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Abstract: Oxindoles are an important class of heterocyclic scaffolds widely present in natural 

products and bioactive compounds. For this reason, a plethora of methodologies for the 

stereoselective synthesis of enantioenriched oxindoles has been studied over the years. 

Among all the reported synthetic strategies, organocatalysis has proven to be a powerful tool 
for the asymmetric synthesis of this class of compounds being a step- and atom-economical, 

environmentally friendly, and non-toxic approach. This review will outline the application of 

asymmetric organocatalysis in the synthesis of chiral oxindole-based structures, relying on 

domino/one-pot reaction sequences in a step-economical fashion.  
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1. INTRODUCTION 

The stereoselective synthesis of chiral heterocyclic building 
blocks and optically pure complex molecular structures has been 
one of the major challenges for synthetic organic chemists [1]. In 
fact, heterocyclic compounds have appeared as privileged structures 
as part of natural and synthetic products with applications in the 
pharmaceutical and agrochemical industry [2]. The presence of one 
or more heteroatoms in the cyclic core is indeed a feature of mole-
cules that play a key role in our daily life [3].  

Within this context, oxindoles are molecular scaffolds widely 
present in bioactive compounds, active ingredients, as well as natu-
ral products [4]. Due to their potential applications, chemists have 
addressed their efforts all over the years to the development of new 
and efficient methodologies for the synthesis of such heterocycles 
starting from simple and readily available substrates, focusing 
mainly on enantioselective catalytic processes (Fig. 1).  

In this framework, asymmetric organocatalysis has emerged as 
a reliable and efficient approach to this aim [5].  

Asymmetric organocatalysis is defined as the use of small opti-
cally pure organic compounds, either synthetic or chiral pool-
derived, able to promote organic transformations in a stereoselec-
tive fashion. Even though the use of naturally-derived chiral or-
ganic compounds as catalysts was firstly reported in 1913 [6], it 
was only at the beginning of the 21st century that this approach 
addressed the attention of the scientific community with a renewed 
interest [5h-7]. This has paved the way to a tremendous develop-
ment of this synthetic approach, extending the horizons of organic 
synthesis towards efficient, practical and more sustainable method-
ologies [8].  
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Fig. (1). Synthetic approaches towards enantioenriched oxindoles via step-
economical methods. 

In facts, several advantages can be addressed to the use of these 
organic catalysts:  

• the stability of these catalysts in the presence of air and 
moisture compared to metal-complexes allows low-
demanding reaction conditions;  

• lower environmental impact and waste due to the absence of 
heavy metals;  

• organocatalysts are usually cheaper than enzymes or metal-
based catalysts and readily available;

• different activation modes, often simultaneous, are possible 
with respect of substrates, reagents, and reactions. (Fig. 2A) 

Due to these features, organocatalytic procedures ideally follow 
the principles of green chemistry. Additionally, among the exten-
sive realm of organocatalytic methodologies, multicomponent reac-
tions [8e, 9], sequential catalysis [10], domino/cascade [8a-11], and 
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one-pot [12] reactions represent undoubtedly a breakthrough in the 
total synthesis of enantioenriched molecules. Key features are cer-
tainly the increased atom- and step-economy of these practical and 
efficient procedures, which dramatically decrease the cost and envi-
ronmental impact of the syntheses, reducing the purification and 
isolation steps of the various intermediates.  

Two main classes of organocatalysts can be distinguished on 
the basis of the type of activation (Fig. 2A): i) the covalent organo-
catalysts (C10-13), typically secondary amines [13] and N-
heterocyclic carbenes (NHCs), [14] which form a covalent bond 
with the substrates; ii) non-covalent organocatalysts, which rely on 
activations via H-bonds networks [8b, 8e, 15]. Within this context, 
the combination of multiple activation modes performed by the 
organocatalysts with the above-mentioned step-economical cascade 
reaction sequences has been successfully applied to the synthesis of 
oxygen [16] and nitrogen [17] containing heterocycles, and chiral 
oxindoles are no exceptions. 

Over the years, various catalytic asymmetric strategies have 
been reported for the stereoselective synthesis [18] and heterofunc-
tionalization [19] of oxindole derivatives [20] and spirooxindoles. 
[15]. This review will outline the most recent methodologies for the 
stereoselective synthesis of chiral oxindoles, which rely on step-
economical domino/one-pot organocatalysed reactions, reported in 
the time frame 2015-2021. The discussion is divided on the basis of 

the class of substrates employed in the reactions, and a particular 
focus is given to the reaction sequences mechanistic features. 

2. CASCADE APPROACHES FROM 3-ALKYLIDENE OX-

INDOLES  

Among the various substrates commonly used for the cascade 
functionalization of oxindoles, 3-alkylidene-oxindoles are undoubt-
edly the most studied. Indeed, these peculiar compounds are charac-
terized by a versatile reactivity on the α- and β-position adjacent to 
the lactam moiety. Often, the presence of electron-withdrawing 
groups on the alkylidene moiety favors a double electrophilic ten-
dency to react with nucleophiles via conjugated addition on either 
the α or the β carbon with respect to the lactam functionality.  

