that during the high attentional demand
condition, brain activity should increase in the theta and beta band over the frontal and
central brain areas, and decrease in the alpha band in frontal, central, and parietal areas.
Moreover, DAN activation should be higher and TPJ activation should be lower during
high, compared to low, conditions.

Finally, to characterize the brain network associated with low and high attentional
demand, brain connectivity between ROIs has been estimated by partial directed coherence
(PDC) [44] and graph theory indices have been computed. Previous studies showed
that the attentional demand modulates brain connectivity between the frontal-parietal
network and visual areas in theta, alpha, and beta bands [41,45]. In particular, high demand
induces increased interregional connectivity in the DAN [35,41], increased influences of
the DAN on visual areas [37], and strengthened VAN-DAN connectivity [36]. Therefore
we hypothesized that the high attentional demand condition should be characterized by
increased connectivity between dorsal, ventral, and visual areas.

Therefore, this work (i) analyzed the effects of attentional demand on eye blinks,
brain activity, and brain network features starting from high-resolution EEG signals, and
(ii) tested the association between endogenous neural mechanisms underlying attentional
demand and eye blinks, which means eye behavior is correlated to brain activation and
defined brain network features, without imposing a time-locked structure to the analysis.

2. Materials and Methods
2.1. Participants

The study involved twelve healthy subjects (27 ± 3 years old), 6 males and 6 females,
recruited on a voluntary basis. The experiments were conducted following the principles
outlined in Declaration of Helsinki of 1975, as revised in 2000. It has been approved by the
Ethical Committee of Fondazione Santa Lucia. Informed consent was obtained from each
subject on paper, after the study explanation.

2.2. Conjunction Search Task

The Conjunction Search Task (CST) was divided into two blocks comprehending
120 trials each, in turn divided into two conditions. In particular, in each block participants
performed 60 trials of two different conditions requiring different levels of attentional
demand. One of them was a pre-attentive level based on a ‘target’ search task by consid-
ering one feature (color). This condition has been defined as a Low condition according
to the lower attentional demand required. In contrast, the High condition consisted in
the conjunction search based on two features (color and orientation) that require a higher
attentional demand. The sequence of the two conditions (Figure 1) was randomized for
each participant to avoid habituation and expectation effects. The participants performed
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10 practice trials per condition before starting with the experiment. When the practice was
done, and the participant was ready to start, the experimental trials began.
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Figure 1. Conjunction Search Task. In both Low and High levels the target is a red vertical bar. In
the Low condition, the distractors were green vertical rectangular bars. In the High condition, the
distractors were vertical and 45◦ rotated green bars and 45◦ rotated red rectangular bars.

The 60 trials of each condition were randomized in 30 targets and 30 non-targets. For
each trial, the goal was to find, if present (target trial), the vertical red bar (target) among
distractors and to react, as fast as possible, by pressing the space bar. No action was required
when the target was not presented (non-target trial). All the stimuli were presented against
a black background on a 25 position matrix filled with 8 elements: 7 distractors and 1 target
(target trial) or 8 distractors (non-target trial). The matrix was presented to the participants
for 2 s and between two trials a fixation cross was presented at the center of the screen for a
random interval between 0.25–1 s. Both target and distractors were rectangular bars (size:
0.5 × 1.6 visual angle) and the target was always a vertical red bar. In the Low condition,
the distractors were green vertical rectangular bars. In the High condition, the target was
defined by two different features, color and orientation, the distractors were vertical and
45◦ rotated green and red rectangular bars. The task has been implemented in Mathworks
MATLAB using Psychtoolbox software.

2.3. Behavioural Measures

To assess both accuracy and reaction time of the user through one synthetic index,
we used the Inverse Efficiency Score (IES [46]) defined as reaction time (ms) for corrected
responses divided by the percentage of correct responses. IES has been used to compare the
performance across different levels of attentional demand required during CST (Low and
High). According to its definition, lower values of IES are expected for the low demanding
level because answers are supposed to be faster and more accurate than at the High level.

