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Abstract

Model-based approaches to safety and efficacy assessment of pharmacological treatments
(In Silico Clinical Trials, ISCT) hold the promise to decrease time and cost for the needed
experimentations, reduce the need for animal and human testing, and enable personalised
medicine, where treatments tailored for each single patient can be designed before being
actually administered.

Research in Virtual Physiological Human (VPH) is harvesting such promise by develop-
ing quantitative mechanistic models of patient physiology and drugs. Depending on many
parameters, such models define physiological differences among different individuals and
different reactions to drug administrations. Value assignments to model parameters can
be regarded as Virtual Patients (VPs). Thus, as in vivo clinical trials test relevant drugs
against suitable candidate patients, ISCT simulate effect of relevant drugs against VPs
covering possible behaviours that might occur in vivo.

Having a population of VPs representative of the whole spectrum of human patient
behaviours is a key enabler of ISCT.

However, VPH models of practical relevance are typically too complex to be solved
analytically or to be formally analysed. Thus, they are usually solved numerically within
simulators. In this setting, Artificial Intelligence and Model Checking methods are typically
devised. Indeed, a VP coupled together with a pharmacological treatment represents a
closed-loop model where the VP plays the role of a physical subsystem and the treatment
strategy plays the role of the control software. Systems with this structure are known as
Cyber-Physical Systems (CPSs). Thus, simulation-based methodologies for CPSs can be
employed within personalised medicine in order to compute representative VP populations
and to conduct ISCT.

In this thesis, we advance the state of the art of simulation-based Artificial Intelligence
and Model Checking methods for ISCT in the following directions.

First, we present a Statistical Model Checking (SMC) methodology based on hypothesis
testing that, given a VPH model as input, computes a population of VPs which is repre-
sentative (i.e., large enough to represent all relevant phenotypes, with a given degree of
statistical confidence) and stratified (i.e., organised as a multi-layer hierarchy of homoge-
neous sub-groups). Stratification allows ISCT to adaptively focus on specific phenotypes,
also supporting prioritisation of patient sub-groups in follow-up in vivo clinical trials.

Second, resting on a representative VP population, we design an ISCT aiming at op-
timising a complex treatment for a patient digital twin, that is the virtual counterpart of
that patient physiology defined by means of a set of VPs. Our ISCT employs an intelligent
search driving a VPH model simulator to seek the lightest but still effective treatment for
the input patient digital twin.

Third, to enable interoperability among VPH models defined with different modelling
and simulation environments and to increase efficiency of our ISCT, we also design an
optimised simulator driver to speed-up backtracking-based search algorithms driving simu-
lators.

Finally, we evaluate the effectiveness of our presented methodologies on state-of-the-art
use cases and validate our results on retrospective clinical data.
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Chapter 1

Introduction

To bring a new biomedical product (e.g., drug, treatment, vaccine, medical device)
to the market is highly expensive in terms of time and money. Several studies
through the years (see, e.g., [64, 166, 177]) show that, in the current clinical practice,
the development and approval of a new drug could cost up to 1 billion dollars and
up to 15 years of hard work. This long process can be summarised in the following
main phases: an initial R&D and pre-clinical activities (Phase 0) where laboratory
studies, i.e., in vitro and in vivo tests on animals, are conducted; a clinical trial
(Phase I, II and III) where in vivo tests on patients and human volunteers are
conducted and, finally, a post-market surveillance (Phase IV). Phase I, II and III,
i.e., clinical trials, are of paramount importance to assess safety and efficacy of the
drug or device under test. In particular, during Phase I, a small group of patients
(or volunteers) is recruited to test safety of the drug. Phase II is demanded to
test the effectiveness of the drug on a larger group of patients. In Phase III, the
drug under test is distributed to multiple hospitals in different countries and the
safety and efficacy evaluation is conducted on a much larger group of patients. The
latter phase is very important due to the large set of patients involved with the aim
of representing all human phenotypes in terms of human variability regarding the
possible reactions to administrations of the new drug under test. A recent study [63]
estimates that the 75% of the total cost of drug development and approval is spent
in these three phases. Unfortunately, due to several reasons such as, e.g., significant
differences when moving from in vitro to in vivo, scarce representativeness of the
patients involved (see, e.g., [34]) and/or complexity of diseases, the majority of
clinical trials mostly fails at the last phase causing an important loss. Also, for
some rare diseases the whole process is too costly with respect to the limited return
and more hard to accomplish due to the lack of patients.

In this setting, a revolutionary and radical turn is promoted by the introduction
of model-based approaches into medicine for the approval of a new biomedical prod-
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uct. Model-based approaches have been used for decades for the development phase
of biomedical devices and also of drugs. For example, pharmaceutical companies
use computational models to predict both the pharmacokinetics and the pharmaco-
dynamics (PK/PD) of drugs that define changes of the drug concentration and the
drug effect over time in the human body, respectively. In a similar way, biomedical
devices are designed using model-based methods to simulate their behaviour and
to verify their design requirements (e.g., safety properties). However, as described
above, such novel devices and drugs must then undergo to a slow approval process
to assess their safety and efficacy, namely Phase I, II and III, where human patients
enter in the loop. In these phases the use of modelling and simulation has been set
aside for a long time. Recently, with the advent of computational models of patient
physiology (e.g., molecules, cells, organs and organ systems), clinical trials can be
conducted in silico, i.e., in a virtual setting, by exploiting such models of patients
(Virtual Patients, VPs) together with models of biomedical devices and PK/PD of
drugs. In this setting, effects of drug administrations as well as outcomes of biomed-
ical devices can be simulated without going in vivo. The adoption of model-based
approaches and In Silico Clinical Trials (ISCT) for safety and efficacy assessment of
biomedical products hold the promise to: i) decrease time and costs for the needed
experimentations; ii) reduce the need for animal and human testing; iii) enable per-
sonalised medicine, where individualised pharmacological treatments are optimised
for a specific patient and can be designed before being actually administered. As en-
visioned by the Avicenna Consortium in 2016 [18]: “ISCT aim at reducing, refining
and partially replacing real clinical trials”.

The ISCT revolutionary potential is currently recognised by companies (see,
e.g., [13]) and regulatory bodies such as, e.g., U.S. Food & Drugs Administration
(FDA) and European Medicines Agency (EMA), as an important advancement of
the current clinical practice. Indeed, both FDA and EMA are promoting novel
guidelines for the use of computer modelling and simulation during the approval
process of biomedical products (see, e.g., [208, 209, 210, 70]).

The Virtual Physiological Human (VPH) initiative is harvesting this vision of
in silico medicine by providing those computational models that, by means of many
parameters (e.g., stoichiometric constants, rates and/or patient-specific quantities),
define physiological difference among different individuals and different reactions
to drug administrations. Each assignment of values to model parameter can be
regarded as a VP. A representative population of VPs of the whole spectrum of
human behaviours of interest is a key enabler to design ISCT. Indeed, as in vivo
clinical trials test biomedical products on suitable candidate patients, ISCT simulate
effects of biomedical products on VPs covering possible behaviours that might occur
in vivo. However, the computation of such a population is the main obstacle to
overcome to conduct ISCT and poses several research questions.

In this setting, Artificial Intelligence and Model Checking methods are typically
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devised. Indeed, the closed-loop model consisting of a VP coupled with a biomedical
product model can be seen as a Cyber-Physical System (CPS) model where the pa-
tient represents the physical part and the biomedical product the cyber part. Much
has been done in other sectors, such as, e.g., aerospace, defence, automotive, smart
grid, concerning the modelling and simulation of CPSs. Model-based approaches
and, in particular, Model-based Systems Engineering (MBSE) methodology are ex-
tensively used to solve safety-critical and mission-critical problems similar to ISCT
objectives. For example, in the healthcare context, safety and efficacy assessment
can be done by simulating the effect of the biomedical product on, ideally, all VP,
exactly as, ideally, CPS Verification and Validation (V&V) aims at evaluating sys-
tem requirements (e.g., safety properties) under all possible operational scenarios.

In the following sections we describe more in detail our research setting with
a particular emphasis on research problems addressed in this thesis as well as our
contributions.

1.1 Virtual Physiological Human

The VPH is an European initiative aiming at promoting the innovative vision of
model-based medicine where predictive models of human physiology are exploited
in all aspects of the prevention, diagnosis, prognostic assessment, treatment of a dis-
ease and development of a biomedical product (see https://www.vph-institute.org).
Such an initiative has been introduced in 2007 by the European Commission [44]
inspired by the Physiome Project (http://physiomeproject.org) focusing on build-
ing a comprehensive framework for modelling the whole human body through the
integration of different quantitative computational models which, in turn, define
molecules, cells, organs and organ systems [100].

VPH computational models are defined by encoding qualitative knowledge of the
human physiology of interest (e.g., from the literature or pathways databases like
KEGG [111], Reactome [72] or MetaCyc [38]) as well as PK/PD of medicinal com-
pounds (e.g., [131]) into mathematical systems such as, e.g., Ordinary Differential
Equations (ODEs) or difference equations (see, e.g., [21, 50, 102]). In particular,
PharmacoKinetics (PK) and PharmacoDynamics (PD) models describe drug con-
centrations and effects over time in the human body (see, e.g., [168]), respectively.

An important aspect of VPH computational models is the capability of defining
VPs to take into account inter-subject variabilities, i.e., the possible physiological
difference between individuals and possible reactions to drug administrations. This
is achieved by means of model parameters such as, stoichiometric constants, rates or
other patient-specific quantities. Indeed, different assignments to model parameter
(i.e., VP) yield to different model behaviours and, also, to different reactions to
drug administrations.

https://www.vph-institute.org
http://physiomeproject.org
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For this reason, during the last decades, VPH has acquired a central role in sup-
porting and harvesting promises hold by ISCT as VPs predict reactions of human
patients to therapies (e.g., drug, treatments, biomedical devices). In particular, re-
search in VPH provides mechanistic quantitative models of the human physiology at
different levels of scale and for various medical areas (e.g., cardiology, endocrinol-
ogy, oncology and neurology, see [204, 51, 184, 182, 104]). For example, several
models have been proposed for molecules (e.g., [186]), cells (e.g., [19, 101]) and
single organs (e.g., [223, 51, 169]). At upper levels in the hierarchy, we find models
of human body compartments. Good examples are models in [110, 93, 53], which
define the glucose regulation mechanism in patients with Type 1 Diabetes Mellitus,
and the Hypothalamic–Pituitary–Gonadal (HPG) axis model presented in [184],
which is specifically focused on hormones related to the human menstrual cycle.
Finally, at the top level we find models of the whole human body, for example the
Glucose-Insulin Model [189, 190], HumMod [94], and Physiomodel [154]. Indepen-
dently of the level of scale used, most VPH models are defined by means of complex,
highly non-linear differential equations. Due to their complexity, in order to provide
quantitative information about the time course of the modelled biological quantities
(e.g., blood hormone or glucose concentrations) models of practical relevance can-
not be analysed analytically, but need to be numerically simulated (e.g., [99, 136]).
VPH models at different positions in the above hierarchy are typically defined at
different levels of abstraction. In order to find a trade-off between simulation accu-
racy and efficiency, multi-scale models can be built by integrating, interconnecting,
and co-simulating models of the different organs or body compartments of interest,
exploiting the different available levels of abstraction as required by the focus and
scope of the in silico analysis to be performed.

1.2 Populations of virtual patients

As anticipated, one of the main enablers to perform an ISCT is the availability of
a population of virtual patients, able to predict (via simulation) the impact of a
therapy (i.e., a pharmacological treatment or a medical device) by providing rele-
vant clinical measurements (see, e.g., [210, 70]). For an ISCT to provide compelling
evidence of the safety and the efficacy of a therapy and to support its design and re-
vision, such population must be complete, i.e., representative of the entire spectrum
of behaviours deemed of interest, from both physiology and drug PK/PD points of
view.

Virtual Patients (VPs) are typically derived by parametrising quantitative mech-
anistic VPH models. Unfortunately, the computation of complete populations of
VPs to be used for ISCT is a complex task for various reasons: First, as previously
described, quantitative VPH models of practical relevance (e.g., those encoding
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complex biological pathways) are often too complex to be analysed analytically,
and numerical simulation is the only viable means to compute their evolution un-
der any given parameter value (e.g., [99]). Second, their parameter space is often
infinite, as most parameters are real-valued. Third, most parameter values might
not actually represent VPs, as their associated model evolutions are physiologically
meaningless. This is due to, e.g., over-parametrisation, presence of unknown (hence,
not modelled) interdependency constraints among parameters, and use of parame-
ters to define too complex or not-well-understood physiological mechanisms. Last,
the values of most parameters are often not measurable through clinical assays in
human patients.

In this setting, when the VPH model at hand is identifiable, i.e., a model be-
haviour is uniquely determined from a parameter value assignment [122], a complete
population of VPs can be computed by fitting the model (e.g., [162, 184, 191, 49])
against a set of in vivo measurements (e.g., [116, 131]) deemed representative of
the entire spectrum of behaviours of interest. Conversely, in case of non-identifiable
models (e.g., [42]), although such techniques can still be used (e.g., [202, 10, 183, 214]
and citations thereof), the resulting population of VPs is not guaranteed to be com-
plete, regardless of how large and representative are the available in vivo data used
for fitting. Additionally, if small changes in such parameter values are expected
to be physiologically meaningful as well, random perturbations can be exploited to
generate additional VPs quite easily (e.g., [214]). Hence, although such VPs can
still be used to find cases (counterexamples) where the therapy under assessment is
unsafe and/or ineffective, non-identifiability hinders the possibility to have a com-
prehensive picture of the cases where the therapy succeeds or fails, as there could be
other (possibly very different) model parameter values (not selected through fitting)
still matching experimental data, but leading to different model behaviours under
the new therapy.

As a result, although such models are based on solid scientific principles (e.g.,
biochemical reactions), their non-identifiability makes it hard to use them to qual-
ify a therapy as safe and effective, no matter how large is the input dataset used
to generate the population of VPs employed in the ISCT. In the recent EMA
physiologically-based PK guidelines for reporting modelling and simulation [70]
some considerations concerning the identifiability of the model are mandatory and
must be eventually supported by in-vivo tests.

The above problem stemming from non-identifiability is quite common also in
other areas. For example, models used in machine learning (e.g., neural networks)
are typically non-identifiable, and it is well known that, notwithstanding how large
is the training dataset, it is possible to find (plausible) input data leading to com-
plete wrong classifications (e.g., [71]). Indeed, this is among the main obstacles
in qualifying machine learning–based approaches within safety-critical applications
(e.g., autonomous driving) (see, e.g., [73, 106]).
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The above considerations motivate the development of methods and software
that, possibly building on parameter estimation against in vivo data, for a possibly
non-identifiable VPH model, can compute a finite set of VPs which are: i) physio-
logically meaningful, i.e., they all define behaviours deemed possible in vivo; ii) pair-
wise distinguishable, i.e., their associated model behaviours on the input scenarios
relevant for the ISCT are different enough, according to some metrics, so that no
computation is wasted; and iii) representative of the entire spectrum of behaviours
defined by the given VPH model (completeness).

1.3 Individualised pharmacological treatments

The slow and costly clinical trial process for the approval of a new pharmacological
treatment is among the main reasons why pharmacological treatments are often
designed for the average patient. In fact, to tailor a treatment strategy for a single
patient or a group of patients is currently infeasible as it should require a clinical trial
for each possible variation of the treatment strategy under test and for each possible
patient (or class of patients exhibiting similar reactions to drug administrations).
Hence, current pharmacological treatments are often not effective for a large num-
ber of patients. Examples are female fertility treatments or lung cancer treatments
which have a success rate of about 35% (see, e.g., [207]) and 25% (see, e.g., [76]),
respectively. Personalised medicine, as also outlined by the International Consor-
tium for Personalised Medicine (ICPerMed) (https://www.icpermed.eu), addresses
the above challenges by aiming at developing pharmacological treatments optimised
for any given individual, namely personalised treatments (see, e.g., [18, 176]). Sev-
eral optimisation criteria can be defined. A typical criterion is the minimisation
of the overall amount of drug used also motivated by the fact that about 75% of
adverse drug reactions are dose-related [47]. Also, minimising doses of drug em-
ployed typically decreases the treatment cost. With their amenability to define
different individuals, VPH models of proved accuracy are a key enabler for person-
alised medicine. Indeed, VPs can be exploited to define human patient digital twins
capturing the patient-specific physiology and the patient-specific reactions to drug
administrations. In turn ISCT can be conducted on a human digital twin to test
all the different possible variations of a pharmacological treatment in order to find
the lightest-but-still-effective treatment for that specific patient.

The above considerations motivate the development of methods and software
that, resting on a VPH model and a complete population of VPs, optimise a phar-
maceutical treatment strategy by individualising the drug dosage, saving the overall
amount of drug and keeping the treatment successful.

https://www.icpermed.eu
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1.4 Interoperability and simulation efficiency

As previously described, in an ISCT setting, a VP coupled together with a pharma-
cological treatment strategy (or a biomedical device) represents a closed-loop model
where the VP plays the role of the physical subsystem (plant) and the treatment
strategy (or the biomedical device) plays the role of the control software (controller).
As anticipated, systems with this structure are known as CPSs. Due to the complex-
ity of CPSs, simulation-based approaches are typically used to support CPS design
and V&V in several domains such as: aerospace, defence, automotive, smart grid
and healthcare. Accordingly, many simulation-based tools are available to support
CPS design. This, on one side, enables designers to choose the toolchain that best
suits their needs, and on the other side poses huge interoperability challenges when
one needs to simulate CPSs whose subsystems have been designed and modelled
using different toolchains.

To overcome such an interoperability problem, in 2010 the Functional Mock-up
Interface (FMI) has been proposed as an open standard to support both Model Ex-
change (ME) and Co-Simulation (CS) of simulation models created with different
toolchains. FMI has been adopted by several modelling and simulation environ-
ments. Models adhering to such a standard are called Functional Mock-up Units
(FMUs). Indeed FMUs play an essential role in defining complex CPSs through,
e.g., System Structure and Parametrization (SSP) standard. This is true also for
the ISCT setting where similar interoperability issues are present. Indeed, dif-
ferent languages are traditionally used to define VPH models. Among them are
SBML [99], Physiological Hierarchy Markup Language (PHML) (see, e.g., [16]) and
the Modelica language (www.modelica.org). Modelica is one of the most widely
adopted open-standard general-purpose modelling languages for networks of dynam-
ical systems in many areas of engineering and it has been proposed as a common
modelling platform for the integration of VPH, PK/PD models (see, e.g., [115]) in
order to facilitate their co-simulation and analysis. Also, the equation-based and
the acausal modelling paradigm of Modelica is perfectly suitable for physical sys-
tems having continuous-time dynamics such as VPH models of human physiology
and drug PK/PD. On the other hand, Simulink (https://mathworks.com) is the
de facto industrial standard for modelling and simulation of, e.g., control systems,
hardware architectures and sensors that exhibit a discrete-time or discrete-event
dynamics. For these reasons, biomedical devices are usually defined using Simulink
(see, e.g., [15, 170, 108]).

In this setting, the FMI 2.0 standard [27] for model exchange enables the inter-
operability between Modelica and Simulink and, hence, the coupling of a biomedical
device with a VPH model to conduct, via simulation, ISCT. Moreover, as for the
ISCT setting, simulation-based V&V of CPSs typically requires exploring different
simulation scenarios (i.e., exogenous input sequences to the CPS under design). To

www.modelica.org
https://mathworks.com
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avoid simulating many times shared prefixes of different simulation scenarios, the
simulator state at the end of a shared prefix is saved and then restored on demand,
as a start state. In this context, an important FMI feature is the capability to save
and restore the internal FMU state on demand. This is crucial to increase efficiency
of simulation-based V&V. Unfortunately, the implementation of this feature is not
mandatory and it is available only within some commercial software.

As a result, the interoperability enabled by the FMI standard cannot be fully
exploited when using open-source simulation environments. Furthermore, none of
the currently available open-source Modelica environments implement the FMI 2.0
optional feature for saving and restoring FMU states. This motivates developing
such a feature for open-source Modelica environments for CPSs.

1.5 Thesis outline and summary of contributions

In this thesis we focus on simulation-based artificial intelligence and model checking
methods to perform ISCT. The following outline summarises thesis chapters and
contributions.

Chapter 2 presents the needed background knowledge and the formal frame-
work. Moreover, it describes our case studies used through this thesis. Namely, i) a
quantitative VPH ODE-based model of human signalling pathways of the female
HPG-axis defining the behaviour of 33 biological species (mostly hormones); ii) an
assisted reproduction treatment currently in use at the Department of Reproduc-
tive Endocrinology of University Hospital Zurich; and iii) retrospective clinical data
kindly made available by Hannover Medical School (a total of 35 clinical records),
University Hospital of Lausanne (a total of 39 clinical records) and Pfizer (a total
of 12 clinical records) and used to evaluate and assess the effectiveness and efficacy
of methodology presented in this thesis.

Chapter 3 presents a methodology to compute a population of VPs. Such
a methodology is based on a global search algorithm driven by a statistical model
checking approach that exploits a quantitative VPH model of human physiology and
drugs (PK/PD) and suitable biological and medical knowledge elicited from experts.
The computed population of VPs yields behaviours that are i) distinguishable from
each other (i.e., different phenotypes); ii) representative of the whole phenotype
spectrum entailed by the input VPH model; and iii) stratified at different levels
to form a hierarchy of classes of behaviours. The latter enables a full granularity
control on the size of the population to be employed in an ISCT, guaranteeing
representativeness while avoiding over-representation of behaviours. We prove the
effectiveness of our algorithm on our case study, i.e., a complex and non-identifiable
VPH model of the HPG-axis. In particular, we generate, exploiting 60 days of
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computation on HPC infrastructure, a population of 4 830 264 VPs stratified into a
hierarchy of 7 levels. Also, we experimentally assess the representativeness of such a
population of VPs using retrospective clinical data on 86 medical cases from Pfizer,
Hannover Medical School and University Hospital of Lausanne. Finally, we show
that datasets are covered by our VPs within Average Normalised Mean Absolute
Error of 15%, 20%, and 35% (90% of the latter dataset is covered within 20% error),
respectively.