Consequently, the most frequently used synthetic approaches 
employed in the transformation of this class of substrates involve a 
Michael-type conjugate addition followed by a cyclization reaction 
in a one-pot/cascade fashion.  

In 2015, Wu, Sha et al. developed a Michael/cyclization meth-
odology towards substituted spirooxindoles 3, relying on the cata-
lytic activity of a cinchona alkaloid-derived dimer, (DHQD)2PYR 
C23 (Scheme 1) [21]. 

The substrates chosen were di-cyano-substituted N-protected 
oxindoles 1 and β,γ-unsaturated benzotriazole amides 2. The terti-
ary amine of the quinuclidine moiety of catalyst C23 promoted a 
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Fig. (2). Overview of organocatalysts covered in this review (B) and principal activation modes (A).  
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vinylogous Michael addition onto the β-carbon of the isatylidene 
malononitrile 1, activating the extended enolate of 2 in A. Subse-
quently, the α-carbon of the malononitrile moiety could perform a 
cyclization reaction on the amide function, with a simultaneous 
displacement of benzotriazole 4 and formation of product 3. Spi-
rooxindoles 3 were obtained in good to excellent yields with high 
stereocontrol of the newly formed quaternary stereocenter (up to 
97% ee). 

To achieve this level of enantioselectivity, two key points were 
studied by the authors once identified the best catalyst: i) the steric 
hindrance of the N-substituent on the starting material 1 proved 
crucial, since the ee value increased gradually going from methyl to 
–CHPh2 group (29 and 90% ee, respectively); ii) the temperature 
screening showed the best results were obtained by decreasing it 
down to –20°C. Even though this approach proved efficient in the 
control of domino reaction sequence, the overall atom-economy of 
the process is not optimal, since benzotriazole 4 is formed as side 
product in order to achieve the desired compounds.  

In the same year, the group of Sun reported a different one-pot 
strategy to form spirooxindoles 9, relying on a squaramide-
promoted Michael/Mannich domino reaction (Scheme 2) [22]. The 
authors employed the in situ formation of ketimines starting from 
1,3-diketones 5 and substituted nitroso-benzenes 6, in the presence 
of catalyst C15. With the subsequent addition of the alkylidene 
oxindoles 8, the bifunctional organocatalyst was able to activate the 
enolate of the formed imine intermediate by the two NH groups of 
the squaramide core, while coordinating the oxindole substrate with 
the quaternary ammonium group. Thus, a Michael addition could 
occur, followed by a Mannich reaction on the imine functionality, 
affording the desired products 9. Noteworthy to mention is that in 
this reaction the conjugated addition occurred on the β-position of 
the lactam moiety and not on the C3-position (β-position consider-
ing the electron-withdrawing group (EWG)), opposite outcome 
compared to the previously mentioned method. This reactivity 
could be addressed to the presence in the substrate 1 of two EWGs, 
resulting in a more electrophilic C3-position, compared to this re-
port.  

The five-membered spirocyclic oxindoles 9 were achieved with 
moderate to excellent yields and excellent enantio- and diastereose-
lectivities (up to 99% ee and >20:1 dr).  

Later on, Quintavalla and co-workers reported a divergent syn-
thesis of five- and six-membered spirocyclic oxindoles by employ-
ing terminally-NO2-substituted alkenes in a similar reaction se-
quence (Scheme 3) [23]. In particular, by varying the chain length 
of substrate 11 and switching the catalysts used, the authors were 
able to obtain two different sets of products via either a formal 
[3+2] or formal [4+2] annulation. Both strategies relied on non-
covalent organocatalysts to promote a Henry-type conjugated addi-
tion, followed by an intramolecular Michael addition to the elec-
tron-poor alkene moiety. The reaction sequence was promoted by 
Takemoto thiourea (C7) to obtain the six-membered spiroproducts 
13, and a quinidine-derived thiourea (C3), in the case of products 
14. The procedure tolerated well various substituents on the Boc-
protected oxindoles 10 as well as on the R4 and R5 positions of 
alkenes 11, leading to the formation of the products with four con-
tiguous stereogenic centres in good to excellent yields and stereose-
lectivities. Interestingly, by changing the configuration of the 
alkene substrate 10 from E to Z, the authors discovered the possibil-
ity to obtain the C3-epimer of both 13 and 14. This developed 
methodology proved to be efficient and at the same time practical, 
performed under mild reaction conditions while maximizing the 
outcomes on both sets of products.  

