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ABSTRACT
This paper presents the first framework (up to the authors’ knowledge) to address
time-varying objectives in finite-horizon Deep Reinforcement Learning (DeepRL),
based on a switching control solution developed on the ground of Bellman’s principle
of optimality. By augmenting the state space of the system with information on its
visit time, the DeepRL agent is able to solve problems in which its task dynamically
changes within the same episode. To address the scalability problems caused by the
state space augmentation, we propose a procedure to partition the episode length
to define separate sub-problems that are then solved by specialised DeepRL agents.
Contrary to standard solutions, with the proposed approach the DeepRL agents
correctly estimate the value function at each time-step and are hence able to solve
time-varying tasks. Numerical simulations validate the approach in a classic RL
environment.

Keywords:Bellman’s Principle, Finite-Horizon Optimal Control, Deep Reinforce-
ment learning, Model-Free Control

1. Introduction

Deep Reinforcement Learning (DeepRL) attracted, over the past few years, the focus
of the scientific community regarding model-free control systems, thanks to its capa-
bility of controlling complex environments without requiring sensory data (e.g., visual
information) pre-analysis and for its demonstrated better scalability when compared to
traditional Reinforcement Learning (RL). In the DeepRL framework, the controller, or
agent, is used to maximise a given objective or performance index, without any knowl-
edge on the internal functioning or dynamics of the controlled system. To do that, the
agent is said to learn how to control the system by experiencing its input-output pairs.

One of the most impactful works in the DeepRL literature is the well-known “Deep
Q-Network” (DQN) algorithm, proposed in (Mnih et al., 2013) and later evolved into
“Double DQN” (DDQN) in (Van Hasselt, Guez, & Silver, 2016) to improve the sta-
bility of its training and the quality of its performance estimations. Both DQN and
DDQN are designed to control systems with discrete, or quantized, control actions, but
DeepRL was tailored also to solve continuous control tasks, notably with the “Deep
Deterministic Policy Gradient” (DDPG) algorithm proposed in (Lillicrap et al., 2015),
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which is among the most popular implementations for DeepRL controllers. Current
state-of-the-art solutions include the “Twin-Delayed Deep Deterministic policy gra-
dient” (TD3) (Fujimoto, Hoof, & Meger, 2018) algorithm, that improved DDPG by
addressing its overestimation bias (like DDQN did for DQN9), and Soft Actor-Critic
(SAC) (Haarnoja, Zhou, Abbeel, & Levine, 2018), a sample-efficient solution that
demonstrated robust convergence properties. Nowadays, a significant research effort is
being spent to find more efficient algorithms with improved control performances. The
present paper, instead, aims at extending the class of control problems that DeepRL
controllers can solve by proposing a framework in which state-of-the-art solutions, such
as TD3, may be employed to deal with problems with time-varying control objectives.

1.1. Related Works and Main Contributions

Standard RL and DeepRL solutions (Barto, Sutton, & Anderson, 1983; Fujimoto et
al., 2018; Kaelbling, Littman, & Moore, 1996; Lillicrap et al., 2015; Mnih et al., 2013)
are typically concerned with the optimisation of a single objective. Nevertheless, over
the years several studies dealt with multi-task and multi-objective problems (C. Liu,
Xu, & Hu, 2015), whereas few studies considered scenarios in which the objective of
the controller dynamically changes during the episode, as this paper does.

In the literature, several works (Borsa, Graepel, & Shawe-Taylor, 2016; Kelly &
Heywood, 2018; Omidshafiei, Pazis, Amato, How, & Vian, 2017; Tanaka & Yamamura,
2003; Teh et al., 2017; Verme, da Silva, & Baldassarre, 2020) considered scenarios
in which the trained controller is able to seamlessly cope with different tasks, but
not concurrently. The authors of (Borsa et al., 2016) designed a framework in which
a learning agent is able to attain optimal control strategies for various tasks that
share the same environment. The proposed algorithm relies on two classic Dynamic
Programming (DP) algorithms, i.e., Value and Policy Iteration. We mention that, even
if DP algorithms are particularly subject to the so-called “curse of dimensionality”,
that exponentially relates their convergence times with the problem complexity, several
approximated solutions have been proposed over the years to speed-up their solving
times. Such solutions space from functional approximation (Xu, Lian, Zuo, & He,
2014) to data-driven ones (Chun, Lee, Park, & Choi, 2017; Zhang, Cui, Zhang, &
Luo, 2011), finding significant applications in domains such as resource allocation
(Forootani, Liuzza, Tipaldi, & Glielmo, 2019; Forootani, Tipaldi, Zarch, Liuzza, &
Glielmo, 2019), industrial control (Wang, Chakrabarty, Zhou, & Zhang, 2019) and
game theory (Zhang, Wei, & Liu, 2011).