2.4. Brain Activity Measurement

The EEG signal was recorded by 61 Ag-Ag/Cl passive electrodes by means of a
digital monitoring system (BrainAmp, Brain Products GmbH) with a sampling frequency
of 250 Hz. All the electrodes were referred to both earlobes and their impedances were
kept below 10 kΩ. The EEG signals were firstly band-pass filtered with a fifth-order
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Butterworth filter between 1 and 30 Hz and then segmented into epochs of 1 s. This
specific epoch time-length was selected to have a condition of stationarity of the EEG
signal [47]. Each EEG epoch and each channel has been analyzed for the detection of
general artifacts (i.e., muscular, instrumental). Ocular artifacts have been detected through
the Reblinca algorithm and removed [48]. According to [49], each epoch with an amplitude
higher than ±80 µV or a slope trend higher than 10 µV/s was considered an artifact and
was replaced by NaN values. For each epoch, the Power Spectral Density (PSD) was
calculated. Then, the EEG frequency bands were defined considering the Individual Alpha
Frequency (IAF) estimated for each subject [50]. The IAF corresponds to the peak in the
alpha band (typical IAF value is 10 Hz) obtained from the power spectrum of individual
EEG signal over parietal sites during a rest condition. Before performing the experimental
tasks, the subject was asked to keep his/her eyes closed for one minute, because the alpha
synchronization, and thus the spectrum peak, is maximum during this condition. Therefore,
theta (IAF − 6 ÷ IAF−2), alpha (IAF − 2 ÷ IAF + 2), and beta (IAF + 2 ÷ IAF + 16) bands
have been defined accordingly.

To assess the spatio-spectral differences of brain activity between the Low and High
condition, the PSD values have been averaged in the Theta, Alpha, and Beta band. There-
fore, a Wilcoxon signed-rank test has been performed for each channel and each band on
the PSD values of the subjects. The results have been corrected for multiple comparisons
through the False Discovery Rate (FDR) method [51].

2.5. Brain Connectivity Estimation

The artifacts-free EEG signals have been used to reconstruct the brain source activity
by means of the sLORETA method [43]. This method has been chosen because it is
characterized by high accuracy in the localization of brain sources; in fact, the global
average of localization errors remains below the unit. The MNI-152 realistic head model
has been used [52]. The individual EEG data have been provided to the software with
the electrode locations file to match them with the model [53]. Once the reconstruction of
the activity for the whole brain was computed, sLORETA was used to estimate the brain
activity in the single nearest voxel of 10 selected ROIs. These ROIs have been selected from
the literature review of works analyzing the conjunction search task through fMRI [35]
and the role of the dorsal and ventral attention network [36]: Inferior Frontal Gyrus (IFG),
and Temporal Parietal Junction (TPJ), representing the Ventral Attention Network; Frontal
Eye Field (FEF), and Intraparietal sulcus (IPS), representing the Dorsal Attention Network;
and visual areas (VIS) are the brain areas mainly representative of the attentional networks
(Table 1 and Figure 2 for graphical representation). The estimated cortical activity in the
bands of interest have been averaged in each ROI for both Low and High conditions and the
difference has been compared through a Wilcoxon signed-rank test corrected for multiple
comparisons by the FDR method [54].

Table 1. Coordinates of selected ROIs. R and L define right and left brain hemisphere.

ROI X Y Z

LIFG −36 16 −4
RIFG 42 18 −6
LTPJ −52 −54 23
RTPJ 51 −54 26
RFEF 20 −13 53
LFEF −22 −13 55
RIPS 39 −42 51
LIPS −42 −36 45
RVIS 36 −81 −13
LVIS −35 −81 −13
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Brain connectivity analysis provides the information flows exchanged between brain
areas. It has been estimated through Partial Directed Coherence (PDC) [44]. The PDC
is a multivariate spectral measure used to determine the directed influences among any
given pairs of signals obtained; in this case, from the estimation of brain activity in the
10 selected ROIs. This estimator reflects a frequency version of the concept of Granger
causality [55]. The reconstructed source activity, in the linear signal processing framework,
can be described as a multivariate process of M processes Y(n) = [y1(n), . . . , yM(n)]T .
Assuming that the following multivariate autoregressive (MVAR) process is an adequate
description of Y:

Y(n) =
p

∑
k=1

A(k)Y(n− k) + E(n), (1)

where:

i. A(k) are the M ×M coefficient matrices in which the element aij(k) describes the
dependence of yi(n) on yj(n− k) (i, j = 1, . . . , M; k = 1, . . . , p). In this case, the
present value of a specific process can be described as a linear function of the p past
values of all processes, that is the model order, which in this work was estimated
through Akaike Information Criterion (AIC) [56];

ii. E(n) = [u1(n), . . . , uM(n)]T is a vector of M zero-mean input processes. It is as-
sumed to be composed of white and uncorrelated noises, which means that the
correlation matrix of E(n) is equal to the covariance matrix for k = 0 and it is zero
for each lag k > 0. Under the assumption of strict causality (e.g., the absence of
instantaneous effects), the input white noises are uncorrelated, even at lag zero and
their covariance matrix reduces to the diagonal matrix Σ = diag

(
σ2

i
)
.