In 2018, Nakano and co-workers explored as well the use of H-
bonding organocatalysts for the construction of 2-aminopyran-fused 
oxindoles 17 (Scheme 4) [24]. The authors designed a new hybrid 
squaramide-based organocatalyst (C19) bearing a chiral amino 
alcohol moiety and they tested its reactivity in a Mi-
chael/cyclization cascade between oxindoles 15 and 1,3-diketones 
16. The catalyst proved efficient in the reaction in the study in 
terms of obtained yields, despite the enantioselection was strongly 
affected by the different substitutions on the aromatic ring of the 
oxindoles 15 and especially on the 1,3-diketones 16, affording ra-
cemic products when open-chained ketones were used.  

Subsequently, in 2019, the group of Xiang and Yang employed 
as well a squaramide-based catalyst to achieve complex polycyclic 
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Scheme 1. Vinylogous Michael/cyclization strategy by Wu, Sha et al. [21]. 
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spirooxindoles 21 (Scheme 5). [25]. By probing 3-hydroxyox-
indoles 20 and ylideneoxindoles 19 in the presence of the catalyst, 
the initial Michael adduct could be formed from the nucleophilic 
attack of the C3 position of 20. Then, a consecutive ring-
opening/ring-closure occurred by the one-pot addition of p-
toluenesulfonic acid and water, heating the reaction mixture at 
80°C. At first, a trans-lactonization could occur with consequent 
opening of the lactam ring. Afterwards, the acid-catalysed lactami-
zation on the CO2Et substituent afforded the desired quinolinone 
scaffold of the final product 21. This practical and step-economical 
protocol allowed the synthesis of a complex molecular architecture 
with excellent yields up to 97% and high levels of both enantio- and 
diastereoselectivities (up to >99% ee and >95:5 dr). 

A different approach towards six-membered spirocyclic oxin-
doles was developed by Sun et al. (Scheme 6) [26]. The authors 
employed a one-pot combination of a chiral H-bonding squaramide 
catalyst (C15) and an achiral secondary amine covalent organocata-
lyst (27). In particular, the squaramide C15 could promote the ini-
tial Michael reaction between the 1,3-diketones 25 and the alky-
lidene oxindoles 24, in 24 hours at 0°C. The Michael adduct 26 was 
not isolated, and to the reaction mixture piperidine (X) and α,β-
unsaturated aldehydes 28 were added to catalyse the following 
domino Michael/aldol sequence via stepwise iminium ion/enamine 
activation (see Fig. 2 for details) and obtain the cyclized products 
29. The developed methodology resulted applicable to variously 
substituted starting materials, with consistent outcomes in terms of 
yields and excellent control over the six new stereocentres (up to 
98% ee, >20:1 dr). 

Other applications of covalent-bonding organocatalysis have 
been explored as well for the functionalization of alkylidene oxin-
doles. In 2017, Enders’ group reported a switchable synthesis of 
complex spirocyclic oxindoles employing N-heterocyclic carbenes 
(NHCs) (Scheme 7) [27]. The use of NHCs as organocatalysts has 
emerged as a privileged approach to promote Umpolung activations 

of carbonyl groups. In particular, the in situ generated carbenes 
(NHCa and NHCb) performed nucleophilic addition on the isatin-
derived enals 30, generating the so-called Breslow intermediate 34. 
This kind of intermediate is characterized by a polarity reversal 
(Umpolung) of the former carbonyl carbon as well as of its β-
position, considering the azolium homoenolate resonance form 34’. 
Specifically, this newly generated nucleophile could perform a 
Michael addition on N-tosyl-azadienes 31 and the outcomes could 
be controlled by varying the reaction conditions. Switching the used 
base, solvent, and catalyst, the authors were able to promote either a 
Michael/aza-Dieckmann-type cyclization sequence (pathway B, 
Scheme 7) or a domino Michael/Mannich/lactamization reaction 
(pathway A, Scheme 7). The former pathway afforded enaminone-
containing spirocyclic oxindoles 33, potential building blocks for 
further modifications, while the latter pathway generated biologi-
cally relevant β-lactam fused spriocyclopentane oxindoles 32, with 
5 adjacent stereogenic centres. Both sets of products were isolated 
with remarkable yields and excellent levels of stereocontrol. 

As mentioned above, the protocols reported so far in this chap-
ter relied on the electrophilic reactivity of alkylidene oxindoles, 
which react smoothly with nucleophiles in initial Michael reactions, 
followed by tandem transformations in a domino/one-pot fashion. 
Nevertheless, this class of substrates could be used as nucleophiles 
as well.  

Han et al. reported the synthesis of lactone-based spirooxin-
doles 41 starting from isopropylidene oxindoles 39 and isatins 40 
(Scheme 8) [28].  

In the presence of cinchona alkaloid-derived squaramide C14, 
the γ-position of substrate 39 could be activated via extended 
enolate formation and, upon coordination of both substrate in A, a 
domino vinylogous aldol/transesterification reaction sequence could 
take place, yielding the final spiroproducts with very high enanti-
omeric excesses (up to 95% ee). 
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Scheme 8. Vinylogous aldol/transesterification domino reaction developed by Han et al. [28]. 

