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Abstract. The numerical simulation of hypersonic flows past blunt bodies by means of shock-
capturing (S-C) solvers is characterized by some critical challenges, including: stagnation point
anomalies, spurious numerical oscillations, the carbuncle phenomenon and the reduction of the
order of accuracy of the solution in the entire region downstream of a captured shock worsen
the solution quality. This paper describes an updated version of the unstructured shock-fitting
(S-F) algorithm for three-dimensional flows. In particular, we present a comparison between
the results obtained computing hypersonic flows on blunt bodies using both the S-C and S-F
techniques on nearly identical tetrahedral meshes, with a special interest on the grid-convergence
properties of the two different shock-modeling options.

1 INTRODUCTION

More than 10 years ago a new shock-fitting technique for unstructured meshes was proposed by
Paciorri and Bonfiglioli [1]. The technique has been further developed and successfully applied
to the simulation of three-dimensional hypersonic flows a few years later [2]. The present paper
describes an updated version of the unstructured shock-fitting algorithm for three-dimensional
flows: in the technique described in [2], volumetric and surface mesh generation were handled
using general-purpose codes, which were not specifically tailored on the requirements of the
unstructured shock-fitting algorithm and, therefore, posed strong limitations to the range of
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applications that could be handled.
Some years ago, Zaide and Ollivier-Gooch [3] developed software tools based on the GRUMMP
library for inserting lines/surfaces into existing unstructured 2D/3D meshes. Their approach
provides the core of the mesh generation and handling also required for the unstructured shock-
fitting technique, including stitching together multiple shock surfaces at reflection / interaction
lines, improving shock surface length scale, and moving shock surfaces through the mesh to
reach equilibrium. In particular, the role of the GRUMMP library and its features will be
described in detail in the following sections, where different test-cases, computed using both
the capturing and fitting shock-modeling options, will be also presented.

2 SHOCK-FITTING ALGORITHM

In this section, we provide a general overview of the proposed S-F technique: in particular,
it represents the fitted shocks as true discontinuities, since the shock front is modeled using a
zero-thickness, double-sided, triangulated surface. An initial guess of the shock front can be
determined by evaluating a preliminary S-C calculation, which also provide the initial condition
for the S-F computation: indeed, a cloud of points can be identified in order to approximate the
location of the discontinuity, and it is meshed in order to obtain a triangulated surface, which is
inserted in the background grid, as shown in fig. 1.

Shock surface
of triangles

=+

Background mesh

Figure 1: Example of the merging between the shock surface and the background mesh

Then, the fitted shock front acts as an interior boundary for a shock-capturing solver, which
is used to solve the governing equations within the computational domain: in particular, the
gas-dynamic solver used in the present implementation is EulFS [8], an in-house code based
on the Fluctuation Splitting approach which implements both first and second-order-accurate
schemes. During time-integration, the shock surface moves according to the Rankine–Hugoniot
(R-H) jump relations, causing modifications of the tetrahedral grid, until it reaches its steady
state position, corresponding to vanishing shock speed. This technique was applied for the first
time on 3D unstructured grids by the authors [2]: in this preliminary version of the algorithm,
the mesh generation and handling relied on general propose codes (Tetgen [4] and Yams [7]).
Nevertheless, since these mesh generation codes were not specifically designed for unstructured
shock-fitting and they posed strong limitations, in the present implementation these programs
are replaced by codes based on the GRUMMP library. The main steps of the S-F algorithm

2



C. Ollivier-Gooch, R. Paciorri, A. Assonitis and A. Bonfiglioli

proposed in this paper are briefly described in the following subsections:

2.1 Insert the shock surface into the background mesh

The insertion of the shock surface into the background grid[3] first re-discretizes the surface,
then removes vertices from the volume mesh that are too near the surface, and finally inserts
the new vertices into the volume mesh and recovers the shock surface as a union of triangles
in the mesh. The input triangulated shock surfaces are converted to interpolated spline surfaces
using CGM [5]. The surface is re-discretized by sampling each smooth surface [6], starting with
the surface boundary, then sampling the interior of the surface to ensure topological correctness,
geometric fidelity, and mesh quality. The length scale for the sampled surface is determined from
the existing volume mesh. Before inserting the surfaces into the volume mesh, we first create a
cavity in the volume mesh around the surface. To prevent the creation of short edges, we tag for
removal all vertices in the volume mesh that are closer than half of the local length scale to any
points on the re-discretized surface. To ensure that we can recover all triangles in the discretized
surface after insertion, we also tag for removal any volume mesh points that fall inside a sphere
whose equator is the circumcircle of a surface triangle. These are shown in Fig. 2a. We remove
these points from the volume mesh, tagging them as phantom points for possible re-addition as
the shock moves, as shown in Fig. 2b. Finally, we insert the surface points, recover the surface
triangles, and duplicate the shock surface to produce upstream and downstream shock points
(Fig. 2c).