In this scenario, the spectral representation of an MVAR process can be obtained taking
the Fourier Transform (FT) of the representation which yields to Y( f ) = A( f )Y( f ) + E( f )
where Y( f ) and E( f ) are the FTs of Y(n) and E(n), and the M × M transfer matrix and
coefficient matrix are defined in the frequency domain as A( f ) = ∑

p
k=1 A(k)e−j2π f kT where

T represents the sampling period of the discrete time process. By exploiting [57] and by
following the methodology introduced in [44], PDC can be defined as:

πij( f ) =
Aij( f )√

∑M
m=1

∣∣Amj( f )
∣∣2 (2)
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This quantity represents a measure of the direct influence of yj onto yi and is a com-
plex value. Due to this, the squared modulus of PDC is used in this study to measure
the connectivity in the frequency domain. The squared measure takes values between 0
and 1, representing absence and full connectivity respectively. Besides the estimation of
the strength of connectivity between a couple of processes, it is necessary to assess their
statistical significance to establish the existence of a direct link from the i-th process to the
j-th process [58]. The significance of PDC was tested using a theoretical distribution of
PDC derived from the Asymptotic Statistics theory, which assumes that, in the presence of
connectivity, PDC distribution for an infinite number of data samples tends asymptotically
towards a Gaussian distribution [59]. Then, the 95th percentile of each distribution, repre-
senting the threshold, extracted for each link and frequency bin, was compared with each
estimated PDC value in order to assess the statistical significance.

Therefore, in this work, firstly the weak stationarity of the EEG time series was
tested by using the approach proposed in [60]. Secondly, brain connectivity patterns were
estimated for each experimental condition (Low and High). Thirdly, the PDC values
filtered through Asymptotic Statistics were averaged within the three considered EEG
frequency bands.

The estimated connectivity pattern can be represented by a graph where each ROI
is a node and the connections are the edges depicting the interactions among the nodes’
activity. Each edge is characterized by a weight and a direction. The role of each node in a
network can be analyzed by means of an index derived from graph theory. In particular,
the importance of a node in a network could be easily identified with its degree, that
is, the number of connections involving that node: the higher the number of edges, the
higher its impact on the other nodes serving as a “hub” in a network will be [61]. In
this work, the role of each node has been differentiated according to its belonging to a
sub-network (i.e., the dorsal anterior network, the ventral attention network, and the visual
areas) computing the participation index. The participation index (PI) is a measure of the
diversity of inter-modular connections of individual nodes. The PI of a node is low if most
of that node′s connections are within a single community, while it is high for nodes that
serve as connectors between different modules [62]. The PI has been computed considering
separately the connections incoming (participation in) and the connections outcoming
(participation out) for each node. Moreover, for each node the strength of the connections
involving (and therefore incoming and outcoming) the node itself has been computed.
The PI and the strength during the different conditions have been compared through a
Wilcoxon signed-rank test and corrected for multiple comparisons by the FDR method [54].

2.6. Eye Blink Measurement

Eye activity has been analyzed in terms of blink-related features. The blink detection
has been performed using a variant of the BLINKER pipeline [63]. In its original imple-
mentation, the BLINKER algorithm selects the best channel among an arbitrary number
of EEG channels, allowing the optimal identification of blinks. However, we forced the
BLINKER algorithm to use an Fpz channel to detect blinks. We selected the Fpz channel,
instead of a bipolar channel, for EOG activity, since (i) this EEG channel has been already
demonstrated to be a reliable regressor for eye-blink activity; and (ii) in order to simulate a
very low invasive system of acquisition using one of the EEG electrodes, in particular on
the forehead, and to record brain and eye activity together [48]. According to the BLINKER
pipeline, the Fpz signal has been bandpass-filtered between 1 and 20 Hz. Potential blinks
have an amplitude 1.5 times signal standard deviation, duration higher than 100 ms and
interblink interval higher than 50 ms. Among the potential blinks, only those showing
a correlation with the tent-like shape, representing the ideal blink shape, higher than 0.9
have been considered. The last check selects the blinks with a Positive Amplitude Ratio
higher than 3 to remove saccades. In fact, due to the visual component of the task, the
saccades could represent a task-related confound and do not provide any information
strongly related to attention. For each condition, the number of blinks per minute (Eye
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Blink Rate-EBR), and the blink duration during one-minute-long windows have been
computed. Each of the eye-related parameters has been computed on a window length
of one minute, in order to obtain the stability of the measure, as highlighted in [64]. A
Wilcoxon signed-rank test has been performed to assess the statistical differences between
Low and High conditions.