In a similar setting, a solution in which the agent is able to exploit past knowledge
to address new objectives was proposed originally in (Tanaka & Yamamura, 2003),
where a controller able to continuously adapt to changing tasks was presented. As
shown for the multi-agent setting in (Omidshafiei et al., 2017), the explicit knowl-
edge on the on-going task is not in principle required, and a unified control logic that
performs well across various different tasks can be developed under mild hypotheses.
The authors of (Kelly & Heywood, 2018; Teh et al., 2017; Wilson, Fern, Ray, & Tade-
palli, 2007) developed strategies to share knowledge among similar tasks (e.g., playing
different Atari games (Kelly & Heywood, 2018)) based respectively on genetic algo-
rithms and the so-called “Distill and Transfer Learning” (Distral) approach, in which
a distilled control policy that captures common behaviour across tasks is synthesized.
Finally, in (Wilson et al., 2007) the authors proposed a hierarchical Bayesian frame-
work that allows to rapidly infer the features of new environments and tasks based on
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the previously observed ones.
A different approach was followed in the researches related to multi-objective RL

(Gábor, Kalmár, & Szepesvári, 1998; Giuseppi & Pietrabissa, 2020; C. Liu et al., 2015;
Van Moffaert & Nowé, 2014), where different competing objectives are active at the
same time. Pareto optimality was sought in (Van Moffaert & Nowé, 2014), whereas,
in (Giuseppi & Pietrabissa, 2020), the authors developed a strategy involving different
objective-specific DeepRL agents to optimally control a system under the hypothesis
that the prioritisation of the objectives is known to the controller (Gábor et al., 1998).

Differently from the previous solutions, this paper proposes a framework built on a
state space augmentation to cope with time-varying objectives.

RL and DeepRL algorithms typically rely on a Markov decision process (MDP)
representation of the control problem. MDPs couple a discrete-time dynamic control
systems and a reward (or cost) structure to define an optimization problem, whose
solution is the optimal control law or policy. Under some assumptions on the system
(see Section 2), the solution can be computed by DP algorithms, which use backward
recursion to efficiently compute the optimal policy. The Bellman’s principle of opti-
mality (Bellman, 1966) is the underlying principle of DP. In this paper, focused on
finite-horizon MDPs (FH-MDPs), the Bellman’s principle of optimality is used to ad-
dress the scalability problems by dividing the task into sub-tasks. Specialized DeepRL
agents are then sequentilally trained for each sub-task and the resulting controller for
the original task switches between the various DeepRL agents during the same episode.

We mention that, as will be analyzed in Section 2.2, the DeepRL methods used in the
literature for episodic finite-horizon problems actually solve approximated FH-MDPs,
in which the the controller is not provided with the information regarding the visiting
time of the various states. This lack of information will be shown to be equivalent to
aggregating all the visiting times of each state, yielding to an approximation on the
value function estimation that DeepRL algorithms use to decide the control actions. In
fact, under such aggregation, the value function estimation of each state remains fixed
over the episode duration, whereas, in finite-horizon problems, its value is in general
time-varying even if the reward is time-invariant since the reward-to-go of a state
depends on its visiting time. In general, a correct evaluation of the value function at
all times is important for the optimal control of the system (e.g., to correctly evaluate
the control effort) and is even more relevant in constrained control problems (as in
L-DQN (Giuseppi & Pietrabissa, 2020)). With the framework proposed in this work,
finite-horizon DeepRL algorithms solve the actual FH-MDP (and not an approximated
one) and, thus, return the value function estimation for all the episode time-steps.

A summary of the main contributions of the paper follows:

• We propose to address FH-MDPs with DeepRL agents considering an augmented
state space, in which the state definition includes the time-step of the current
episode, to save the time-dependency and to provide better estimations of the
value functions. As a result, different values of the value function are now esti-
mated for each state and for each time-step. Moreover, a more accurate estima-
tion of the value function is obtained.
• To solve the scalability issue caused by the state space augmentation, we propose

to apply the Bellman’s principle of optimality by partitioning the episode over
time into sub-tasks, each one governed by a different DeepRL agent. Then, the
obtained controllers (the DeepRL agents) are used in a switched control fashion
in the original task, without causing any performance/value function estimation
degradation with respect to the case in which a unique DeepRL agent is trained

3



for the whole original task in the augmented state space.
• By considering the time-augmented state space, the proposed framework extends

the practicable applications of the DeepRL algorithms to problems in which the
reward changes over time either stochastically or deterministically (e.g., with a
task consisting of a series of sub-tasks with different reward functions).
• In principle, the framework designed in this work enables the implementation

of any state-of-the-art DeepRL agent to solve control tasks with time-varying
objectives, under the only hypothesis that the selected agent is able to provide
an accurate state-action value function estimation.

The contributions highlighted above extend to the time-varying objective case the
classes of control tasks that DeepRL agent can correctly solve, without requiring any
modification in their specific training algorithms.

The remainder of the paper is organized as follows: Section 2 provides the definition
of FH-MDPs and of the considered state augmentation approach, and also analyses
the approximations performed by current DeepRL implementations; Section 3 shows
how the Bellman’s principle of optimality can be used to address the scalability prob-
lem introduced by the state space augmentation; Section 4 discusses some numerical
simulations; finally, Section 5 draws the conclusions and highlights future research
directions.

