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We solve the infinitesimal Torelli problem for 3-dimensional quasi-smooth Q-Fano hy-
persurfaces with at worst terminal singularities. We also find infinite chains of double
coverings of increasing dimension which alternatively distribute themselves in examples
and counterexamples for the infinitesimal Torelli claim and which share the analogue, and
in some cases the same, Hodge-diagram properties as the length 3 Gushel–Mukai chain of
prime smooth Fanos of coindex 3 and degree 10.
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1. Introduction

Minimal model program suggests us to formulate inside the category of varieties with terminal singularities many
questions which were initially asked for smooth varieties. The construction of the period map, and the related Torelli type
problems are definitely among these problems.

1.1. Infinitesimal Torelli

A Q-Fano variety is a projective variety X such that X has at worst Q-factorial terminal singularities, −KX is ample and
Pic(X) has rank 1; cf. [9]. In this paper we give a full answer to the infinitesimal Torelli problem in the case of quasi-smooth
Q-Fano hypersurfaces of dimension 3 with terminal singularities and with Picard number 1.

In Section 2.1 of this paper the reader can find a basic dictionary and up to date references needed to understand the
statement of the infinitesimal Torelli problem and where to find the meaning of infinitesimal variation of Hodge structures
(IVHS; to short). Here we stress only that the method à la Griffiths based on the extension of the Macaulay’s theorem in
algebra to the weighted case, cf. [25], almost never works in our case.

There is a complete list of quasi-smooth Fano hypersurfaces with ρ = 1. We have the ‘famous 95’, that is a list of 95
families of quasi-smooth, anti-canonically polarized Fano threefold of index 1. The list was first considered in [18], and later
on showed to be complete by [19, Corollary 2.5] see also cf. [7]. The ‘famous 95’ families have been prominent in the context
of explicit birational geometry: for a modern survey we refer to [5], while for an account of those in term of Hodge theory
we refer to [1]. We prove:
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Theorem [A]. LetM be the space of quasi-smooth hypersurface of degree dwith only terminal singularities in weighted projective
space wP = wP(1, a1, a2, a3, a4), where d =

∑4
i=1 ai, modulo automorphisms of wP. Then there is an open dense subset of M

on which infinitesimal Torelli holds.

See Theorem 3.7.
The situation changes drastically when we go to the higher index case. There are 35 families of Fano threefolds of higher

index, that we can find listed for example in [20], see our Table 1. Out of the 35 , we have 8 out of them that are rigid andwith
h2,1

= 0. These are, in particular, the families no. 105, 113, 119, 120, 123, 126, 129, 130, and we will call them Hodge-rigid.
We are left with 27 families, and they split with respect to the infinitesimal Torelli property. We prove:

Theorem [B]. LetM be the space of quasi-smooth weighted hypersurfaces of degree d in weighted projective 4-space and of index
> 1modulo automorphisms. Then

1. for families no. 115, 121, 122 and 127 the infinitesimal Torelli theorem does not hold;
2. the families no. 105, 113, 119, 120, 123, 126, 129, 130 are Hodge-rigid;
3. for the remaining 23 families, there is an open dense subset of M on which the infinitesimal Torelli holds.

See Theorem 3.14.
The behaviour with respect to the infinitesimal Torelli problem is summarized in Table 1
We point out that for the four (AT)-cases of Table 1, that is in the cases of failure for the Torelli problem, we are also

able to construct explicitly the deformations along which infinitesimal Torelli fails; we call them anti-Torelli deformations.
Indeed we get explicit polynomial basis for the vector subspace of ‘anti-Torelli’ deformations; see Section 3.5.

1.2. GM-type infinite towers

We consider as one of the main result of this work the explicit construction of infinite towers of quasi-smooth varieties
which exhibit a failure of infinitesimal Torelli and simultaneously a behaviour analogous to the Gushel–Mukai varieties
deeply studied in a list of recent papers, for example [10–13].

Recall first that a Gushel–Mukai variety (in the following, shortened as GM) is the datum of the intersection of the cone
over the Grassmannian G = Gr(2,5) with an appropriate linear space, and a general global section of OG(2). One curious
feature of the GM variety is that the Hodge numbers satisfy a periodic behaviour: the even dimensional varieties of GM-type
will satisfy (with one further dimension to remove in the K3 case)

Hdim(X)
prim (Xeven,C) ∼= C ⊕ C20

⊕ C

while the odd one

Hdim(X)(Xodd,C) ∼= C10
⊕ C10.

The fact that theHodge structure onH4(X,C) is of K3 type and that the study of the periodmap for X sharesmany similarities
to the case of cubic fourfold add importance to the study of GM-varieties.

In Section 4 we perform a geometric construction that yields examples that shares common similarities with the above
varieties. Although our ambient space is not a Grassmannian variety, we decided to adopt the name of Gushel–Mukai like
since we always find Hodge similarities like above, and because the geometrical construction is similar to the GM case.

In particular, starting from one of the hereby considered Fano threefold Xd ⊂ wP (or, better, a surface lying in it as
quasi-linear section) we realize a double cover ϕ : Y → wP branched over Xd. Iterating this process we get an infinite
chain (or ‘tower’) of varieties, satisfying the periodic equality (with the dichotomy odd/even) of the Hodge groups like in the
GM case. Moreover, since (unlike in the GM case) there is no Grassmannian to ‘bound’ the dimension, our towers can go up
and produce examples in any dimension. If the ‘even’ Hodge structure comes from the Hodge structure of a (weighted) K3
surface, we say that our tower is of K3-type.

Let us call an even member of the tower an X2k
d obtained by doing an even number of step in the construction above,

similarly we will define the odd members. In Theorem 4.4 we show:

Theorem [C]. Let X0
d = V (f0) ⊂ P(a0, . . . , an). Suppose that d ≡ 0 (mod 2). Let X2k

d be any even member of the tower, of
dimension n + 2k. There is an isomorphism of IVHS

φ : Hn(X0
d ,C)

∼
−→ Hn+2k(X2k

d ,C)[−2k].

In particular the central Hodge numbers of X0
d are the same of the Hodge numbers of X2k

d up to a degree k shift, that is(
hn+2k,0
X2k
d

, hn+2k−1,1
X2k
d

, . . . , h1,n+2k−1
X2k
d

, h0,n+2k
X2k
d

)
=

(
0, . . . , 0, hn,0

X0
d
, . . . , h0,n

X0
d
, 0, . . . , 0

)
,

with 2k zeros on the last vector. The same holds for odd members, with an equality between the Hodge theory of X1
d and X2k+1

d , for
any k.
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One of the most interesting case is the construction of an infinite tower whose initial odd element is a general quartic
double solid 4.4.2; there is a strong renewof interest about the (ir)rationality problemonquartic double solid, see [6,21], after
Voisin’s result that for any integer k = 0, . . . , 7, a very general nodal quartic double solid with k nodes is not stably rational;
see: [27]. Actually we show that up to dimension 4 onwards the members of our tower are rational; see Proposition 4.7.

Nevertheless, for us, the most beautiful case is the following one which, in a further analogy with the GM case, holds an
infinite series of examples and counterexamples to the Torelli problem according to the parity of the dimension.

Theorem [D]. Any quasi-smooth odd dimensional member X2k+1
14 ⊂ P(2, 3, 4, 5, 72k+1) is of Anti-Torelli type, while any even

dimensional quasi-smooth member X2k
14 ⊂ P(2, 3, 4, 5, 72k) is of Torelli type. In particular we have an infinite chain of GM-type

varieties which are examples or counterexamples for the Torelli problem, with alternate dimensions.