2.7. Correlation between Eyes and Brain Features

The eye activity features have been correlated with the features related to brain activity
(PSD in the bands of interest) and with those related to brain connectivity (PI).

In the first case, the correlation between spatio-spectral brain features and eye-related
parameters of each subject has been performed binwise, computing the Spearman’s rank
correlation coefficient. Due to this approach, an increasing type I statistical error is expected.
To face this effect, the Descriptive Data Analysis procedure, based on the definition of
Ruger’s area for neurophysiological data, has been applied [65]. In the number of channels x
frequency bins domain is defined as Ruger’s area each continuous region showing p < 0.05.
To correct for multiple comparisons, these regions are further tested: to refuse a global null
hypothesis, it is necessary that half Ruger’s area has p < 0.025 and that one-third of the
Ruger’s area has p < 0.0167. We did not consider Ruger’s area with fewer than 2 bins.

Secondly, to explore the existence of a relationship between the brain network prop-
erties and the eye blinks features, the repeated measures correlation has been computed
between the average values of the eye blinks parameters and the participation index. Un-
like simple correlation, repeated measures correlation does not violate the assumption
of independence of observations, and has a greater statistical power in estimating the
association shared among individuals [66].

3. Results
3.1. Behavioural Measures

The Wilcoxon signed-rank test performed between the two conditions provides a
significant result (Z = −3.094, p = 0.0022): IES during High level is significantly higher
compared to the Low level (Figure 3).
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Figure 3. Results of Behavioral Measures. The higher the Inverse Efficiency Score (IES), the lower the
performance of the subjects when a greater attentional demand is required. The asterisk (*) means
p < 0.05.

3.2. Neurophysiological Correlates

Table 2 shows the results for eye blinks. The increase in attentional demand is associ-
ated with a significant decrease in the number of blinks per minute (p = 0.004) and there is
not a significant difference in blink duration (p = 0.386).

Table 2. Wilcoxon Signed-Rank Test results for eye blinks parameters.

Parameter Low
Mean(Std)

High
Mean(Std) Z p

EBR 19.88(10.30) 15.604(9.21) 3.17 0.004
Duration 0.221(0.046) 0.217(0.036) 0.86 0.386



Brain Sci. 2021, 11, 562 10 of 20

Figure 4 shows the average over the population of the difference between brain
activation in the high condition compared to the low condition in the three bands. The
color bar represents the difference of PSD values (negative values mean that the brain
activity in such area is on average higher in low condition compared to the high condition).
According to the statistical analysis, the electrodes significantly (p < 0.05 FDR corrected)
more active at the High attention level with respect to the Low attention level were marked
in a red color, those more active in the High attention level compared to Low were marked
in a blue color, and the insignificant level was marked in grey. The results show that
there is a general higher activation of brain activity in all three bands when a higher
level of attention is required, except for the parietal and occipital areas in the alpha band.
Such an increase in the theta band is diffuse on the whole scalp, and it is localized in
the anterofrontal area in alpha band, and on the frontal and centro-parietal areas in the
beta band.
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Figure 4. Average over the population of the difference between brain activation in the high condition compared to the
low condition in the Theta, Alpha, and Beta band. The color bar represents the difference in power spectral density value
(negative values mean that the brain activity in such area is on average higher in low condition compared to high). The
electrodes significantly (p < 0.05 FDR corrected) more active at the High level with respect to the Low level are marked in
a red color, those more active at the Low level with respect to the High level are marked in a blue color (none), and the
insignificant level is marked in grey.