3. FORMAL CYCLOADDITION REACTIONS WITH 3-

ISOTHIOCYANATE OXINDOLES 

The reactivity of isothiocyanates has been widely studied over 
the years and has demonstrated to be an excellent tool in the syn-
thesis of heterocycles [29]. This reactivity has been employed to 
obtain enantioenriched cyclic thiourea- and thioamide-based spi-
rooxindoles. 

In 2016, Shi’s group studied the reactivity of different aza-
dienes in the reaction with 3-Isothiocyanate oxindoles 42, catalysed 
by chiral bifunctional thioureas (Scheme 9) [30]. The α,β-
unsaturated imines 43, 45, and 47 were used as electrophiles to 
initiate the cascade sequence, followed by a thiolactam ring closure, 
which depended on the starting imine.  

In particular, when the reaction was performed on α,β-
unsaturated aldehyde-derived imines 43 in ACN at -20° C, the ini-
tial nucleophilic attack was a Mannich reaction and then a subse-
quent aza-cyclization occurred to afford the cyclic thioureas 44 
(Scheme 9a). Conversely, starting from ketimines 45 in DCM at -
40° C, the nucleophilic attack occurred 1,4 (Michael reaction) in-
stead of 1,2 (Mannich), generating an intermediate enamine, which 
could then undergo cyclization from its α-carbon (Scheme 9b). In 
both examples, the formal [3+2] cycloaddition worked smoothly, 
yielding to the two sets of products with excellent outcomes and 
stereoselectivities.  

Additionally, the use of dienone-derived imines 47 allowed to 
achieve polycyclic spirooxindoles 48 via domino Mi-
chael/cyclization/sulfa-Michael reaction (Scheme 9c). In this last 
case, the optimal catalyst was found to be the dihydroquinine-based 
thiourea C5, which effectively catalysed the reaction with complete 
diastereoselectivity and good to excellent ee values.  

The same 3-Isothiocyanate-oxindole substrates 42 have been 
used by several research groups in the following years, paired with 

various electron-deficient exo-cyclic alkenes (Scheme 10). In all 
these cases, the reactivity involved was a Michael addition followed 
by the cyclization of the thiolactam ring. However, the nature of the 
alkene substrates allowed to afford structurally diverse and poten-
tially biologically relevant polycyclic scaffolds.  

Lu, Lin, and Weng group worked in 2018 on this transforma-
tion and tested the reactivity of E-benzylidenechromanones 49 in 
the presence of 42 and a rosin-based squaramide catalyst C20 
(Scheme 10a) [31]. The chroman structure is widely present in 
biologically active compounds and natural products and thus, the 
synthesis of chroman-based enantioenriched products has been 
extensively studied (for the synthesis of other chromano-oxindoles 
see Section 5) [32]. The polycyclic bis-spirocompounds 50 were 
isolated with excellent outcomes in terms of yields and selectivity, 
well tolerating both electron-withdrawing and electron-donating 
groups on the chromanone substrates. Moreover, a gram-scale reac-
tion was successfully attempted, with no influence on the reaction 
results.  

The same group developed an analogous protocol employing 
CF3-containing alkylidene-oxindoles 51 (Scheme 10b) [33]. This 
methodology allowed for the generation of bis-oxindole spirocyclic 
frameworks bearing a CF3 group under mild reaction conditions, 
with excellent yields and enantioselectivities.  

In the same year, Du’s group worked on a similar reaction, in-
troducing a different heterocyclic alkene substrate 53 bearing a 
thiazolidinone moiety (Scheme 10c) [34].  

Thioazolidinones are also important fragments featured in many 
pharmaceutically active ingredients. In this report, the best catalyst 
proved to be a dihydroquinine-based squaramide, which supposedly 
coordinates the Isothiocyanate-oxindole 42 by the two NH groups, 
while coordinating the thiazolidinone substrate via H-bonding with 
the quaternary ammonium of the quinuclidine moiety.  
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Scheme 9. Reaction of various α,β-unsaturated imines with isothiocyanate oxindoles. 

 

More recently, Grošelj et al. employed arylidene-pyrrolin-4-
ones 56 in a similar fashion (Scheme 10d) [35]. Interestingly, the 
authors evidenced that by using (E)-N-protected pyrrolidones 56 in 
the optimized reaction conditions, good to excellent levels of 
stereoselectivities were observed (up to 98% ee and up to 99:1 dr). 
Moreover, the authors investigated the reaction using alkenes with 
opposite configuration (from E to Z), with R3 = H. The absolute 
configuration of the new products was not confirmed, but it was 
tentatively assigned as the opposite enantiomer of 57. However, by 
probing (Z)-N-unsubstituted 56, the reactivity and the enantioselec-
tivity observed were drastically decreased (two examples of Z alke-
nes; 7% and 19%, –21% and –57% ee).  