Chapter 4 presents a methodology that, starting from a standard pharmacolog-
ical treatment, automatically synthesises an individualised variation, optimised for
a given human patient, by means of an ISCT. The employed optimisation criterion
aims at reducing the overall treatment drug amount while keeping the treatment
successful for that patient. As anticipated, minimising treatment drug doses is a
way to reduce the probability of adverse drug reactions [47]. To this end, we exploit
a quantitative VPH model of the physiology and PK/PD relevant for the standard
pharmacological treatment to optimise. Also, given retrospective clinical data of a
human patient and a representative population of VPs, we compute a patient digi-
tal twin, i.e., a digital representation of that specific patient physiology. Formally,
we define a digital twin as a set of VPs each one yielding a model behaviour that
matches human patient clinical data within a given error bound. Given a patient
digital twin, our automatic synthesis approach consists of performing extensive sim-
ulations (ISCT) guided by an intelligent (i.e., AI-based) search taking as input the
possible drug doses to be administered and a set of invariants and goals, i.e., prop-
erties that must be always and eventually satisfied, respectively, which formalises
clinical guidelines for a successful and safe treatment. Our algorithm explores the
space of possible clinical action sequences while seeking for a treatment that it is
safe and effective for the input patient digital twin, i.e., if administered to the given
patient digital twin, it always satisfies invariants and goals. During the search, our
algorithm computes the effect of clinical actions on the input digital twin through
a black-box simulator for the VPH model at hand. To do this efficiently, our search
algorithm is backtracking-based. Backtracking step occurs when at least one VP of
the input digital twin violates treatment invariants or when no further exploration
of a subspace can lead to a better solution than the current optimal one. Moreover,
to speed up the search space exploration the following heuristics are used: i) ac-
tion ordering heuristic to sort candidate clinical actions at each search step; and
ii) dynamic VP ordering heuristic to dynamically adjust the order of VPs in the
input digital twin to be simulated at each search step according to a sort of early
pruning such that, on average, the simulation time improves. Finally, we evalu-
ate the effectiveness of our approach on our case study, i.e., the downregulation
phase of a clinical protocol for assisted reproduction. To this end, we conduct a
multi-arm ISCT involving 21 patients for which we have retrospective clinical data.
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For each such patient, who defines a distinct arm of our ISCT, we compute the
optimal (lightest) still-effective downregulation treatment. Given that the required
computation is extremely intensive, we conduct our ISCT on a High Performance
Computing (HPC) infrastructure.

Chapter 5 presents an open-source implementation of FMI 2.0 functionalities
needed to save and restore internal state of FMUs. As anticipated, simulation-
based approaches for V&V of CPSs as well as ISCT typically require exploring
different simulation scenarios (i.e., exogenous input sequences to the CPS model).
Many such scenarios have a shared prefix. Accordingly, to avoid simulating many
times such shared prefixes, the simulator state at the end of a shared prefix is
saved and then restored and used as a start state for the simulation of the next
scenario (see, e.g., [140]). To this end, we focus on JModelica, an open-source
simulation environment for CPSs based on an open-standard modelling language,
namely Modelica. In the chapter, we describe how we have endowed JModelica
with our open-source implementation of the FMI 2.0 save-and-restore functions.
Finally, we present experimental results evaluating, through 934 benchmark models,
correctness and efficiency of our extended JModelica. Our experimental results
show that simulation-based V&V is, on average, 22 times faster with our get/set
functionality than without it.
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Chapter 2

Background

2.1 Formal Framework
Throughout the thesis we denote with R, R0+, and R+ the sets of, respectively,
all, non-negative, and positive reals, and with N and N+ the sets of, respectively,
non-negative and strictly positive integers. Also, given sets A and B, AB denotes
the set of functions from B to A.

2.1.1 Formalisation of VPH models

We adopt a very general approach to define Virtual Physiological Human (VPH)
models and view them as parametric input-output dynamical systems, i.e., paramet-
ric functions mapping input time functions (denoting external inputs such as drug
administrations) to output time functions (defining the time evolution of observable
quantities of interest). This general definition (Definition 2.1) is standard in signals
and systems (see, e.g., [200, 124]), especially when, as in the case of physiological
models, the system internal state is not accessible, and only selected outputs (system
observables) can be measured. For physical reasons, we also require that our mod-
els are strictly causal, i.e., their behaviour up to any time instant depends only on
past inputs. Also, given the presence of parameters, we can focus on deterministic
systems, in that parameters embody any initial condition which the system out-
put might depend on. Finally, our definition captures both continuous-time models
(as, e.g., those defined by means of Ordinary Differential Equations, ODEs) and
discrete-time models (as, e.g., those defined by means of difference equations).

Definition 2.1. A parametric deterministic input-output dynamical system S is
defined by a tuple (T ,Λ,U ,Y,y), where:

• T , the time-set, is either R0+ (for continuous-time systems) or N (for discrete-
time systems);
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• Λ is the parameter space;

• U is the input space;

• Y is the non-empty output space;

• y is the observation function of S: for any input time-function u ∈ UT and
parameter value λ ∈ Λ, y(u, λ) ∈ YT is a function defining the time evolution
of the system observables at each time point in T , when the system parameters
are set to λ and the system is fed with input function u. For any t ∈ T , we
denote with y(t; u, λ) the value of y(u, λ) at time point t.

System S is strictly causal if, for any λ ∈ Λ, t ∈ T , and any pair u1,u2 ∈ UT
such that u1(t′) = u2(t′) for all t′ < t, it holds y(t; u1, λ) = y(t; u2, λ).

Strict causality implies that the system initial output, y(0; u, λ), depends on λ,
but not on u, i.e., that λ also embodies information about any initial condition of
the system (and, in turn, the output at time 0).

2.1.2 Clinical records

In order to evaluate our methods and case study with respect to retrospective clinical
data we define the notion of clinical records as follow.

Definition 2.2 (Clinical record). Let a time series q be a set of pairs {time(q, j), val(q, j)},
where, for each j, time(q, j) and val(q, j) are, respectively, the time instant and
the value (observation or input) of the j-th available element in q. A clinical record
C is a pair (o, u), where o (observations) consists of a time series o(s) for each ob-
servable biological quantities s and u (inputs) consists of a time series u(d) of each
pharmaceutical compound d (drug) administered in C.
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Figure 2.1. Components of the human female menstrual cycle and their
relationships, as modelled within GynCycle.

2.2 Case Studies

In this section we present the case studies we use to evaluate our methods.

2.2.1 GynCycle: a VPH model of HPG-axis

GynCycle [184] is a VPH model of the human female Hypothalamic–Pituitary–
Gonadal (HPG) axis, focussing on the interactions and feedback mechanisms be-
tween components involved in the menstrual cycle like GnRH, FSH, LH, develop-
ment of follicles and corpus luteum, and the production of E2, P4, Inhibin A and In-
hibin B. GynCycle also comprises Pharmacokinetics/Pharmacodynamics (PK/PD)
of GnRH analogues and their effects on the menstrual cycle, such as the suppression
of gonadotropins. Figure 2.1 shows, as a flowchart, a high-level view of the main
components of the human female menstrual cycle as well as of their relationships, as
modelled within GynCycle. For each modelled biological species, GynCycle defines
a parametric ODE. Below we show the ODEs defining the time evolution of the 4
hormones we regarded as model observables in our case-study, i.e., LH, FSH, E2
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and P4:

˙LHblood(t) = LHpit(t)
Vblood

·
(
bLH

Rel + kLH
G-R ·H+(G-R(t), TLH

G-R;nLH
G-R)

)
− (kLH

on · RLH(t) + kLH
cl ) · LHblood(t)

˙FSHblood(t) = FSHpit(t)
Vblood

·
(
bFSH

Rel + kFSH
G-R ·H+(G-R(t), TFSH

G-R ;nFSH
G-R )

)
− (kFSH

on · RFSH(t) + kFSH
cl ) · FSHblood(t)

Ė2(t) = bE2 + kE2
AF2 ·AF2(t) + kE2

AF3 · LH(t) ·AF3(t)
+ kE2

AF4 ·AF4(t) + kE2
PrF · LH(t) · PrF

+ kE2
Lut1 · Lut1(t) + kE2

Lut4 · Lut4(t)− kE2
cl · E2(t)

Ṗ4(t) = bP4 + kP4
Lut4 · Lut4(t)− kP4

cl · P4(t)

In the differential equations above, LH(t), FSH(t) etc. denote species of interest,
while bLH

Rel , kLH
cl , etc. denote model parameters, which typically define patient-specific

quantities like decay or reaction rates. Furthermore, as it often happens in complex
VPH models, some represented biological mechanisms are not known exactly. This
is handled by introducing additional parameters. For example, in order to model
stimulatory or inhibitory effects, additional parameters are introduced, together
with Hill functions of the form:

H+(S(t), T ;n) = (S(t)/T )n

1 + (S(t)/T )n

H−(S(t), T ;n) = 1
1 + (S(t)/T )n

Here, S(t) ≥ 0 denotes the influencing substance, T > 0 is the amount of S that
causes 50% of the maximum of H+ or H−, and n ≥ 1 is the Hill coefficient, which
determines the rate of switching. The exact values for T and n are not easily
observable and hence only a suitable range is known, typically derived from indirect
arguments. The whole GynCycle comprises a total of 33 parametric ODEs and 76
model parameters whose values (real numbers) are patient-specific.

The GynCycle model is also equipped with a reference parameter value, λ(0) ∈
Λ, which has been computed in [184] using a Pfizer database comprising 20–25
measures for 4 observed hormones (E2, P4, FSH, and LH) on 12 healthy women,
totalling more than 1000 overall measurements. The GynCycle time evolution of
E2, P4, LH, and FSH of λ(0) is shown in Figure 2.2.

The model supports two pharmaceutical compounds: Triptorelin and Norethis-
terone, whose effect is the inhibition of the regular menstrual cycle. These drugs
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Figure 2.2. GynCycle evolution under the reference VP (curves) averaging
data of 12 patients (points) [184].

are typically used during pharmaceutical fertility treatments. Figures 2.3 and 2.4
show the expected effects of, respectively, Triptorelin and Norethisterone injections
on the observable hormones, namely LH, FSH, E2 and P4.

2.2.1.1 Model Formalisation

We formalise our GynCycle model as a dynamical system S = (T ,Λ,U ,Y,y) (Def-
inition 2.1) as follows.

2.2.1.1.1 Time set. Although GynCycle is a continuous-time system, to com-
pute its observation function under a given parameter λ ∈ Λ and input function u
we need to resort to numerical simulation. This results in both input and observa-
tion functions be defined as bounded-horizon sequences of samples evenly spaced in
time. Consequently, for the standpoint of our analysis, we consider the time set T
of GynCycle as a bounded interval of N+.

2.2.1.1.2 Parameter space. The model counts 76 real-valued patient-specific
parameters that define properties of model dynamics such as hormone decay rates,



18 2. Background

0

50

100

150

200

250

300

350

400

450

0 7 14 21 28 35 42 49 56 63

p
g
/m
L

time (days)

No treatment
Triptorelin 0.1 mg/day

(a) E2

0

2

4

6

8

10

12

14

16

0 7 14 21 28 35 42 49 56 63

n
g
/m
L

time (days)

No treatment
Triptorelin 0.1 mg/day

(b) P4

0

20

40

60

80

100

120

140

0 7 14 21 28 35 42 49 56 63

IU
/L

time (days)

No treatment
Triptorelin 0.1 mg/day

(c) LH

2

4

6

8

10

12

14

16

18

20

0 7 14 21 28 35 42 49 56 63

IU
/L

time (days)

No treatment
Triptorelin 0.1 mg/day

(d) FSH

Figure 2.3. Expected effects Triptorelin on the menstrual cycle. The purple
area defines the time window during which the drug is administered.

reaction rates, stimulatory and inhibitory effects. Hence, the model parameter space
is a closed interval of R76 with known bounds [184].

2.2.1.1.3 Input space. The model input space U is defined as R2
0+, where each

value defines a dose for each of the two supported pharmaceutical compounds. An
input function thus defines the sequence of doses administered for each of the two
compounds in the model time set.

2.2.1.1.4 Output space. The model output space Y is Rn0+ where n ∈ N+ is the
number of (real-valued) model observables. In this thesis, we experiment with n = 4
observables, namely: LH, FSH, E2, P4, which are the hormones typically measured
in a clinical setting, and for which we have retrospective data (Section 2.2.3).

2.2.2 Assisted reproduction treatments

In this section we, first, give an overview of assisted reproduction protocols and then
present our case study, namely, the downregulation phase, currently administered
at the Department of Reproductive Endocrinology of University Hospital Zurich
(Section 2.2.2.1).
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Figure 2.4. Expected effects Norethisterone on the menstrual cycle. The
purple area defines the time window during which the drug is adminis-
tered.

At each menstrual cycle of a human female, among the several follicles initially
present in the ovaries, only one, unless in exceptional cases, grows and reaches
maturity. A complex competition among follicles takes place, driven by a hormone-
based feedback loop, in order to inhibit the maturation of multiple follicles.

An assisted reproduction treatment aims at neutralising (through drugs) such
a feedback loop (downregulation phase), in order to achieve a controlled and an as-
simultaneous-as-possible growth of 5–15 ovarian follicles (stimulation phase). When
the first three follicles reach a size where a mature oocyte (i.e., an egg cell ready
for fertilisation) can be expected (about 18 mm in diameter), ovulation is induced.
Then, the oocytes are retrieved, those which are mature are tried to be fertilised
in vitro, and implanted either immediately within the treatment cycle or later after
cryopreservation (i.e., a preservation process by cooling) back into the uterus.

Assisted reproduction treatments are complex and challenging, with low aver-
age success rates (around 35% [207]) even in the top clinics, and with many factors
that, to date, can be hardly kept under full control. Indeed, as hormonal regulatory
systems occur within a complex network of endocrinological, neurological and psy-
chological factors [127, 92, 126], they are difficult to capture within clinical studies,
and model-based approaches might be of great aid in taking these many factors
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under better control.

2.2.2.1 Downregulation phase

Our case study is one of the worldwide classically used downregulation protocols
aiming at suppressing the usual hormonal oscillations of the menstrual cycle (as in
Figure 2.3) and preparing the patient to the following stimulation.

At the Department of Reproductive Endocrinology of University Hospital Zurich,
this protocol currently consists of a sequence of daily administrations of 0.1 mg of
Triptorelin (a GnRH analogue). For physiological reasons, downregulation is started
within a precise time window of the menstrual cycle, namely between day 21 and
day 25. The treatment might have different duration in order to address different
patient reactions. In particular, a downregulation treatment is considered successful
(effective) for a patient in case the blood concentrations of a given set of hormones
and other physiological quantities go below certain thresholds within 9 days from
the first drug administration, and stay always below such thresholds for the follow-
ing 21 days. As a consequence, a downregulation treatment might last up to 30
days.

2.2.3 Retrospective clinical records

To evaluate and assess efficacy of the methodology presented in this thesis, we use
retrospective clinical data counting 86 anonymised clinical records. Such clinical
records have been gathered during the European project PAEON (http://paeon.di.
uniroma1.it) and have been kindly made available by Hannover Medical School (a
total of 35 clinical records), University Hospital of Lausanne (a total of 39 clinical
records) and Pfizer (a total of 12 clinical records). The Pfizer dataset has been
originally used in [184] to compute the reference GynCycle VP. In each dataset,
for each clinical record we have actual measurements of the blood levels of the 4
model observables (LH, FSH, E2 and P4) on a (roughly) daily basis for an entire
menstrual cycle (all clinical records refer to patients subject to no pharmaceutical
treatment).

Figure 2.5 shows the distribution of daily measured blood hormone levels on
the 86 clinical records using box-and-whisker plots. Data have been aligned with
respect to the LH peak, which is typically used to estimate the ovulation day.

Throughout the thesis, we formalise each clinical record in our dataset according
to Definition 2.2 where the biological quantities are LH, FSH, E2 and P4, respec-
tively.

http://paeon.di.uniroma1.it
http://paeon.di.uniroma1.it
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Figure 2.5. Measurement distributions of LH, FSH, E2 and P4 of clinical
records within the datasets from Hannover Medical School, University
Hospital of Lausanne and Pfizer.
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Chapter 3

Computation of complete
populations of virtual patients

3.1 Introduction

In this chapter we present methods and software to compute populations of Virtual
Patients (VPs) for (possibly non-identifiable) quantitative Virtual Physiological Hu-
man (VPH) models. We focus on the typical case of models that, due to their
complexity, cannot be analysed symbolically, but need to be numerically simulated
(e.g., [99]), and show the effectiveness of our methods on our case study, i.e., a
non-identifiable model of the Hypothalamic–Pituitary–Gonadal (HPG) axis (see,
Section 2.2.1).

Differently from other approaches, our populations satisfy three important prop-
erties: completeness, distinguishability, and stratifiedness.

Completeness means that our populations show all model behaviours deemed of
interest (e.g., physiologically meaningful), even when such a full set of behaviours
is unknown at model design time (this is typical in large non-identifiable, over-
parameterised VPH models, see below). For example, the population we computed
in our case study comprises as many as 4 830 264 VPs.

Distinguishability means that no model behaviour (aka phenotype) is over-rep-
resented in our population: any two VPs behave differently (according to a user-
defined notion of behavioural distinguishability) in at least one scenario (e.g., input
pattern) supported by the model. This avoids waste of computation during an In
Silico Clinical Trial (ISCT).

Stratifiedness means that our populations are organised in levels, (strata), each
one showing the entire spectrum of behaviours under different indistinguishability
criteria. Although such user-provided criteria can be very general (e.g., focus on
different features of model behaviours), a typical definition for them (which we
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exploit in our case study) is in terms of a hierarchy of classes of behaviours, so that
full granularity control can be achieved on the number of VPs to be employed in
an ISCT, always guaranteeing completeness while avoiding over-representation of
behaviours. For example, in our case study we stratified our 4 830 264 VPs into 7
sub-populations, each one comprising a number of VPs ranging from 2 million to
just 1. Each sub-population alone is representative of the entire spectrum of model
behaviours (of course at different granularity). To design an ISCT proper trade-
offs can be sought between the needed behavioural granularity and the budgeted
computational effort.

Our any-time algorithm, based on global search guided by statistical model check-
ing (along the lines of [87]), intelligently explores the (typically huge) model param-
eter space, collects those parameter assignments showing a physiologically mean-
ingful behaviour (hence representing VPs), and organises them into strata, while
guaranteeing a statistically-sound form of graceful degradation.

Note that, in many non-identifiable models (like our case-study HPG axis model),
most model parameter values might not actually represent VPs, as, upon simula-
tion, their associated model evolutions show-up to be physiologically meaningless
or, anyway, out of interest. As anticipated in Section 1.2, this is due to, e.g., over-
parameterisation, presence of parameters whose values are not measurable through
clinical assays (e.g., reaction rates), presence of unknown (hence, not modelled) in-
terdependency constraints among parameters, and use of parameters to define not-
well-understood physiological mechanisms. To find parameter assignments yielding
physiologically meaningful model behaviours and different phenotypes is thus com-
putationally very hard, and naïve exploration or sampling of the parameter space
could be hopeless. The high computational cost of generating a complete population
of VPs for non-identifiable models is not surprising, and is indeed a well known prob-
lem when using a logic-based modelling approach (e.g., [120]). The corresponding
problem in that setting is searching for all attractors, which is a computationally
very hard task, for which SAT or model checking–based techniques are typically
employed (e.g., [28]).

In our setting (quantitative non-identifiable VPH models), in order to automat-
ically recognise physiologically meaningful model evolutions (and thus parameter
assignments defining VPs), our approach envisions the elicitation and formalisation
of background biological and medical knowledge (possibly also coming from available
data). Our approach is fully independent of how such knowledge is formalised, as
long as we can define a criterion that, given a parameter assignment (a candidate
VP), decides whether the resulting model evolution is physiologically meaningful or
not.

In our case study, we rely on background knowledge available in terms of known
assignments to the model parameters (computed via parameter estimation against
clinical data, hence defining reference VPs), bounds for model parameters and bi-
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ological species, and on physiological meaningfulness criteria which ask for (loose)
qualitative similarity of the model evolution under a candidate VP with respect to
that entailed by some reference VPs. Such criteria are applicable to a wide class of
models, e.g., those defining hormonal signalling networks.

3.2 Methods

Below we define our formal framework and present our methodology to generate
complete populations of VPs.

3.2.1 Virtual Patients, phenotypes and populations

As anticipated in Section 1.2, not all assignments to a VPH model parameters
yield behaviours of interest. Many might even yield physiologically meaningless be-
haviours. Conversely, due to, e.g., system over-parametrisation or non-identifiability,
multiple parameter assignments may yield (almost) indistinguishable behaviours
(i.e., their associated evolutions are very similar on all inputs). Such indistinguish-
able VPs would increase the computational efforts needed to carry out an ISCT on
the entire population, without bringing any advantage in terms of representativeness
of the trial.

Forthcoming Definitions 3.1 to 3.3 define the concepts of VP, population of
VPs, phenotype, and All-Different Phenotype Population (APP) for a given VPH
model. These concepts rest on user-provided Boolean function ϕ and equivalence
relation ∼. Boolean function ϕ defines the conditions to be met by any VPH model
parameter λ for its evolutions to be considered as physiologically meaningful (hence
λ has to be regarded as a VP). Equivalence relation ∼ on the set of VPs defines
when two VPs shall be considered having indistinguishable behaviour (i.e., showing
the same phenotype): for any two VPs λ and λ′, λ ∼ λ′ means that the two VPs
show the same phenotype.

Clearly, the definition of both function ϕ and relation ∼ depends on the VPH
model at hand, and has to be made starting from expert knowledge. Also, when the
model is subject to external inputs (e.g., drug administrations), both ϕ and ∼ might
need to be defined on model evolutions under different input functions. This allows
the expert to define physiological meaningfulness and phenotypes of candidate VPs
also in terms of their reactions under different patterns of drug administrations
(where such reactions are dictated by the Pharmacokinetics/Pharmacodynamics,
PK/PD model equations). In Section 3.2.3 we give a widely-applicable definition
for ϕ and ∼ based on qualitative similarity of the model evolutions associated to
different parameters.
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Definition 3.1 (Virtual Patients). Let S be a VPH model (as in Definition 2.1)
with parameter space Λ.