See Theorem 4.8.
We start now with a recap of known results on weighted projective varieties and Torelli problem.

2. Preliminaries

2.1. Weighted projective hypersurfaces and Jacobian ring

We denote with P(a0, . . . , an) or wP the weighted projective space with variables x0, . . . , xn with wt (xi) = ai. For the
standard theory of weighted projective spaces we refer to [22] and [15].

We recall that the weighted projective space P(a0, . . . , an) is said to be well-formed if

hcf(a0, . . . , âi, . . . , an) = 1 for each i

We want now to define a reasonable class of varieties in a (well-formed) weighted projective space, that will play the role
of the smooth one in straight case. We have the following definition

Definition 2.1. Let X be a closed subvariety of a well-formed weighted projective space, and let us denote by AX the affine
cone over X , that is the completion of A•

X = π−1(X), where π : An+1 ∖ 0 −→ wP is the canonical projection. We say that X
is quasi-smooth if AX is smooth outside its vertex 0.

The above definition is telling us that the only (possible) singularities of X come just from the automorphisms of the
ambient space. The key idea is that a quasi-smooth subvariety X ⊂ wP is a V-manifold, that is isomorphic to the quotient
of a complex manifold by a finite group of holomorphic automorphisms. Operative definitions of quasi-smoothness can be
found, for example, in [18, Theorem 8.1].

AQ-Fano 3-fold heremeans a projective 3-fold with only terminal singularities whose anticanonical divisor is ample.We
assume as well (this being always satisfied in the hypersurface case) that the rank ρ of its second Betti homology is 1. The
Fano index ιX of a Fano 3-fold X is

ιX = max{m ∈ Z > 0 | −KX = mA for some Weil divisor A }

AWeil divisor A for which −KX = ιXA is called a primitive ample divisor.
Recall that if Xd = V (f ) is a hypersurface of degree d, we can associate to Xd a canonical deformation ring, the Jacobian

ring

Rf := C[x0, . . . , xn+1]/J(f ),

where J(f ) is its Jacobian ideal, that is, in both smooth and quasi-smooth cases, the (graded homogeneous) ideal generated
by the partial derivatives of f .

This is indeed finite dimensional as vector space if and only if X is quasi-smooth. The Jacobian ring be interpreted as the
ring of infinitesimal deformation of the affine cone AX (see [14] for a more general treatment). A well-known feature of the
Jacobian ring of a hypersurface is that some homogeneous slices of it can be identified with the (primitive) cohomology of
the underlying X . This is the content of the Griffiths Residue theorem [15] or for a modern account, see [4]. In particular we
have that, if Hp,n−p

prim (X) is the (p, n − p)-primitive part of Hn(X,C), then

Hp,n−p
prim (X) ∼= R(n−p+1)d−s,

s =
∑n+1

i=0 ai is the sum of the weights and d is the degree of f .
Griffiths description of the primitive cohomology for a smooth hypersurface is a powerful tool to attack the Torelli

problem. The problemwas originally solved by Donagi, cf. [16]. Amodern survey can be found, for example, in Claire Voisin’s
book [27], that here we recall briefly.

Assume that Xd is a smooth hypersurface of degree d in Pn+1. Assume that the dimension of X is at least 3 (in particular,
all the deformations of X are projective). Thanks to the Lefschetz hyperplane the only interesting part of the Hodge structure
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of X is located in degree n. The starting point is realizing how the differential of the period map for an Hodge structure of
weight n restricted to its primitive subspaces

d℘ : H1(TX ) →

n⨁
p=0

Hom(Hp,q
prim(X),H

p−1,q+1
prim (X)),

can be rewritten thanks to the Griffiths description as

Rd −→

n⨁
p=0

Hom(R(p+1)d−n−2, R(p+2)d−n−2),

where R denote as usual the Jacobian ring and the subscript refers to its homogeneous components.
We can rephrase this using local duality theorem (Theorem 2.2 of [25]). First recall the concept of socle. For a graded

k-Algebra A, the socle is defined as

Soc(A) = {h ∈ A | hg = 0 for all g ∈

⨁
Ai}.

In general the socle could be either empty or in different degrees, but in case of the Jacobian ring it coincides with a specific
degree component Rσ , cf. Corollary A3, [25]. One has in particular Rσ+j = 0 for every j > 0. The local duality theorem is
then

Theorem 2.2 (Thm 2.2 in [25]). Let f0, . . . , fn+1 a regular sequence of weighted homogeneous polynomial in C[x0, . . . , xn+1] and
let

A = C[x0, . . . , xn+1]/(f0, . . . , fn+1).

Suppose ai is the weight of xi and di = deg fi. Then for any 0 ≤ a ≤ σ the pairing given by multiplication

Aa × Aσ−a −→ Aσ

is non-degenerate, where σ =
∑

di − ai is the top degree.

If we pick A = R, the Jacobian ring, the theorem applies since the partial derivatives form a regular sequence.
The above theorem allows us to check, instead of the injectivity of

Rd −→ Hom(Ra, Rb)

the surjectivity of

Rb × Rσ−(a+b) → Rσ−a.

However, the above theorem assures the non-degeneracy of the multiplication map only when the socle is involved.
The non-degeneracy of the general multiplication map

Ra × Rb −→ Ra+b

is indeed tackled by theMacaulay’s theorem.

Theorem 2.3 (Thm. 1 in [25]). Let f0, . . . , fn+1 be a regular sequence of homogeneous polynomials of degree d0, . . . , dn+1 in
C[x0, . . . , xn+1] and let

R = C[x0, . . . , xn+1]/(f0, . . . , fn+1).

Then R is a finite dimensional graded C-algebra with top degree σ =
∑

(di − 1) and the multiplication map

µ : Ra × Rb −→ Ra+b

is nondegenerate for a + b ≤ σ .

In turn this is enough to guarantee the infinitesimal Torelli theorem for smooth projective hypersurfaces in Pn+1. We
focus now on the case of quasi-smooth hypersurfaces in weighted projective spaces.

2.2. Infinitesimal Torelli for weighted hypersurfaces

A natural extension of the Donagi work is consider the case of quasi-smooth hypersurfaces in weighted projective spaces.
Let alone the generic Torelli, one fails to get a general answer even for the infinitesimal Torelli.

The main obstacle is that the weighted version of Macaulay’s theorem does not hold for any weighted projective space
P(a0, . . . , an) (more in general, for any weighted graded rings). Counterexamples can be easily given. Consider for example
the case of R = C[x, y]/(x2, y3). The multiplication map µ : R1 × R3 → R4 is degenerate, since x0 · R3 = 0 with x0 ̸= 0.
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Nevertheless on some weighted graded rings some generalization of Macaulay’s theorem holds. Based on a detailed
analysis, Tu was able to identify in [25] several classes of quasi-smooth hypersurface for which the infinitesimal Torelli
theorem actually holds. We recap briefly here his results.

For wP = P(a0, . . . , an+1) set

s =

∑
ai, m = lcm(a0, . . . , an+1)

and for any subset J = (j1, . . . , jn) of {0, . . . , n + 1},

m(q|J) = lcm(qj1 , . . . , qjn ).

We define

G = −s +
1

n + 1

∑
2≤k≤n+2

(
n

k − 2

)−1 ∑
|J|=k

m(q|J).