A different approach towards the synthesis of various poly-
cyclic spiro compounds from Isothiocyanate-oxindoles 42 was re-
ported by Yuan and co-workers in 2020 (Scheme 11) [36]. In this 
report, structurally different ketimines were employed in a domino 
Mannich-aza-cyclization reaction with 42, affording three sets of 
polycyclic thioureas. Mild reaction conditions were used in the 

presence of the chiral catalysts. When quinazolinones 58 and sac-
charin-derived ketimines 60 were tested, the reaction proceeded 
smoothly in short time, affording the desired enantioenriched prod-
ucts with high levels of stereocontrol. Additionally, also benzoxazi-
none-based ketimines 62 produced the spirocyclic products 63, 
despite lower yields and ee values.  

4. FUNCTIONALIZATION OF 3-IMINO OXINDOLES  

Within the framework of different oxindoles functionalization, 
another class of substrates studied is 3-imino-oxindoles.  

The groups of Enders [37] and Du [38] independently reported 
the use of isatin-derived ketimines 64 in a Michael/Mannich dom-
ino sequence to produce 3-pyrrolidinyl-spirooxindoles 66 and 68 

(Scheme 12a & b, respectively). Specifically, trifluoroethyl ketimi-
nes 64 possess an acidic CH2 site, which could be easily deproto-
nated and could undergo nucleophilic addition on appropriate Mi-
chael acceptors (Scheme 12, A). Afterwards, a Mannich reaction on 
the electrophilic imine site could produce the formal [3+2] cycliza-
tion product.  
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Scheme 10. Domino Michael/cyclization reactions of different electron-poor alkenes with 42/55. 
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Scheme 11. Structurally diverse polycyclic spirooxindoles obtained from various ketimines. 

The Michael acceptors of choice for Enders et al. were alky-
lidene oxindoles 65 (Scheme 12a). In the presence of an amino-
thiourea organocatalyst C6 under mild reaction conditions, bis-
spirooxindoles 66 were isolated with high yields and good control 
over the four generated contiguous stereocentres. 

Similar excellent results were obtained by Du’s group, who 
used instead of a squaramide-based catalyst C16 and arylidene 
azalactones 67 (Scheme 12b). Noteworthy to mention, the authors 
isolated at first the products of the formal [3+2] cycloaddition B, 
which showed to be unstable. Thus, they opted for a one-pot treat-
ment with HCl/MeOH to produce the corresponding 3,2’-
pyrrolidinyl spirooxindoles 68, with good to excellent yields and 
stereoselectivities.  

Another approach in the use of imino-oxindoles was reported 
by Han et al. in 2017 (Scheme 13) [39]. The authors explored the 

application of covalent-bonding organocatalysis to generate enan-
tioenriched nucleophilic intermediates 71 that, upon reaction with 
Boc-protected isatin-imines 72 in a one-pot fashion, would lead to 
the formation of piperidinyl-spirooxindoles 74. By treatment of 
enolizable aldehydes 70 with the proline-derived catalyst C10, a 
catalytic amount of nucleophilic enamine could be formed, which 
could undergo Michael addition on various nitrostyrenes 69. The 
generated Michael adducts have been involved directly in a subse-
quent domino aza-Henry 1,2-addition/hemiaminalization reaction 
with the addition of 72 and diazabicycloundecene (DBU) as base. 
In order to achieve more stable products, the authors successfully 
explored the possibility to perform a dihydroxylation of the hemia-
minals 73, yielding the final products with outstanding results. This 
3-steps one-pot process allowed for the identification of one prom-
ising lead compound with potent antiproliferative effects on breast 
cancer cells.  
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Scheme 12. Michael/Mannich sequence starting from trifluoroethyl isatin-imines 64. 

 

Lastly, in 2020 Šebesta and co-workers studied the combination 
of organocatalysis and mechanochemistry for a domino Man-
nich/fluorination sequence on Boc-protected imines 72 (Scheme 14) 
[40]. Ball milling has recently emerged as an efficient and green 
approach towards more environmentally friendly synthetic method-
ologies [41]. The mechanical activation of pyrazolones 75 and Boc-
isatin-imines 72 in the presence of a low amount of squaramide-
based organocatalysts C15 (1 mol%) efficiently promoted the initial 
Mannich reaction to afford intermediate 76. Subsequently, the one-
pot treatment with N-fluorobenzenesulfonimide (NFSI), in the pres-
ence of a base, yielded the final domino product in short reaction 
times and outstanding outcomes in terms of yields and stereoselec-
tivites (up to 98% ee, >20:1 dr). Despite the necessity to use a small 
amount of DCM to perform a liquid-assisted grinding (LAG), this 
procedure highlights the potential application of mechanochemistry 
to organocatalysed domino/one-pot synthetic procedures. 