Given a function ϕ of the form ϕ : Λ → {0, 1}, the population Λ̂ of Virtual
Patients (VPs) associated to S with respect to ϕ is:

Λ̂ = {λ | λ ∈ Λ ∧ ϕ(λ) = 1} .

Definition 3.2 (Phenotypes). Let S be a VPH model (as in Definition 2.1) with
parameter space Λ and Λ̂ be a Virtual Patient (VP) population.

Given an equivalence relation ∼ over Λ̂, the phenotype space Λ̂/∼ of Λ̂ with
respect to ∼ is the quotient set of Λ̂ with respect to ∼:

Λ̂/∼ = {[λ]∼ | λ ∈ Λ̂}

where [λ]∼ is the equivalence class of λ. Any two VPs λ, λ′ ∈ Λ̂ such that λ ∼ λ′

are said to have the same phenotype [λ]∼ = [λ′]∼.

Definition 3.3 (All-Different Phenotype Population). Let S be a VPH model (as
in Definition 2.1) with parameter space Λ and Λ̂ be a VP population.

Given an equivalence relation ∼ over Λ̂, an All-Different Phenotype Population
(APP) of VPs with respect to ∼ is any subset Λ̂∼ of Λ̂ such that no two VPs λ, λ′
exist in Λ̂∼ such that [λ]∼ = [λ′]∼.

Definition 3.4 (Complete All-Different Phenotype Population). Let S be a VPH
model (as in Definition 2.1) with parameter space Λ, Λ̂ be a VP population and ∼
be an equivalence relation over Λ̂.

An APP Λ̂∼ is said a Complete All-Different Phenotype Population (CAPP)
if Λ̂∼/∼ equals Λ̂/∼, i.e., Λ̂∼ contains a representative of all phenotypes in the
phenotype space of Λ̂ with respect to ∼.

Note that, when ∼ is 1 (i.e., the equivalence relation defining a distinct class
per VP λ ∈ Λ̂), we have Λ̂/1 = Λ̂. Hence, the entire population of VPs (Λ̂) can
always be regarded as a CAPP.

3.2.2 Computing complete populations

Given a VPH model S = (T ,Λ,U ,Y,y) with parameter space Λ, a function ϕ and
an equivalence relation ∼ as in Definition 3.4, our goal is to compute a CAPP
Λ̂∼ ⊆ Λ̂ = {λ | λ ∈ Λ ∧ ϕ(λ) = 1}.

In this thesis we focus on cases where the definition of VPH model S, function
ϕ, and the computation of the phenotype [λ]∼ of a VP λ (i.e., the equivalence class
of λ according to equivalence relation ∼) are too complex for set Λ̂∼ to be com-
puted analytically and/or symbolically in closed form. For such complex scenarios,
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deciding whether ϕ(λ) = 1 or not for any given λ ∈ Λ (hence, whether λ represents
a VP or not) and, in the affirmative case, computing its phenotype [λ]∼ involves
a numerical simulation of S and the subsequent analysis of the resulting model
evolutions under different inputs. Also, knowing that ϕ(λ) = 1 for some λ ∈ Λ does
not allow us to infer (without additional simulations) whether ϕ(λ′) = 1 for other
parameters λ′ ∈ Λ, let alone their phenotypes.

In order to cope with such a general setting, we adopt a search-based approach
that explores the model parameter space Λ looking for parameters λ ∈ Λ such that
ϕ(λ) = 1 and belonging to all-different equivalence classes of ∼. This calls for
VPH models whose parameter space Λ is finite or can be finitised by the user, e.g.,
into a bounded interval of Nk, k > 0. Such finitisation can often be performed by
exploiting knowledge about, e.g., physiological bounds to the parameter values and
model locality assumptions (i.e., minor changes to the value of a parameter yield
minor changes in the resulting trajectory).

Nevertheless, even when Λ is finite, an exhaustive exploration is practically
infeasible unless |Λ| is very small. Unfortunately, this is not the case for complex
VPH models: for example, the size of the (finitised) parameter space of our case-
study model is 1× 1076, which makes an exhaustive search clearly out of reach (let
alone the fact that computing ϕ(λ) for each λ takes seconds of simulation time).

To overcome these obstacles, our search (Section 3.2.2.1) is an any-time al-
gorithm relying on Statistical Model Checking (SMC) and hypothesis testing to
guarantee proper statistically-sound graceful degradation.

3.2.2.1 The algorithm

In the literature, SMC approaches (see [5] for a survey) are used for the formal
(black-box) verification of large-scale systems having complex dynamics (such as,
e.g., hybrid systems [55]) and a huge state space. SMC uses simulations to com-
pute system behaviours under given inputs and decides through statistical methods
(e.g., hypothesis testing) whether the system satisfies a given property or not (see,
e.g., [224, 46, 109]). In this setting, our algorithm is an anytime procedure which
builds on the SMC and hypothesis testing method presented in [87] and extended
in [205].

3.2.2.1.1 Core algorithm. Given a VPH model S having finite (although too
large for an exhaustive exploration) parameter space Λ, and given function ϕ and
equivalence relation ∼, our algorithm implements a one-sided error procedure to
compute a CAPP Λ̂∼ for S with respect to ∼. The algorithm randomly samples
the parameter space Λ (according to a user-defined sampling policy), and iteratively
adds to the current Λ̂∼ (initialised to ∅) those parameters λ that represent VPs (i.e.,
ϕ(λ) = 1) and show a phenotype different than all those already represented in Λ̂∼.
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The algorithm can be interrupted at any time and provides a form of graceful
degradation: after each sample, the algorithm computes an upper bound ε ∈ (0, 1]
to the probability that further sampling would produce VPs of unseen phenotypes
(error margin). This fact would prove that the current APP is not indeed a CAPP.
When the achieved value for ε reaches a sufficiently-small (target) threshold, the
user can decide to stop the algorithm and get the APP computed so far.

The computed value for ε is a function of the number of consecutive failed
attempts N that the algorithm is experiencing in discovering VPs of new pheno-
types. Clearly, being based on sampling, our algorithm can commit an error in
computing the error margin ε (i.e., it could return a value lower than a true up-
per bound). However, by exploiting statistical hypothesis testing methods, given
any user-requested value δ ∈ (0, 1) (confidence ratio), our algorithm ensures (see
forthcoming Theorem 3.1) that the probability of such an error is at most δ.

3.2.2.1.2 Sampling policy. In order to be effective in discovering VPs of new
phenotypes, the employed sampling policy may embody proper domain expert knowl-
edge and structural knowledge about the VPH model, for example: interdepen-
dency constraints among components of the parameter values (very common in
over-parameterised models), or sensitivity information of model behaviours with
respect to parameter values. Also, the sampling policy can be refined and improved
during the search to embed new knowledge, e.g., about the newly discovered VPs.
In Section 3.2.3.4 we will outline a sampling policy for our case-study model (but
widely applicable in general), which exploits the above flexibility.

3.2.2.1.3 Parallel computation. Our algorithm takes advantage of large par-
allel High Performance Computing infrastructures. The parameter space Λ is split
upfront into k slices Λ1, . . . ,Λk, and the different computational nodes run, in par-
allel, independent instances of our core algorithm, where process i (i ∈ [1, k]) draws
samples from Λi to build population Λ̂∼i . When Λ̂∼i is computed for all slices, a final
population Λ̂∼ is produced by taking the union of the phenotype spaces of all Λ̂∼i
and by choosing one representative VP from each equivalence class. To take load
balancing into account, the number of slices (k) can be much higher (e.g., one order
of magnitude) than the number of available nodes. The k processes can then be
dynamically suspended and brought back to execution by an orchestrator to keep
the values of ε balanced among the different slices. This approach to parallelism
and load balancing is very effective (see, e.g., [146]) and avoids overhead due to
inter-process communication (as that experienced in, e.g., [150]).

3.2.2.1.4 Simultaneous computation of multiple stratified APPs. Our
algorithm can work with multiple equivalence relations ∼1, . . . ,∼L, defining differ-
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ent behavioural indistinguishability (i.e., same phenotype) criteria, e.g., at different
levels of abstraction. When it makes sense to use the same policy to sample the
VPH model parameter space Λ for all the ∼l (l ∈ [1, L]), then the L CAPPs can
be computed simultaneously using the same sequence of random samples. In Sec-
tion 3.2.3 we will exploit this possibility to compute a hierarchy of stratified CAPPs
for our case-study VPH model.

3.2.2.1.5 Complete algorithm and main result. Let Λ1, . . . ,Λk be a par-
titioning of the finite (or finitised) parameter space Λ of our VPH model S (Defi-
nition 2.1) into k > 0 slices. Our overall algorithm runs in parallel k instances of
Algorithm 1, where instance i ∈ [1, k] runs on slice Λi of Λ and computes L > 0
APPs, one for each given equivalence relation ∼l (l ∈ [1, L]) on the population of
VPs entailed by the given function ϕ (Definitions 3.1 and 3.3). During computa-
tion, each parallel branch (Algorithm 1) outputs (see Line 11) a stream of tuples of
the form (∼l, Λ̂∼l

i , εl) (one after each sample and for each equivalence relation ∼l)
stating that (see Theorem 3.1), with statistical confidence (1 − δ), the probability
that further sampling within Λi will disprove that Λ̂∼l

i is a CAPP of Λi with respect
to ∼l is < εl.

Algorithm 1 includes (see Line 12) a periodic revision of the sampling policy in
order to exploit the new acquired knowledge (of course at the price of resetting all
counters Nl, l ∈ [1, L]).

1 function slice_APPs(S, Λi, ϕ, ∼1, . . . ,∼L, δ)
2 Λ̂∼1

i , . . . , Λ̂∼L
i ← ∅;

3 N1, . . . , NL ← 0;
4 while not interrupted do
5 λ← new sample from Λi according to sampling policy;
6 foreach l ∈ [1, L] do
7 if ϕ(λ) = 1 ∧ [λ]∼l

6∈ Λ̂∼l
i /∼l then

8 add λ to Λ̂∼l
i ; Nl ← 0; εl ← 1

9 else
10 Nl++; εl ← 1− δ1/Nl

11 output (∼l, Λ̂∼l
i , εl);

12 if sampling policy to be revised then
13 revise policy; N1, . . . , NL ← 0

Algorithm 1: The i-th parallel branch (i ∈ [1, k]) of our any-time algorithm to
compute multiple (e.g., stratified) APPs.
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Theorem 3.1. Let S be a VPH model as in Definition 2.1 having finite parameter
space Λ, ϕ and Λ̂ be as in Definition 3.1 (with Λ̂ unknown), ∼1, . . . ,∼L be L > 0
equivalence relations on Λ̂, and δ ∈ (0, 1). Also, let Λ1, . . . ,Λk be a splitting of Λ
into k > 0 slices.

For all i ∈ [1, k], l ∈ [1, L], whenever the i-th branch of Algorithm 1 (working
on Λi), outputs (∼l, Λ̂∼l

i , εl), then, with probability ≥ (1 − δ), value εl is an upper
bound to the probability that further sampling will disprove that Λ̂∼l

i is a CAPP of
Λi with respect to ∼l.

Proof. Assume that the branch of Algorithm 1 working on slice Λi (i ∈ [1, k])
outputs tuple (∼l, Λ̂∼l

i , εl) with l ∈ [1, L] and εl < 1 (in case εl = 1 the thesis
trivially follows).

From Algorithm 1, εl is 1−δ1/Nl , whereNl is the number of the last consecutively
drawn random samples that did not result in a VP with a phenotype not represented
in the current APP Λ̂∼l

i .
Let H0(Λ̂∼l

i ; εl) be the following null hypothesis: “the probability to disprove,
by further sampling, that Λ̂∼l

i is a CAPP is ≥ εl”.
To prove the thesis, it suffices to show that the probability that the algorithm

rejects H0(Λ̂∼l
i ; εl) when it actually holds (type-I error) is at most δ.

Indeed, if H0(Λ̂∼l
i ; εl) holds, the probability to sample a VP of a phenotype not

represented in Λ̂∼l
i would be (by the hypothesis itself) ≥ εl.

Hence, the probability that the experienced Nl failures to draw such a VP by
means of Nl independent and identically distributed (iid) samples actually occur is
≤ (1− εl)Nl .

Since εl = 1 − δ1/Nl (Algorithm 1), we have (1 − εl)Nl = (δ1/Nl)Nl = δ. The
thesis follows.

�

3.2.3 Computing complete stratified populations for the GynCycle
VPH model

In this section we show how we instantiated the general methodology described in
Section 3.2 to the complex state-of-the-art VPH model of the HPG axis (namely Gy-
nCycle, introduced in Section 2.2.1) in order to compute a stratified set of CAPPs.

Section 3.2.3.1 describes how we discretised the GynCycle parameter space.
Section 3.2.3.2 describes how we defined physiological meaningfulness criteria to
recognise VPs (i.e., function ϕ); Section 3.2.3.3 describes how we defined stratified
phenotypes (i.e., equivalence relations ∼i, i ∈ [1, L], for a given number of strata
L ∈ N+). Finally, Section 3.2.3.4 outlines our policy to sample (a slice of) the
parameter space and its revision mechanism aimed at embedding in the sampling
policy the new discovered knowledge.
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We argue that the approach we used in GynCycle is based on general concepts
which are applicable to a wide set of VPH models, e.g., those defining hormonal
signalling networks (see, e.g., Type-I Diabetes Mellitus, T1DM, VPH models [110,
93, 53]).

In order to obtain robust results, we computed physiological admissibility met-
rics and phenotypes of model evolutions across 120 days (i.e., as many as roughly 4
menstrual cycles), after ignoring the first 3 cycles (to get rid of any transient model
behaviours, with this value being established by preliminary experiments). The time
quantum between samples was set to 14.4 minutes (i.e., 100 samples per day) to ac-
count for the physiological time scales of the modelled signalling pathways. Hence,
input and observation functions are encoded as sequences of h = 12 000 samples,
one every 14.4 minutes.

3.2.3.1 Parameter space discretisation

To enable our SMC-based approach to computation of CAPPs, we need a finitisation
of our parameter space. By preliminary experiments we assessed that a change
of parameter values of < 10% yields very small changes in the resulting model
trajectories (model locality). Hence, we discretised the interval for each parameter
into 10 values and produced a finitised parameter space Λ of size 1× 1076. Although
finite, this size is still too large for an exhaustive exploration to be performed.
However, thanks to our informed sampling policy (Section 3.2.3.4), we were able to
compute large APPs proved complete with a high statistical confidence (95%) and
a small error margin (as low as 5× 10−5).

3.2.3.2 Physiological meaningfulness

As anticipated in Section 2.2.1, in [184, 61] GynCycle has been fitted against a
database (courtesy of Pfizer) comprising 20–25 measures for 4 observed hormones
(E2, P4, FSH and LH) on 12 healthy women, totalling more than 1000 measure-
ments. This activity produced a parameter assignment λ(0) ∈ Λ which entails an
observation function that averages the behaviours of those 12 patients (Figure 2.2).

In hormonal signalling pathways like those in GynCycle, all healthy humans
show the same qualitative behaviour of such hormones. Hence, λ(0) defines a VP that
we can (and do) regard as a reference VP. We thus defined function ϕ (which encodes
the physiological meaningfulness criteria that must be satisfied by a parameter
assignment λ for it to be considered a VP, see Definition 3.1) asking for qualitative
similarity between the model observation function under λ and under λ(0). Namely,
we proceed as outlined in the following sections.



32 3. Computation of complete populations of virtual patients

3.2.3.2.1 Representative portfolio of input functions. In order to derive
VPs whose behaviour is meaningful also when drugs are administered, we defined
a representative portfolio U of 5 different input functions.

Beyond the no-drug input (under which the GynCycle observation function must
show a behaviour similar to that in Figure 2.2, hence representing a healthy natural
menstrual cycle), we considered the following standard treatment strategies, con-
sisting of daily administrations of different doses for each of the two pharmaceutical
compounds supported by the model: Triptorelin and Norethisterone, whose effect
is the inhibition of the regular menstrual cycle. These strategies are common in
fertility treatments.

Our portfolio U of input functions is defined as follows:

1. No drug;

2. A standard dose of Triptorelin (0.1 mg) for 28 days starting from cycle day
31;

3. 50% of a standard dose of Triptorelin (0.05 mg) for 28 days starting from cycle
day 31;

4. A standard dose of Norethisterone (10 mg) for 10 days starting from cycle day
25;

5. 50% of a standard dose of Norethisterone (5 mg) for 10 days starting from
day 25.

3.2.3.2.2 Physiological meaningfulness as qualitative similarity. Our func-
tion ϕ returns 1 on λ ∈ Λ (thus declaring λ to be a VP), if any only if the model ob-
servation functions under λ, when subject to each of the input functions in U, have
values always within certain physiological bounds, and can be time-scaled and/or
time-shifted (up to a certain limit) so to satisfy certain qualitative similarity met-
rics, when compared to the observation functions entailed by the reference VP λ(0)

under the same input. Time shifting and scaling allow us to deal with, respectively,
time-alignment issues and different menstrual cycle durations.

The qualitative similarity metrics we exploited are standard (discrete-time) sig-
nal processing metrics (see, e.g., [213]): the normalised zero-lag cross-correlation
and the normalised energy difference, which we require to be, respectively, above
and below certain thresholds.

Intuitively, a high-enough normalised zero-lag cross-correlation between two
functions shows that they share peaks and valleys (this metrics takes its maxi-
mum value 1 when the two functions differ only by a multiplicative factor), while a
low-enough normalised energy difference shows that the two functions have a similar
energy.
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For our case study, in our forthcoming experiments we set our thresholds to
70% and 80% for the normalised zero-lag cross-correlation and the normalised en-
ergy difference, respectively. We also set limits for time-scaling and time-shifting
to, respectively, ±10% and 35 days. Such values (defined after preliminary experi-
ments) are generous enough to allow us to accept model evolutions quite different
from the evolutions entailed by the reference VP, but still appearing physiologically
meaningful to a visual inspection.

In the following sections we formally define our metrics and describe technical
details on how ϕ(λ) is actually computed, for any given λ ∈ Λ.

Formal definition We formally define such metrics as follows.
Let S = (T ,Λ,U ,Y,y) (Definition 2.1) be a VPH model, whose output space Y

is Rn0+ where n ∈ N+ is the number of (real-valued) observables.
Given a time function f : T → W (with W being any non-empty set of values)

and α ∈ R+ and τ ∈ R0+, we denote with fα,τ : T → W the time function defined,
for all time points t ∈ T , as:

fα,τ (t) = f(αt+ τ).

Thus, fα,τ is function f time-shifted by τ and time-stretched by factor α.
Let also λ(0) ∈ Λ be a distinguished VP of S (the reference VP as for GynCycle)

and U ⊂ UT be our portfolio of representative input functions for S (for GynCycle,
the portfolio defined in Section 3.2.3.2.1).

Given a parameter assignment λ ∈ Λ, values for α ∈ R+ (time stretch) and
τ ∈ R0+ (time shift), a model observable i and an input function u ∈ U, we
define the following two qualitative similarity metrics between the S evolution of
observable i under parameter λ (time-shifted by τ and time-stretched by α) and
reference parameter λ(0), when subject to the same input function u:

Normalised zero-lag cross-correlation

ρu,λ(0),λ,i(α, τ) =
∑
t∈T yα,τi (t; u, λ)× yi(t; u, λ(0))
||yα,τi (u, λ)|| ×

∣∣∣∣yi(u, λ(0))
∣∣∣∣ (3.1)

Normalised Energy Difference (NED)

Eu,λ(0),λ,i(α, τ) =

∣∣∣∣||yα,τi (u, λ)||2 −
∣∣∣∣∣∣yi(u, λ(0))

∣∣∣∣∣∣2∣∣∣∣∣∣∣∣yi(u, λ(0))
∣∣∣∣2 (3.2)

As an example, Figure 3.1 shows how a model evolution (the blue curve) can be
time-shifted and -scaled (the dashed blue curve) in order to be aligned to a reference



34 3. Computation of complete populations of virtual patients

model evolution (the green curve). As the picture shows, after being aligned the
two curves exhibit a high correlation. Also, the figure highlights the difference of
energies of the two curves, which, after normalisation, is used in our qualitative
similarity metrics to understand how close is the two model evolutions are in terms
of their energy.

Definition 3.5 (Similarity-based physiological admissibility function). Let S =
(T ,Λ,U ,Y,y) (Definition 2.1) be a VPH model, whose output space Y is Rn0+ where
n ∈ N+ is the number of (real-valued) observables.

Let also θρ, θE ∈ R+ be two thresholds, A, T and B1, . . .Bn be bounded ranges of
R0+ ( time-stretch, time-shift and observable bounds ranges) such that 1 ∈ A and
0 ∈ T.

We define our similarity-based physiological admissibility function ϕ : Λ→ {0, 1}
as follows. For any λ ∈ Λ, ϕ(λ) = 1 if there exists α ∈ A, τ ∈ T such that, for each
model observable i ∈ [1, n] and u ∈ U, all conditions below hold:

• ρu,λ(0),λ,i(α, τ) ≥ θρ

• Eu,λ(0),λ,i(α, τ) ≤ θE

• [mint∈T (yα,τi (t; u, λ)),maxt∈T (yα,τi (t; u, λ))] ⊆ Bi.

We have ϕ(λ) = 0 otherwise.

In other words, Definition 3.5 declares a parameter value λ as physiologically
meaningful (i.e., a VP) if the entailed model evolution can be time-scaled and/or
-shifted so that all observables are within the given physiological bounds and the
values of all similarity metrics are within the given thresholds.

Computation Computing ϕ(λ) for any given λ is quite heavy. In particular,
GynCycle must be numerically simulated under each candidate parameter λ and
each input function u ∈ U, in order to retrieve the observation function y(u, λ).
Also, time-scaling and time-shifting issues must be evaluated before computing our
similarity metrics between y(u, λ) and y(u, λ(0)). Hence, we need to find suitable
values for α and τ , which, however, are real values. To cope with this problem,
we deployed the following (greedy) approach, starting from the model evolutions
computed by the simulator under parameter λ and λ(0) and all input functions in
U: we considered only the (α, τ) pairs for which yα,τi (t; u, λ) and yi(t; u, λ(0))
share, in the time domain, at least a local maximum or a local minimum for at least
one u ∈ U.