An estimate for G is

G ≤ −s + m(n + 1);

in particular we notice that for the standard projective space Pn+1 we have s = n + 2,m = 1,G = −1. What we have is

Theorem 2.4 (Theorem 2.8 in [25]). Let R = C[x0, . . . , xn+1]/J be the weighted ring defined by the ideal J of a regular sequence
f0, . . . , fn+1. Set di = deg fi, ai = weight xi and σ =

∑
(di − ai). The natural map

Ra → Hom(Rb, Ra+b)

is injective

1. if b is a multiple of m and σ − (a + b) ≥ max(G + 1, 0), or
2. if σ − (a + b) is a multiple of m and b ≥ G + 1.

It holds:

Theorem 2.5 (Theorem 2.10 in [25]). Let p an integer between 1 and n for which gcd(m,p) divides s. Then there are infinitely many
non-negative integers k ≥ ((n+ 1)p/(n+ 1− p))− (s/m) for which d = (s+ km)/p is a positive integer. The infinitesimal Torelli
theorem holds for quasi-smooth hypersurfaces of degree d in P(a0, . . . , an+1).

For other specific choices of the weights it is known:

Theorem 2.6 (Theorem 4.1 in [17]). Let P a weighted projective space P(a0, . . . , an+1) for which a0 = a1 = 1 and m divides s,
and letM the space of quasi-smooth weighted hypersurfaces of degree d in Pmodulo automorphisms of P. Assume d is a multiple
of m and d ≥max(3s, s + m(n + 1)). Then there is an open dense subset of M on which the period map is defined and injective.

Many interesting cases are still left open. In particular the answer was not known for Q-Fano threefolds hypersurfaces,
despite their importance in terms of birational geometry. In this paperwe give an answer to this problem, following a careful
analysis of the Jacobian rings involved.

3. Fano hypersurfaces threefolds and Torelli problem

We first study the infinitesimal Torelli for the ‘famous 95’. These are Fano threefolds of index 1 first discovered by Iano-
Fletcher and Reid. They are listed online in the graded ring database [2], together with several thousands of other Fanos in
higher codimension. We do not include here the complete list of 95 hypersurfaces: the interested reader can easily consult
the above database.

3.1. The infinitesimal Torelli for Fano varieties of index 1

Recall from the introduction the Griffiths description of the differential of the period map for an Hodge structure of
weight k

d℘ : H1(TX ) →

k⨁
p=0

Hom(Hp,q(X),Hp−1,q+1(X)).

In particular, its injectivity is enough for the infinitesimal Torelli theorem to hold. Assume that Xd is a smooth hypersurface
of degree d in wPn(a0, . . . , an) of dimension at least 3, and that H2(OX ) = 0 (equivalently, all the deformations of X are
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projective). Denote by s =
∑

ai. The Griffiths–Steenbrink description of the primitive cohomology of a quasi-smooth
hypersurface reduces the problem to the injectivity of the polynomial map

Rd −→

n⨁
p=0

Hom(R(p+1)d−s, R(p+2)d−s),

where R denotes as usual the Jacobian ring and the subscript refers to its homogeneous components.
For a quasi-smooth Fano threefolds we have H3,0(X) = H0,3(X) = 0: moreover if we focus on the index 1 condition what

we have to verify in order to have the infinitesimal Torelli for any of the previous 95 families is to check the injectivity of the
natural map

Rd → Hom(Rd−1, R2d−1).

If we use local duality Theorem 2.2, since the socle is located in degree σ = 3d−2ιX we can rephrase the problem as follows

Remark 3.1. Let X as above. The infinitesimal Torelli theorem holds for X if the natural map

Sym2(Rd−1) → R2d−2

is surjective.

We first try to apply the condition of weighted Macaulay’s theorem recalled in the introduction. Consider for example
the case (5) of the list above, that is X7 ⊂ P(1, 1, 1, 2, 3). Using the notations of Theorem 2.5, the equations that need to be
satisfied is d = 7 = (8+ 6k)/p, together with the condition k ≥ (4p/4− p)− 4/3, but this is clearly not possible. By similar
standard computations we get

Lemma 3.2. Only the families no. 1 and no. 2 of the Fletcher-Reid list (that is, X4 ⊂ P4 and X5 ⊂ P(14, 2) ) satisfies the numerical
conditions of the weighted Macaulay’s theorem.

In the other cases, a partial answer can be obtained by looking at the surjectivity of themultiplicationmap in the ambient
ring. More precisely

Proposition 3.3 (Proposition 2.3 in [25]). Let R = C[x0, . . . , xn]/J be a weighted ring for which local duality holds, and let σ be
the top degree of R. Given non-negative integers a, b satisfying a + b ≤ σ and denoting with S = C[x0, . . . , xn] if

Sb × Sσ−(a+b) → Sσ−a

is surjective, then Ra → Hom(Rb, Ra+b) is injective.

In our case, we have a = d, b = d − 1 and σ =
∑

d − 2ai = 5d − 2s, with s = d + 1. Therefore we have to check the
result for Sd−1 × Sd−1 → S2d−2, or equivalently the surjectivity of the natural map

Sym2(Sd−1) → S2d−2.

Lemma 3.4. Of the 93 remaining families, only the number 5, that is X7 ⊂ P(1, 1, 1, 2, 3) satisfies the surjectivity already at the
level of polynomial ring.

Proof. On X7 the multiplication map Sym2(S6) → S12 can be verified to be surjective. All the other cases yields
counterexamples. For example consider X6 ⊂ P(14, 3). Sym2(S5) → S10 is not surjective as we can see by the element
x34x0, where x4 is the variable of weights 3. Indeed is clear that S5 = ⟨Sym5(x0, . . . , x3), Sym2(x0, . . . , x3) · x4⟩. An extensive
computer search using Macaulay2 confirms this statement. □

Corollary 3.5. Let X any quasi smooth member of the family X7 ⊂ P(1, 1, 1, 2, 3). Then the differential of the Period map

d℘ : H1(X, TX ) → Hom(H2,1(X),H1,2(X))

is injective, and therefore the local Torelli theorem holds.

To prove the theorem for the other cases, we have to use the following lemma

Lemma 3.6. Let π : X → U a flat family of quasi-smooth hypersurfaces such that for the central fibre X0 = π−1(0) the
infinitesimal Torelli property holds. Then the same holds for the fibres π−1(U) over an open 0 ∈ U.

Proof. We recall that M0 is a complex manifold and the period domain is a variety. Hence the condition of the differential
of the period map being of maximal rank is an open condition. □

Theorem 3.7. Let Xd ⊂ P(a0, . . . , a4) one of the 92 families left (not 1,2,5). Then the Local Torelli theorem holds generically
for Xd.
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Table 1
List of Fano threefolds of index 1 and their behaviour with respect to Torelli problem. The notation AT/T/R
stands for (respectively) Anti-Torelli, Torelli, Rigid.
No. Xd ⊂ P(a0, . . . , a4) Ind Torelli No. Xd ⊂ P(a0, . . . , a4) Ind Torelli

96 X3 ⊂ P(1, 1, 1, 1, 1) 2 T 113 X4 ⊂ P(1, 1, 2, 2, 3) 5 R
97 X4 ⊂ P(1, 1, 1, 1, 2) 2 T 114 X6 ⊂ P(1, 1, 2, 3, 4) 5 T
98 X6 ⊂ P(1, 1, 1, 2, 3) 2 T 115 X6 ⊂ P(1, 2, 2, 3, 3) 5 AT
99 X10 ⊂ P(1, 1, 2, 3, 5) 2 T 116 X10 ⊂ P(1, 2, 3, 4, 5) 5 T