By applying sLORETA methods, it has been possible to estimate cortical activation.
Figure 5 shows the statistical comparison of the ROIs activity in High and Low conditions.
In the theta band, the rIFG (p = 0.0068), lFEF (p = 0.0068), and rFEF (p = 0.0068) show
significantly higher activation in the High condition compared to the Low.
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Figure 6 shows the brain connectivity networks characterizing the High and Low
conditions in theta, alpha, and beta bands. Each connection represents the average value
of the connection between two ROIs over the population. The role of each ROI in the
network has been quantitatively characterized by graph theory indices, in particular by
the strength and participation index. Figure 7 shows the statistical comparison of strength
values for each ROI in the High and Low condition. Only the strength of lVIS in the alpha
band significantly increases in the High condition (p = 0.012). Figure 8 shows the statistical
comparison of PI indexes between Low and High conditions. Considering the correction
for multiple comparisons, the participation out of rIPS in the alpha band (Z = 74, p = 0.006)
is the only value providing p < 0.01064. Other marginal significant values in the theta band
include a significant increase in participation in rFEF (Z = 10, p = 0.022) and an increase
in participation out of rTPJ (Z = 13, p = 0.041) related to a decreasing attentional demand.
The rIPS shows a significant reduction of participation out, also in the beta band (Z = 64,
p = 0.049).
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3.3. Correlation between Measures

To test the association between the features related to eye-blink and to brain, different
measures of correlations have been computed. Figure 9 shows correlation results between
EEG, PSD, and EBR according to Rüger areas correction. A first significant Rüger area
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shows a positive correlation of EBR with theta power and low alpha power over frontal
electrodes (maximum correlation R = 0.7426 at 8 Hz on AFz).
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In the beta band, two significant Rüger areas show a positive correlation (from 15 to
18 Hz) over frontopolar and anterofrontal electrodes and from 14 to 19 over left frontal
electrodes.

The last significant Rüger area shows a positive correlation of EBR with Alpha power
and low Beta power over centroparietal and parietal electrodes (minimum correlation
R = −0.7348 at 12 Hz on CP6).

The ROIs provided significant modulation of their activity and have been correlated
with EBR, performing a repeated measures correlation (Figure 10). Significant negative
moderate correlations have been found in all three cases.
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Figure 10. Results of repeated measures correlation between blink parameter Eye Blink Rate (EBR) and the activity of those
ROIS which have shown significant modulation of their activity, i.e., rIFG, lFEF, and rFEF in the theta band.

The ROIs provided significant modulation of their strength (i.e., lVIS in the alpha
band) and participation index (i.e., participation out in alpha band of rIPS) have been
correlated with the significant eye blinks related feature (EBR). Figure 11 shows the plot
of repeated measures correlation: a significant negative moderate correlation (R = −0.62,
p = 0.02) of the participation out of rIPS in the alpha band with EBR has been found. The
strength did not provide a significant correlation (R = −0.324, p = 0.28).
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4. Discussion

The rationale of the present work was to analyze attentional demand in terms of brain
connectivity, brain activity, and eye blinks, and to investigate the association among these
different measures. Attentional demand has been manipulated using the Conjunction
Search Task. This task allowed us to obtain a Low and High attentional demand, associated
respectively to the “pop-out” effect and to the “top-down control”.

The results seem to attest that this experimental hypothesis is true both from a behav-
ioral and a neurophysiological perspective. In fact, participants have reacted faster and
more accurate during the Low condition, when the single (color) feature has a pop-out
effect, with respect to the High condition, when two (color/ orientation) features need to
be recognized (Figure 3). We found that in the high attentional demand condition com-
pared to the low condition (i), the eye blink rate significantly decreased (Table 2); (ii) the
brain activity significantly increased over the scalp in the theta band, localized on the
anterofrontal areas in the alpha band and on the frontal and centro-parietal areas in the
beta band (Figure 4); (iii) rIFG, rFEF, lFEF were significantly more activated (Figure 5);
(iv) connections involving lVIS were significantly stronger (Figure 7); (v) the participation
out of rIPS in alpha band is higher. Contrary to what has been hypothesized, we did not
find a significant modulation of eye blink duration and a significant desynchronization of
brain activity in the alpha band. We further found that eye blink rate, brain activity and
connectivity features do not only show a significant modulation according to the attentional
demand but also, they correlate.

With respect to the previous studies, in the current work both eye and brain activity
have been analyzed without imposing a time-locked structure on the analysis, a necessity
emerged in several different fields, as described in [18]. Therefore, this work fits into a
methodological framework, whose number of works in the literature are lower than those
using a time-locked analysis and more research is needed to investigate cognitive processes
during long-term stimulations [67].