Since we defined the time set of GynCycle as a bounded interval of N (see, Sec-
tion 2.2.1), we can efficiently enumerate all possible values for (α, τ) (which represent
all possible peak-alignments) by defining and computing all solutions of a Constraint
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Figure 3.1. An example of two model evolutions representing yi(t; u, λ(0))
(green curve) and yi(t; u, λ) (blue curve), respectively. The dashed curve
is the time-scaled and -shifted version of yi(t; u, λ). The yellow area
denotes the difference of model evolution energy.
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Satisfaction Problem (CSP) (by means of an off-the-shelf solver). Namely, for each
candidate assignment to α and τ (a solution of our CSP), we compute our qualita-
tive similarity metrics, and return ϕ(λ) = 1 as soon as we find one assignment for
which the qualitative similarity metrics satisfy the given thresholds (and 0 if we do
not find any).

3.2.3.3 Stratified phenotypes

Our definition of behavioural indistinguishability (i.e., same-phenotype equivalence
relation) of different VPs follows an approach consistent to the one we used to decide
physiological meaningfulness. However, in this case, similarity is quantitatively eval-
uated between the observation functions of each pair of VPs (i.e., parameters that,
by satisfying function ϕ in Section 3.2.3.2, already satisfy the qualitative similarity
metrics thresholds against the reference VP λ(0)).

To compare two observation functions available in the form of discrete sequences
of real-valued samples evenly spaced in time (as is our case), we compare the coef-
ficients of their Discrete Fourier Transforms (DFTs) (see, e.g., [213] and citations
therein, and, e.g., [163] for an application to healthcare). We thus define the equiv-
alence relation ∼ψ (parametric in ψ ∈ R+, quantisation factor) among the VPs as
stated by Definition 3.6.

Definition 3.6 (Equivalence relation ∼ψ). Let S = (T ,Λ,U ,Y,y) be a dynamical
system with T = N+, parameter space Λ, and Y = Rn0+, where n ∈ N+ is the number
of model observables. Let also λ(0) ∈ Λ be a distinguished parameter assignment,
ψ ∈ R+ and U ⊆ UT be a set of input functions for S.

Given λ(1), λ(2) ∈ Λ, let Y (k)
c,i,u be the c-th coefficient (c ∈ [0, h − 1]) of the DFT

of the time evolution of the i-th model observable (i ∈ [1, n]) when the model is fed
with input u ∈ U under parameter λ(k) (k ∈ [0, 2], which refers to the distinguished
λ(0) when k = 0).

The quantum of Y (k)
c,i,u, Qψ(Y (k)

c,i,u), is:


∣∣∣Y (k)
c,i,u

∣∣∣2
ψ
∣∣∣∣yi(u, λ(0))

∣∣∣∣2
.

We stipulate that λ(1) ∼ψ λ(2) if, for each u ∈ U, c ∈ [0, h− 1], and i ∈ [1, n], it
holds Qψ(Y (1)

c,i,u) = Qψ(Y (2)
c,i,u).

Equivalence relation ∼ψ (Definition 3.6) is defined in terms of the energy of the
observation function of each model observable i ∈ [1, n] under the distinguished
parameter assignment λ(0)

(∣∣∣∣∣∣yi(u, λ(0))
∣∣∣∣∣∣2), which acts as a normalising factor.

This is important, because the different model observables may assume values in
very different ranges. In our experiments (Section 3.3) λ(0) is the GynCycle reference
VP.
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The following Remark 3.1 shows that our definition of ∼ψ (Definition 3.6) im-
mediately gives us a theoretical upper bound to the Normalised Energy Difference
(NED) shown by the observation functions of any two VPs, λ(1) and λ(2), belonging
to the same equivalence class of ∼ψ, λ(1) ∼ψ λ(2), for any model observable i ∈ [1, n]
and input function u ∈ U.

Remark 3.1. Let S = (T ,Λ,U ,Y,y), λ(0), n, ψ, U, and ∼ψ be as in Definition 3.6.
For each i ∈ [1, n] u ∈ U, and λ ∈ Λ, let yi(u, λ) be the (real-valued) observation
function of the i-th model observable under parameter λ when S is fed with input
function u.

For every λ(1), λ(2) ∈ Λ such that λ(1) ∼ψ λ(2) we have that, for each i ∈ [1, n]
and u ∈ U, the Normalised Energy Difference (NED) between yi(u, λ(1)) and yi(u,
λ(2)) is upper-bounded by ψ, that is:∣∣∣∣∣∣∣∣∣∣yi(u, λ(1))

∣∣∣∣∣∣2 − ∣∣∣∣∣∣yi(u, λ(2))
∣∣∣∣∣∣2∣∣∣∣∣∣∣∣yi(u, λ(0))

∣∣∣∣2 ≤ ψ.

Proof. Time evolution yi(u, λ(k)) (k ∈ [0, 2]) is a vector of real-valued samples yi(u,
λ(k)) = (y(k)

t,i,u)h−1
t=0 ∈ Rh0+.

Let Y (k)
i,u = (Y (k)

c,i,u)h−1
c=0 ∈ Ch be the vector of coefficients of the DFT of yi(u,

λ(k)), each one being a complex number. Namely: Y (k)
c,i,u =

∑h−1
t=0 y

(k)
t,i,u exp(−2πtc

h ),
where  =

√
−1.

We recall that, given vector X = (Xc)h−1
c=0 ∈ Ch (or, as a special case, X ∈ Rh0+),

the squared L2-norm of X is ||X||2 =
∑h−1
c=0 |Xc|2.

From Parserval’s theorem we know (see, e.g., [213]) that∣∣∣∣∣∣yi(u, λ(k))
∣∣∣∣∣∣2 = 1

h

∣∣∣∣∣∣Y (k)
i,u

∣∣∣∣∣∣2 .
Hence,

∣∣∣∣∣∣∣∣∣∣yi(u, λ(1))
∣∣∣∣∣∣2 − ∣∣∣∣∣∣yi(u, λ(2))

∣∣∣∣∣∣2∣∣∣∣ rewrites as: 1
h

∑h−1
c=0

∣∣∣∣∣∣∣Y (1)
c,i,u

∣∣∣2 − ∣∣∣Y (2)
c,i,u

∣∣∣2∣∣∣∣.
Since λ(1) ∼ψ λ(2), we have, for each c ∈ [0, h−1], Qψ(Y (1)

c,i,u) = Qψ(Y (2)
c,i,u), which

implies (Definition 3.6) that∣∣∣∣∣∣∣Y (1)
c,i,u

∣∣∣2 − ∣∣∣Y (2)
c,i,u

∣∣∣2∣∣∣∣ ≤ ψ ∣∣∣∣∣∣yi(u, λ(0))
∣∣∣∣∣∣2

for all c ∈ [0, h− 1].
Thus: ∣∣∣∣∣∣∣Y (1)

i,u

∣∣∣2 − ∣∣∣Y (2)
i,u

∣∣∣2∣∣∣∣ ≤ hψ ∣∣∣∣∣∣yi(u, λ(0))
∣∣∣∣∣∣2

and the thesis follows.
�
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In the formula, the energy difference is normalised with respect to the energy of
the same observable under the reference VP λ(0), when subject to the same input.

Thus, by considering L increasing values for ψ: ψ1 < · · · < ψL (L ∈ N+), we
define L equivalence relations∼ψ1 , . . . , ∼ψL

that group VPs in larger behavioural in-
distinguishability classes as their associated quantisation factor increases (stratified
phenotypes). In our experiments (Section 3.3), we choose L = 7 and an increasing
set of 7 values for ψ (see Table 3.1), where ψL is such to place all generated VPs into
a single equivalence class. Indeed, value ψ is a very loose upper bound for the NED
between VPs belonging to the same equivalence class. This is because it does not
take into account the fact that all our VPs are known to satisfy the physiological
meaningfulness criteria of Section 3.2.3.2.2 (qualitative similarity with respect to
to the time evolution of λ(0)). In particular, since such criteria depend on optimal
time-shifts and time-stretches sought for each single VP, our bound to the NED
cannot exploit such knowledge and needs to stick to the worst-case. To this end,
in our experimental analysis, we also compute, by means of auxiliary hypothesis
testing–based SMC tasks (along the same lines of Algorithm 1, with error margin
1% and confidence ratio 5%), the actual maximum NED between VPs belonging to
the same equivalence class of each stratum (see Table 3.1).

3.2.3.4 Sampling policy and parallel computation

As many VPH models, GynCycle is organised in several components, one for each
of the modelled hormones. Changing the values of the elements of the parameter
vector occurring in a few components typically changes the overall model dynamics
only partially.

This key observation is at the hearth of our sampling policy. In order to draw,
with high probability, a parameter assignment that proves to be a VP, we exploit
the knowledge acquired so far in terms of the parameter assignments that already
proved to be VPs. Namely, given the set Λ̂current of VPs discovered so far (popula-
tion of known VPs), our sampling policy draws a random parameter λ by changing
uniformly at random the elements occurring in p ∈ N+ model components (cho-
sen uniformly at random) from a parameter λ̂ chosen uniformly at random from
Λ̂current (if Λ̂current is empty, then λ̂ = λ(0)). The value of p is drawn from a Zipf’s
distribution (which is a bounded discrete distribution based on a power law, i.e.,
p ∼ ap−b, where a is a normalisation factor), in order to draw with high probability
small values of p. In our experiments we set b to 3 so that the expected value for p
is about 1.11.

The sampling policy is periodically revised by updating Λ̂current with the new
discovered VPs. However, in order to avoid too frequent policy updates (which
would resort in an immediate reset of the consecutive failure counters, see Sec-
tion 3.2.2.1), set Λ̂current is updated only every a given number N of samples. In
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our experiments we chose N such that experiencing N consecutive failures to find
a new VP (regardless of its phenotype) would allow us to conclude, with statistical
confidence (1 − δ) = 95%, that the probability that additional VPs will be found
by further sampling is less than ε = 1− δ1/N = 5× 10−5 = 0.005%. This results in
N = 59 914.

For the above sampling policy to work on top of a slicing of the parameter space
Λ to be processed in parallel, it is enough to ensure that λ(0) belongs to all slices.
This was done by defining our (initially continuous) parameter space finitisation as
a grid having λ(0) as one of its vertices, and by defining the k slices by bisecting
Λ on values λ(0)

i1
, . . . , λ

(0)
ir

for any subset of coordinates i1, . . . , ir within [1, 76], thus
defining k = 2r slices Λ1, . . . ,Λk all containing λ(0). In our experiments we chose
r = 7 random coordinates, hence k = 128.

3.3 Experimental Results

Here we present our results on GynCycle. In Section 3.3.1 we show the APPs we
computed, in Section 3.3.2 we analyse the behaviour of our sampling policy, and in
Section 3.3.3 we perform a qualitative and quantitative evaluation of the represen-
tativeness of our populations with respect to retrospective clinical data (86 medical
cases courtesy of Hannover Medical School, University Hospital of Lausanne, and
Pfizer).

3.3.1 Computed All-Different Phenotype Populations

We ran our SMC-based algorithm on a parallel High Performance Computing (HPC)
infrastructure (the Marconi cluster at Cineca, Italy) with the settings defined above,
in order to compute the stratified APPs as defined in Section 3.2.3.3. The confidence
ratio δ was set to 0.05.

The computation was stopped after around 60 days. In total, our algorithm
sampled 414 245 648 parameters (simulating GynCycle for 7 months on each of them
and for each of the input functions in the representative portfolio described in
Section 3.2.3.2.1). Overall, 4 830 264 parameters were declared to define VPs.

Table 3.1 lists the sizes of the 7 computed APPs. The bottom line refers to the
entire population of VPs, Λ̂1 (which is an APP with respect to equivalence relation
1).

We decided to terminate our (any-time) computation when we achieved ε =
5× 10−5 for all slices on the top three strata. This means that, by Theorem 3.1,
with statistical confidence 1 − δ = 95%, the probability that further sampling (in
any single slice) would disprove that such top three APPs are indeed CAPPs is
below the error margin (5× 10−5).
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As for the remaining strata, the table reports the minimum, maximum and
average error margins across the k = 128 parallel SMC processes (one per slice) at
the time of termination of our any-time computation. Since the exploration of each
slice is an independent process, the values of the k error margins for each stratum
can be quite different, as the value for ε for a given slice depends on the time when
the last VP belonging to that slice was generated. Also, when we terminated our
experiment, a new VP (of a phenotype known to the top three strata) was just
generated. Hence, the max ε for the population Λ̂1 consisting of all VPs (bottom
line of Table 3.1) is 1.

Figure 3.2 shows the time evolutions for the GynCycle observables under the
VPs belonging to the computed APPs for all strata except the extreme two. It
can be seen that, despite the number of VPs greatly reduces at higher levels of
our stratification, all APPs retain full representativeness of the entire spectrum of
possible behaviours (this is also a consequence of the small values for the NED in
all strata).

A final note is in order. Although 60 days could appear an unusually-long time
for a computation (especially if compared to the time typically needed by classical
model fitting tasks), this is a one-time activity for the input VPH model, and can be
sped-up almost arbitrarily by using more computational nodes (e.g., if using 1280
nodes –which is perfectly feasible in today’s infrastructure-as-a-service platforms–
with groups of 10 nodes jointly exploring each of our 128 slices, would have required
just 6 days). Indeed, once a population of VPs for a given model has been computed,
it can be used to carry-out multiple ISCT (i.e., for different treatment strategies or
medical devices). Each ISCT can be carried-out on the most appropriate stratum
of VPs, depending, e.g., on the chosen trade-off between budgeted computational
effort and required completeness of the trial. Also, more sophisticated approaches
can be exploited, e.g., iterative deepening within the stratification of phenotypes
(guided by simulation results) searching for a VP showing a failure of the candidate
treatment or medical device (a counter-example, see, e.g., [140]).

3.3.2 Sampling policy behaviour

Our informed sampling policy was able, on average, to find an admissible VP every
86 attempts (average success rate: 1.17%). This is to be compared to a uniform
(non-informed) sampling policy, which was unable to discover a single VP after 50
million attempts (within our 128 slices).

Figure 3.3 shows the behaviour of the error margin ε = 1− δ1/N values achieved
by our informed sampling policy during the computation of our APPs. The figure
shows the case of Λ̂∼4050 , i.e., the APP associated to the smallest value of ψ (see
Table 3.1) for which we reached a value of ε = 5× 10−5 for all slices. The plot
shows the values for ε reached by each of the 128 parallel computations (light
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id ψ APP size error margin (ε) max NED
min avg max

7 16 200 1 5× 10−5 5× 10−5 5× 10−5 163.23%
6 8100 104 5× 10−5 5× 10−5 5× 10−5 144.36%
5 4050 3862 5× 10−5 5× 10−5 5× 10−5 106.74%
4 2700 43 941 5× 10−5 6.75× 10−3 4.51× 10−1 84.70%
3 1800 251 239 5.09× 10−4 2.36× 10−2 1 59.09%
2 900 2 136 710 3.25× 10−3 8.33× 10−2 1 48.07%
1 – 4 830 264 9.87× 10−3 1.81× 10−1 1 –

Table 3.1. Stratified GynCycle APPs for different behavioural indistiguishability criteria
(∼ψ). Statistical confidence: 95%.

curves) when discovering each of its VPs (x axis), thus disproving that the current
APP was indeed a CAPP. Values for x have been normalised into percentages of
the total number of the VPs discovered by each parallel computation. The dark
curve shows the average ε among such computations.

We note that the average ε lies for most of the time at values one order of mag-
nitude higher than the value we chose to terminate our experiments (ε = 5× 10−5,
see Table 3.1). This shows that our informed sampling policy was always effective
to extract (with probability much higher than 5× 10−5) new VPs when (we know
that) they actually exist.

Finally, Figure 3.4 shows the location of VPs within the GynCycle parameter
space. The figure shows one line per VP, which connects the chosen values for the
76 parameter vector elements. Interestingly, for some of them, only a few values of
their domains actually occur in VPs. Such constraints were unknown at the time
of model design.

3.3.3 Validation against clinical data

Here we assess the representativeness of our entire population of VPs (i.e., Λ̂1) with
respect to retrospective clinical data on 86 clinical records kindly made available
to us by Hannover Medical School (35 cases), University Hospital of Lausanne (39
cases) and Pfizer (12 cases, which were originally used in [184, 61] to compute the
reference GynCycle VP). As anticipated in Section 2.2.3, in each dataset, for each
clinical record we have actual measurements of the blood levels of the 4 model ob-
servables (LH, FSH, E2, and P4) on a (roughly) daily basis for an entire menstrual
cycle (all medical cases refer to patients subject to no pharmaceutical treatment).
Below we perform both a qualitative and a quantitative assessment of the represen-
tativeness of our VP population against such datasets.
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Figure 3.2. Time evolutions for the GynCycle observables under the VPs
belonging to the computed stratified APPs
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Figure 3.3. Average error margin (ε) reached during parallel computations
(stratum 5)
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Figure 3.4. Parameter space exploration

3.3.3.1 Qualitative evaluation

Figure 3.5 shows daily measured blood hormone levels on the 86 clinical records
(box-and-whisker plots) on top of the set of time evolutions of the 4 model observ-
ables of our entire population of VPs (blue curves). Curves as well as data have
been aligned with respect to the LH peak, which is typically used to estimate the
ovulation day. This allows to take into account the different transient periods of
model trajectories stemming from the different VPs in our population.

Figure 3.5 shows that our VP population is highly representative of the available
clinical measurements, and that the qualitative time evolutions of our VPs faithfully
reflect those of the available data.

3.3.3.2 Quantitative evaluation

We formalise each clinical record according to Definition 2.2 introduced in Sec-
tion 2.1.2. The Average Normalised Mean Absolute Error aNMAE(C, λ) between a
clinical record C and VP λ is the average (among observables s) of the average
(among clinical measurements j of s) of the absolute error between the model out-
put (under parameter λ and input function uC defining the same sequence of drug
administrations of C) and the j-th measurement of s in C, normalised with respect
to the maximum measured value maxval(s) of s in C. Namely:

avgsavgj
|y(time(s, j); uC , λ)− val(s, j)|

maxval(s) .
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Figure 3.5. Qualitative validation of our GynCycle population against clin-
ical data.

We recall that uC always defines absence of treatment (consistently with our datasets)
and that we aligned model evolutions and data at the LH peak day.

We say that a clinical record C is covered by our VP population Λ̂ within aNMAE
e if there exists λC in Λ̂ such that aNMAE(C, λC) ≤ e. Figure 3.6 shows the coverage
of our datasets as a function of the aNMAE. The results show that most clinical
records are covered by our population within small aNMAE values. Namely, the
totality of the Pfizer, Hannover, and Lausanne medical cases are covered within
aNMAE 15%, 20%, and 35%, respectively. As for the latter dataset, 90% of the
cases are actually covered within an aNMAE of just 20%.
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Figure 3.6. Quantitative validation of our GynCycle population against
clinical data.

3.4 Related Work

In the literature different approaches to generate VPs have been devised. We dis-
tinguish those based on optimisation techniques and those based on statistical tech-
niques. Both global and local optimisation-based approaches, relying on Artificial
Intelligence (AI) as well as on numerical methods, have been widely studied. Global
optimisation–based approaches are computationally heavy, however convergence is
guaranteed to a global optimum (see, e.g., [222, 167]). On the other hand, local
optimisation approaches are in general computationally lighter than global ones,
but convergence is only guaranteed towards a local optimum (e.g., [114, 117, 157]).
The reader is referred to, e.g., [173] for an in-depth comparison among the two
approaches. Typically, both global as well as local optimisation approaches rely on
model identifiability, i.e., different values for the model parameters lead to different
model behaviours (see, e.g., [134]). In such a case, different model identification
techniques can be used. Examples are in [66, 175, 81, 206, 2, 201]. When clinical
data are scarce, e.g., when clinical assays are costly, risky and invasive, identification
approaches can be applied by averaging data coming from different patients. How-
ever, the resulting parameter value yields an inter-patient model behaviour (see,
e.g., [184]).

Since the goal of the above mentioned approaches is to generate a model param-
eter value that fits available experimental data, a huge amount of data per patient is
needed in order to generate a virtual population that is representative of all human
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phenotypes. As a result, generating a complete set of VPs using model identifi-
cation techniques would require considering a large amount of patients (ideally at
least one for each relevant phenotype) along with a huge amount of clinical data
for each of such patients. Unfortunately, this is exactly one of the obstacles ISCT
aims at overcoming. Thus, while model identification techniques are essential to
validate models against clinical data and to develop patient-specific models, they
can be hardly used to generate a complete set of VPs. Moreover, VP models are
often globally or partially unidentifiable, i.e., wide ranges of parameter values lead
to very similar model behaviours (see, e.g., [42]). However, being able to generate
VPs (i.e., parameter values) which yield clearly distinguishable model behaviours
is of crucial importance for ISCT. Statistical approaches are also widely used. In
such approaches a parameter probability distribution, rather than a single value,
is inferred (see, e.g., [95, 118, 194]). They are typically used for physiology-based
PK/PD models (see, e.g., [189]), i.e., quantitative VP models where parameter val-
ues are measurable physiological quantities (such as blood flow, organ volumes, etc).
Unfortunately, most VP models have hard-to-measure parameters such as stoichio-
metric constants and reaction rates. In fact, probability distribution functions for
them are typically unknown. Limited knowledge about VP model parameters calls
for methods that handle models whose parameters are partially unknown. Since
model-checking techniques enable exploration of all possible behaviours of a model,
it is not surprising that such approaches have been investigated in order to gen-
erate VPs for both qualitative as well as quantitative VP models. In particular,
for qualitative models (e.g., Boolean models) the problem of finding model param-
eter values yielding a biological meaningful behaviour is reduced to the problem
of finding stable states of the model, i.e., attractors. In such a setting, symbolic
model checking is widely used (see, e.g., [158, 88, 3, 103]). There, physiological
meaningfulness can be defined using a temporal logic, such as CTL or LTL. Some
examples are in [40, 22, 20, 85, 14] or in [91], where a probabilistic model checking
approach is used. Also, in the case of quantitative models, Satisfiability Modulo
Theories (SMT)-based approaches are investigated for the computation of param-
eter values of Ordinary Differential Equations (ODEs) (see, e.g., [135, 132] and
citations therein). Unfortunately, even using model approximation techniques like
those in [9, 152], the above mentioned model checking approaches cannot be used
to generate VPs from complex (non linear) ODE-based models, i.e., those sought
to support ISCT. Hence, the complexity of the VPH models relevant for in silico
clinical practice makes such models out of reach for approaches like those above
mentioned and appoints numerical integration as the only viable means to compute
(black-box) the model evolutions. Indeed, in such a setting only simulation-based
approaches are viable.
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3.5 Conclusions
In this chapter we presented methods and software to compute a representative and
stratified population of VPs for a given quantitative model of the human physiology
(plus drugs PK/PD). Our approach is especially designed for complex (e.g., non-
linear ODE–based) parametric VPH models that cannot be analysed symbolically
or integrated in closed form, but must be numerically simulated. To this end, our
algorithm runs a global search on the space of model parameter values, guided by
statistical model checking and hypothesis testing to sample those parameter val-
ues to be simulated, exploiting suitable biological and medical knowledge elicited
from experts to recognise physiologically meaningful behaviours and different phe-
notypes, and structural knowledge of the model to intelligently drive the search via
an informed sampling policy. Our algorithm can be stopped at any-time, since it
continuously provides an upper bound (correct with a user-defined confidence level)
to the probability that further computation will discover new phenotypes.