2. Finite-horizon MDPs, current DeepRL solutions and Proposed
Finite-Horizon DeepRL

In the RL literature, introductions to MDPs range from simple ones, aimed at pro-
viding the reader with sufficient elements for the understanding of RL and DeepRL
approaches (Sutton & Barto, 1998), to more specialized and theoretically sound ones
(Bertsekas, 2005), (Puterman, 1994). In this paper we opted for an intermediate choice,
similar to the one of (Shimkin, 2011), in order to give the necessary insight to under-
stand the proposed DeepRL solutions without diverting the readers’ attention from
the scope of the paper.

Section 2.1 defines the FH-MDPs. In Section 2.2, two approaches for DeepRL im-
plementations are analysed, while in Section 2.3 the proposed approach is described.

2.1. Finite-Horizon MDPs with Non-Stationary Rewards

The FH-MDP will be defined under the assumptions that the system model is station-
ary, i.e., the system dynamics does not depend on time, and that the Markov property
holds, i.e., the system evolution from a given state does not depend on past visited
states or past control actions.

Let us consider the dynamic system

xt+1 = h(xt, ut), x ∈ X , u ∈ U , t ∈ T , (1)

with xt and ut denoting the state and the control action at time t, respectively, and
where h : X × U → X is a stochastic function, T := {0, 1, ..., T − 1} is the set of T
time-instants of the finite-horizon, X is the discrete or continuous finite state space
and U is the discrete or continuous finite action space (in general, the available control

4



actions might depend on the current state, but we neglect this dependency for the
sake of the presentation clarity). The state equation (1) defines a controlled Markov
chain over the state space. Let p(x, u, x′) denote the transition probability from state
x to state x′ when the control action u is chosen.

The system dynamics is driven by the control policy. We consider stationary and
non-stationary non-randomized control policies. A non-stationary non-randomized
control policy, denoted by π, defines a time-dependent mapping from the state space
to the action space:

π : X × T → U . (2)

If π(x, t) = u, the system chooses action u ∈ U when it is in state x ∈ X at time
t ∈ T . Let Π be the set of all the possible non-stationary control policies. A stationary
non-randomized control policy, denoted by π̄, defines a mapping between the state
space and the action space and verifies the condition

π(x, t) = π̄(x), for all x ∈ X and t ∈ T . (3)

The set of stationary policies Π̄ is a subset of Π.
FH-MDPs also require the definition of a reward structure. A non-stationary reward

function is defined by ρ : X × U × X × T → R, with ρ(x, u, x′, t) being the reward
gained by the system when the controller chooses action u in state x at time t and the
next state is x′. The terminal reward is defined as ρf : X ×U → R, with ρf (x, u) being
the reward associated to the terminal state xT when xT = x and uT = u. Considering
a discrete state space, the one-step expected reward incurred by the system at time t
under policy π is then computed as

r(xt, ut) = Eπ
{
ρ(x, u, x′, t)

∣∣x = xt, u = ut, x
′ ∈ X

}
=

=
∑
x′∈X

pπ(xt, ut, x
′)ρ(xt, ut, x

′, t), (4)

where Eπ and pπ denote the expected value and the transition probability, respectively,
under policy π. Note that the one-step reward (4) is finite since X , ρ and ρf are so.

Finally, we need to define a reward criterion to evaluate the system performance.
A common reward criterion in FH-MDPs is the expected discounted total reward,
defined as

Jπ,ς = Eπ,ς
{
T−1∑
t=0

γtρ(xt, ut, xt+1) + γTρf (xT , uT )

}
(5)

where γ ∈ (0, 1) is the discount factor which weights immediate versus delayed rewards,
ς ∈ Σ is the initial state distribution such that ς(x) > 0 for all x ∈ X , with Σ denoting
the set of possible initial distributions over the state set X , and Eπ,ς denotes the
expected value under policy π and initial state distribution ς.

In conclusion, a FH-MDP is represented by the tuple
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{
X , T ,U , h, ρ, ρf , γ, ς

}
(6)

and, together with the reward (5), defines the finite-horizon optimization problem

max
π∈Π

Jπ,ς (7)

aimed at finding the optimal policy π∗ which maximizes Jπ,ς .
The problem (7) can be written in terms of non-stationary (state,action)-value func-

tions as

max
π∈Π

Jπ,ς = max
π∈Π

{∑
x∈X

ς(x)Qπ
(
x, 0, π(x, 0)

)}
, (8)

where ς(x) is the probability that x is the initial state and Qπ(x, t, u) is the expected
discounted total reward of the system visiting state x at time t, choosing action u and
following the policy π thereafter, for the last T − t time-steps:

Qπ(x, t, u) = Eπ
{
T−1∑
k=t

γk−tρ(xk, uk, xk+1)+

+γT−tρf (xT , uT )|xt = x, ut = u

}
,

(9)

with Eπ denoting the expected value under policy π.