100 X18 ⊂ P(1, 2, 3, 5, 9) 2 T 117 X15 ⊂ P(1, 3, 4, 5, 7) 5 T
101 X22 ⊂ P(1, 2, 3, 7, 11) 2 T 118 X6 ⊂ P(1, 1, 2, 3, 5) 6 T
102 X26 ⊂ P(1, 2, 5, 7, 13) 2 T 119 X6 ⊂ P(1, 2, 2, 3, 5) 7 R
103 X38 ⊂ P(2, 3, 5, 11, 19) 2 T 120 X6 ⊂ P(1, 2, 3, 3, 4) 7 R
104 X2 ⊂ P(1, 1, 1, 1, 1) 3 R 121 X8 ⊂ P(1, 2, 3, 4, 5) 7 AT
105 X3 ⊂ P(1, 1, 1, 1, 2) 3 T 122 X14 ⊂ P(2, 3, 4, 5, 7) 7 AT
106 X4 ⊂ P(1, 1, 1, 2, 2) 3 T 123 X6 ⊂ P(1, 2, 3, 3, 5) 8 R
107 X6 ⊂ P(1, 1, 2, 2, 3) 3 T 124 X10 ⊂ P(1, 2, 3, 5, 7) 8 T
108 X12 ⊂ P(1, 2, 3, 4, 5) 3 T 125 X12 ⊂ P(1, 3, 4, 5, 7) 8 T
109 X15 ⊂ P(1, 2, 3, 5, 7) 3 T 126 X6 ⊂ P(1, 2, 3, 4, 5) 9 R
110 X21 ⊂ P(1, 3, 5, 7, 8) 3 T 127 X12 ⊂ P(2, 3, 4, 5, 7) 9 AT
111 X4 ⊂ P(1, 1, 1, 2, 3) 4 T 128 X12 ⊂ P(1, 4, 5, 6, 7) 11 T
112 X6 ⊂ P(1, 1, 2, 3, 3) 4 T 129 X10 ⊂ P(2, 3, 4, 5, 7) 11 R

130 X12 ⊂ P(3, 4, 5, 6, 7) 13 R

Proof. The idea of the proof is simple.We check the surjectivity of the dual of the infinitesimal periodmap on a quasi-smooth
element X0. A genericity condition can be found for example in [18]. Once this is confirmed, by Lemma 3.6 the result will
hold in a Zariski open set 0 ∈ U , where we can think of X0 as central fibre of a flat family π : X → U .

The check on the central fibre can be done with the help of the following Macaulay2 code

def=(d, weights)->(
R=QQ[x,y,z,t,w, Degrees=>weights];
f=random(d,R); J=Jacobian matrix f;

B=(R/ideal J);L1=flatten entries (symmetricPower(2, basis(d-1,B)));
L2=flatten entries basis(2*d-2,B);
APP=select(L2, a-> not member(a, L1));
IL=ideal(L1); print APP, print LINCOMB,
for i in APP do if ((i % IL)!=0) then print i else print 0
)

Actually all the computations could be solved by hand in principle. To have a concrete grasp of how this work we refer
to Example 3.13, wherewe deal with the (most) interesting case of index> 1. An extensive computer searchwithMacaulay2
confirms that this holds for any of the 92 remaining families. □

Remark 3.8. It is because of Lemma 3.6 that some authors adopt the somewhat confusing expression ‘‘local Torelli’’ instead
of ‘‘infinitesimal Torelli’’.

3.2. The infinitesimal Torelli for Fano varieties of index > 1

We now investigate the case of higher index Fano threefolds. Unlike the index 1 case, here the situation is much more
various and complicated: in particular we will have (other than the Hodge-trivial examples) some families for which the
infinitesimal Torelli fails, and some families for which it holds. We recall in Table 1 the list of Fano threefold of higher index,
from Okada (see [20]), ordered according to the index.

What dowe have to check? Let us call the index of any X ιX , that isωX ∼= OX (−ιX ). Keeping notations as in the introduction
we have

Lemma3.9. Let Xd ⊂ P(a0, . . . , a4) a quasi-smooth Fano threefold hypersurface of index ιX . Then the infinitesimal Torelli theorem
holds if the natural map

Rd−ιX × Rd−ιX → R2d−2ιX

is surjective.

Proof. The success of infinitesimal Torelli corresponds to the injectivity of the map

Rd → Hom(Rd−ιX , R2d−ιX ),

where Rd−ιX
∼= H2,1(X) and R2d−ιX

∼= H1,2(X) ∼= (H2,1(X))∨ by Serre duality. Equivalently, using Local duality theorem
(Theorem 2.2 of [25]) what we need to verify is that the surjectivity of natural multiplication map

Rd−ιX × Rσ−(2d−ιX ) → Rσ−d.
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On the other hand, since s =
∑

ai = d + ιX , we have σ = 5d − 2s = 3d − 2ιX . □

We will now analyse separately the three interesting cases, that is Hodge-rigid families, the anti-Torelli and the Torelli.

3.3. Hodge-rigid families

Recall that we call an Xd ⊂ wP Hodge-rigid if both H1(X, TX ) = 0 and H2,1(X) = 0. Now, for these threefolds we do not
have any Torelli-type question to ask: therefore we want to classify and remove those cases from our list. Now, we recall
that from Griffiths–Steenbrink theory we have Rd ∼= H1(X, TX ), and by Serre duality

H1(X, Ω2
X ) ∼= H1(TX ⊗ ωX ) = H1(X, TX (−ιX )) = Rd−ιX .

From this it clearly follows that if d < ιX , then H2,1(X) = 0.

Proposition 3.10. The following families satisfies H2,1(X) = H1(X, TX ) = 0. Therefore they are Hodge-rigid.

• no. 104 X2 ⊂ P4
;

• no. 113 X4 ⊂ P(1, 1, 2, 2, 3);
• no. 119 X6 ⊂ P(1, 2, 2, 3, 5);
• no. 120 X6 ⊂ P(1, 2, 3, 3, 4);
• no. 123 X6 ⊂ P(1, 2, 3, 3, 5);
• no. 126 X6 ⊂ P(1, 2, 3, 4, 5);
• no. 129 X10 ⊂ P(2, 3, 4, 5, 7);
• no. 130 X12 ⊂ P(3, 4, 5, 6, 7).

Proof. The vanishing of H2,1(X) is assured by the condition d < ιX above. To verify the vanishing of H1(X, TX ), simply notice
that for every member of the list above one has d > σ . Therefore, by definition of socle, Rd = 0. □

We go on a bit further with the analysis of the Hodge-rigid families. First, from the classification of Okada [20] we see
that each member of the Hodge rigid families has the general member rational, and moreover we just computed that they
do not have any deformation. We want now to define a notion of strong rigidity. Recall from [3], if AX denotes the affine cone
over X , then (T 1

AX
)k, for k < 0 parametrizes the extension of X as projective variety (and as well contains the smoothings

of AX ). If X = V (f ) is a hypersurface we have (T 1
AX
)k ∼= (Rf )d−k and moreover (Rf )d−k ∼= H1(X, TX (d − k)). We say that X is

strongly rigid if (Rf )j = 0, j ̸= 0. A strongly rigid hypersurface therefore will not have any extension (rather than the trivial
one). We note that Xd will satisfy (T 1

AX
)−1 ∼= (Rf )d−1 = 0. In particular we will have to add non-trivial weights in order to

extend (when possible) the Hodge-rigid members.

Corollary 3.11. Amongst the Hodge-Rigid families, the no. 104, 126, 129 are strongly rigid.