Results of this chapter have been presented in [36, 8, 196]. A previous work
has been also presented in [205]. Software developed in this chapter is available at
the following url: https://bitbucket.org/mclab/vipgenerator.

https://bitbucket.org/mclab/vipgenerator
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Chapter 4

Computation of optimal
personalised treatments

4.1 Introduction

In this chapter we present methods and software that, by means of extensive com-
puter simulation–based experimental campaigns (In Silico Clinical Trials, ISCT)
guided by intelligent search, optimise a pharmacological treatment for an individ-
ual patient. We show the effectiveness of our approach on a case study involving
a real pharmacological treatment, namely the downregulation phase of a complex
clinical protocol for assisted reproduction in humans.

To do this, in order to conduct an In Silico Clinical Trial (ISCT), we exploit the
state-of-the-art Virtual Physiological Human (VPH) model of the Hypothalamic–
Pituitary–Gonadal (HPG) axis presented in Section 2.2.1, i.e., the GynCycle model,
(whose accuracy has been experimentally assessed in [184]). Namely, starting from
clinical data collected from a real patient, we first compute her digital twin, which
defines a digital representation of that patient physiology. Then, we compute in
silico, by means of intelligent search on such a digital twin, the lightest (in terms
of overall amount of administered drug) treatment still effective for that patient.

Our search algorithm extends standard artificial intelligence techniques (such
as, e.g., classical planning [218], CSP [185] and SAT [23]) in order to intelligently
explore the space of possible time-series of drug administrations (treatments) by
driving a simulator of the VPH model at hand. To improve the performance of
our search algorithm, we also define suitable ordering heuristics (which keep our
approach complete) and we evaluate their marginal performance gain. Moreover,
our implementation can be easily adapted to several VPH models and to a wide
class of clinical treatments as it drives a Modelica black-box simulator.

In order to assess the technical viability of our approach, we exploit the Gyn-
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Cycle VPH model to conduct a multi-arm ISCT involving 21 patients (for which
we have retrospective clinical measurements). For each such patient, who defines a
distinct arm of our ISCT, we compute the optimal (lightest) still-effective downreg-
ulation treatment. Given that the required computation is extremely intensive, we
conduct our ISCT on a large High Performance Computing (HPC) infrastructure.

The possibility to optimise in silico a complex treatment for a given human
patient before its actual administration shows the potential of artificial intelligence
search methods for model-based (in silico) medicine.

4.2 Methods

Below we define our formal framework and present our methodology to compute
optimal personalised treatments.

4.2.1 Formal framework

In this section we give the necessary background knowledge for this chapter.
Throughout this chapter, VPH model are defined as in Definition 2.1. The

input space of the VPH model is defined by the administrations of nu different
pharmaceutical drugs (clinical actions). In particular, for each i ∈ [nu], the input
function ui associates to each time instant t ∈ T the administered dose of the i-th
drug, to be chosen within a set Ai of possible doses (which always includes dose
zero).

The GynCycle VPH model (see, Section 2.2.1) and the downregulation treat-
ment (see, Section 2.2.2) are used as a case study.

A population of Virtual Patients (VPs) is also used as a starting point for our
ISCT. We denote such a population as P through this chapter.

4.2.1.1 Digital twin of a human patient

To compute a personalised treatment for a human patient, we first need to compute
a digital representation for her. This will be done by using clinical data (in the form
of a clinical record C, Definition 2.2) available from that patient in order to select,
from our representative population of VPs, the subset of VPs that are compatible
with (i.e., fit) such data.

To do so, we proceed as follows. Let C be a clinical record and λ be a VP of our
population. Also, let η(C, λ) ∈ R0+ be a function (i.e., a Key Performance Indicator,
KPI) computing the degree of similarity between the clinical measurements of C and
the time evolutions of the VP λ with respect to all biological quantities measured
in C. The more η(C, λ) is near to zero the more the behaviour of VP λ is similar to
the clinical measurements of C. By using such a metric, Definition 4.1 defines the
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concept of patient digital twin as the set of all VPs λ in our population P having a
value for η(C, λ) up to a given threshold.

Definition 4.1. Given a clinical record C, a population of VPs P, a threshold
δ ∈ R0+ for a KPI η, the digital twin P of C is the following set:

P (C) = {λ ∈ P | η(C, λ) ≤ δ} .

Intuitively, the digital twin of a human patient is a digital representation of the
patient physiology in the form of all VPs entailing model behaviours that fit the
patient clinical measurements (up to a KPI η and a threshold δ).

4.2.2 Computing optimal personalised treatments

In this section, we define the conditions of a successful treatment through invariants
and goals (Section 4.2.2.1), describe how to perform digital twin simulations (Sec-
tion 4.2.2.2), and describe the algorithm used at the core of our optimal personalised
treatment computation (Section 4.2.2.3).

4.2.2.1 Modelling treatment invariants and goals

We define conditions that must be always and eventually satisfied by a successful
treatment by means of invariants and goals, respectively. Invariant and goal treat-
ment conditions are modelled as continuous-time monitors embedded within the
VPH model, along the lines of [140, 145]. Monitors observe the state of the system
and check whether the properties of interest are satisfied.

In particular, given a model trajectory yi(u, λ) under a given input u, our mon-
itor output is Undet as long as yi(u, λ) satisfies the invariants (in other words, the
monitor decision is “undetermined” as long as there is hope to extend the current
treatment into a successful treatment) and goes to and stays at value Fail as soon
as invariants are violated. When a Undet model trajectory satisfies the goal con-
ditions, the monitor output turns to Success, informing the caller that the input
u defines a successful treatment (i.e., an effective treatment which always satisfies
invariants).

The use of continuous-time monitors embedded in the VPH model gives us a
flexible way to model both bounded safety and bounded liveness properties, and is
a standard approach in the simulation-based verification of cyber-physical systems
(see, e.g., [142, 144]).

In our case study, the properties of interest are the conditions of successful
downregulation treatments (Section 2.2.2). In particular, our invariant requires
that the day of the first drug administration is between day 21 and day 25 of
the menstrual cycle. Moreover, the value of all the biological quantities under
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Undet Fail Success
invariants violated

goal reached

Figure 4.1. Treatment monitor.

observation must go and stay below their thresholds from the 9-th day after the
first drug administration. Our goal condition instead requires that values for those
quantities stay below their thresholds for 21 consecutive days.

As a consequence, our monitor output is Undet in the initial state, and even-
tually turns either to Fail or to Success (see Figure 4.1). The model output turns
to value Fail as soon as, from the 9-th day after the first drug administration, the
value of any of the physiological quantities under observation exceeds its threshold.
Conversely, model output turns from value Undet to value Success as soon as all
the thresholds are satisfied for 21 consecutive days.

4.2.2.2 Digital Twin simulation

As anticipated in Section 2.1.1, the complexity of the (highly non-linear) differ-
ential equations typically occurring in actual VPH models hinders the possibility
for their symbolic analysis. Numerical simulation is often the only means to com-
pute the time evolution of the model quantities of interests (mainly blood hormone
concentrations in our case study GynCycle model) upon a sequence of clinical ac-
tions (administration of one or more drugs with their associated doses). Also, as
VPH model equations are often stiff, simulation can be an expensive process from
a computational point of view (see, e.g., [7, 113]).

Our algorithm for optimal personalised treatment computation regards the input
VPH model as an executable black-box model. In order to drive the VPH model
simulator, our algorithm assumes that it accepts the following basic commands
(which are available or can be readily implemented within most modern simulators,
see, e.g., [143, 146] and Chapter 5): store, load, free, run, get. Command
store(l) stores in memory the current state of the simulator and labels with l such
a state. Command load(l) loads into the simulator the stored state labelled with l.
Command free(l) removes from the memory the state labelled with l. Command
run(a, t) (with a ∈ A1 × · · · × Anu and t ∈ T ) executes clinical action a (thus
administering given –possibly zero– doses for all available drugs) and then advances
the simulation of time t. Command get(x) (with x denoting one of the model
variables) returns the value of model variable x in the current state.

Since the input of our algorithm is a digital twin P (C) computed from a pa-
tient clinical record C and consisting of a set of np = |P (C)| ∈ N+ VPs (see Sec-
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tion 4.2.1.1), during the search we drive the simulation of np independent copies of
our VPH model (each one connected to a copy of the monitor checking for treatment
invariants and goals, as explained in Section 4.2.2.1). The different model copies are
instantiated with different values for the model parameter vector defined in P (C),
hence represent the different VPs in the patient digital twin.

By means of commands run(a, t) (a ∈ A1× · · ·×Anu), we simultaneously apply
the same clinical action to all VPs in P (C) and synchronously advance all models
by time t. Furthermore, by means of store and load commands, we can efficiently
expand a tree of sequences of clinical actions, as typically done by backtracking-
based state exploration algorithms. In particular, upon a backtrack, we only need
to load back a previously stored state of our models, thus avoiding to simulate the
entire input sequence starting from the initial state.

4.2.2.3 Intelligent backtracking–driven simulation

In this section we describe our intelligent search that drives a digital twin simula-
tor, by defining our search tree (Section 4.2.2.3.1) and criteria for the evaluation
and expansion of search tree nodes (Section 4.2.2.3.2). We also introduce two or-
dering heuristics aiming at efficiently pruning the search tree (Section 4.2.2.3.4)
and speeding up the digital twin simulation time (Section 4.2.2.3.5), while retaining
completeness of the overall algorithm.

4.2.2.3.1 Search tree definition. Given a patient clinical record C, its digital
twin P (C), and possible alternative doses for each treatment drug at hand (i.e.,
sets A1, . . . , Anu , each one including dose zero), our backtracking-based algorithm
performs a search in the space of possible treatments (i.e., time sequences of clinical
actions in A1× · · ·×Anu). Under the following assumptions: (i) the sets of allowed
doses A1, . . . , Anu for the nu drugs are finite; (ii) drug administrations occur at
time instants multiple of a given time-quantum τ ∈ R+; and (iii) sought treatments
have a bounded duration (τh, with h ∈ N+ being the treatment horizon), we can
limit our search to a finite tree of maximum depth h, where each tree node at depth
0 ≤ l ≤ h defines a discrete sequence of l clinical actions (elements of A1, . . . , Anu),
each one occurring in the first l time points multiple of τ .

As described in Section 4.2.2.2, our search algorithm drives a simulator con-
taining multiple copies of the VPH model (one per VP in the digital twin given
as input), each one connected to a copy of the monitor which checks for treatment
invariants and goals.

Accordingly, each node of our search tree keeps also track of the digital twin
simulator state reached by injecting the clinical action sequence of that node. This
is done via a store command (see Section 4.2.2.2). A transition between a parent
node and a child node consists of extending the clinical action sequence of the parent
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node with a new action a ∈ A1×· · ·×Anu . In doing so, we also advance the digital
twin simulator state of the parent node via a run command (see Section 4.2.2.2).
In Section 4.2.2.3.2, we describe more in details how a search tree node is evaluated
and expanded.

Before the search starts, for each VP λ in the input digital twin, we prepare its
associated copy of the VPH+monitor model within the digital twin simulator, by
setting the parameter vector to λ. We also store the initial simulator state via a
store command (see Section 4.2.2.2).

Clearly, the assumptions above together with the entailed search tree structure
hold for a very wide class of treatments. For example, in our downregulation treat-
ment case study, there is only one possible drug, namely Triptorelin, hence nu = 1.
Also, as such treatments allow at most one Triptorelin administration per day, we
can safely set τ = 1 day. Finally, successful treatments cannot last more than
h = 25 + 9 + 21 = 55 days, starting from day 1 of the patient menstrual cycle
(i.e., the latest cycle day, 25, when the treatment might start, plus the latest day,
9, within which the safety conditions must be met, plus the number of consecutive
days, 21, in which the safety conditions must be always satisfied in order to declare
success).

Moreover, in our case study, the initial simulator state represents day 1 of the
menstrual cycle of all VPs in the input digital twin.

4.2.2.3.2 Search tree node evaluation and expansion. At each node of the
search tree, our algorithm needs to extend the current sequence of clinical actions
(a treatment prefix, which is the empty sequence in the initial state). To do so, the
algorithm:

1. Stores the current states of the VP models by means of a store command.

2. For each clinical action a ∈ A1× . . .×Anu (according to the heuristic ordering
discussed in Section 4.2.2.3.4), injects a into the simulator and advances the
simulation (simultaneously for all VPs defined within the simulator) by time
τ (this is done by issuing a command run(a, τ)).

3. If the monitor output for one VP returns Fail, the algorithm infers that there
is no hope to extend the partial treatment to a complete treatment successful
for all the VPs in the digital twin and issues a backtrack, by loading back
(via a load command) the simulator state of all VPs associated to the parent
node in the search tree.

4. Otherwise, if the monitor output for all VPs is Success, the algorithm infers
that the current treatment is successful for all VPs.
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5. Otherwise, the algorithm continues by expanding the new search tree node
and extending the current treatment prefix.

Whenever no further actions can be executed in the current node of the search
tree, the current simulator state is freed from memory by a free command before
triggering a backtrack.

In order to reduce the required simulation time when expanding each node, the
multiple model copies are not actually packaged into a single (much heavier to be
simulated) model, but are kept separate and simulated sequentially. This allows our
algorithm to perform two performance optimisations: a sort of early pruning of the
current treatment prefix and a dynamic revision of the order with which the VPs
in the input digital twin will be actually simulated in the sequel (Section 4.2.2.3.5).

4.2.2.3.3 Optimality constraint. Since we seek the optimal personalised treat-
ment for the input digital twin, our algorithm does not stop at the first found suc-
cessful treatment. Indeed, along the lines of [139], it keeps track of the lightest
successful treatment found so far, i.e., the one envisioning the administration of the
minimum overall drug amount Dmin ∈ R0+. Initially, Dmin is set to +∞.

At each node of the search tree, any action extending the current partial treat-
ment with an administration of a drug dose which would make the overall admin-
istered drug amount reaching or exceeding Dmin is regarded as not applicable.

The optimality constraint (whose threshold is updated each time a new optimal
treatment is found), the presence of a bounded horizon h and the fact that our
algorithm does not stop at the first successful treatment clearly guarantee that a
global optimum is always returned (if any successful treatment exists).

4.2.2.3.4 Action ordering heuristic. In a black-box setting as ours, no in-
ference can be made on the effects of each candidate action without performing a
simulator run to actually advance the model and then querying the model monitor
output. Hence, approaches to compute, through inference, a dynamic preference
order among the candidate actions to be tried during search (as those exploited in,
e.g., classical planning, planning for white-box hybrid systems –see Section 4.4– or
(Q)CSP, SAT or local search solvers, see e.g., [185, 23, 82, 86, 138, 32, 33]) cannot
be applied.

The only information available to the algorithm without running the simulator
is value Dmin and the overall cost of the current partial treatment (overall amount
of drug administered). Hence, given that our algorithm searches for a successful
treatment of minimum cost and that any action has a non-negative contribution to
the overall treatment cost, not surprisingly our algorithm tries the clinical actions
on each node in the search tree in ascending order of their associated dose (i.e.,
cost), hence performing a greedy, optimistic choice.
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Figure 4.2. Measurements (dots) of, respectively, E2, P4, FSH and LH of
the 21 clinical records within the dataset from Pfizer Inc. and Hannover
Medical School (Germany).

4.2.2.3.5 Dynamic VP simulation ordering. When, during the evaluation
of search tree node, the monitor output after the simulation of a VP in the digi-
tal twin returns Fail, our algorithm, by performing a sort of early pruning, does
not simulate nor evaluate the remaining VPs, but it backtracks and tries the next
available action from the parent node, if any. Upon backtracking, the algorithm
changes the verification ordering of the VPs in the digital twin in such a way that
those VPs not satisfying treatment invariants or not yet simulated in the previous
search step are simulated first. The rationale is that those VPs that already satisfied
treatment invariants in previous step, will more likely satisfy treatment invariants
in the current step, where a slightly different drug dose is chosen.

4.3 Experimental Results

In this section we outline how we set up and conducted our ISCT in order to assess
the technical viability of the proposed approach.
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4.3.1 Retrospective clinical records

Our ISCT has been conducted against 21 clinical records contained in the following
two datasets of our retrospective clinical data: Pfizer Inc. and Hannover Medical
School (Germany) (see Section 2.2.3). Such 21 clinical records count around 800
measurements for the hormones that are monitored during assisted reproduction
treatments and that play the most important role during the human menstrual
cycle: LH, FSH, E2, and P4. Figure 4.2 shows measurements of these hormones in
our overall dataset.

Each of the 21 clinical records defines a distinct arm of our multi-arm ISCT.

4.3.2 Computing digital twins: exclusion criteria and VP selection

From the GynCycle model, a population of VPs has been generated using the ap-
proach presented in [205, 150] with an error threshold equal to 0.01% and a statis-
tical confidence bound equal to 95%. Such a population, P, counts about 107 VPs.
Also, it is representative of (almost) all patient behaviours allowed by the model (in
the sense of [205, 150]). Note that, although generating such a population required
weeks of HPC computation (see [150]) this is an off-line and one-time task for a VPH
model, as also shown in Section 3.3.1 for our novel VP-generation methodology.

In Section 3.3.3.2, we adopted the Average Normalised Mean Absolute Error
(aNMAE) because our goal was to assess coverage of our VP population on retro-
spective clinical data. Indeed, aNMAE is less sensitive to outliers as it aggregates
absolute errors before normalising them over the maximum value of s. This normal-
isation is needed to compare values for the MAE computed for the different species.
Conversely, in the setting of this chapter the prediction power of VPs (within a dig-
ital twin) is very important as our final goal is to compute personalised treatments.
Thus, we need a measure of prediction accuracy which is more sensitive to errors
and outliers. To this end we use Mean Absolute Percentage Error (MAPE), which
normalises each absolute error over the actual observation value, namely, val(s, j).

In particular, in order to compute digital twins, we use as KPI η(C, λ) the average
(over all biological quantities s) MAPE between the clinical measurements of o(s)
in C and time evolutions of s in VP λ. Formally:

η(C, λ) = avgsavgj
|y(time(s, j); uC , λ)− val(s, j)|

ζ(val(s, j))

where ζ(val(s, j)) is val(s, j) if val(s, j) 6= 0 and a small positive constant other-
wise (to avoid division by zero).

In order to carry out our multi-arm ISCT, we computed a digital twin for each
of the 21 clinical records in our retrospective clinical data. In particular, we set the
threshold value δ (Definition 4.1) to 35% and, for each clinical record C, we included
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in the digital twin of C, P (C), all λ ∈ P such that η(C, λ) ≤ 35%. Hence, for each
clinical record, we selected all VPs having an average MAPE at most 35%.

Since the reference downregulation treatment of Section 2.2.2 does not succeed
on all possible phenotypes (this is not surprising since, as described in Section 2.2.2,
fertility treatments are known to have a low rate of success), we removed from
P (C) those VPs for which the treatment using the maximum allowed dose (i.e.,
0.1 mg on each day for up to 30 days, see Section 2.2.2) fails, for any C. Such
an exclusion criterion directly stems from domain knowledge on downregulation
treatments (namely: for these protocols, if a treatment envisioning one full drug
dose per day fails for a patient, a lighter treatment will fail as well). Our 21 digital
twins contain, on average, 843 424 VPs each.

Unfortunately, in the worst-case scenario, each step of our backtracking search
requires to simulate all VPs within the input digital twin in order to check the mon-
itor output (i.e., treatment invariants and goals, see Section 4.2.2.3.2). Thus, since
simulating one VP requires seconds of numerical integration, the total computation
time of our algorithm is highly affected by the size of the input digital twin, and
may easily become impractical.

To overcome such an obstacle, we note that within a digital twin of a given
clinical record we can (and typically do) have VPs exhibiting very similar model
behaviours both with and without drug administrations. Simulating such very
similar VPs would then simply be a waste of computation as long as our ISCT
is concerned. In order to reduce the size of a digital twin, we compute a subset
P̂ (C) of P (C), for each given clinical record C, such that P̂ (C) does not contain such
redundant VPs.

To this end, we define the distance among the time evolutions of any model
observable yi(u, λ) of two VPs normalised against the time evolution of yi(u, λ) of
a third (reference) VP (Definition 4.2) when subject to the same input.

Definition 4.2. Let λ, λ′ and λ? be three VPs of a VPH model having n model
observables.

For every model observable yi(u, λ) (i ∈ [n]) the distance between λ and λ′ with
respect to λ? when subject to the same input function u on i is:

du,λ?,i(λ, λ′) = ||yi(u, λ)− yi(u, λ′)||
||yi(u, λ?)||

where || || is the L2-norm.