Regarding the findings related to eye blink activity, it is noteworthy to highlight that
one EEG channel placed on the forehead (Fpz electrode, referenced to earlobes) has been
chosen to measure eye blinks in order to simulate a very low invasive detection system
(i.e., one bipolar channel). It has been already proved that the Fpz electrode provides
a reliable regressor of ocular activity [48] and allows us to monitor the number and the
duration of blinks [63]. Even if the use of blink parameters is affected by strong variability
both within and between subjects, in the current work a decrease of eye blink rate in
the high condition has been observed, coherent with the literature, which associates this
decrement with an increase in information processing [30,34]. However, the cognitive
demand is not the only intrinsic factor affecting eye blink parameters: differences in visual
load can induce an unexpected variation in both eye blink rate and duration [68]. Therefore,
because for our experimental design we assumed (according to [28]) a comparable visual
load between high and low conditions, we hypothesized that there was not enough of a
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difference between the conditions to induce a significant modulation in eye blink duration.
Indeed, no difference in eye blink parameters was found between low and high conditions,
even in [28].

The spatio-spectral distribution of brain activity observed in the high attentional
demand condition in the current study is the one that is typically associated with a high
cognitive load, namely an increase in activity in frontal areas [31]. On the scalp, this incre-
ment is localized on frontal and centroparietal areas in the beta band, mainly in the right
hemisphere coherently with the known about its active role in optimal selection [69,70].
Also the increment of brain activity in the theta band in parietal areas has been already
associated with attentional demand [71]. In contrast, we did not find a significant desyn-
chronization of parietal alpha associated with high cognitive demand, even if there is a
nonsignificant reduction of that activity, whereas we found a significant increase of an-
terofrontal activity in the alpha band, which could reflect the enhanced attentional control
mechanisms typical of the conjunction search condition [72].

The significant brain activity observed in frontal regions in the theta band reflects the
significant activation of rIFG, rFEF, lFEF in high attentional demand conditions compared to
the low condition. On the one hand, this finding reflects the increase in the dorsal attention
network activation during more difficult tasks and the top-down control (characterizing
the High condition [41]). On the other hand, the increase in rIFG activity belonging to the
ventral attention network could be considered an unexpected result because the IFG was
shown to be deactivated during top-down control [36]. The activation observed is probably
due to the long-term approach of this analysis that does not allow us to differentiate
between the attentional mechanisms, but rather the different amount of attentional demand.
Whereas the time-locked studies (based mainly on Event Related Potentials) have already
shown that serial shifting of attention strains attentional control, only recently has it been
demonstrated that when subjects are engaged in a more difficult attentional search, this
increases activity and strengthens functional connectivity among IPS, FEF, medial, and
lateral frontal areas and anterior insular areas ( namely the multiple demand network [67]).
Therefore, analyzing attentional processes without a time-locked approach allows us to
highlight mainly the component of brain activation related to the cognitive demand [73].

However, real brain functioning is not a static mechanism: neural mechanisms are
constrained by connectivity. Therefore, brain connectivity is crucial to clarifying how
neurons and neural networks process information. A descriptive analysis of the connec-
tivity patterns showed that ventral attention network, and in particular rTPJ, is strongly
connected to dorsal attention networks in the low condition in the theta band. This could
be explained by the fact that TPJ plays a more prominent role in attentional shifts when
attention and eye movements are dissociated or directed to the periphery of the visual
fields [74], a phase that could happen very often in the case of preattention because the
subject can easily perceive the target also with the peripherical view. During the high
attentional demand level, the main connections are those between IPS and visual areas.
The analysis of connection strength confirmed quantitatively that the involvement of visual
areas in the high attentional demand condition is significantly higher than in the low
condition, probably due to the fact that DAN is expected to exert a greater influence on
visual areas in the high condition compared to the low condition and the strength of those
connections increases [37,41]. To quantitatively test the hypothesis of the lower segrega-
tion of the brain network associated with the high attentional demand, the participation
index has been computed because it allows analyzing the role of the node considering
also their belonging to a specific subnetwork [75]. The number of connections linking
dorsal networks, and in particular rIPS, and visual areas are significantly higher in high
conditions compared to low conditions, an indication that IPS exerts an influence on the
visual area during spatial orienting [36] and in top-down processes [37]. The effects of
top-down mechanisms in high attentional demand are statistically significant, even after
the FDR correction for multiple comparisons, whereas we cannot speculate upon those
related to the low attentional demand for the lack of significant results after FDR correction.
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This aspect could be another indication that analyzing attentional processes without a
time-locked approach enhances the effects due to task difficulty, allowing the observation,
not only of the spatio-spectral distribution typical of high attentional demand, but also its
related strengthened connectivity.