Proof. The Jacobian rings of the examples above have Hilbert–Poincarè series equal to 1. Therefore they have R0 = 1 and
Rk = 0, k ̸= 0. □

3.4. Torelli and Anti-Torelli families

We now investigate first the families that does not satisfy the infinitesimal Torelli property.

Theorem 3.12. Let Xd a quasi-smooth member of one of the four families no. 115, 121, 122, 127. Then the infinitesimal Torelli
does not hold for Xd.

Proof. We will analyse separately the four different cases.

no. 115. Pick any general quasi smooth member of the family of index ιX = 5, X6 ⊂ P(1, 2, 2, 3, 3), where we name
coordinates x, y0, y1, z0, z1. Since d − ιX = 1 we have to check the surjectivity of the map: R1 × R1 → R2. Now, since
the partial derivatives form a regular sequence, if we compute the Hilbert–Poincaré series of the Jacobian ring we have

HP(R) =

∏ (1 − td−ai )
(1 − tai )

= 1 + t + 3t2 + 3t3 + 4t4 + 3t5 + 3t6 + t7 + t8.

Therefore, since there is only one generator of degree one, we have Sym2(R1) ∼=< x2 >, whereas R2 contains, for example,
y0, y1, and the natural map cannot be surjective. Dually speaking we have the standard map from Rd given by

C3 ∼= R6 → Hom(R1, R7) ∼= C,

and this cannot be injective.
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No. 121. The same phenomenon occurs for X8 ⊂ P(1, 2, 3, 4, 5), of index 7, with coordinates x, y, z, v, w. We have indeed
that the Hilbert–Poincaré series is

HP(R) = 1 + t + 2t2 + 2t3 + 3t4 + 3t5 + 3t6 + 2t7 + 2t8 + t9 + t10

and for C2 ∼= R8 → Hom(R1, R9) ∼= C injectivity clearly fails.

No. 122. This is X14 ⊂ P(2, 3, 4, 5, 7), of index ιX = 7. Here we have as Hilbert–Poincaré series

HP(R) = 1 + t2 + t3 + 2t4 + 2t5 + 3t6 + 3t7 + 5t8 + 4t9 + 6t10

+5t11 + 7t12 + 6t13 + 7t14 + 6t15 + 7t16 + 5t17

+6t18 + 4t19 + 5t20 + 3t21 + 3t22 + 2t23 + 2t24 + t25 + t26 + t28.

Here we have R14 ∼= C7 and R7 ∼= C3, so we cannot conclude immediately injectivity. Nevertheless, Sym2(R7) has dimension
6, so the surjectivity is excluded.

No. 127. This is X12 ⊂ P(2, 3, 4, 5, 7). Here the Hilbert–Poincaré series is

HP(R) = 1 + t2 + t3 + 2t4 + t5 + 3t6 + 2t7 + 3t8 + 2t9 + 3t10 + 2t11 + 3t12 + t13

+ 2t14 + t15 + t16 + t18.

Thus R12 ∼= C3, while Hom(R3, R15) ∼= C. □

3.4.1. The Torelli families of index > 1
The other 24 families behave in the opposite way.Wewere able to check the surjectivity statement already at the level of

the ring S, that is Sym2 Sd−ιX → S2d−2ιX , for the families no. 98, 111, 118, 128. This is enough to guarantee the surjectivity at
the level of the Jacobian ring since S2d−2ιX → R2d−2ιX is the quotient map. No. 111 and No. 118 exhibits a curious behaviour.
They are respectively X4 ⊂ P(1, 1, 1, 2, 3) and X6 ⊂ P(1, 1, 2, 3, 5). They both verify d = ιX and therefore d = σ . In
particular, one has to check either the surjectivity of the natural map R0 × R0 → R0 or the injectivity of Rσ → Hom(R0, Rσ ),
and this trivially holds. For all the other families we proceed by the means of an extensive computer search, as in the index
1 case. We recall here an example.

Example 3.13. Consider X6 ⊂ P(1, 1, 2, 3, 4) in the class no. 114 given by the equation x60 + x61 + x32 + x23 + x2x4. Note that
X6 is quasi-smooth. The Hilbert Series of its Jacobian ring is

HP(R) = 1 + 2t + 3t2 + 4t3 + 5t4 + 4t5 + 3t6 + 2t7 + t8

We have to check the surjectivity Sym2 R1 → R2. The space R1 is generated by x0, x1, while R2 is generated by x20, x0x1, x
2
1.

Indeed the variable x2 of weight 2 is in the Jacobian ideal. Sym2 R1 is 3-dimensional, and equal to R2. In particular the
multiplication map is surjective. Therefore infinitesimal Torelli holds.

The same genericity argument of Lemma 3.6 yields

Theorem 3.14. Let M the space of quasi-smooth weighted hypersurfaces of degree d in P modulo automorphisms of P, for any
of the non Hodge-trivial families of quasi-smooth Fano Threefolds of index iX > 1. Then

• for the families no. 115, 121, 122 and 127 the infinitesimal Torelli theorem does not hold;
• for the remaining 24 families, there is an open dense subset of M on which the infinitesimal Torelli theorem holds.

3.5. Explicit Anti-Torelli deformations

Here we list again the four families of anti-Torelli Fano threefold hypersurfaces

No Xd ⊂ P(a0, . . . , a4) Ind. h1(TX ) h2,1

115 X6 ⊂ P(1, 2, 2, 3, 3) 5 3 1
121 X8 ⊂ P(1, 2, 3, 4, 5) 7 2 1
122 X14 ⊂ P(2, 3, 4, 5, 7) 7 7 3
127 X12 ⊂ P(2, 3, 4, 5, 7) 9 3 1

We now analyse carefully these four examples in terms of Torelli and Anti-Torelli deformations.
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Table 2
Torelli and Anti-Torelli for family no. 115.
R1 ⟨x0⟩
R7 ⟨x30x1x2⟩
R6 ⟨x40x1, x

4
0x2, x

2
0x1x2⟩

Kf ⟨x40x1, x
4
0x2⟩

Table 3
Torelli and Anti-Torelli for family no. 121.
R1 ⟨x0⟩
R9 ⟨x50x

2
1⟩

R8 ⟨x60x1, x
4
0x

2
1⟩

Kf ⟨x60x1⟩

Table 4
Torelli and Anti-Torelli for family no. 127.
R3 ⟨x1⟩
R15 ⟨x40x

2
1⟩

R12 ⟨x30x
2
1, x0x

2
1x2, x

4
0x2⟩

Kf ⟨x30x
2
1, x0x

2
1x2⟩

No. 115. Let us start analysing the first of the example. To get explicit examples of Anti-Torelli deformations we use the
following member of the family defined by the polynomial

f = x60 + x31 + x32 + x23 + x4

where V (f ) ⊂ P(1, 2, 2, 3, 3). V (f ) is clearly quasi-smooth since f is of Fermat-type. Recall by the previous section that

d℘ : Rd → Hom(Rd−ιX , R2d−ιX )

cannot be injective since R6 ∼= C3 and R1 ∼= R7 ∼= C. Denote thus by Kf the kernel of the period map associated with
this specific central member of the family giving the period map. Any element in Kf will give rise to a deformation of Anti-
Torelli type. In Table 2 we list the generators of the interesting graded component of the Jacobian ring Rf and the anti-Torelli
deformations associated with f .

To computeKf note that both (x40x1)x0 and (x40x2)x0 belong to Jf while (x20x1x2)x0 = x30x1x2 is the generatorwe already found
for R7. Therefore a family of Anti-Torelli deformation with central fibre the fixed X0 = V (f ) is given by V (f +λx40x1 +µx40x2).