(a) Identification of the
phantom nodes and ghost cells
of the background mesh

(b) Crossed elements are
removed

(c) Generation of the modified
mesh

Figure 2: Inserting a shock surface in the mesh

2.2 Computation of the tangent and normal unit vectors

The normal unit vectors (n) on the shock surface have to be calculated at each shock point since
this is required to compute the jump relations, as described in Sec. 2.3. The computation
of these vectors in a generic shock point can be carried out by averaging the face normals of
all shock faces that share the given shock point. Similarly to the two-dimensional case [1],
however, the averaging process has to take into account only the shock faces that belong to the
range of influence of a shock point, see Ref. [2] for further details. By convention, the normal
unit vector is oriented from the downstream region to the upstream one.

3



C. Ollivier-Gooch, R. Paciorri, A. Assonitis and A. Bonfiglioli

2.3 Solution update on the shock nodes using the capturing code and enforcement of
Rankine-Hugoniot jump relations

Using the computational grid as input, a single time-step calculation is performed using the
unstructured, vertex-centered, shock-capturing solver EulFS [8], which returns updated nodal
values at time t +∆t within all grid-points of the computational mesh generated in Sec. 2.1.
As explained in details elsewhere [2], the shock-downstream values of the dependent variables
within the shock-points need to be corrected by enforcing the jump relations across each pair of
shock-points. This amounts to solving the system of six (in the 3D space) non-linear algebraic
equations reported below at each pair of shock-points:

ρd
t+∆t(udn −w) = ρu

t+∆t(uun −w) (1)

ρd
t+∆t(udn −w)2 + pd

t+∆t = ρu
t+∆t(uun −w)2 + pu

t+∆t (2)
γ

γ−1
pd

t+∆t

ρd
t+∆t +

(udn −w)2

2
=

γ

γ−1
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t+∆t

ρu
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2
(3)

ud
t+∆t −udnn = uu

t+∆t −uunn (4)√
γ · pd

t+∆t

ρd
t+∆t +

γ−1
2

udn = Rd
t+∆t (5)

The Eqs. 1-5 are the Rankine–Hugoniot (R-H) jump relations. The last equation is referred to
the Riemann variable which is associated with the acoustic wave which moves upstream towards
the shock

Rd
t+∆t = ãt+∆t

d + ũt+∆t
d ·n (6)

where n is the unit vector normal to the shock surface already computed in sec. 2.2, ãt+∆t
d and

ũt+∆t
d are respectively the values of sound speed and flow velocity computed by the unstructured

solver in the downstream state of the shock nodes. Due to the upwind nature of the discretization
used in the unstructured capturing code, the acoustic signal related to Rd

t+∆t is correctly evolved,
even though the individual quantities ãt+∆t

d and ũt+∆t
d may be wrong. The left hand side of

Eq. 6 is therefore assumed to be correct, whereas the quantities on its right hand side are only
provisional values (hence the tilde) that will be correctly updated enforcing the R-H relations.
The aforementioned system is solved using a Newton–Raphson algorithm and supplies also the
local shock speed w.

2.4 Shock displacement and interpolation of the phantom nodes

The position at time-level t+∆t is computed moving all shock points according to the shock speed
(wt+∆t

sh ) obtained in Sect. 2.3. If ∆t is kept sufficiently small, the shock surface will overtake only
phantom nodes but none of the active point of the computational mesh. All phantom vertices
are checked to determine if they are far enough from the shock that they should be re-inserted
into the active mesh. Those that will be re-activated must have their solution state updated. This
is done by identifying the volume cell they fall within. The solution at all active vertices in the
mesh has already been updated to t+∆t, and this solution is linearly interpolated to the phantom
vertices. These phantoms are then re-inserted into the mesh, taking care to preserve triangles on
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the shock. Non-phantom vertices near the shock are checked to see if they are too close to the
shock. Those that are too close are removed from the mesh topology and tagged as phantoms.

3 NUMERICAL SIMULATION OF HIGH-SPEED FLOWS PAST BLUNT BODIES

In the following sections we will analyze and discuss the results obtained in the simulation of
an inviscid high-speed flow past two blunt bodies using both S-C and S-F in order to highlight
the differences between these two shock-modeling options. In particular, we performed the
numerical solutions by means of the in-house second-order-accurate S-C solver described in
Ref. [8], which is the same solver used in the smooth regions by the S-F technique. Computed
results for the first test-case (Sec. 3.1) will be analyzed using the analytically computed values at
stagnation point and a quantitative assessment of the order-of-convergence of the two techniques
will also be made.