To examine whether there is an association between the brain activity and eye blink
variations, we analyzed the Spearman’s rank correlation coefficient between spatio-spectral
brain features and the EBR of each subject computed binwise. To face the expected type
I statistical error, the Descriptive Data Analysis procedure, based on the definition of
Ruger’s area for neurophysiological data, was performed [65]. We observed that EBR
highly and positively correlates with frontal activity in the theta and beta bands, whereas it
negatively correlates with parietal and occipital activity in the alpha band. On the one hand,
a decrease in eye blink rate has been previously associated with an increase in activation of
the parieto-occipital cortex, which has been demonstrated to play a key role in processing
visual stimuli [76,77]. On the other hand, subjects presenting a higher frontal theta also
have a higher number of blinks, which could be interpreted as a greater perception of task
difficulty [31,34] and consequently a lack of concentration on the task [78].

Looking at the intrasubject association, we employed the repeated measures correla-
tion due to high statistical power, estimating the association shared among individuals. We
observed a negative and moderate correlation between FEF and rIFG activation and eye
blink rate, coherently with the expected effects of the high attentional demand condition
on both frontal brain areas and eye activity [31,41]. Moreover, this association has been
confirmed also by the association between eyeblink rate and brain network features: the
repeated measures correlation showed a significant moderate [79] negative correlation
(R = −0.62) between EBR and the participation of rIPS toward the other subnetworks.
These findings suggest that top-down mechanisms associated with the high attentional
demand condition induce a decrease in the number of blinks, an increase in frontal area
activation, and an increase in connectivity between dorsal attention network and visual
areas; moreover, such variations are correlated.

Therefore, these results imply that the simple model that can be obtained through
the application of just one electrode on the forehead monitoring the eye blinks can give a
piece of information that is significantly correlated to the modulation of brain activity and
connectivity related to attentional demand variations.

If, on the one hand, the progress done in the neurotechnological field has allowed
the development of easy-to-wear and easy-to-use biosignal acquisition systems for this
purpose [19], on the other hand, it has given rise to questions about their acceptability [9].
According to Nielsen′s model [80], the acceptability of a system passes through its utility
and usability. While the usefulness of attention monitoring is related to the necessity to
increase safety during certain activities (e.g., driving a car), its usability depends heavily
on factors such as ease and pleasantness of use and reliability [81–83]. For this reason, it is
necessary to adapt computational models for the analysis of neurophysiological correlates
of attention to the practical needs already evidenced, avoiding the use of systems with too
high instrumental complexity.

In this regard, the possibility of using other techniques to recognize the ocular activity,
instead of EOG, and even less invasive methods, such as eye-tracking or video recording,
that could ideally be employed in some operational or daily life activities (e.g., control
rooms, car driving), maximizing in that regard not only the utility of this eye activity-based
model but also its usability, must be mentioned.

Notwithstanding these encouraging results, this study has a few limitations. First of
all, the limited sample size. For this reason, the non-parametric statistic has been preferred
over all the performed analyses, even if for more powerful results, the number of subjects
needed to be increased. The ocular activity has been described in terms of eye blinks;
however, other aspects should be analyzed for a more complete analysis. Moreover, the
cortical activity has been reconstructed by means of sLORETA method and it has not been
tested and compared against other methods like, for example, eLORETA, which could give
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different values of reconstructed signals. Finally, the brain networks description could be
refined by analyzing other indexes of the graph theory, such as those describing other local
and global network features [84,85].

5. Conclusions

This work fits into the framework of the joint analysis of eye blinks and brain activities,
to provide a comprehensive neuroscientific model to investigate the association between
brain mechanisms and manifest behavior during different levels of attentional demand. In
this regard, as a manifest aspect of attention-related behavior, eye blinks have provided
information correlated to both brain spectral and network features, suggesting the EBR is a
reliable measure of attentional demand, especially for out-of-the-lab applications.
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