No. 121. Here we use as the central fibre the following member of the family defined by the polynomial

f = x80 + x41 + x2x4 + x23

where V (f ) ⊂ P(1, 2, 3, 4, 5). This is not Fermat-type but the Jacobian ideal is generated by (x70, x
3
1, x4, x3, x2). Moreover

the tangent monomials at the singular points induced by the ambient space are linear. Therefore the above variety is quasi-
smooth. Even here

d℘ : Rd → Hom(Rd−ιX , R2d−ιX )

cannot be injective since R8 ∼= C2 and R1 ∼= R9 ∼= C. In Table 3 we list the generators of the interesting graded component
of the Jacobian ring Rf and the anti-Torelli deformations associated with f .

Here again (x60x1)x0 ∈ Jf , while x50x
2
1 generates R9. Therefore a family of Anti-Torelli deformation with central fibre the

fixed Xf will be given by V (f + λx60x1).

No. 127. Here we use the following member of the family defined by the polynomial

f = x60 + x41 + x32 + x3x4

where V (f ) ⊂ P(2, 3, 4, 5, 7). Here same Jacobian criteria of the previous example apply. Even in this case d℘ : Rd →

Hom(Rd−ιX , R2d−ιX ) cannot be injective since R12 ∼= C3 and R3 ∼= R15 ∼= C. In Table 4 we list the generators of the interesting
graded component of the Jacobian ring Rf and the anti-Torelli deformations associated with f .

The Kernel verifications follow as in the previous cases. Therefore a family of Anti-Torelli deformation with central fibre
the fixed Xf will be given by V (f + λx30x

2
1 + µx0x21x2).
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Table 5
Torelli and Anti-Torelli for family no. 127.
R7 ⟨x20x1, x0x3, x1x2⟩
R21 ⟨x40x1x

2
3, x

3
0x

3
3, x

4
2x3⟩

R14 ⟨x0x1x2x3, x40x
2
1, x

5
0x2, x

3
0x1x3, x

2
0x1x2, x

2
0x

2
3, x

2
1x

2
2⟩

Kf ⟨x0x1x2x3⟩

No. 122. Here we use the following member of the family defined by the polynomial

f = x70 + x0x32 + x31x3 + x2x23 + x24
where V (f ) ⊂ P(2, 3, 4, 5, 7). Looking at the equation the Jacobian ideal has no zeros.

Unlike the previous examples, here the non-injectivity cannot be deduced a priori, but follows from a careful examination
of the multiplication map. In Table 5 we list the generators of the interesting graded component of the Jacobian ring Rf and
the anti-Torelli deformations associated with f .

To check the kernel Kf we proceed as follows. First we check using the previous tools that the element of R2d−2ι in the
cokernel of multiplication map is x50x2. Then we dualize via (Rk)∨ ∼= Rσ−k. Here Rd = R14 = Rσ−d. The (non-canonical)
isomorphism between R14 and itself yielding duality pairs up x50x2 with 1

32x0x1x2x3 with respect to the socle basis x50x1x
3
3. One

can in fact verifies that the above multiplication gives exactly the socle generator, whereas any other multiplication of x50x2
with any other basis element of R14 lies in Jf . Indeed one can identify 1

32x0x1x2x3 as dual element of x50x2. Therefore a family
of Anti-Torelli deformation with central fibre the fixed Xf will be given by V (f + λx0x1x2x3).

We therefore raise the following question:

Question 3.15. For any of the above examples, consider any deformation of Xd induced by one of the ξ ∈ Kf , that is of Anti-Torelli-
type. Is there any geometrical reason for the failure of the Torelli theorem in these specific directions?

4. Gushel–Mukai type infinite towers

We start our analysis of an interesting geometrical phenomenon which links the geometry of some weighted Fano
hypersurfaces to the Gushel–Mukai geometry recalled in the introduction. We first will explain the necessary algebraic
background in order to understand this strange phenomenon, and later on we will analyse in great details some example of
this construction.

4.1. Hyperplane section principle for graded rings

The key phenomenon here is the hyperplane section principle for graded rings. This is a standard result in commutative
algebra. We will follow closely the treatment of [23]

Let R be a graded ring, and x0 ∈ R a graded element of degree a0. Suppose that x0 is a regular element of R, that is, a
non-zerodivisor. Then multiplication by x0 is an inclusion R → R with image the principal ideal (x0), and one arrives at the
exact sequence

0 → (x0) → R → R → 0,

where R = R/(x0). Geometrically, Proj (R) is the hyperplane section of Proj (R) given by x0 = 0. The hyperplane section
principle says that under these assumptions, we can deduce a lot of the structure of R from R and vice-versa.

Theorem 4.1 (Hyperplane Section Principle, [23]).

1. Let x1, . . . , xk be homogeneous element that generate R, and x1, . . . , xk ∈ R any homogeneous elements that map to
x1, . . . , xk ∈ R. Then R is generated by x0, x1, . . . , xk.

2. Under the assumption of (1), let f1, . . . , fn be homogeneous generators of the ideal of relations holding between x1, . . . , xk.
Then there exist homogeneous relations f1, . . . , fn holding between x0, x1, . . . , xn in R such that the fi reduces to fi modulo
x0 and f1, . . . , fn generate the relation between x0, x1, . . . , xn.

3. Similar for the syzygies.

4.2. Construction of towers

Let us start from a weighted hypersurface X0
d = V (f0) ⊂ P(a0, . . . , an). Suppose that d ≡ 0 (mod 2) and call d = 2t .

Consider now

X1
d

2:1
−→ P(a0, . . . , an)
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a double cover of the ambient weighted projective space, branched over X0
d . Since d is even, X1

d has a model as

X1
d = V (f0 + y21) ⊂ P(a0, . . . , an, t).

Let us call f1 := f0 + y21. Suppose now that ωX0
d

∼= OX0
d
(m0): by adjunction one has

ωX1
d

∼= OX1
d
(−

∑
ai − t + d) ∼= OX1

d
(m0 − t) =: OX1

d
(m1).

We have the following immediate result

Lemma 4.2. X0
d is quasi-smooth if and only if X1

d is.

Proof. Simply notice that Jf1 = (Jf0 , y1). Therefore the only possible new singularities of X1
d comes just from the new ambient

space. □

Set Rf0 = S/(Jf0 ) and similarly Rf1 for X1
d . It is clear that Rf1

∼= S[y1]/(Jf0 , y1), therefore by the hyperplane section principle
one has Rf0

∼= Rf1 . We pick any general member X1
d = V (g) ⊂ P(a0, . . . , an, t). Since the partial derivatives form a regular

sequence, one clearly has dim(Rf1 )k = dim(Rg )k, for all k and we have an isomorphism of C-vector spaces between the two
Jacobian rings. Now we see that by completing the square the ‘‘double cover type’’ does not form a proper subfamily inside
the space of all X1

d ⊂ P(a0, . . . , an, t). Clearly the process can go on to give an infinite chain of double covers

· · ·

ϕ3

↓↓

X2
d

ϕ2

↓↓

↘ ↙ →→ wP(a, t, t)

X1
d

ϕ1

↓↓

↘ ↙ →→ wP(a, t)

X0
d
↘ ↙ →→ wP(a)

(1)

where any X j
d is a double cover of the projective space P(a0, . . . , an, t j−1) branched on X j−1

d . By hyperplane section principle

Proposition 4.3. For any X j
d obtained with tower construction one has Rfj

∼= Rf0 .