3.1 Hemisphere

The hypersonic flow (M∞ = 10) past an hemisphere has been numerically computed using the
computational domain shown in Fig. 3: the hemisphere has been carved within an orthogonal
parallelepiped, half of which is shown in Fig. 3; R is radius of the hemisphere and the triangulated
surface of the bow-shock is shown in blue.
S-C and S-F calculations have been performed on nearly identical tetrahedral grids: the S-C
mesh coincides with the background mesh used in the S-F calculation; the modified S-F mesh
differs from the background tessellation only in the neighborhood of the fitted shock-surface
(compare Figs. 4a and 4b) where it has been locally modified by the GRUMMP library to give
room to the triangulated shock surface. In order to evaluate the grid-convergence properties of
the two different shock-modeling options, calculations have been performed using two nested
grid levels, the finest one obtained by splitting each cell of the coarser mesh into eight tetrahedra.

Figure 3: Computational domain
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(a) S-C mesh side view (b) S-F mesh side view

Figure 4: Hypersonic flow past a hemisphere: grid detail (plane XZ view)

The superior performance of the S-F technique is revealed by Fig. 5, which compares the
dimensionless pressure field within the XZ plane computed using both S-C and S-F on the
coarsest grid. The S-C calculation, Fig. 5a, features a shock-thickness which is comparable
to the shock stand-off distance and is characterized by the presence of spurious disturbances
within the entire shock-downstream region, due to the mis-alignment between the shock-surface
and the triangular faces of the grid. On the contrary, the S-F calculation, Fig. 5b, features a
discontinuity of zero thickness and a smooth pressure-field downstream of the bow shock.

(a) S-C computation (b) S-F computation

Figure 5: Hypersonic flow past a hemisphere: dimensionless pressure field in the XZ plane.)
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The improved resolution offered by S-F is further confirmed by the dimensionless density distribution
over the body surface, which is shown in Figs. 6a and 6b for the coarse, resp. fine grid levels.
Indeed, in the S-C calculations shown in the two frames on the left of Fig. 6, the density
iso-contour lines are seen to be plagued by severe oscillations that pollute the solution, in
particular close to the stagnation point. In contrast, the S-F calculation reveals a reasonably good
circumferential symmetry (particularly on the finer mesh) despite the use of a fully unstructured
tetrahedralization.

(a) Coarse grid level

(b) Fine grid level

Figure 6: Hypersonic flow past a hemisphere: dimensionless density field over the body surface.

Nested meshes also allow to assess the observed order of accuracy, ñ, and discretization error,
εh, i.e. the difference between the numerical solution computed on a mesh of spacing h and the
exact solution, u0. Following [9], the observed order of accuracy has been calculated using:

ñ =
log R−1

log r
(7)

where the grid refinement ratio is equal to r = 2 for nested meshes and the grid convergence
ratio R is:

R =
u2 −u0

u1 −u0
=

εh

ε2h
(8)
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In Eq. (8) the subscripts 1 and 2 refer to the coarse, resp. fine grid levels, whereas u0 is the
exact stagnation point value of either pressure or density. Values at stagnation point can be
analytically determined because the bow shock is a normal shock at the point where it is crossed
by the stagnation streamline. Table 1, which shows the numerically and analytically computed
values of pressure and density at stagnation point clearly reveals that S-F is much closer than
S-C to the exact value.

Table 1: Inviscid flow past a hemisphere: stagnation point data.

Shock capturing Shock fitting Analytical
Quantity fine grid fine grid

P/P∞ 125.64 128.93 129.21
ρ/ρ∞ 5.80 6.13 6.15

The results of the grid-convergence analysis are reported in Tab. 2: on both grid levels the
discretization error incurred by S-F is one order of magnitude smaller than that of S-C. This
observation holds true for both pressure and density. As far as the observed order of convergence
is concerned, however, the behavior is different between pressure and density. When looking at
the pressure error, both S-C and S-F exhibit an observed order which is close to second, i.e.
design order. When moving from the coarse to the fine mesh, the discretization error is reduced
by a factor R−1 nearly equal to four, as expected. This is not any longer true when looking at the
density error, in which case both shock-modeling options appear to be far from the asymptotic
range of convergence, with S-F doing a little bit better (1.20 vs. 0.97) then S-C. Additional
calculations using finer grid levels will be necessary to obtain more reliable grid-convergence
trends.

Table 2: Inviscid flow past an hemisphere: convergence analysis.