2.2. DeepRL Solutions

RL and DeepRL algorithms solve the problem (7) by finding the optimal non-
stationary value functions, denoted by Q∗, which are then used to find the optimal
non-stationary policy, for all x ∈ X and t ∈ T , as

π∗(x, t) = arg max
u∈U

Q∗(x, t, u). (10)

Two approaches are presented in this section: the former relying on an augmentation
of the state space (Boyan & Littman, 2001; L. Liu & Sukhatme, 2018; Rachelson,
Fabiani, & Garcia, 2009), the latter based on Approximate Dynamic Programming
(ADP) strategies.

2.2.1. Augmented state space approach

In FH-MDPs, to handle non-stationary policies and rewards, it is convenient to define
the augmented state space
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Z := X × T =
{

[x, t]
∣∣x ∈ X , t ∈ T }, (11)

where each augmented state [x, t] represents a state of the original state space and its
visit time.

The equivalent augmented FH-MDP is defined as

{
Z, T ,U , g, ρ, ρf , γ, ς

}
, (12)

where g : Z ×U → Z is such that the dynamics (1) is written in the augmented space
as

[xt+1, t+ 1] =
(
h(xt, ut), t+ 1

)
= g([xt, t], ut) (13)

and where, with little abuse of notation, we assume that ρ
(
[x, t], u, g([x, t], u)

)
=

ρ
(
x, u, h(x, u), t

)
and ρf ([x, t], u) = ρf (x, u). Equation (13) shows that in each episode

the state [x, t] is either visited once or not visited.

Remark 1. The augmented FH-MDP is stationary since non-stationary rewards
ρ(x, u, x′, t) and policies π(x, t) in the original state space are mapped onto stationary
rewards ρ([x, t], u, [x′, t+ 1]) and policies π([x, t]) in the augmented state space.

The non-stationary value functions Qπ(x, t, u) are computed as stationary value
functions in the augmented state space as

Qπ([x, t], u) = Eπ
{
T−1∑
k=t

γk−tρ([xk, k], uk, [xk+1, k + 1])+

+γT−tρf ([xT , T ], uT )|[xt, t] = [x, t], ut = u

}
,

(14)

In the augmented state space, standard DP and RL algorithms can be used to eval-
uate or estimate Qπ([x, t], u) in an iterative fashion. We note that, from the Bellman’s
principle, the optimal value functions Q∗

(
[x, 0], u) and the optimal policy π∗ are inde-

pendent of the initial state distribution ς, which, however, is still needed to compute
the optimal cost Jπ

∗,ς .
In DeepRL, the value function estimates are computed using Deep Neural Networks

(DNNs), referred to as critic DNNs. In case of continuous action set, a DNN, named
actor DNN (Grondman, Busoniu, Lopes, & Babuska, 2012), is also used to estimate
π([x, t]). Such DNNs will be denoted as Q([x, t], u|ϕ) and A([x, t]|ϑ), respectively,
where ϕ and ϑ are the DNNs’ parameters. The critic DNN Q maps Z × U onto R
and is aimed at estimating the optimal value function Q∗([x, t], u). The actor DNN A
maps the augmented state set Z onto the action set U and is aimed at estimating the
optimal policy π∗(x, t).

Standard DeepRL algorithms, such as DQN (Mnih et al., 2015), DDQN (Van Hasselt
et al., 2016), DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018), can be
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used to find the critic DNN Q and, in the DDPG and TD3 cases, the the actor
DNN A. By assuming perfect estimates, i.e., that Q([x, t], u|ϕ) = Q∗([x, t], u) and
A([x, t]|ϑ) = π∗(x, t) for all [x, t] ∈ Z and u ∈ U , the non-stationary optimal policy
for the problem (7) is computed as

π∗(x, t) = arg max
u∈U
Q([x, t], u|ϕ) (15)

for discrete action spaces, or

π∗(x, t) = A([x, t]|ϑ), (16)

for continuous action spaces.

2.2.2. Aggregated state space approach

With the state space augmentation, the problem becomes rapidly unfeasible as the
time-horizon length increases. Alternatively, problems in which a task or episode has a
finite duration can be treated as problems with a continuous task by using discounting
(i.e., at time t of each episode, the reward is discounted by γt) and by restarting the
time at the end of each episode (Barto et al., 1983). Two approximations are however
implied:

(1) Policy aggregation. The policies which are considered are stationary in the origi-
nal state space X , as in (3). This first approximation is commonly used in ADP
to restrict the policy space.

(2) State aggregation. The one-step expected reward r(xt, ut) is estimated as it was
independent of the visit time - which is not true when considering time-varying
policies and rewards. This second approximation is a state aggregation with
respect to the augmented state space Z: each state x ∈ X represents all the
states [x, t] ∈ Z, for all t ∈ T . This approximation might be acceptable if,
during the episode, the system rarely visits the same state, whereas it might be
problematic if the states are repeatedly visited.

Remark 2. Up to the authors’ knowledge, all the DeepRL algorithms, including the
ones mentioned in Section (1.1), have been used under the described approximations
and with stationary reward functions.

Hereafter, the aggregated FH-MDP will be denoted by FH-MDP and its aggregate
policies π̄ coincide with the stationary policies of equation (3).