We point out that we can reverse the chain, and considering X1
d as an extension of X0

d . Recall that, in general, Y ⊂ Pn+1

is said to be an extension of X ⊂ Pn if we have dim(X) = n, dim(Y ) = n + 1 and there exists an immersion i : Pn
→ Pn+1

such that X = Y ∩ i(Pn). In the weighted case of X ⊂ wP(a0, . . . , an) we thus have to look of the several graded components
(T 1

AX
)−ai . Moreover, for the case of a hypersurface of degree d we have

T 1
AX

∼= Rf (d).

To sum up: given X0
d we also have X1

d as

X1
d = V (f0 + ht · y1) ⊂ P(a0, . . . , an, t),

where y1 is a new variable of weight t and more important

ht ∈ (T 1
A
X0d

)−t ∼= (Rf0 )d−t ∼= (Rf0 )t .

It is trivial to see that there is no difference between this and a double cover model.
Instead what is not clear a priori is what happens to the Hodge groups when we run up the tower.

4.3. Periodic patterns in Hodge theory

Let us call an even member of the tower an X2k
d obtained by doing an even number of step in the construction above.

Similarly we will define the odd members.

Theorem 4.4.

• Let X2k
d any even member of the tower, of dimension n + 2k. We have that

Hn+2k(X2k
d ,C) ∼= Hn(X0

d ,C).
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The isomorphism is compatible with the Hodge decomposition: in particular the central Hodge numbers of X0
d are the same

of the Hodge numbers of X2k
d up to a degree k shift, that is(

hn+2k,0
X2k
d

, hn+2k−1,1
X2k
d

, . . . , h1,n+2k−1
X2k
d

, h0,n+2k
X2k
d

)
=

(
0, . . . , 0, hn,0

X0
d
, . . . , h0,n

X0
d
, 0, . . . , 0

)
,

with 2k zeros on the last vector;
• the same holds for odd members, with an equality between the Hodge numbers of X1

d and X2k+1
d , for any k.

Proof. This is just a careful analysis of the involved components of the Jacobian ring. Let us start from the base of our chain,
X0
d ⊂ P(a0, . . . , an). We will denote as before d = 2t and s =

∑
ai Since by Proposition 4.3 the Jacobian ring will be the

same in any step of our construction, we will drop the subscript referring to the equation and denote it simply with R. By
Griffiths–Steenbrink one has

Hn−p,p
prim (X0

d ) ∼= R(p+1)d−s

Now extend to Xd
1 ⊂ P(a0, . . . , an, t). By the same argument we will have

H (n+1)−p,p
prim (X1

d ) ∼= R(p+1)d−s−t .

If we extend another time we have

H (n+2)−p,p
prim (X2

d ) ∼= R(p+1)d−s−2t ∼= Rpd−s ∼= Hn−p+1,p−1
prim (X0

d ),

where we set Hr,s
prim(X) = 0 if r < 0 or s < 0. On the other end the same yields for X1

d with

H (n+3)−p,p
prim (X3

d ) ∼= R(p+1)d−s−3t ∼= Rpd−s−t ∼= H (n+1)−p+1,p−1
prim (X1

d ).

Of course every time we perform a double extension we end up in the same graded components of the Jacobian ring, just
with shift in the Hodge theory, exactly as concluded above. □

Remark 4.5. Note in particular that, since the degree of any member of the tower is constant, we will always have
H1(TXk

d
)proj ∼= Rd. We recall that the distinction between H1(TXk

d
)proj and H1(TXk

d
) holds only in dimension ≤ 2.

Remark 4.6. As showed for example in [24], the Jacobian ring of a variety actually determines its (IVHS). Therefore what we
have is indeed an isomorphism of IVHS

φ : Hn(X0
d )

∼
−→ Hn+2k(X2k

d )[−2k].

4.4. Gushel–Mukai-type geometry

Let us now focus on our case, that is, Fano threefolds of index > 1, and pick any Xd ⊂ P(a0, . . . , an). To be in a tower one
of the weights ai has to be ai = d/2. If not, one can start running the game directly from Xd = X0

d , adjoining a variable of half
the weight of the degree. Of course if d ≡ 1 ( mod 2) there is no hope of building any tower.

Looking at the table of Okada, it turns out that 30 families of Fano threefolds of index > 1 lies in a tower. At the end of
the section we include a table with all the towers, and the relevant Hodge groups in both even and odd case. Note that to be
Fano of K3 type, they have to satisfy t = ιX , where t is the covering variable as above. Among all, 4 of them are of K3-type,
and we will focus our attention on these in particular. They corresponds to the families

1. No. 97, X4 ⊂ P(1, 1, 1, 1, 2);
2. No. 107, X6 ⊂ P(1, 1, 2, 2, 3);
3. No. 116, X10 ⊂ P(1, 2, 3, 4, 5);
4. No. 122, X14 ⊂ P(2, 3, 4, 5, 7).

4.4.1. A non K3-type example
Before analysing the K3-type examples, let us do a non K3-one. Pick the family no. 115, already considered before for

being a counterexample to the infinitesimal Torelli problem. Again, this is the family of index ιX = 5, X6 ⊂ P(1, 2, 2, 3, 3).
The starting point of this tower is therefore the curve X0

6 ⊂ P(1, 2, 2), with ωX0
6

∼= OX0
6
(1). The Hilbert–Poincaré series of the

Jacobian ring of the tower is again

HP(R) =

∏ (1 − td−ai )
(1 − tai )

= 1 + t + 3t2 + 3t3 + 4t4 + 3t5 + 3t6 + t7 + t8.

In particular any odd member will have an Hodge structure (coming from the one of a curve) concentrated in degree 1
and 7 (note that dim(R1) = dim(R7) = 1), while any even member will have the Hodge structure in degree −2, 4, 6, with
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R2 = R6 = 0 and dim(R4) = 4. So, for example, the Fano threefold will have as Hodge diamond

0 1 1 0
0 1 0

0 0
1

and the Fano fourfold will have
0 0 5 0 0

0 0 0 0
0 1 0

0 0
1

We start now discussing the geometry of the GM-like varieties of the K3 type.

4.4.2. Tower on quartic double solid: a GM-like Fano of K3 type
The first example of GM-like Fano that we are going to consider is X4 ⊂ P(14, 2) with coordinates x0, . . . , x3, y1, already

famous in literature as the quartic double solid. It is a double cover of P3 ramified on a quartic (K3) surface. Note that the
threefold itself is smooth (and not only quasi-smooth): in fact, the generic member of the family will have y21 + · · ·, and
therefore will avoid the coordinate point P4 = [0, 0, 0, 0, 1].

An infinitesimal Torelli theorem for the quartic double solid was already established by Clemens [8]. Moreover, since
it shares numerical coincidences (in particular, the dimension of the intermediate Jacobian) with the Gushel–Mukai Fano
threefold of index 10, Y10, Tyurin conjectured the existence of a birational isomorphism between Y10 and X4. This was just
recently disproved by Debarre, Iliev, Manivel in [11].

If we consider the double cover X2
4 of P(1, 1, 1, 1, 2) branched on the quartic double solid (we use this notation because

we consider the K3 surface as the base of the tower) we will have that the resulting variety will be quasi-smooth, acquiring
2 ×

1
2 (1, 1, 1, 1) points on the intersection with the weighted P(2, 2). If we compute the Hilbert–Poincaré series of the

Jacobian ring of any member of the tower, this will be

HP(R) = 1 + 4t + 10t2 + 16t3 + 19t4 + 16t5 + 10t6 + 4t7 + t8.