5. SYNTHESIS OF CHROMAN-DERIVED OXINDOLES  

As above mentioned, the chroman scaffold is an important 
structure of many natural and bioactive compounds [32]. For this 
reason, over the years many research groups have worked on the 
synthesis of chroman-fused oxindoles, since the combination of 
these two potentially important heterocycles could lead to relevant 
products with pharmacological applications.  

Substrates 78, characterized by methylene-bridged fused oxin-
doles and chromanones, have been tested in the reaction with acti-
vated alkenes bearing EWGs in several reports (Scheme 15). Spi-
rooxindole-based hexahydroxanthones with 5 contiguous stereo-
genic centres were successfully isolated via double Michael domino 
sequence (Fig. 3).  

In 2019, Liu and Zhou group reported two different methodolo-
gies yielding the spiro-bis-heterocycles starting from substrates 78
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Scheme 13. Four-steps one-pot synthesis of piperidinyl-spirooxindoles 74 via covalent-bonding organocatalysis. 
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Scheme 14. Mechanochemical domino Mannich/fluorination reaction. 
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Fig. (3). Transition state for the sequential Michael/Michael sequences 
reported by Liu and Zhou (Scheme 15b). 

and alkenyl-isoxazoles 79 [42] or nitroalkenes 69 [43] (Scheme 15, 
a  & b, respectively).  

Initially, double-bond-containing isoxazoles 79 were chosen as 
pairing substrates with 78 (Scheme 15a). Thiourea C4 was found to 
be the best catalyst to efficiently catalyse the reaction in study with 

excellent outcomes. Interestingly, while exploring the substrate 
scope, once established the optimal reaction conditions, the authors 
tested various electron-deficient alkenes such as: chalcones, α,β-
unsaturated aldehydes, acrylates, and nitroalkenes 69. Surprisingly, 
none of the probed substrates produced the desired corresponding 
products.  

Nevertheless, later that year, the same researchers were able to 
perform and optimize the double Michael reaction between 78 and 
nitroalkenes 69, before non-reactive, by replacing the organocata-
lyst with a quinine-based thiourea ent-C7 (Scheme 15b). Both 
methods produced the corresponding hexahydroxanthones with 
high to excellent yields and stereoselectivities, well tolerating vari-
ous substitutions on both aromatic rings of 78.  

More recently, Du and co-workers applied substrates 82 in a 
similar reaction catalysed by a squaramide-based organocatalyst 
C14 (Scheme 15c) [44]. Even if the core structure of the catalyst 
was different, the reaction was proposed to be promoted similarly to 
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the previous examples (Fig. 3), where the coordination of the Mi-
chael acceptors thiazolidinones 83 could be performed by the 
squaramide NH groups instead. The spirothioazolidinone deriva-
tives 84 were obtained with excellent outcomes and also examples 
of late-stage functionalization were proposed, demonstrating the 
potential application of these products in the synthesis of more 
complex pharmaceutically interesting compounds.  

A reverse approach to this transformation was also explored by 
the group of Liu and Zhou (Scheme 16) [45]. In particular, the 
authors introduced the chromanone functionality on a methylene-
bridged pyrazolone-derived substrate 85, while the oxindole moiety 
was included in the electron-poor alkene as alkylidene-oxindoles 
86. This method allowed for the combination of three important 
heterocycles, including also the pyrazolone one that has demon-
strated tremendous applications in medicinal chemistry [46], yield-
ing bis-spiro polycyclic frameworks with excellent levels of optical 
purity. 

Enders’ group also worked on the synthesis of oxindole-
containing chromans obtained by H-bonding catalysis (Scheme 17) 
[47]. In this report, the chroman cycle was not pre-formed and it 
was produced via domino oxa-Michael/1,6 addition sequence cata-
lysed by chiral thiourea C1 in very low catalyst loading (5 mol%). 
The authors designed a peculiar substrate characterized by a nu-
cleophilic site installed on para-quinone methides (p-QMs) 88. This 
class of substrates has been, in facts, widely employed in 1,6-
conjugate additions, due to their high reactivity driven by the aro-
matization in the final products [48]. The introduction of a nucleo-
philic phenolic site on the substrates lead to new reactivity in a 
domino approach, pairing these substrates with alkylidene-
oxindoles, as shown in Scheme 17A. 

The desired chromans bearing spiro-connected oxindoles with 
three contiguous stereogenic centres were successfully synthesized 
with moderate to good yields and high to excellent diastereo- and 
enantioselectivities.
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Scheme 15. Methylene-bridged chromanone-oxindoles 78/82 used in the synthesis of hexahydroxanthones. 
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Scheme 17. oxa-Michael/1,6 addition sequence towards chroman-derived oxindoles 89. 
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Scheme 18. Synthesis of bioactive polycyclic spiro-compounds containing chroman and oxindole moieties.  