Under the state aggregation, the reward-to-go of the system in a given state x is
associated to a single estimated value, regardless of the visit time. Strictly speaking,
the resulting process is not Markovian anymore, since the expected reward in a state
x depends on the time of the visit, i.e., on the history of the system. The system
can be also regarded as a Partially Observables MDP (POMDP) (S. P. Choi, Yeung,
& Zhang, 2000; S. P. M. Choi, Yeung, & Zhang, 2000; Hallak, Castro, & Mannor,
2015; Padakandla, J, & Bhatnagar, 2019): when the system is in state x, the con-
troller operates without knowing in which augmented state the system lies among
[x, 0], [x, 1], ..., [x, T − 1]. This means that the estimated expected reward depends on
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the probability distribution of the visit times of the state x over the states [x, t], for
all t ∈ T , i.e., on the probability distribution of the visit times of the state x during
the time interval T . This probability distribution depends, in turn, on the initial state
distribution (i.e., the probability that the system is in a given state at time t = 0) and
on the control policy. For example, if the system almost always starts from a state x
and then follows a policy under which the state x is rarely visited, the probability that
the state x is visited at time t = 0 is much larger than the probabilities that the state
is visited at time t = 1, ..., T − 1.

Let ξπ̄,ς([x, t]|x) denote the probability that the augmented state is [x, t] given that
the system is in state x, when the system is under aggregated policy π̄ and the initial
state distribution is ς. Considering the aggregated FH-MDP, the critic DNN is then
aimed at estimating the stationary value function Q̄π̄

(
x, u
∣∣ς), which is the sum over

the episode time, weighted by ξπ̄,ς , of value functions Qπ̄([x, t], u):

Q̄π̄
(
x, u
∣∣ς) =

T−1∑
t=0

ξπ̄,ς([x, t]|x)Qπ̄([x, t], u). (17)

The aggregated FH-MDP is defined by the tuple

{
X , T ,U , h, ρ, ρf , γ, ς

}
, (18)

and the optimal control problem solved by DeepRL algorithms is an approximation of
the original one (7) and is stated as

max
π̄∈Π̄

{∑
x∈X

ς(x)Q̄π̄
(
x, π̄(x)

∣∣ς)}. (19)

Remark 3. The value function (17) may be interpreted as the average of the values
of Qπ̄([x, t], u), for all t ∈ T , weighted by the probability distribution of the visit
times t over the state x induced by π̄ and ς. Equation (17) shows that the optimal
stationary value function Q̄∗(x, u) under the aggregated optimal policy π̄∗ differs from
the non-stationary optimal value function Q∗(x, 0, u) under the optimal policy π∗ -
unless π̄∗ ≈ π∗ and ξπ̄,ς([x, t]|x) ≈ 1.

Remark 4. Equation (17) gives another insight of DeepRL algorithms applied to
approximated FH-MDPs: in addition to implicitly estimating the transition probabili-
ties under the optimal policy (as done by standard RL algorithms applied to finite- or
infinite-horizon MDPs), the critic DNN Q̄ of current implementations of DeepRL algo-
rithms has the further task of implicitly estimating the probability distribution of the
visiting times of each state. If the reward is time-varying, the task is even harder since
a unique estimated value Q̄(x, u|ϕ) cannot express the fact that the reward gained in
a state x when action u is chosen changes with the visit time.

In DeepRL approaches, the critic DNN, denoted by Q̄(x, u|ϕ), maps X × U onto
R and estimates the optimal value function Q̄∗(x, u

∣∣ς). The actor DNN Ā maps the
state set X onto the action set U and is aimed at estimating the optimal aggregated
policy π̄(x, t). By assuming perfect estimates, the optimal aggregated policy for the
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problem (19) is computed as

π̄∗(x) = arg min
u∈U
Q̄(x, u|ϕ), (20)

in case of discrete action space, or

π̄∗(x) = Ā(x|ϑ), (21)

in case of continuous action space.
A simple example of FHMDP is shown in the Annex to clarify the approximation

yielded by the aggregate modeling.

2.3. Proposed Finite-Horizon DeepRL

In this paper, the proposed approach is to apply DeepRL algorithms with a twofold
objective: i) to solve the original problem (7) (and not the approximated one (19))
in the augmented state space Z to overcome the approximation errors caused by
the policy and state aggregations used by current approaches; ii) to cope with time-
varying rewards. The scalability disadvantage of the augmented state modeling is not
negligible, given that the state-action value functions are estimated over X × T × U
and not over X × U . In Section 3.1, we will show that it is possible to overcome the
scalability problem by applying the Bellman’s principle of optimality.

3. Bellman’s principle of optimality for DeepRL

Section (3.1) shows how the Bellman’s principle of optimality can be used to address
the scalability problem of the augmented state space by dividing the overall control
task into a number of sub-tasks. It is shown that the optimal solution of the task
can be obtained by using, in switched-control fashion, the optimal controllers for the
sub-tasks. The result can be also applied, with some approximations, to the case of
aggregated state space, as shown in Section 3.2, and also in case part of the sub-tasks
are defined over an augmented state space and part over an approximated one, as
described in Section 3.3.