Pressure analysis Density analysis
ε2h εh R−1 ñ ε2h εh R−1 ñ

S-C 11.76 3.27 3.59 1.85 0.698 0.357 1.96 0.97
S-F 1.07 0.29 3.73 1.90 0.062 0.027 2.28 1.20
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3.2 Cylinder flare body

In this section we consider the supersonic flow past a blunt-nosed body. The geometry consists of
a cylinder with an hemispherical nose, a conical flare making an angle of 30◦ w.r.t. the body axis
and a cylindrical tail. The free-stream Mach number is M∞ = 4.04 and the angle of attack equal to
20◦, as shown in Fig. 7c. The flow-field is characterized not only by a bow shock, but also by an
embedded shock which originates at the cylinder-cone junction; these two shocks interact giving
rise to a type VI shock-shock interaction, as classified by Edney [10]. As far as the computational

(a) Computational domain (b) Background mesh (c) Bow shock surface

Figure 7: Hypersonic flow past a flare: computational domain and mesh details

setting is concerned, Fig. 7a shows the computational domain and the boundary conditions used
to perform both the S-C and S-F computations: supersonic inflow boundary conditions have
been imposed on the four upstream faces, highlighted in green in Fig. 7a, whereas extrapolation
boundary conditions have been prescribed on the remaining boundary faces, marked in red in
Fig. 7a. The usual slip condition has been applied along the body walls. Fig. 7 also shows
the background grid used in both the S-C and S-F calculations and, in Fig. 7c, the triangulated
surface of the bow shock obtained at steady-state in the S-F calculation. The embedded shock
is not visible in Fig. 7c, because the S-F technique has been used in an hybrid manner, whereby
only the bow shock has been fitted, whereas the embedded one has been captured.
A qualitative comparison between the S-C and the S-F solutions is available in Fig. 8, which
shows the dimensionless pressure field computed using the two shock-modeling options. In
Fig. 8b, which refers to the S-F calculation, the intersection between the triangulated shock-
surface and the XZ plane has been marked using a red solid line. Figure 8b clearly reveals the
hybrid nature of the S-F calculation, with the bow shock being fitted, whereas the embedded
shock and the shock-shock interaction have been captured. Figures 9 and 10 show details of the
pressure field close to the hemispherical nose and in the region where the shock-shock interaction
takes place. The comparison between the S-C (Figs. 9a and 10a) and S-F (Figs. 9b and 10b)
calculations leads to conclusions that are very similar to those already made in Sect. 3.1. First
of all, the un-physical thickness of the captured shock (which spans a few cells) is comparable
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(a) S-C solution (b) S-F solution

Figure 8: Hypersonic flow past a flare: computed pressure field in the XZ plane

(a) S-C solution (b) S-F solution: fitted surface is
depicted with a red solid line

Figure 9: Hypersonic flow past a flare: hemispherical-nose enlargement in the XZ plane.

to the shock stand-off distance. In the present test-case, however, possibly because of the lower
shock-strength, the solution within the shock-downstream region is not so badly affected by the
capture of the shock as it is in the hypersonic case of Sect. 3.1: compare Figs. 9a and 5a. Anyway,
by comparing the left and right frames of Figs. 8, 9 and 10, it is clear that significant differences
exist between the pressure field computed by S-C and S-F downstream of the bow shock, both
in the symmetry plane and over the body surface. Finally, Fig. 10, which shows a zoom of
the region where the shock-shock interaction takes place, suggests that the S-F solution may be
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(a) S-C solution (b) S-F solution: fitted surface is
depicted with a red solid line

Figure 10: Hypersonic flow past a flare: interaction region enlargement in the XZ plane.

further improved if the embedded shock and the shock-shock interaction were also fitted, rather
than being captured as in Fig. 10b. This is work underway, which requires improvements in the
GRUMMP mesh-generation package to make it capable of dealing with interacting surfaces and
the computational modeling of three-dimensional shock-shock interactions.

4 CONCLUSIONS

In this paper the S-F algorithm described in [2] has been further developed and enhanced: in
particular, we highlight the role of the GRUMMP library in handling the fitted shock fronts
within the background grid, which provided a significant improvement in our code capability.
The lack of a tailored software capable of performing tetrahedral mesh generation around the
moving triangular shock surface, has been the main obstacle that prevented further developments
of three-dimensional S-F algorithm described in [2], in order to make it capable of dealing with
shock-shock interactions as already done in the 2-D case [1]. These limitations can be overcome
with the use of the GRUMMP library: although the simulations analyzed in this article do not
consider the interaction between fitted shock surfaces (indeed, in the second test-case only a
hybrid interaction between a fitted and a captured shock has been described), these results show
the current progress due to the GRUMMP library implementation in the S-F technique and the
challenges ahead.
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