Intuitively, Definition 4.2 defines the Euclidean distance between the model ob-
servable time evolutions of two given VPs (λ and λ′) normalised with respect to the
L2-norm of that of a reference VP, λ?.



4.3 Experimental Results 59

Given this notion of distance, we build P̂ (C) from the digital twin P (C) of a
clinical record C as follows:

• We select, from P (C), the reference VP λ? as one that minimises η(C, λ?).
In other words, λ? is one of the VPs of P that best matches the clinical
measurements of C.

• We remove from P (C) those VPs whose time evolutions of all biological quan-
tities have a distance below a certain threshold from other VPs in P̂ (C) with
respect to λ? (Definition 4.3).

Such a distance threshold obviously depends on the VPH model and treatment
subject of the ISCT.

Definition 4.3. Let S = (T ,Λ,U ,Y,y) (Definition 2.1) be a VPH model, whose
output space Y is Rn0+ where n ∈ N+ is the number of (real-valued) observables and
a set of input functions U ⊂ UT .

Let C be a patient clinical record, P (C) be its digital twin, λ? be any VP such
that η(C, λ?) is minimal, and d be the distance function of Definition 4.2.

Then, given a threshold θ, we call compact digital twin P̂ (C) any subset of P (C)
such that the following condition holds:

∀λ ∈ P (C) . λ 6∈ P̂ (C)→ ∃λ′ ∈ P̂ (C) . ∀i ∈ [n] ∀u ∈ U du,λ?,i(λ, λ′) ≤ θ/2.

As a result of the application of the above approach and of our exclusion criteria,
we obtained compact digital twins with an average size of 11. This has been achieved
by tuning the distance threshold θ in such a way that: (i) VPs having redundant
and undistinguishable behaviours have been filtered out; (ii) the computed compact
digital twins were representative enough for all VPs in corresponding patient digital
twins; and (iii) their sizes were small enough to be computationally affordable. Also,
we consider a portfolio of input functions, U ⊂ UT , containing a no-drug input
and the reference downregulation treatment (Section 2.2.2). Figure 4.3 shows the
distribution of digital twin sizes.
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Figure 4.3. Bar chart showing digital twin sizes (in terms of number of
VPs) before (light) and after (dark) the removal of redundant VPs and
the application of our exclusion criteria for each clinical record.

4.3.3 Multi-arm In Silico Clinical Trial run

We ran our 21-arm ISCT using a large HPC infrastructure (the Marconi cluster)
kindly provided by the Cineca consortium.

For each patient clinical record C in our retrospective clinical data (see Sec-
tion 2.1.2), we, first, computed a compact digital twin P̂ (C) (see Section 4.3.2),
and then we ran our algorithm of Section 4.2.2 on an independent node of the
cluster searching for an optimal (i.e., lightest) and robust (with respect to all VPs
of P̂ (C)) downregulation treatment for that specific digital twin. Thus, the whole
21-arm ISCT has been conducted in an embarrassing parallel fashion.

Each VP in a compact digital twin has been encoded in a Modelica (www.
modelica.org) model (encompassing the GynCycle VPH model taking clinical ac-
tions as input, a parameter vector assignment, and a monitor to check for treat-
ment invariants and goals) and has been compiled as an executable object (i.e.,
a Functional Mock-up Unit, FMU) using the extended version of JModelica v2.1
presented in the forthcoming Chapter 5. Our search algorithm (which drives the
FMU of each VP) has been implemented in Python.

In the following sections, we first evaluate the marginal impact of our heuristic
ordering of actions (Section 4.3.3.1) and of our dynamic simulation ordering of VPs
within a digital twin (Section 4.3.3.2). Then, we present computational results
(Section 4.3.3.3) and outcomes (Section 4.3.3.4) of our multi-arm ISCT.

4.3.3.1 Evaluation of the action ordering heuristic

The goal of this section is to assess the marginal impact of the heuristic presented
in Section 4.2.2.3.4, which sorts actions by their ascending associated cost (admin-

www.modelica.org
www.modelica.org
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istered drug dose), in the overall efficiency of the optimal personalised treatment
search algorithm.

To this end, we compare it against 10 runs of an action selection strategy that
evaluates the possible actions in random order when expanding each node of the
search tree, and compare the performance of our heuristics against such reference
strategy.

In particular, we defined a limit of 104 on the number of search tree nodes to
expand, and analysed how fast the cost (overall amount of drug dose) associated
to the personalised treatments found decreases during the search space exploration,
on all digital twins involved in our multi-arm ISCT.

In Figure 4.4, we present 3 representative executions where our heuristic finds an
optimal solution at different points in time (with respect to the number of expanded
search tree nodes). For convenience of presentation, the initial value of Dmin in
Figure 4.4 is set to 3.0 (drug quantity employed by the reference treatment, i.e., 0.1
mg on each day for up to 30 days) instead of +∞ (as stated in Section 4.2.2.3.3).
This is in agreement with our exclusion criteria of Section 4.3.2 as the reference
treatment succeed on all VPs within our digital twins.

We note that, by choosing actions randomly, the algorithm might show its first
solution improvements a bit earlier (Figures 4.4a and 4.4c). However, in all cases,
our heuristics finds the optimal solution (i.e., the lightest treatment) within a num-
ber of expanded nodes which is orders of magnitude lower than the number of
expanded nodes required by the random action ordering strategy. As an example,
Figure 4.4c shows that, after 104 expanded nodes, 8 out of 10 runs with the random
action ordering still failed to find a solution better than the reference treatment
(i.e., 3.0 mg).

4.3.3.2 Evaluation of the dynamic ordering of VPs within a digital twin

In order to evaluate the marginal impact of our dynamic VP simulation order within
the input digital twin (Section 4.2.2.3.5) at each search tree node, we compared the
execution of our algorithm against a reference obtained by averaging 10 different
runs where the initial order of the VPs is randomised and fixed at the beginning of
the search.

In particular, we ran our algorithm for each digital twin involved in our multi-
arm ISCT, and compared the saving in terms of the number of simulations per-
formed within each given number of search tree nodes.

Figure 4.5 shows our result on 3 digital twins having different sizes: (i) a small
size — 3 VPs (Figure 4.5a); (ii) an average size — 13 VPs (Figure 4.5b); and (iii) a
large size — 36 VPs (Figure 4.5c), which are representative of the spectrum of
behaviours among our digital twins.

We note that the our dynamic VP simulation order is always beneficial. The
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highest saving in the number of simulations always occurs at the early stages of the
search, where the most pruning activity is performed. In deeper stages of the search,
the savings stabilise at values of the order of 10%–20%. Since, in our setting, the
time needed to simulate a VP is essentially constant (as VPs differ only in model
parameter values and not in the system of Ordinary Differential Equations, ODEs),
such savings translate in comparable reductions of the overall computation time.
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Figure 4.4. Comparison of solution paths traversed by our algorithm when
using our ordering heuristic (green line) against the references (red dashed
lines) among different digital twins of our multi-arm ISCT.



64 4. Computation of optimal personalised treatments

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
a
v
in
g

 o
f 
n
u
m
b
e
r 
o
f 
s
im
u
la
tio
n
s
 (
%
)

Number of expanded nodes

(a)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
a
v
in
g

 o
f 
n
u
m
b
e
r 
o
f 
s
im
u
la
tio
n
s
 (
%
)

Number of expanded nodes

(b)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
a
v
in
g

 o
f 
n
u
m
b
e
r 
o
f 
s
im
u
la
tio
n
s
 (
%
)

Number of expanded nodes

(c)

Figure 4.5. Marginal impact of our dynamic VP simulation ordering strategy
among the digital twins of our multi-arm ISCT.
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4.3.3.3 Computational results

We ran our multi-arm ISCT on the Marconi HPC infrastructure kindly provided
by Cineca, Italy. Due to CPU-hours budget limit, we ran each arm of our ISCT
in parallel for 15 days. Each arm searches the optimal treatment for one of the
21 patients in our dataset. Indeed, our algorithm can be regarded as an any-time
algorithm in that, at any moment during search, it keeps track of the lightest
successful treatment found so far.

Figure 4.6a gives, for each ISCT arm, the share of simulation time within the
whole computation time. As we already argued in Section 4.3.2, the size of the
input digital twin highly impacts the speed (in terms of expanded search tree nodes
per seconds) of our algorithm. In fact, in each search node (in the worst case), our
algorithm needs to numerically simulate all VPs within the input digital twin. As
shown in Figure 4.6a, the time spent in carrying out simulations is, on average,
the 81.2% of the total computation time. Note that, as already described in Sec-
tion 4.3.3, each VP model (encoding the GynCycle VPH model, a parameter vector
assignment and the treatment monitor) is compiled into an FMU. This compilation
is needed only once as during the search each FMU is used through its interface
(i.e., the Functional Mock-up Interface, FMI) (see Section 4.2.2.3.2 where high-level
simulation Application Programming Interfaces (APIs) are described and Chapter 5
for a deeper description of the FMI standard). This strategy already saves compu-
tation time as it avoids compiling the VP Modelica models for each input sequence
that has to be injected during the search.

This implies that any technique aimed at reducing the average number of simu-
lations per search node (like the reduction of the size of the considered digital twin
defined in Section 4.3.2, the action order heuristic evaluated in Section 4.3.3.1, and
the dynamic VP simulation ordering evaluated in Section 4.3.3.2) is expected to
have a substantial impact on the actual performance of the algorithm.

Figure 4.6b shows, for each of the 21 parallel search processes (one per clinical
record), the number of search nodes expanded within our time limit of 15 days
(orange bars, left Y axis), and compares it to the size of the digital twin considered
for that clinical record (blue bars, right Y axis).

The figure show a clear negative correlation (correlation coefficient equal to
−60%) between number of expanded nodes within our time limit and the digital
twin size for all clinical records. For example, we note that when the digital twin
size is small, as for, e.g., C4, the number of expanded nodes is large, i.e., near 106.
Instead, when the digital twin size is large, as for, e.g., C17, the number of expanded
nodes is quite low, i.e., less than 3× 104.
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4.3.3.4 ISCT outcomes

Figure 4.7 shows the distribution of the total amount of drug employed by the op-
timal personalised treatments computed by our algorithm. Note that, although we
ran our multi-arm ISCT with a limited time budget and did not find provably light-
est treatments, the treatments we actually computed use, on average, less than half
(40.82%) of the drug quantity employed by the reference treatment of Section 2.2.2
(i.e., 0.1 mg on each day for up to 30 days, totalling up to 3 mg and never less than
2.8 mg, since the required thresholds are never reached before day 7). As Figure 4.7
shows, the computed treatments save, on average, 59.18% of the drug administered
in the reference treatment (standard deviation: 13%).

In Figure 4.8, we show our computed treatments for the 21 patient clinical
records during our multi-arm ISCT. We note that, the majority of the computed
drug administration sequences is close to the reference downregulation treatment
in terms of administration frequency and treatment duration, i.e., around 28 days.
Besides this, there are also few computed treatments having a very light overall
amount of drug dose. This of course depends on the ability of the digital twins
to capture patient peculiarities and in general on the ability of the VPH model at
hand to represent the human physiology of interest. However, it is important to
read carefully such promising results as an in vivo evaluation is needed to assess the
accuracy of the GynCycle model predictions of non-standard drug dosing patterns
(i.e., our personalised treatments).

4.4 Related Work

Individualised treatments have the potential value to reduce costs and improve
outcomes of standard clinical treatments. In recent years data-driven techniques
have been investigated thanks to the availability of big data [178]. For example, the
knowledge-base approach in [77] has been used to optimise treatment plans for lung
cancer. Unfortunately, in presence of scarce clinical data for the patient at hand,
the above approaches cannot be applied. For example, in our case study hormones
blood concentrations are not measured every day, since those measurements are
costly and invasive. Model-based approaches, exploiting PharmacoKinetics (PK),
as e.g., [220], are used instead to build populations of virtual phenotypes. Such
populations are used to optimise and individualise drug doses [105, 212]. PK-based
models, however, do not define how administered drugs can affect a VP (namely,
PharmacoDynamics, PD), i.e., possible side-effects due to drug administrations are
not taken into account. In our model-based setting, we have to face with complex
VPH models, e.g., HumMod [94], Physiomodel [154], and GynCycle [184] defined
through highly non-linear differential equations modelling the underlying biological
mechanisms (e.g., inhibitory and stimulatory effects). As outlined in Section 2.1.1,
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such VPH models are hybrid systems that can be defined by systems of ODEs (see,
e.g., [120, 21, 216]) whose inputs are discrete event sequences (see, e.g., [140, 144]).
To find an optimal treatment means to find an optimal plan in hybrid domains,
where the behaviour of the given system is described by both discrete and continuous
quantities. In the literature, there are many techniques to model planning problems
in hybrid domains, e.g., PDDL+ [78, 211]. Most of PDDL+ planners can deal only
with linear dynamics (e.g., [48]). [35] proposed a Satisfiability Modulo Theories
(SMT)-based approach for solving PDDL+ problems with non-linear dynamics.
Model checking techniques are also used to find plans. Examples in this direction are
[31, 30], which exploits symbolic model checking, UPMurphi [59, 57], which given as
input a PDDL+ problem specification computes a universal plan, CGMurphi [56],
an explicit model checker used to compute optimal controllers, and [9, 152, 156, 187],
which define methodologies to compute controllers for non-linear hybrid systems.
However, as outlined in Section 4.2.2.2, the typical complexity of the differential
equations of VPH models relevant for clinical practice makes such models out of
reach for symbolic approaches like those mentioned above, and appoints numerical
integration as the only viable means to compute (black-box) the model evolutions
under a given input function. In particular, even considering that clinical actions
have constant and equal duration (as, e.g., in [128]), no reasoning or inference can
be made on action effects in a black-box setting as ours, because the only way to
interact with the models is through numerical simulation. The automated synthesis
of rational decisions and plans in black-box environments is common in several
other application domains of high industrial relevance, like smart grids (see, e.g.,
[147, 149, 90]), games (see, e.g., [130]) and real-time manoeuvring of Unmanned
Aerial Vehicles (see, e.g., [180]). The works closest to ours are those in [130, 79]
and citations thereof, where a simulator is used to discover the effect of actions.
In such works, the simulator is defined as a factored state model where actions
are (black-box) procedures and states are represented in terms of variables. Then
an algorithm, namely, Iterated Width (IW), is typically employed. It consists of
iteratively calling a breadth-first procedure, namely, IW(i), with i = 1, 2, 3, . . ., until
the problem is solved or i becomes greater than the number of state variables (see,
e.g., [129]). During each call to IW(i), states are pruned accordingly to how novel
they are. A state is novel if and only if values for at most i state variables have
not seen before. Authors point out that IW is efficient for the majority of classical
planning problems where it is enough that i = 1, 2, i.e., actions change at most 2
state variables. However, in our setting, our simulator state consists of the union
of all state vectors, i.e., x(t), of each VP+monitor within the input digital twin.
Moreover, the most of variables within such state vectors consist of real-valued
biological quantities. Also, we remind that the dynamics of such model are defined
by means of ODEs. Hence, when we apply a clinical action (and simulate our
digital twin) the vast majority of state variables change their value. In this setting,
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applying IW means nearly always to call only IW(n), with n the overall number
of variable of our simulator state. This behaviour makes the pruning on which IW
relies on quite ineffective as IW degenerates to prune truly duplicate states, which are
also extremely rare as our variables are real valued. Note that, in order to increase
pruning of duplicate states, one could think of simplifying the dynamics of the VPH
model at hand (e.g., by discretising state variable domains). However, this is not a
straightforward approach as it poses several questions about accuracy, credibility,
and trust of the entailed model predictions, which have to be again experimentally
assessed.

4.5 Conclusions
In this chapter, we presented methods and software based on intelligent search aimed
at synthesising optimal personalised treatments by means of ISCT, exploiting quan-
titative models of the physiology and drugs Pharmacokinetics/Pharmacodynamics
(PK/PD) of interest, and clinical measurements on human patients from which we
define their digital twins. We applied our approach on a case study involving a
complex state-of-the-art model of the human female HPG axis, in order to com-
pute, for any given patient, a personalised treatment for the downregulation phase
of an assisted reproduction protocol, which is effective on the patient at hand, but
minimises the overall amount of drug used (hence, indirectly, the associated cost
as well as likelihood and severity of adverse effects). The possibility to optimise in
silico, in a few weeks of computation on a HPC infrastructure, a complex treatment
for a given human patient before its actual administration shows the potential of
artificial intelligence for model-based (in silico) personalised medicine. This how-
ever calls for trusted (i.e., qualified) VPH models, which is currently one of the
major obstacles for the uptake of ISCT in clinical practice. Indeed, the results of
our ISCT (conducted using a state-of-the-art validated VPH model as GynCycle)
are extremely promising, but must be taken with care. In particular, an in vivo
evaluation of the actual effectiveness of the personalised treatments generated by
our algorithm is needed in order to assess the accuracy of the GynCycle model
in predicting the patient reactions to non-standard drug dosing patterns, as those
computed by our algorithm.

Results in this chapter have been presented in [141, 198, 197]. Software devel-
oped in this chapter is available at the following url: https://bitbucket.org/mclab/
treatmentdesign.

https://bitbucket.org/mclab/treatmentdesign
https://bitbucket.org/mclab/treatmentdesign
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Figure 4.6. Computational results of our ISCT.
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Chapter 5

Reconciling interoperability and
simulation efficiency

5.1 Introduction

Cyber-Physical Systems (CPSs) integrate physical (e.g., mechanical, electrical, etc.)
and software (e.g., Software Digital Radios, SDRs, control software, etc.) subsys-
tems. CPSs are widely used in several fields like aerospace, smart grid, manu-
facturing, automotive, robotics, and health-care (see, e.g., [133, 123, 179, 125, 65,
90, 205, 36, 89]). As they couple the discrete and continuous dynamics of soft-
ware and physical subsystems, respectively, CPSs are typically defined by means
of hybrid systems (see, e.g., [11]). Due to such a complex nature of CPS models,
simulation-based approaches are typically used to support design and Verification
and Validation (V&V) activities. V&V aims at checking whether the CPS model
behaviour satisfies given specifications, e.g., safety properties (see, e.g., [172, 6]).
In the literature, there are many examples where V&V activity is performed by
means of numerical simulations (see, e.g., [45, 29, 215, 164, 67, 225, 1] and [112] for
a survey).

Many simulation-based software tools are available to support CPS design such
as, e.g., AUTOSAR, Automation Studio, AVL Cruise, CATIA, ControlBuild, Simulink,
dSpace, EnergyPlus, IBM Rational Rhapsody, ICOS, IGNITE, Dymola, JModelica,
MapleSim, Ptolemy II and Virtual Engine. On one side, the increasing availability
of those software tools enables designers to choose the tool chain that best suits their
needs. On the other side, such an availability poses huge interoperability (model
exchange) and integration (co-simulation) challenges between CPSs modelled using
different languages and/or tools.

Furthermore, since physical and/or software subsystems are usually designed
by different companies (e.g., Original Equipment Manufacturers, OEMs), it is also



72 5. Reconciling interoperability and simulation efficiency

crucial to preserve Intellectual Property (IP) (see, e.g., [68, 217, 153]). As a result,
even carrying out simulations of those models may pose problems.

To overcome such interoperability problems, a standardised format, namely,
Functional Mock-up Interface (FMI), has been proposed in 2010 as an open stan-
dard. Models adhering to FMI are called Functional Mock-up Units (FMUs). The
current version, i.e., FMI 2.0 [27], enables both Model Exchange (ME) and Co-
Simulation (CS). ME refers to, e.g., the usage of FMUs within different simulation
environments, while CS refers to, e.g., the distributed simulation of heterogeneous
systems coupling together several FMUs. Recently, another standard has been de-
fined, i.e., System Structure and Parametrization (SSP), to describe relationships
among systems of interconnected FMUs and their parametrisation in order to be
used in different simulation environments [160].

Typically, simulation-based V&V of CPSs requires exploring different simulation
scenarios, i.e., sequences of controllable and/or uncontrollable exogenous inputs. In
this setting, to avoid simulating many times a common prefix of different scenarios,
the simulator state is saved in order to be restored later as a start state. This
improves efficiency of simulation-based V&V approaches by simulating only once the
same prefix of different simulation scenarios (see, e.g., [145] and citations thereof).

Not only V&V approaches benefit from the usage of these Application Program-
ming Interfaces (APIs), but also, e.g., approaches for the automated synthesis of
plans and control strategies such as [151, 17, 4, 60, 188] where simulation-based
Model Predictive Control (MPC) methods are used. In particular, in [188], a MPC
approach is employed for the design of an insulin pump exploiting a Virtual Phys-
iological Human (VPH) model of glucose metabolism. Also, simulation-based ap-
proaches for In Silico Clinical Trials (ISCT) take advantage of the above optimisa-
tion. Indeed, in a ISCT setting, different sequences of drug administrations (i.e.,
exogenous inputs) are tested on different Virtual Patient (VP) models by means
of simulations. In this respect, our methodology presented in Chapter 4 relies on
these simulator capabilities (see Section 4.2.2.3.2) to efficiently computes person-
alised pharmacological treatments.

To this end, modern simulators (such as, e.g., Simulink [155]) offer their own
API allowing to save and restore the internal simulator state on demand. As well as
the other simulators, also the FMI 2.0 API specifies a way of saving and restoring
internal FMU states. This feature is crucial to increase efficiency of simulation-based
V&V.

Unfortunately, the implementation of such a feature is not mandatory according
to FMI 2.0 specifications. Hence, even if the FMI standard is currently adopted
by several modelling environments (see [27] for a full list) only a few commercial
software implement save-and-restore feature within their generated FMUs.

Among them we note Dymola, a state-of-the-art modelling and simulation en-
vironment [54] that is based on Modelica [80], an open-standard language for mod-
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elling dynamical systems.
Modelica is an object-oriented, equation-based language for model-based de-

velopment. Moreover, it allows the definition of complex dynamical systems as a
network of smaller subsystems. Currently, Modelica is widely used by many com-
panies and it is adopted by several simulation environments: commercial (e.g.,
SimulationX [69] and SystemModeler [221]) as well as open source (e.g., Open
Modelica [174] and JModelica [161]). However, none of the currently available
open-source Modelica environments implement the FMI 2.0 optional feature for
saving and restoring FMU states. As a result, the interoperability enabled by the
FMI standard cannot be fully exploited for V&V when using those open-source
environments.