The odd Hodge structure will be concentrated in degrees 2 and 6 (with R2 ∼= R6 both 10 dimensional), while the even Hodge
structure will be in degrees 0, 4, 0. It follows that for example the Fano threefold will have as Hodge Diamond

0 10 10 0
0 1 0

0 0
1

and the Fano fourfold will have
0 1 20 1 0

0 0 0 0
0 1 0

0 0
1

and the same for every even (and odd) dimension. Note that even in higher dimension the period map will depend only by
the K3 structure (see for example [10]): in particular any member of the tower will satisfy the Torelli property. A further
result regards the rationality property: while it is known that a smooth quartic double solid is irrational [26], the same does
not hold in higher dimensions. We prove in fact

Proposition 4.7. Let X j
4 ⊂ P(14, 2j) a quasi-smooth member of the tower of quartic double space with dim X j

4 ≥ 4. Then X j
4 is

rational.

Proof. Indeed any quasi-smooth X j
4 ⊂ P(14, 2j) is given up to P(14, 2j)-automorphism by an equation like:

X j
4 := (f (x0, x1, x2, x3, y1, . . . , yj−2) + yj−1yj = 0)

where f (x0, x1, x2, x3, y1, . . . , yj−2) is a quasi-smooth polynomial of degree 4. Now let us consider the open sub-scheme
Uj ↪→ P(14, 2j) given by yj = 1. We set Vj := Uj ∩ X j

4. By definition there exists a birational morphism between the affine
variety Aj−2

x0,x1,x2,x3,y1,...,yj−2 99K Vj given by

φ: (x0, x1, x2, x3, y1, . . . , yj−2) ↦→ (x0, x1, x2, x3, y1, . . . , yj−2, f (x0, x1, x2, x3, y1, . . . , yj−2)). □
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Table 6
Towers from Fano threefolds of index > 1.
No Xd ⊂ P(a0, . . . , a4) Odd Even

97 X4 ⊂ P(1, 1, 1, 1, 2) 0,10,10,0 0,1,20,1,0
98 X6 ⊂ P(1, 1, 1, 2, 3) 0,21,21,0 0,3,37,3,0
99 X10 ⊂ P(1, 1, 2, 3, 5) 0,38,38,0 0,7,63,7,0

100 X18 ⊂ P(1, 2, 3, 5, 9) 0,49,49,0 0,10,79,10,0
101 X22 ⊂ P(1, 2, 3, 7, 11) 0,65,65,0 0,14,103,14,0
102 X26 ⊂ P(1, 2, 5, 7, 13) 0,66,66,0 0,14,105,14,0
103 X38 ⊂ P(2, 3, 5, 11, 19) 0,45,45,0 0,10,71,10,0
104 X2 ⊂ P(1, 1, 1, 1, 1) 0,0,0,0 0,0,2,0,0
106 X4 ⊂ P(1, 1, 1, 2, 2) 0,3,3,0 0,0,8,0,0
107 X6 ⊂ P(1, 1, 2, 2, 3) 0,8,8,0 0,1,17,1,0
108 X12 ⊂ P(1, 2, 3, 4, 5) 0,19,19,0 0,3,33,3,0
111 X4 ⊂ P(1, 1, 1, 2, 3) 0,1,1,0 0,0,4,0,0
112 X6 ⊂ P(1, 1, 2, 3, 3) 0,4,4,0 0,0,9,0,0
113 X4 ⊂ P(1, 1, 2, 2, 3) 0,0,0,0 0,0,2,0,0
114 X6 ⊂ P(1, 1, 2, 3, 4) 0,2,2,0 0,0,6,0,0
115 X6 ⊂ P(1, 2, 2, 3, 3) 0,1,1,0 0,0,5,0,0
116 X10 ⊂ P(1, 2, 3, 4, 5) 0,6,6,0 0,1,13,1,0
118 X6 ⊂ P(1, 1, 2, 3, 5) 0,1,1,0 0,0,3,0,0
119 X6 ⊂ P(1, 2, 2, 3, 5) 0,0,0,0 0,0,4,0,0
120 X6 ⊂ P(1, 2, 3, 3, 4) 0,0,0,0 0,0,2,0,0
121 X8 ⊂ P(1, 2, 3, 4, 5) 0,1,1,0 0,0,4,0,0
122 X14 ⊂ P(2, 3, 4, 5, 7) 0,3,3,0 0,1,8,1,0
123 X6 ⊂ P(1, 2, 3, 3, 5) 0,0,0,0 0,0,1,0,0
124 X10 ⊂ P(1, 2, 3, 5, 7) 0,2,2,0 0,0,5,0,0
125 X12 ⊂ P(1, 3, 4, 5, 7) 0,3,3,0 0,0,7,0,0
126 X6 ⊂ P(1, 2, 3, 4, 5) 0,0,0,0 0,0,2,0,0
127 X12 ⊂ P(2, 3, 4, 5, 7) 0,1,1,0 0,0,3,0,0
128 X12 ⊂ P(1, 4, 5, 6, 7) 0,1,1,0 0,0,3,0,0
129 X10 ⊂ P(2, 3, 4, 5, 7) 0,0,0,0 0,0,3,0,0
130 X12 ⊂ P(3, 4, 5, 6, 7) 0,0,0,0 0,0,1,0,0

4.4.3. A second example of GM-like Fano of K3 type
The other example of GM-like Fano of K3 type that wewant to investigate is the family no. 122, X14 ⊂ P(2, 3, 4, 5, 7). This

is particularly interesting, since is the only GM-like of K3 type that represents as well a counterexample to the infinitesimal
Torelli problem. We have already investigated the Hilbert–Poincaré series of the Jacobian ring, this being

HP(R) = 1 + t2 + t3 + 2t4 + 2t5 + 3t6 + 3t7 + 5t8 + 4t9 + 6t10

+ 5t11 + 7t12 + 6t13 + 7t14 + 6t15 + 7t16 + 5t17

+ 6t18 + 4t19 + 5t20 + 3t21 + 3t22 + 2t23 + 2t24 + t25 + t26 + t28.

Here we see that the Hodge theory in even dimension is concentrated in degree 1,14, while in odd dimension in degree 7,21.
It follows that for example the Fano threefold will have as Hodge Diamond

0 3 3 0
0 1 0

0 0
1

and the Fano fourfold will have

0 1 8 1 0
0 0 0 0

0 1 0
0 0

1

with 8 being exactly the Picard rank of the K3 surface that is the step 0 of the tower. A curious behaviour appears here: one
has in fact

Theorem 4.8. Any odd dimensional member X2k+1
14 ⊂ P(2, 3, 4, 5, 72k+1)will be of Anti-Torelli type, while any even dimensional

member X2k
14 ⊂ P(2, 3, 4, 5, 72k) will be of Torelli type. In particular we have an infinite chain of examples and counterexamples

for the Torelli problem, with alternate dimensions.
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Proof. The failure in any odd dimension follows from the same reasons explained in 3.12. On the other hand in even
dimension one has to check the (trivial) injectivity of the map

d℘ : R14 −→ Hom(R0, R14 ⊕ C) ∼= Hom(C, R14 ⊕ C).

The result follows immediately then. □

This type of construction can be obviously performed for any quasi-smooth hypersurfacewe considered before. However,
we decided to focus in full details only in these three examples, since they shared themost interesting geometric properties.
In particular we plan to continue the study of these GM-like Fano varieties of K3-type in a forthcoming work. As an example
of our computations, we include now the complete list of towers coming out from the Fano threefolds of index > 1 (see
Table 6).
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