 

Subsequently, covalent-bonding organocatalysis was also ap-
plied in a domino reaction sequence to afford chroman- and oxin-
dole-derived spiro-products 91 (Scheme 18) [49]. The secondary 
amine proline-derived organocatalyst C10 was employed to cata-
lyse a quadruple oxa-Michael/Michael/Michael/aldol cascade reac-
tion between oxindole-containing alkenyl-phenols and anilines 90 
and α,β-unsaturated aldehydes 28. The proposed mechanism of this 
transformation started with the iminium-ion activation of the alde-
hydes 28 by the catalyst (Scheme 19).  

Then, the initial oxa-Michael addition from the phenol group 
could occur on the electrophilic β-position of 92, generating inter-

mediate enamine 93a. Subsequently, the enamine could undergo 
intramolecular conjugate addition on the ylidene β-carbon achiev-
ing intermediate 94a. At this point, another activated iminium ion 
could react with enol 94a via domino Michael reaction/aldol con-
densation yielding to the desired product 91a and regenerating cata-
lyst C10. This highly step-economical methodology achieved prod-
ucts with five adjacent stereocentres with excellent enantiocontrol 
(up to >99% ee) and moderate to good diastereomeric ratios. 
Moreover, the protocol was successfully applied replacing the phe-
nol group with NH2, leading to the corresponding spiro-
tetrahydroquinolines. Additionally, the biological effects of the 
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obtained compounds were investigated, identifying a potential lead 
compound possessing promising antiproliferative activity against 
human cancer cell lines. 

6. MISCELLANEOUS  

Apart from the more common classes of compounds employed 
in the stereoselective functionalization of oxindoles described so 
far, other types of substrates were investigated as well over the 
years.  

In 2015, Enders et al. developed a three components method for 
the synthesis of cyclopentane-oxindoles starting from 3-susbtituted 
N-Boc-protected oxindoles 95, nitro-diene 96 and α,β-unsaturated 
aldehydes 28 (Scheme 20) [50]. The optimization of the reaction 
conditions identified O-TMS-diaryl-prolinol C10 as a catalyst of 
choice to promote the triple Michael cascade reaction. C10 was 
proposed to act as both Brønsted base as well as covalent-bonding 
organocatalyst, as depicted in (Scheme 20). 

The initial deprotonation of the 3-position of oxindoles 95 
forming enolates 99 could activate the first Michael addition on 
electrophilic nitro-diene 96. Afterward, a Henry-type Michael addi-
tion could occur from the deprotonated α-position to the NO2 group 
of intermediate 100 on a molecule of α,β-unsaturated aldehyde 28 
activated via iminium ion formation. Then, the final Michael addi-
tion from the formed enamine 101 closes the catalytic cycle afford-
ing cyclopentane carbaldehydes 102. At this point, the authors 
opted for a one-pot Wittig olefination in order to achieve molecular 
complexity and guaranteeing the stability of the products. The 
method proved to be highly atom-economical since all substrates 

were used in equimolar amounts, and the procedure could be easily 
scaled up to gram scale with excellent stereocontrol, albeit the cata-
lyst loading required was quite high (50 mol%). 

Later on, Tanaka’s group reported diastereoselective formal 
(4+1) cycloaddition reaction followed by a quinine catalysed dom-
ino Michael/Henry cascade sequence to achieve complex spiro-
polycyclic oxindoles 106 (Scheme 21) [51]. Starting from enone-
derived 3-hydroxyoxindoles 103 in the presence of triflic acid 104, 
the thermally induced elimination of water lead to the dienone 107, 
which could undergo double Michael reaction with cyclic 1,3-
diketones 16 towards spirodecanes 105 with moderate to good di-
astereoselectivites. Subsequently, compounds 105 were success-
fully converted to the more complex polycyclic structures 106 in 
the presence of quinine (C21) and nitrostyrenes 69, via organocata-
lytic Michael/Henry tandem reaction. Moreover, the authors real-
ized that during the cascade formation of 106, a kinetic resolution 
of 105 occurred, affording highly enantioenriched unreacted start-
ing material (92-98 ee). The isolated enantiopure 105 was subse-
quently probed under the optimized reaction conditions, yielding to 
the opposite enantiomer of 106 with high yield and enantioselectiv-
ity. 

3-Heterofunctionalysed oxindoles were later explored in com-
bination with electron-poor alkenes. Wang et al. studied the secon-
dary amine-activated Michael/cyclization/oxidation sequence be-
tween 3-aminooxindoles 108 and α,β-unsaturated aldehydes 28 
(Scheme 22) [52]. The reaction sequence was promoted by catalyst 
C10 and proceeded as well via iminium ion activation of the alde-
hyde. Once the intermediate Michael adduct 110 was formed, an 
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Scheme 20. Triple Michael cascade/one-pot Wittig olefination sequence reported by Enders et al. [50]. 