3.1. Case of Augmented FH-MDPs

Let us consider the FH-MDP (12) with augmented state space Z = X ×T . The results
of this Section will stated be under the following assumption:

Assumption 1. The critic DNN Q([x, t], u|ϕ) of the FH-MDP
{
Z,U , g, ρ, ρf , γ, ς

}
perfectly estimates the optimal value function Q∗([x, t], u). In case U is a continuous
action space, the actor DNN A([x, t]|ϑ) perfectly estimates the optimal policy π∗(x, t).

Let us define n sub-sets of time-instants, denoted by T1, T2, ..., Tn, such that the set
Ti is defined as
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Ti :=
{
ti1, t

i
2, ..., t

i
Ti

}
, (22)

for i = 1, ..., n− 1, where Ti is the cardinality of the set Ti, t11 = 0, ti+1
1 = tiTi + 1 and

tnTn = T − 1. The defined sets Ti’s form a partition of the original set of time-instants
T . By defining the augmented state spaces Zi = X × Ti, n MDPs can be defined as

{
Zi,U , g, ρ, ρfi , γ, ς

i
}
, for i = 1, ..., n, (23)

where ςi and ρfi are the initial state distribution and the final reward of the i-th
FH-MDP, respectively, and where ς1 = ς. The following Property 1 states that the
problem (7) can be solved by solving the n sub-problems (18) and is a consequence of
the Bellman’s principle of optimality.

Property 1. The optimal non-stationary policy and value functions and the optimal
expected discounted reward of the finite-horizon problem (7) can be computed by
sequentially solving the n sub-problems (23), starting from the n-th one to the first
one, with final rewards defined as

ρfi ([x, tiTi ], u) = r([x, tiTi ], u)+

+γmax
u′∈U
Qi+1([xti+1

1
, ti+1

1 ], u′|ϕi+1),
(24)

for i = 1, ..., n− 1, and ρfn = ρf .

Proof. Firstly, let us consider the n-th (last) FH-MDP

{
Zn,U , g, ρ, ρf , γ, ςn

}
, (25)

with augmented state space Zn = X × Tn. By solving this problem, the critic DNN
Qn([x, t], u|ϕn) is obtained, which estimates the optimal value functions Q∗n([x, t], u)
of the MDP (25) for all x ∈ X and t ∈ Tn. According to the Bellman’s principle of
optimality, the optimal value function Q∗n([x, t], u) of the n-th FH-MDP (25) coincides
with the optimal value function Q∗([x, t], u) of the original FH-MDP (12):

Q∗([x, t], u) = Q∗n([x, t], u),∀x ∈ X ,∀t ∈ Tn. (26)

Consequently, under Assumption 1, it holds that, for all x ∈ X and for all t ∈ Tn,

Q([x, t], u|ϕ) = Qn([x, t], u|ϕn), (27)

where Q is the critic DNN perfectly estimating the optimal value functions Q∗ of the
original problem (12), and that the optimal policy π∗ is obtained in Tn as
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π∗([x, t]) = π∗n([x, t]) = arg max
u∈U
Qn([x, t], u|ϑn), (28)

in case of discrete action set, or as

π∗([x, t]) = π∗n([x, t]) = An([x, t]|ϑn), (29)

in case of continuous action space.
Then, let us define the (n− 1)-th FH-MDP as

{
Zn−1,U , g, ρ, ρfn−1, γ, ςn−1

}
, (30)

with augmented state space Zn−1 = X × Tn−1.
In the original FH-MDP (12) under the optimal policy, the one-step expected reward

at time t plus the discounted expected reward from time t on is computed as

r([xt, t], ut) + γQ∗
(
[xt+1, t+ 1], π∗([xt+1, t+ 1])

)
. (31)

Given equations (26) and (27), the quantity in equation (31) at time t = tn−1
Tn−1

is

computed as the final reward (24), with i = n − 1, using the estimated values of the
n-th critic DNN Qn at time t = tn−1

Tn−1
+ 1 = tn1 under the optimal poicy π∗n.

As with the last problem (25), by solving the second-to-last problem (30), the critic
DNN Qn−1 and the optimal policy π∗n−1 for the MDP (30) are obtained, which coincide
with the critic DNN Q and with the optimal policy π∗ of the original FH-MDP (12),
for all t ∈ Tn−1.

The procedure is iterated for the remaining FH-MDPs{
Zi, Ti,U , g, ρ, ρfi , γ, ςi

}
, (32)

for i = n− 2, n− 3, ..., 1. The FH-MDPs (32), solved starting from i = n− 2 to i = 1,
return the remaining critic DNNs Qi and optimal policies π∗i .

In conclusion, recalling that the Ti’s form a partition of T , the Belmann’s principle
of optimality guarantees that the non-stationary critic DNN for the original problem
(6) can be obtained from the critic DNNs of the n sub-problems (23) as

Q(x, t, u|ϕ) :=


Q1([x, t], u|ϕ1) if t ∈ T1

Q2([x, t], u|ϕ2) if t ∈ T2

...