This motivates developing such a feature for Modelica-based and open-source
CPS simulation environments.

In the literature the save-and-restore feature has been widely exploited for formal
verification both for finite state systems (see, e.g., [97, 98, 62, 58]) as well as, in
a simulation-based framework, for CPSs (see, e.g., [140, 144, 145]). We refer the
readers to those references and citations therein for general considerations and more
details about algorithms that exploit such a feature.

In this chapter, we provide methods and tools to implement FMI 2.0 function-
alities that save and restore the internal FMU state for ME FMUs and we focus on
JModelica modelling and simulation environment.

Furthermore, we present experimental results to evaluate the correctness of our
proposed implementation. Finally, we also conduct an analysis of performance
focusing on V&V approaches that drive given FMUs by means of simulations. To
do so, we analyse 934 FMUs generated from benchmarks models taken from widely-
used repositories and we show that, using our tool, a V&V activity in the style
of [140] is, on average, 22 times faster than without it.

We remark that such a proposed implementation closes an important gap be-
tween commercial and open-source Modelica environments. Indeed, it enables the
application of the above-mentioned simulation-based V&V approaches to CPSs
modelled within open-source Modelica environments. Furthermore, it also fosters
the development of new approaches.

Moreover, the aim of the work presented in this chapter is also to encourage
developers of open-source simulation environments to implement modern function-
alities of current FMI specifications; and to push towards future FMI specifications
that include a mandatory implementation of such functionalities. For these reasons,
our proposed implementation is free and publicly available at the following repos-
itory: https://bitbucket.org/mclab/jmodelica.org, as a fork of the JModelica 2.1
open-source distribution, which is developed by Modelon1 and currently available

1https://www.modelon.com

https://bitbucket.org/mclab/jmodelica.org
https://www.modelon.com


74 5. Reconciling interoperability and simulation efficiency

upon request.

5.2 Methods
In this section, first, we introduce FMI 2.0 for ME with a particular emphasis on
JModelica FMU implementation. Second, we describe the steps needed to enable
saving and restoring internal FMU states. Finally, we present our approach to
evaluate the correctness of our implementation and to measure performance when
adopting such implementation within simulation-based V&V methods.

5.2.1 FMI 2.0 for Model Exchange

FMI ME 2.0 [26] specifies an interface to the model of a dynamical system defined
by differential, algebraic and/or difference equations. An executable implement-
ing FMI is called FMU. Any simulation environment supporting FMI can simu-
late an FMU produced by any modelling environment. In particular, an FMU
is a ZIP archive consisting of the following parts. First, C code and/or binaries
implementing functions defined by the FMI API. Second, an Extensible Markup
Language (XML) document with model metadata including, e.g., model identifier,
names of variables and capability flags. The latter allows omitting implementation
of non-mandatory functionalities. For example, the canGetAndSetFMUstate and
canSerializeFMUstate capability flags indicate whether FMU supports function-
ality to save/restore and serialize/deserialize its internal state or not.

5.2.2 Enable saving and restoring of JModelica FMU internal state

JModelica generates an FMU starting from a model written in Modelica. To do so,
Modelica equations are translated into C code and compiled to produce an FMU.
The output FMU consists also of a library (the same for all models) implementing
the functions of the FMI standard. In JModelica, such a library is called Run-
timeLibrary, and contains also relevant data structures responsible for the internal
FMU state.

The internal FMU state is a snapshot containing all the information needed to
simulate the FMU starting from the moment when the state was retrieved.

Figure 5.1 depicts the conceptual UML class diagram of such FMU internals
focusing on the components of the internal FMU state. The main class modelling
an FMU instance is jmi_t. The internal state of a JModelica FMU is composed of
the following components.

Values of model variables. jmi_t contains several arrays of real values (e.g., z
and z_last) to store the information related to the actual values of model
variables.
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delays
0..*

dae_equation_blocks

jmi 0..*

solver

block 1

jmi_t

z : real [1..*]
z_last : real [1..*]
. . .
ext_objs : pointer [0..*]

jmi_delay_t

jmi_block_residual_t

jmi_block_solver_t

jmi_kinsol_solver_t

jmi_linear_solver_t

Figure 5.1. Conceptual UML class diagram of JModelica FMU implementation.

Delay buffers. Modelica equations can contain occurrences of delay(expr,t,tmax)
(delay operator) that return expr(time-t), i.e., the value of the expression
expr t time units in the past. JModelica implements such an operator by
maintaining a buffer (jmi_delay_t) containing past values of expression expr
from current time back to time-t. the optional argument tmax guarantees an
upper bound for the buffer size when t is not constant during simulation. The
buffer size increases until the current time is greater than t (tmax when t is
variable). After that, the size remains constant.

Internal state of algebraic solvers. Algebraic equations are split into blocks
(jmi_block_residual_t) that can be solved independently. Each such block
is equipped with an instance of a linear (jmi_linear_solver_t) or a non-
linear (jmi_kinsol_solver_t) solver. These solvers are stateful, so their
internal state also makes part of the FMU state.

Internal state of external objects. Modelica allows to call external (e.g., de-
fined in C) functions (array ext_objs of function pointers), that can have
their own state. Note that there is no way to retrieve the state of such
external objects, since they are completely opaque. For example, Modelica
Standard Library (MSL) has the CombiTimeTable block that computes its
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si−1 si si+1

s

sim(τ) sim(τ)

si ←get()
sim(τ ′ ← rand())

set(si)

Figure 5.2. A glimpse of our strategy to evaluate correctness.

output signal by interpolation in a table. It is implemented using C functions
that read a table from a file into an in-memory data structure and allow to
query its values. From the JModelica FMU RuntimeLibrary perspective, such
data structure is just an opaque pointer and there is no way to access it.

Note that, since the above data structures are static, FMU states have a constant
size (in bytes).

We extend JModelica FMU RuntimeLibrary by suitably implementing the fol-
lowing FMI functions:

• fmi2GetFMUstate(). This method retrieves the current state of a given FMU
as an in-memory data structure, which is opaque to the user. We refer to this
method in the text as get().

• fmi2SetFMUstate(). This method replaces the current state of an FMU with
a given FMU state previously retrieved using fmi2GetFMUstate(). We refer
to this method in the text as set().

• fmi2FreeFMUstate(). This method frees up the memory occupied by a given
FMU state retrieved using fmi2GetFMUstate().

• fmi2SerializeFMUstate(). This method serializes the FMU state retrieved
using fmi2GetFMUstate() into a byte array that can be stored in a file or
sent over the network.

• fmi2DeserializeFMUstate(). This method deserializes a given byte array
into an FMU state that can be then passed to fmi2SetFMUstate().

• fmi2SerializedFMUstateSize(). This method returns the size of a byte
array that is enough to serialize a state of the current FMU.

5.2.3 Correctness evaluation strategy

To validate our methods to get and set complete FMU states, we have to check
that a call to set() correctly replaces the current FMU state with an FMU state
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obtained by a previous call to get(). To do so, we need to verify that further
simulations are correctly computed accordingly to the actual FMU state.

In particular, we define the following two ways of performing a simulation of an
input FMU.

Given an FMU and a value τ ∈ R0+, let s be the current state of the input FMU,
we denote with s′ = sim(τ) a function that simulates the input FMU advancing its
current state s for τ time units and reaching the state s′.

Given an FMU and values τ ∈ R0+, τ ′ ∈ R0+, let s be the current state of the
input FMU, we denote with s′ = sim?(τ, τ ′) a function that executes the following
instructions:

1. s←get();

2. sim(τ ′);

3. set(s);

4. s′ ← sim(τ).

For the sake of readability and without loss of generality, we omit the call to
fmi2FreeFMUstate() in the above instructions as its correctness does not affect
our validation process.

Intuitively, a call to sim?(τ, τ ′), for any τ ′ ∈ R0+, is semantically equivalent to
a call to sim(τ), since they both advance the current FMU state for τ units of time.
This leads to the following remarks.

Remark 5.1. Given an FMU and a value τ ∈ R0+ let s be the current state of the
input FMU. Then for all τ ′ ∈ R0+, sim(τ) and sim?(τ, τ ′) reach exactly the same
state, formally sim(τ) = sim?(τ, τ ′)

Remark 5.2. Given an FMU and a value τ ∈ R0+, let s be the initial state of the
input FMU, let sτ = s0, s1, s2, . . . , sn and s?τ = s∗0, s

∗
1, s
∗
2, . . . , s

∗
n be the sequences of

FMU states reachable from s by consecutive executions of sim(τ) and sim?(τ, τ ′),
respectively, for all τ ′ ∈ R0+. If both get() and set() are implemented correctly
then, for all i ∈ {0, . . . , n}, si = s∗i .

To experimentally verify the above statement, we need to check that our imple-
mentation works for all values of τ ′. This is of course impossible. To overcome such
an obstacle we employ a statistical approach based on hypothesis testing where τ ′
takes values in a bounded interval B ⊂ R0+ (see, e.g., [87, 148, 150]).

Given a value for ε ∈ (0, 1), we define a null hypothesis H0 which states that the
probability of sampling τ ′ ∈ B such that the state reached by executing sim(τ) is
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different from the state reached by executing sim?(τ, τ ′) is greater than ε. Formally
H0 is defined as: H0 : Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} ≥ ε.

Then we apply statistical hypothesis testing [165] and try to reject H0 through
a given number of trials N .

At each trial we randomly sample a value of τ ′ ∈ B according to a uniform
distribution and we check whether the state reached by sim(τ) is different from the
state reached by sim?(τ, τ ′) or not.

If within N trials we find a value τ ′ such that sim(τ) 6= sim?(τ, τ ′), then τ ′

is a counterexample showing that our implementation is not correct. Formally, we
prove H0 when it holds.

On the other hand, rejecting H0 after N trials, even if it holds, introduces a
Type-I Error.

In particular, given a value δ ∈ (0, 1), the probability that we make an error by
rejecting H0 when it holds is bounded by δ.

This is shortly stated by saying that H0 is rejected with statistical confidence 1−
δ. Finally, we conclude that the probability to sample τ ′ such that the state reached
by executing sim(τ) is different from the state reached by executing sim?(τ, τ ′) is
less than ε, formally Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} < ε.

By exploiting results of [87], given δ ∈ (0, 1) and ε ∈ (0, 1), the number of trials
is computed as N = dlog (δ)/ log (1− ε)e.

1 function evaluateCorrectness():
Input: FMU
Input: τ , simulation duration
Input: ε ∈ (0, 1)
Input: δ ∈ (0, 1)
Input: B ⊂ R0+
Output: either (True,−,−) or a counterexample (False, τ ′, i)

2 N←
⌈

log (δ)
log (1−ε)

⌉
;

/* H0 = Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} ≥ ε */
3 for i ∈ [1, N ] do
4 τ ′ ← rand(B);
5 si ← sim(τ); s← sim?(τ, τ ′);
6 if si 6= s then
7 return (False, τ ′, i) /* H0 is proved */
8 return (True,−,−) /* H0 is rejected */

Algorithm 2: Hypothesis testing approach to evaluate correctness of set()
and get().

Algorithm 2 describes our Hypothesis Testing approach and Figure 5.2 sketches
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our correctness evaluation strategy.
Note that at Line 6 of Algorithm 2, if, for a given τ ′, sim(τ) 6= sim?(τ, τ ′)

is true, we return such a τ ′ as a counterexample meaning that by simulating the
input FMU i times we reach a state proving that get() and set() are not working
correctly.

The above considerations prove the following theorem.

Theorem 5.1. Given an FMU having get() and set() implemented, values ε, δ ∈
(0, 1), a bounded interval B ⊂ R0+ and a value for τ ∈ R0+, Algorithm 2 is such
that:

1. it terminates in N steps, where N =
⌈

log (δ)
log (1−ε)

⌉
;

2. when it returns True, with confidence 1−δ: Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} <
ε;

3. when it returns False, we have a counterexample, i.e., a value for τ ′ ∈ B,
proving that get() and set() are not correctly implemented.

In Section 5.3.3 we apply Algorithm 2 on different FMUs in order to validate
our implementation of get() and set().

5.2.4 Performance evaluation strategy

To evaluate performance of our implementation, we focus on simulation-based V&V
approaches. As anticipated in Section 5.1, simulation-based V&V of CPSs requires
to explore all simulation scenarios. A simulation scenario is a sequence of exogenous
inputs to be injected to the given CPS model, i.e., FMU under verification. In this
setting, the given FMU (representing the CPS under verification) is driven in the
space of all possible simulation scenarios by means of a visit (see, e.g., [143, 142, 146]
and citations thereof). The space of all simulation scenarios is defined as a tree where
each edge is labelled with an exogenous input and each node represents the FMU
state reached by injecting the sequence of inputs associated to the path leading to
that node.

As an example we can consider an FMU defining a simple hybrid system (see,
e.g., [11]) having only one state variable. In particular, let x be a signal (i.e., a
real-valued function of time) and, given a positive real number T (time step), let u
be T -piecewise constant signal, i.e., a signal changing its value only at time instants
of the form kT (k = 0, 1, 2, 3, . . .). In the following we assume that u takes values
in the set {−1, 1} (i.e., for all t, u(t) ∈ {−1, 1}). When writing equations, as usual,
we will write x for x(t) and ẋ for ẋ(t).
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x(0) = 1.0

x(T ) = 0.3

−1

x(T ) = 2.7

1

x(2T ) = 0.1

−1

x(2T ) = 1.0

1

x(2T ) = 1.0

−1

x(2T ) = 7.3

1

Figure 5.3. Example of a tree of simulation scenarios. Nodes denote FMU states whereas
edges denote injected input values.

Given signals x and u as above, we define the behaviour of our simple example
of hybrid system by means of the following differential equation:

ẋ =
{
−x if u is − 1
x if u is 1.

Let x(0) = 1 be the initial state of this FMU and 2T the simulation horizon.
Figure 5.3 depicts all possible simulation scenarios starting from such an initial
state and illustrates all state traversed by the FMU when the input function u(t)
can change value (i.e., at each kT with k = 0, 1, 2). Note that, as described above,
states reached by different sequence of inputs (tree paths) are different for us.

Typically, the goal of a simulation-based V&V activity is to search for an input
sequence driving the system to an undesirable (error) state (e.g., to verify a safety
property stating that nothing bad ever happens) or to a desirable state (e.g., to
verify a liveness property stating that something good sooner or later will happen).
Checking a liveness property typically requires looking at the future evolution of
the system. As a result, in general, liveness properties cannot be casted as safety
properties (see, e.g., [137]). However, in a bounded horizon setting, such as the one
in our simulation-based setting, liveness properties can be casted as safety properties
(see, e.g., [24, 192, 119]) stating that a given state (desirable or undesirable) is
reachable, with some suitable input, within the given time horizon. Accordingly,
w.l.o.g., we can cast simulation-based V&V as the problem of finding an input
sequence driving the system to a given state within the given time horizon.

If such a state is not found, the time horizon is increased until an undesirable
or desirable state is found, or some upper bound is reached, namely, the provided
simulation horizon h (see, e.g., [75, 181]). This is equivalent to search for the
shortest sequence of exogenous inputs that leads to a given state (see, e.g., [41]
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and [62, 58, 43] in a finite state context) in the space of all simulation scenarios
of length h. The simulation horizon h is typically set to a value large enough to
guarantee that, with high confidence, the undesirable or desirable state (if any) is
reachable with an input sequence of length at most h. To keep h small a Breadth-
First Search (BFS) is used (e.g., as in bounded model checking [25]). Furthermore,
as anticipated in Section 5.1, such simulation-based V&V approaches are similar to
several planning and optimisation approaches such as, e.g., [130, 211, 180, 79, 199],
where simulation scenarios and exogenous inputs correspond, respectively, to plans
and actions to be taken in order to drive the system into a goal state.

In this setting, in order to decrease the number of simulations and, in turn, the
computation time of the V&V activity (or the optimisation task), it is important to
avoid simulating many times prefixes common to different simulation scenarios. To
do so, it is crucial that the given FMU has the save-and-restore state functionality
implemented as FMU states can be saved in memory in order to be restored later
as initial states of the simulation.

Hence, such an exploration visit in the tree of simulation scenarios is a de-
manding application to evaluate our proposed implementation. In particular, we
distinguish two kind of approaches. The former uses FMUs that are not equipped
with the save-and-restore feature of FMI 2.0. We refer to this approach in the
text as without-save-restore visit. The latter is a save-restore visit that uses our
generated FMUs implementing those FMI features to save and restore FMU states.

It is worth noting that during a save-restore visit, since the state space to explore
can be huge, to keep in memory the whole state space can be infeasible. To this
end, several solutions have been devised in the literature (see, e.g., [140, 144, 145]).
The general idea is to dynamically choose the best states to store and those to
forget (compatibly with memory constraints). Also, whenever no further inputs
can be injected from the current node of the tree, the corresponding simulator state
can be removed from memory. We refer the readers to those references for more
details and algorithms that efficiently satisfy memory constraints during the visit.
Accordingly, here we focus on evaluating performance of our implementation of the
save-and-restore feature in terms of simulation time.

The remainder of this section is organised as follows. First, we define the space
of simulation scenarios of a given CPS model (i.e., FMU under verification) as a tree
(Section 5.2.4.1). Second, we show that the time needed to explore such a tree (for
both a without-save-restore visit and a save-restore visit) strictly depends on the
time needed to drive the input FMU through each node of the tree (Sections 5.2.4.2
and 5.2.4.3). Last, we quantify the speed-up of a save-restore visit (Section 5.2.4.4).
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5.2.4.1 Tree definition

In our setting, we perform a visit of a balanced finite tree of depth h > 1, where
each tree node at depth 0 < i ≤ h has a constant branching factor b > 1. The tree
root corresponds to the initial state of the given FMU, while nodes correspond to
FMU states that can be reached through simulations from the initial state. The
edges of the tree correspond to possible actions that can be taken during the visit,
i.e., different values for the FMU exogenous inputs. For example, in the tree of
Figure 5.3, the branching factor, b, and the maximum depth, h, are both 2.

Furthermore, to simplify calculations, during the visit we assume that the simu-
lation of the input FMU is advanced by a fixed quantity of τ ∈ R+ time units each
time a new node is being visited (in our example τ corresponds to T , i.e., 1 second).
Also, to simplify our analysis, we assume that the execution time of a simulation
depends on the current FMU state and on the simulation duration, i.e., τ , and not
on values of exogenous inputs. This might not be strictly true for each simulation,
but it is a very reasonable assumption on average for typical CPS models.

5.2.4.2 Cost of a without-save-restore visit

A without-save-restore visit aims at driving FMUs without get-and-set state capa-
bilities. Hence, when we have to explore a node in the tree, we need to simulate the
given FMU from its initial state up to the state denoted by such a node. This means
that a node at depth i > 0 can be reached after a simulation of iτ time units from
the initial state of the given FMU. We denote such operation with sim(iτ). For
example, in Figure 5.3, the state x(2) = 0.1 can be reached by means of a sim(2τ)
operation, where τ = 1 second, and by injecting u(0) = −1 and u(1) = −1. As
already stated in Section 5.2.3, sim() can be defined according to FMI 2.0 specifi-
cations.

We define our cost function as C(i) = T (sim(iτ)), which measures the execution
time, T , to reach a node at depth i > 0. Finally, we define the total execution time
of a without-save-restore visit as the sum of the costs of each single node in the tree:

h∑
i=1
C(i) bi (5.1)

5.2.4.3 Cost of a save-restore visit

A save-restore visit aims at driving FMUs by exploiting their get and set capabilities
in order to simulate only once each prefix common to different paths of the given
tree. To do so, each time a node at depth i > 0 has to be visited, we perform the
following steps:
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sisi ←get()

. . .
uk

set(si)
sim(τ)

u1

set(si)
sim(τ)

ub

b

Figure 5.4. Usage of set() and get() to explore nodes during a save-restore visit

1. set(), to restore (load) the state corresponding to the node at depth i− 1 as
a start state of the given FMU;

2. sim(τ), to advance the current FMU state to the state reached after a simu-
lation of τ time units also by injecting the value for exogenous inputs corre-
sponding to the traversed edge.

3. get(), to store (save), e.g., on disk, the reached FMU state for further steps.

For the sake of readability, we omit the time needed to perform a fmi2FreeFMUstate()
because it is negligible. Figure 5.4 outlines the above steps.

As in the previous section, we define a cost function, i.e., C?(i), which denotes
the execution time spent to visit a node at depth i > 0 during a save-restore visit,
as follows.

C?(i) = T (1
b

get() + set() + sim(τ)).

Note that the get() is performed at depth i−1 (see Figure 5.4) as the corresponding
retrieved FMU state will be then used as a start state for all the children of that
node. However, to simplify the formulation we count such get() time in the child
nodes. Hence, each child node (at depth i) contributes 1

bget() to the total get()
time, i.e., the total get() time is amortised by the branching factor.

Accordingly, along the lines of Equation (5.1), the total execution time needed
by a save-restore visit to explore the whole tree space is equal to the sum of the
costs of each node:

h∑
i=1
C?(i) bi (5.2)
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5.2.4.4 Speed-up of a save-restore visit

We define the speed-up, S(h, b), as the ratio between the cost of a without-save-
restore visit, Equation (5.1), and the cost of a save-restore visit, Equation (5.2), on
a perfectly balanced tree having branching factor b and depth h:

S(h, b) =
∑h
i=1 C(i) bi∑h
i=1 C?(i) bi

(5.3)

When the above ratio is greater than 1 it means that a save-restore visit is faster
than a without-save-restore visit.

Furthermore, we note that the above formula, i.e., Equation (5.3), can be sim-
plified under the following assumptions.

First, the time spent for simulating an FMU for iτ time units, i.e., T (sim(iτ)),
is approximately equal to i×T (sim(τ)), that is i times the average execution time
of a simulation of length τ .

Second, we can use average execution times of get() and set(), i.e., T (get())
and T (set()), respectively. As Section 5.2.2 describes, this is motivated by the fact
that states of a given FMU have a constant size (in bytes).