 

intramolecular hemiaminalization could close the five-membered 
ring, which upon treatment with pyridinium chlorochromate (PCC) 
could be effectively oxidised to the corresponding γ-lactam 109 in a 
one-pot fashion. 

In 2018, Wang and Sheng tested instead 3-sulfur containing oxin-
doles 112 in an H-bonding catalysed domino Michael/Henry reac-
tion followed by one-pot sulfonium-mediated rearrangement 
(Scheme 23) [53]. 

Initially, tetrahydrothiopyrans were efficiently prepared by re-
action of 112 with nitrostyrenes 69 in the presence of a chiral non 
symmetrical bis-diamine thiourea C8, which could simultaneously 
coordinates both substrates via H-bonds network (A). The products 
113 were isolated and characterized, observing moderate to good 
yields and high stereoselectivities. Subsequently, the authors envis-
aged the following rearrangement reaction promoted by thionyl 
chloride. The mechanism for this rearrangement was proposed to 
proceed via thionyl chloride-promoted elimination and formation of 
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Scheme 25. NHC-catalysed synthesis of seven-membered spirolactam oxindoles 125 via Michael/cyclization cascade reaction. 

 

the three membered-sulfonium intermediate, followed by nucleo-
philic ring-opening by chloride attack. The authors were able to 
optimize the reaction conditions to perform this rearrangement in a 
one-pot way, without the isolation of compounds 113, obtaining 
variously substituted tetrahydrothiophenes 114 bearing four con-
secutive stereocentres with excellent outcomes in term of yields and 
stereoselection.  

As above mentioned, isatins have already been used for the 
stereoselective construction of oxindole-based molecular architec-
tures. Zhao and co-workers described in 2019 a multicomponent 
strategy to achieve spiropyran-oxindoles 120 by reaction of isatins 
117, β-keto-esters/ketones 118 and malononitrile (119) (Scheme 
24) [54]. Catalyst C2 was employed to perform the initial Knoeve-
nagel condensation between isatins 117 and 119 affording com-
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pound 121, which is subsequently coordinated in a network of H-
bonds with the β-keto-ester/ketone 118 to undergo Michael addi-
tion. Lastly, a cyclization reaction on one of the nitrile groups 
yielded the final product. The authors investigated the influence of 
water as an additive in the reaction in the study, highlighting that 
water positively influences the reaction outcomes for both yield and 
ee. The results could be rationalized by the involvement of water 
molecules in the H-bonds network, resulting in a more compact 
transition state and thus favouring the enantioselective Michael 
reaction. 

In the same year, an interesting NHC-catalysed reaction se-
quence applied to the formation of seven-membered sprirolactam 
oxindoles was reported by Fu and Huang group (Scheme 25) [55]. 
Oxotryptamines 123 were employed as four-atom synthons in a 
formal [4+3] cycloaddition domino Michael/cyclization sequence, 
paired with NHC-activated α,β-unsaturated aldehydes 28. The reac-
tion pathway started from the in situ generation of the NHC by 
deprotonation of pre-catalyst ent-C12. The NHC could generate the 
homoenolate equivalent 126 by reaction with the α,β-unsaturated 
aldehyde 28. This intermediate was efficiently oxidised to the α,β-
unsaturated acyl azolium 127 in the presence of oxidant 124. Af-
terward, the Michael addition between intermediate 127 and sub-
strate 123 could occur, generating the Michael adduct 128, which 
upon intramolecular displacement of the NHC could close the 
seven-membered ring and yield the final product 125.  

CONCLUSION 

In summary, in this review we described how asymmetric or-
ganocatalysis paved the way for the stereoselective synthesis of 
complex oxindole-based molecular structures bearing multiple 
stereogenic centres with an excellent level of stereocontrol. Most 
importantly, the advent of organocatalysed domino/one-pot sequen-
tial reaction sequences has increased the potential applications of 
asymmetric catalysis to industrial synthetic chemistry, since con-
stant efforts are addressed to the search of innovative procedures to 
obviate unnecessary time-, energy-, atom- and cost-consuming 
processes. A plethora of strategies involving the organocatalytic 
stereoselective approaches to structurally diverse oxindoles has 
been described, providing step-economical and practical tools for 
the construction of potentially biologically relevant compounds. 
The methods described in this review have several salient features, 
such as simple operational procedures, mild reaction conditions, 
and often high atom economy. However, there is space for further 
improvements, for instance, the decrease of the catalyst loading, 
often used in 20 mol% or higher, and the avoidance of chlorinated 
solvents to reduce the environmental impact of the protocols. 

We hope that this review could serve as an updated compen-
dium of the recent methodologies to inspire the synthetic chemistry 
community towards novel and exciting new applications of stereo-
selective organocatalytic cascade reactions aimed at more sustain-
able and industrially attractive production of enantioenriched oxin-
dole-based products. 
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