Qn([x, t], u|ϕn) if t ∈ Tn

, (33)

where ϕ := [ϕ1, ϕ2, ..., ϕn]T is the vector collecting the critic DNNs’ parameters. Con-
sequently, the optimal non-stationary policy for the original problem (12) is computed
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as

π∗(x, t) = arg max
u∈U
Q([x, t], u|ϕ) =


π∗1([x, t]) if t ∈ T1

π∗2([x, t]) if t ∈ T2

...

π∗n([x, t]) if t ∈ Tn

, (34)

for discrete action spaces, or

π∗(x, t) = A([x, t]|ϑ) :=


A1([x, t]|ϑ1) if t ∈ T1

A2([x, t]|ϑ2) if t ∈ T2

...

An([x, t]|ϑn) if t ∈ Tn

, (35)

for continuous action spaces, where ϑ := [ϑ1, ϑ2, ..., ϑn]T is the vector collecting the
actor DNNs’ parameters.

The knowledge of ςi is not required for computing the optimal value function and the
optimal policy for the sub-problems i = 2, ..., n, whereas the initial state distribution
ς is necessary to compute the optimal expected reward as

J ς,∗ =
∑
x∈X

ς(x)Q1

(
[x, 0], π∗1([x, 0])

)
(36)

�

3.2. Case of Aggregated FH-MDPs

A similar divide et impera approach can be adopted also for the approximated
FH-MDP (18). Starting from the time set partition

{
T1, T2, ..., Tn

}
, n approximated

FH-MDPs are obtained, for i = 1, ..., n, as

{
X ,U , h, ρ, ρfi , γ, ςi

}
, (37)

where ρfi is the i-th final reward and ςi is the state distribution at time ti1. Analogously
with the augmented FH-MDP case, the final rewards of the sub-problems are computed

as ρfn = ρf and, for i = 1, ..., n− 1, as

ρfi (xtiTi
, utiTi

) = r(xtiTi
, utiTi

) + γmax
u′∈U
Q̄i+1(xti+1

1
, u′|ϕi+1), (38)

where Q̄i is the critic DNN solving the i-th FH-MDP.
Application examples might be tasks constituted by multiple temporally consecutive

sub-tasks with different rewards: while standard DeepRL approaches cannot cope with
this kind of problems, the proposed approach can be used by defining an aggregated
FH-MDPi for each sub-task i, with the sub-tasks linked by equation (38).

Differently from the former case, the estimation of the value functions (17) requires
that the episodes initial states of all the sub-problems are chosen according to the
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state distributions ςi at time ti1 for all i = 1, ..., n. Note that this is true for the initial
state distribution ς also in the common DeepRL approaches (Fujimoto et al., 2018;
Lillicrap et al., 2015; Mnih et al., 2015). The distributions should then be estimated
based on the knowledge of the system and the tasks. A trivial approximation is for
example to assume that the initial distribution is uniform over the state space, as
often assumed for ς (Brockman et al., 2016). Note that poor estimations of the ςi’s
introduce a further approximation in the evaluation of the optimal policy and of the
optimal value functions, which shall be evaluated on a case-by-case basis.

In the original FH-MDP, the overall non-stationary critic DNN is computed as

Q(x, t, u|ϕ) :=


Q̄1(x, u|ϕ1) if t ∈ T1

...

Q̄n(x, u|ϕn) if t ∈ Tn
, (39)

and the sub-optimal stationary policy as

π(x) = arg max
u∈U
Q̄(x, u|ϕ) =


π̄∗1(x) if t ∈ T1

...

π̄∗n(x) if t ∈ Tn
, (40)

for discrete action spaces, or as

π(x) = Ā(x|ϑ) :=


Ā1(x|ϑ1) if t ∈ T1

...

Ān(x|ϑn) if t ∈ Tn
, (41)

for continuous action spaces.

3.3. Case of Partially Aggregated FH-MDPs

It is conceivable - and, in some cases, convenient in practice - to use the aggregated
state space representation during some Ti’s (e.g., the initial ones, when, due to the
discount factor, the optimal policy might behave as if the problem was an infinite-
horizon one) and to use the augmented state space representation in other Ti’s (e.g.,
the final ones, when the effect of the final reward cannot be neglected). The DNNs
and policies of each time set are straightforwardly derived from the ones in equations
(33)-(35) and (39)-(41).

For instance, let n = 2 and let one aggregated FH-MDP be defined in the first time
set T1 and one augmented FH-MDP in the second time set T2:

{
FH-MDP1 :

{
X ,U , h, ρ, ρf1 , γ, ς

}
FH-MDP2 :

{
Z2,U , g, ρ, ρf , γ, ς2

} , (42)

with ρf1 defined as in equation (38). The critic DNN is then
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Q(x, t, u|ϕ) :=

{
Q̄1(x, u|ϕ1) if t ∈ T1

Q2([x, t], u|ϕ2) if t ∈ T2
, (43)

and the non-stationary policy for the original FH-MDP is

π(x, t) =

{
arg maxu∈U Q̄1(x, u|ϕ1) if t ∈ T1

arg maxu∈U Q2([x, t], u|ϕ2) if t ∈ T2
, (44)

for discrete action spaces, or

π(x, t) =

{
Ā1(x|ϑ1) if t ∈ T1

A2([x, t]
∣∣ϑ2) if t ∈ T2

, (45)

for continuous action spaces.
Note that, under Assumption 1, the found value functions and the policy are optimal

for the original FH-MDP for all t ∈ T2 since a perfect estimation of ς2 is not necessary in
the augmented state space problem. For all t ∈ T1, the value functions and the policy
are optimal for the approximated FH-MDP1, considering the optimization problem

(19), since the final reward ρf1(x) is correctly estimated by Q2([x, t21], π(x, t21)|ϕ2), but
they are sub-optimal for the original FH-MDP (7).