In Section 5.3.4, we experimentally show that such assumptions are reasonable.
We rewrite C(i) as C(i) = i × T (sim(τ)) and C?(i) as C?(i) = 1

b T (get()) +
T (set()) + T (sim(τ)).

Hence, the speed-up of Equation (5.3), S(h, b), can be written as follows:

S(h, b) = T (sim(τ))
∑h
i=1 ib

i(
1
b T (get()) + T (set()) + T (sim(τ))

)∑h
i=1 b

i
.

This leads to the following proposition.

Proposition 5.1. Given C(i) = i×T (sim(τ)) and C?(i) = 1
b T (get())+T (set())+

T (sim(τ)), the speed-up of a save-restore visit is greater than 1, i.e., S(h, b) > 1,
when the following equation is satisfied:

1
b T (get()) + T (set())

T (sim(τ))
< ψ(h, b) (5.4)

where ψ(h, b) is a threshold defined as:

ψ(h, b) =
∑h
i=1 ib

i∑h
i=1 b

i
− 1 = hbh+1 − (h+ 1)bh + 1

(b− 1)(bh − 1) − 1. (5.5)
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Figure 5.5. Threshold ψ(h, b) computed for h = 100 (a) and for different values of h
(b). In the right figure (b), our threshold is also normalised by h − 1 for presentation
purposes.

Remark 5.3. When b is very large, formally b → ∞, and h > 1, the speed-up
threshold ψ(h, b) approaches to h−1, formally ψ(h, b)→ h−1. Thus, Proposition 5.1
can be rephrased saying that S(h, b) > 1 when the following condition is satisfied.

R(h, τ) = T (set())
(h− 1)T (sim(τ))

< 1. (5.6)

Intuitively, Remark 5.3 says that when the branching factor of a given tree is
sufficiently large and the ratio R(h, τ) is less than 1, we expect that the use of
get/set state functionality speeds up a without-save-restore visit. Note that, since
the get() is executed once for each node of the tree and the retrieved state is then
used as many times as the value of the branching factor b of that node (i.e., for each
child node), the inefficiency of a get() is amortised among those child nodes. Hence,
even if for some model the average time of a get() is high because the operation is
inefficient, the term 1

bget() of Equation (5.4) becomes negligible. In Section 5.3.4.1
we show that our assumptions that motivate this remark are reasonable for a large
set of benchmark models.

In Figure 5.5a we show that, starting from small values of b, the threshold ψ(h, b)
rapidly reaches values towards the limit h− 1. This is true also for different values
of h as Figure 5.5b shows.

Hence, under our assumptions, given an FMU and a tree having a low branching
factor, namely 4-5, if the average execution time needed to perform a set() oper-
ation is lower than the time to perform a simulation of a scenario of length h − 1,
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then the speed-up of a save-restore visit with respect to a without-save-restore visit
is greater than 1.

In Section 5.3.4, we present experimental results regarding the speed up com-
putation on different FMUs by taking into account trees of different depths and
branching factors.

5.3 Experimental Results
In this section, we present experimental results to evaluate the correctness and
the effectiveness of our implementation against state-of-the-art case studies. After
briefly describing such case studies, we then evaluate correctness and we finally
show how our implementation enhances performance of simulation-based V&V ap-
proaches.

5.3.1 Case studies

In Section 5.3.4 we see that, depending on the FMU at hand, different components
of the FMU architecture are involved during saving and restoring an FMU state.

To assess correctness and to evaluate performance on all such components we
evaluate our implementation by using FMUs generated from the following widely
established model libraries.

MSL: the official Modelica library collecting models that are developed and re-
viewed by the Modelica Association (version 3.2.2, https://modelica.org). It
provides models and components from different engineering domains such as
mechanical, electrical, magnetic, fluid, thermal and control systems. The li-
brary contains both models defining standardised interfaces or building blocks
and models that are directly usable. For our purpose, we focus on the latter
class of models, which comprises 385 models having 150 model variables on
average.

Scalable Test Suite (STS): a Modelica library of benchmark models useful for
assessing performance of large scale systems (version 1.11.4, see [37]). The
library contains 16 modules covering electrical, mechanical, power and thermal
domains. Such modules are scalable in terms of their size (i.e., number of
variables). The STS provides also 207 ready-to-run models validated by the
authors and having an average of 2913 model variables.

BioModels Database (BMD): a well-known repository of mathematical models
of biological systems taken from the scientific literature [121]. A subset of these
models, consisting of manually curated models, is widely-used as a benchmark
for SBML simulators. From such a subset, we used models already translated

https://modelica.org
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Figure 5.6. Distribution of sizes of models within MSL (a), STS (b) and BMD (c).

from SBML to Modelica and validated in [136]. In total we consider 411
models having 370 model variables on average.

Figure 5.6 shows the distribution of model sizes in terms of the number of model
variables.

5.3.2 Experimental setting

All our experiments have been carried out on a High Performance Computing (HPC)
infrastructure (i.e., Marconi cluster at CINECA, Italy).

For each Modelica model within our datasets, i.e., MSL, STS and BMD, we
generated its FMU using our extended JModelica.

We manually excluded from our datasets those FMUs that are not compatible
with get/set state functionality. These are FMUs that use external objects (as
described in Section 5.2.2). This led us to exclude 49 (i.e., 12.73%) models from
MSL and 20 (i.e., 9.66%) models from STS. All models within BMD have been
included. Hence, in total, we excluded the 6.88% of all FMUs within our datasets.

In order to assess correctness and evaluate performance of our implementation
of get/set functionality, FMUs have been simulated using the SUNDIALS CVODE [96]
solver by means of the PyFMI library [12]. For each FMU, we set the value of
τ to 1% of the FMU default simulation horizon, i.e., the value of FMU default
experiment stop time.

5.3.3 Correctness evaluation results

Correctness has been evaluated by means of the approach presented in Section 5.2.3.
In particular, for each of the 934 FMUs, we ran our Algorithm 2 to assess that our
implementation correctly restores a previously-saved FMU state.

To do so, we consider as B values from 0 to the default simulation horizon of
the given FMU and we set δ = 8% and ε = 2.5%. Thus the number of trials has
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been set to N = 100.
During the sampling process, the inequality of FMU states (Line 6 of Algo-

rithm 2) has been checked through a bit-wise comparison. For all our 934 FMUs
our Algorithm 2 returned true, proving that our implementation is correct with a
degree of statistical confidence of 92%.

5.3.4 Performance evaluation results

In this section, we describe experimental results of our performance evaluation ac-
cording to our strategy described in Section 5.2.4. In particular, in Section 5.3.4.1 we
evaluate performance of our implementation by a preliminary analysis using results
of Remark 5.3. Then, in Section 5.3.4.2 we compute the speed-up of a save-restore
visit with respect to a without-save-restore visit on trees with different values of
depth and branching factor.

5.3.4.1 Preliminary analysis

As a preliminary analysis, for each FMU, we computed the ratio R(h, τ) (see Re-
mark 5.3) to compare the execution time of a set() with the execution time needed
for simulating the given FMU.

Such an analysis has been conducted by taking into account different values for
the depth of the tree, i.e., h ∈ [1, 100].

To perform such an analysis, we first show that our assumptions (i.e., those
described in Section 5.2.4.3) are reasonable for our case-study FMUs. To do so, in
Figure 5.7, we compared the execution time of a simulation of length i × τ with
the execution time of i simulations of length τ . As we see, these two quantities are
highly correlated. Indeed, the Pearson correlation coefficient, ρ, for MSL, STS and
BMD is 0.88, 0.79 and 0.99, respectively.

Moreover, in Figure 5.8, for each FMU, we show that the execution time (in
seconds) spent to perform a set() operation is almost constant during the FMU
simulation (from its start time to its simulation horizon).

There is also an atypical behaviour for two FMUs within BMD. In such models,
the delay operator is used and parameter tmax is always set to be as large as
possible (much larger than the given FMU simulation horizon). This causes the
size of the associated delay buffers to increase after each simulation in order to
store all needed delay variable values. For this reason, the size of the internal FMU
state also increases together with the execution time needed to perform set() (and
get() as well).

Having clarified that our assumptions are reasonable, in Figure 5.9 we show how
R(h, τ) changes by varying the depth of the tree, for each FMU in our datasets.
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Figure 5.7. Correlation among the execution times (in seconds) of a simu-
lation of duration h× τ (on x axis) and h simulations of duration τ (on y
axis), where h = 100. Each marker represents an FMU within MSL (a),
STS (b) and BMD (c).
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Figure 5.8. Execution times (in seconds) spent for performing set() during
FMU simulations. Each line represents an FMU within MSL (a), STS (b)
and BMD (c).
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Figure 5.9. Computation of R(h, τ), where h ∈ [1, 100]. Dashed line rep-
resent threshold of R(h, τ). Each curve represents an FMU within MSL
(a), STS (b) and BMD (c).
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As we expected, for the majority of the analysed FMUs, the values of R(h, τ)
are either below 1 or they go below 1 for very small values of depth (namely, < 20).
This means that the cost of set() is very low with respect to simulations in terms
of computation time.

Also, there is one single FMU having R(h, τ) greater than 1 for all values of
depth. Such behaviour is explained by the fact that the larger the state of a given
FMU the slower the execution of set() in terms of computation time. Hence, a
without-save-restore visit performs better for those FMUs having a very large state
(thousands of variables, as for FMUs within STS) but very fast in simulating. Of
course, as we described in Section 5.2.4.3, this is strictly linked also to the depth of
the given tree which affects the length of simulations to be performed in a without-
save-restore visit.

Note that, R(h, τ) is less than 1 also for those two FMUs having a non-constant
execution time for set() (see Figure 5.8c).

5.3.4.2 Speed-up analysis

In order to perform a more in-depth analysis, we also computed our cost functions
for the without-save-restore visit, i.e., Equation (5.1), and the save-restore visit, i.e.,
Equation (5.2), and finally our speed-up formula, i.e., S(h, b) (see Equation (5.3)).

To do so, different values for the branching factor, i.e., b ∈ [2, 10], and for
the depth of the tree, i.e., h ∈ [1, 100], have been taken into account. Note that,
such chosen values are perfectly reasonable for real case studies. For example, in
Chapter 4 our simulation-based approach consists of a backtracking-based search
employed in a search space defined as a tree of depth equal to 55 and constant
branching factor equal to 3.

Figure 5.10 shows the average speed-up computed among FMUs within MSL,
STS and BMD when varying both the branching factor and the depth of the tree.

As we expected from our preliminary analysis (Section 5.3.4.1), even with a low
value for the branching factor, i.e., 5, and a low depth, i.e., 50, a save-restore visit
is, on average, 22 times faster than a without-save-restore visit, among all our case
studies (standard deviation: 15.6). In particular, for FMUs within MSL, STS and
BMD, we have on average a speed-up of 11.75 (standard deviation: 12.5), 14.06
(standard deviation: 14.6) and 39.84 (standard deviation: 4.8), respectively.

Furthermore, by keeping constant the given tree depth and branching factor,
h = 100 and b = 10, we reach, on average, a speed-up value of 26.62 (standard
deviation: 27.23), 36.11 (standard deviation: 51.44) and 86.37 (standard deviation:
12.04), among all FMUs within MSL, STS and BMD, respectively.

As we can note, FMUs within BMD (Figure 5.10c) achieve higher values of
speed-up than FMUs within the other datasets. It is clear (starting from depth
equal to 2) that the execution time of set() is very low with respect to simulation
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(a)

(b)

(c)

Figure 5.10. Average and Standard Deviation of the speed-up (left and
right heat maps, respectively) computed among FMUs within MSL (a),
STS (b) and BMD (c) by varying the branching factor and the depth of
the tree.
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execution time. Hence, the deeper the tree (i.e., the number of simulations) the
higher the speed-up achieved.

Surprisingly, as Figure 5.10a shows, for some values of h the computed speed-up
is around 70. This behaviour is due to the fact that, for some FMUs within MSL
the numerical integrator reaches a computationally expensive integration step which
requires more time to be solved, e.g., a chattering effect.

Hence, having the FMU at hand equipped with get() and set() functionalities
brings a huge benefit. Indeed, once this complex integration step is solved, the
reached FMU state can be saved and restored for further simulations. Also, this
explains the high standard deviation value for MSL FMUs.

Figure 5.11 clearly shows this by presenting, for each evaluated FMU, the speed-
up achieved when varying the depth of the tree, while keeping constant the value of
the branching factor (b = 10). In particular, in Figure 5.11a we see that few FMUs
reach peaks of speed-up above 10 000.

Furthermore, in both Figures 5.10 and 5.11, we note that the speed-up increases
almost linearly with respect to values of the depth of the tree.

Full results of this section are provided at https://bitbucket.org/mclab/getset-
fmi-eval-results.

5.4 Related Work

The FMI standard is widely used for model-based design and analysis of CPSs. In
the literature we find many examples in different fields (see, e.g., [107, 39, 52, 83]).
Both CS and ME paradigms are crucial to handle large-scale systems (see, e.g.,
[203, 74]). The former is needed to integrate and analyse in a distributed fashion
different subsystems having different characteristics as, e.g., the embedded solver
needed to simulate the model (see, e.g., [84, 193] for recent surveys). The latter
is used to, e.g., import and/or export models as black-box objects among differ-
ent simulation environments in order to analyse and simulate them with different
solvers. As anticipated in Section 5.1, we focus on Modelica-based open-source
platforms compliant with the last version of FMI for ME, namely 2.0.

Several commercial and open-source modelling and simulation environments
support FMI 2.0 (more than 100, see [27] for a full list).

Among commercial environments, we note Matlab/Simulink [155]: a widely-
used and well-known platform for model-based design. It also offers its own API
for advancing forward and backward the simulation by rolling back simulator states
(thanks to a save/restore functionality). However, being a commercial software,
Simulink supports only export of FMUs for CS and does not implement get/set
functionality of FMI 2.0.

The FMI standard is supported also by some major Modelica-based commercial

https://bitbucket.org/mclab/getset-fmi-eval-results
https://bitbucket.org/mclab/getset-fmi-eval-results
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Figure 5.11. Speed-up achieved for each FMU within MSL (a), STS (b) and
BMD (c) when the branching factor is equal to 10 and the depth takes
values within [1, 100].
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Tool Modelica Support Get/Set FMU
state

functionalityDACOSSIM - -
FMI4J - -

QTronic FMUSDK - -
JModelica • -

OpenModelica • -
PythonFMU - -

Simulix - -
Reference FMUs - ME & CS

Our extended
JModelica • ME

Table 5.1. Open source modelling and simulation environments supporting FMI 2.0.

modelling and simulation environments such as:

1. Dymola 2020 [54], which, to the best of our knowledge, is the only Modelica-
based modelling and simulation platform fully implementing FMI 2.0 stan-
dard. Hence, it generates FMUs for CS and also for ME having get/set state
functionality implemented.

2. SystemModeler 12 [221], which allows users to generate their models as FMUs
for both CS and ME. However, no FMU get/set state functionality is imple-
mented.

3. SimulationX 4.1 [69], which also provides an implementation to get/set state
functionality. However such a functionality is enabled only within FMUs for
CS.

As motivated in Section 5.1, we focus on open-source modelling and simulation
environments.

In Table 5.1 we compared several open-source platforms which support FMI 2.0.
We split these platforms in the following groups:

1. The first group consists of all modelling and simulation environments sup-
porting Modelica. Among those, we note OpenModelica [174] developed by
the Open Source Modelica Consortium. OpenModelica translates Modelica
models into C code, which, in turn, is compiled in a black-box executable
format. Only upon user request it is also possible to wrap such a format into
an FMU. Conversely, JModelica is FMI-based. Indeed, it directly generates
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FMUs from the input Modelica code. Hence, FMUs are first-class citizens.
This is the main reason why we focus on JModelica. However, we would like
to clarify that, with a little effort, our proposed methodology can be quickly
adapted to the OpenModelica as well.

2. The second group consists of all modelling and simulation environments which
support FMI 2.0 but are not based on Modelica. Among those, Reference
FMUs [159] implements get and set of FMU states. However, besides the
fact that it is not Modelica-based, this software is just a small tool used for
debugging FMUs.

A work close to ours is the NANDRAND simulation platform [171] which pro-
vides and simulates ready-to-use models to measure energy performance of physical
buildings. Such models can be exported as FMUs compliant to FMI 2.0 and sup-
port get/set state functionality. It is worth noting that NANDRAND imports ex-
ternal FMUs (e.g., generated by a Modelica-based environment) and couples them
to NANDRAND models in a CS setting. However, as the authors specify, such a
use-case works if and only if the imported FMUs support state saving and restoring.

Another tool related to our work is the FMI++ library [219] which is useful
to simulate FMUs for ME. One of the features implemented by this library is a
wrapper class, called RollbackFMU. Such a class stores, at each integration step,
the current state of the input FMU in order to enable a rollback functionality.
The functions used to save and restore the state are fmi2GetContinuousState
and fmi2SetContinuousState, respectively. However, as FMI specifications clarify,
such functions are not intended to set and get the complete FMU state but just
values of continuous variables of the given FMU. As Section 5.2.2 describes in details,
this is not enough. The state of an FMU has a complex structure where values of
continuous model variables are just a small fraction of it.

5.5 Conclusions

We have presented an extended version of JModelica that implements FMI 2.0 meth-
ods to save and restore complete states of FMUs for ME. We have conducted an
in-depth evaluation of our implementation on FMUs generated from widely estab-
lished model libraries, namely MSL, STS and BMD. We have shown the correctness
of our proposed implementation and assessed its performance on a demanding ap-
plication such as simulation-based V&V approaches that drive the input FMU in
the space of all simulation scenarios. In doing so, we computed the speed-up of a
visit that drives FMUs generated by our extended JModelica implementation with
respect to a visit that drives FMUs generated by stand-alone JModelica. We have
shown even for a tree with a low branching factor, namely 5, and a low depth,
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namely 50, the speed-up achieved is, on average, 11.75, 14.06 and 39.84, among
all FMUs within MSL, STS and BMD, respectively. Also, the achieved speed-up
increases much more for deeper trees. Future directions can be to apply our save-
and-restore implementation to FMUs for CS as well as to port our implementation
to the OpenModelica simulation environment. Moreover, as the 3.0 version of FMI
standard is planned to be released, it could be worth investigating how to adapt
and extend our implementation to the new set of envisioned features (e.g., clocks
and hybrid co-simulation to handle event-driven dynamics and a new type of model
exchange format, i.e., Scheduled Execution, SE).

Results in this chapter have been presented in [195]. Software developed in this
chapter is available at the following url: https://bitbucket.org/mclab/jmodelica.org.

https://bitbucket.org/mclab/jmodelica.org
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Chapter 6

Conclusions

In an In Silico Clinical Trial (ISCT) a Virtual Patient (VP) (i.e., a model of patient
physiology) is coupled with a model of the biomedical product under assessment
in a closed-loop model. The structure of such a system is similar to many Cyber-
Physical System (CPS) models where a model of the physical system is controlled
by a software. Due to the complexity of CPSs, simulation-based approaches are
typically employed to evaluate system requirements (e.g., safety properties) under
all possible scenarios (i.e., Verification and Validation, V&V, activity). In the
same way, in an ISCT setting, safety and efficacy assessment can be achieved by
simulating the effects of the biomedical product on all VPs. In this thesis, leveraging
on this similarity, we investigate simulation-based approaches based on artificial
intelligence and model checking to support ISCT.

In particular, one of the major obstacles currently hindering exploitation of
ISCT is the lack of availability of populations of VPs, which must be representative
of the entire spectrum of possible physiological characteristics or drug reactions
entailed by the model (completeness). This lack is due to the complexity of patient
physiology models at hand that often are also non-identifiable.

In Chapter 3 we have presented methods and software to compute a population
of VPs for a given quantitative and non-identifiable model of the human physiology
(plus drugs PK/PD). Our computed population yield model evolutions distinguish-
able from each other (different phenotypes), representative of the whole spectrum of
phenotypes entailed by the model, and properly stratified, i.e., organised in levels,
each one showing the entire spectrum of phenotypes from different perspectives (e.g.,
at different levels of abstraction). To this end, our methodology runs a Statistical
Model Checking (SMC)–based global search on the space of the input model pa-
rameter values that, by exploiting suitable biological and medical knowledge elicited
from experts and structural knowledge of the model, intelligently samples model
parameter values and recognises physiologically meaningful behaviours (VPs) and
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different phenotypes. Also, at any time, our algorithm continuously provides an up-
per bound to the probability that further computation will discover new phenotypes
(correct with a user-defined confidence level).

Having a complete population of VPs enables personalised medicine, where in-
dividualised pharmacological treatments are optimised for specific patients and can
be designed before being actually administered. In Chapter 4 we have designed an
ISCT to compute individualised pharmacological treatments. Our ISCT is based
on an intelligent search on a patient digital twin which we defined by exploiting a
quantitative model of the physiology and drugs Pharmacokinetics/Pharmacodyn-
amics (PK/PD), a complete population of VPs and clinical measurements of human
patients. Our search algorithm is backtracking-based and intelligently explores the
space of possible treatments (sequence of drug administrations) by driving a simula-
tor of the input patient digital twin to seek the lightest (in terms of overall amount
of employed drug doses) treatment that is effective for that patient. The possibility
to individualise a pharmacological treatment that has been designed for the aver-
age patient shows the potential of artificial intelligence for model-based personalised
medicine.

In Chapter 5 we have proposed an open-source implementation of save and
restore Functional Mock-up Interface (FMI) 2.0 functionalities that are currently
available only in commercial modelling and simulation environments. Those func-
tionalities are useful to increase efficiency of V&V activity for Functional Mock-up
Unit (FMU)-based CPSs. In fact, V&V typically requires exploring different sim-
ulation scenarios (i.e., different sequences of exogenous inputs to the CPS under
verification). Also, this is true in the setting of ISCT (as the one we have designed
in Chapter 4) where different sequences of drug administrations (scenarios) have
to be simulated. In both settings, many such scenarios have a shared prefixes.
Thanks to the availability of those FMI 2.0 save and restore functionalities, a no-
table amount of simulation time is saved by simulating such a shared prefix only
once.
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