This kind of partially aggregated MDP is shown to perform well in the second
simulation example of Section 4,

3.4. Pseudo-code of the proposed algorithm

We report here the pseudo-code for the proposed training and control procedure,
tailored to the case of section 3.1.

4. Simulations

To demonstrate the characteristics of the proposed framework, we developed a sim-
ulation environment starting from the classic benchmark problem for RL solutions
of the cart-pole balancing problem, originally proposed in (Barto et al., 1983). The
considered system, depicted in Figure 1, is constituted by a 1kg cart with the task
of balancing a 0.5m, 0.1kg pole. The state of the system is formed by the horizontal
position of the cart p, the angular position of the pole θ, and their first derivatives.
The control action consists of the application of a force F to the cart that can range
in the continuous set [−30,+30]N. The sampling time was set to 0.02s.

The symbolic dynamical model of the cart-pole is the following (Florian, 2007):


p̈ =

F+ml(θ̇2 sin θ−θ̈ cos θ)
(M+m)

θ̈ =
g sin θ+cos θ

[
−F−mlθ̇2 sin θ

m+M

]
l( 4

3
−m cos2 θ

m+M )

, (46)
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Algorithm 1: Design process of the proposed DeepRL agent: Training and
Control

1 Training{
2 Divide the control horizon into the sets T1, T2, ...Tn defined in (22);
3 for i=n to 1 do
4 augment the state space of the system as Zi = X × Ti ;

5 define the final cost ρfi of agent i as in (24) (i.e., using the original final

reward ρf for agent n and the critic of agent i+ 1, Qi+1, for the other
agents);

6 train a DeepRL agent (e.g., utilising the actor-critic TD3 algorithm) to
solve the control task with the augmented state over the time interval

Ti, with final cost ρfi ;

7 end
8 return the trained actors A1, ...,An;

9 }
10 Control{
11 for t = 0 to T − 1 do
12 observe the system state xt at time t ∈ Ti (we recall from (22) that each

time-step t belongs to exactly one of the sets T1, T2, ...Tn);
13 define the augmented state of the system as zt = [xt, t];
14 use the trained actor Ai to determine ut on the basis of the state

feedback zt;
15 actuate the control ut;

16 end

17 }
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Figure 1. Cart-pole system schematics adapted from (Barto et al., 1983).

in which m,M are respectively the masses of the pole and the cart, l is half the length
of the pole and g is the gravity.

The environment was implemented in OpenAI Gym (Brockman et al., 2016) starting
from the official “CartPole-v0” environment. All the simulations were developed in
Python 3.7 with PyTorch 1.2 and were run on a PC equipped with an i7 processor
with 16GB of RAM. The code was developed starting from the implementation of
the TD3 algorithm (Fujimoto et al., 2018) provided by the authors and available
on (Fujimoto, Hoof, & Meger, 2020). Details on the simulation hyper-parameters are
provided in section 4.1.2. In line with (Fujimoto et al., 2018), in Figures 2-7 a solid line
represents the mean values of the depicted quantities and a shaded region represents
half of their standard deviation.

4.1. First Simulation: Deterministic Time-Varying Reward

4.1.1. Task Description

The original task proposed in (Barto et al., 1983) consisted in controlling the system
so that its state remains in the region defined by −2.4m ≤ p ≤ 2.4m and −12 rad ≤
θ ≤ 12 rad. The rationale of the control objective was that the pole should not not
fall down while the cart should remain in its operative region.

In this paper, to better demonstrate the advantages of the proposed approach, the
control objective is modified so that the controller shall try to maintain the system in
the region where p < 0m for 100 time-steps, after which the system should be driven
to the region p > 0m for an additional 50 time-steps. This time-varying objective is
captured by the following reward function:

ρ(p(t), t) =


+1.5 if t ≤ 100 and p(t) < 0

+4 if 100 < t ≤ 150 and p(t) > 0

−0.5 otherwise

. (47)

To speed up training, the controller receives a terminal reward ρf = −10 whenever
the pole falls or the cart leaves its operative boundaries. The discount factor γ is set
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Figure 2. Simulation 1: Comparison between the estimated value function and the observed discounted

reward when controlled by A2.

to 0.95.

4.1.2. Controller Design

Being the objective deterministically time-variant, a natural choice to develop the
controller is to divide the 150 time-steps of the control horizon into two time sets
T1,T2 corresponding to the intervals over which the reward function (47) is stationary:
T1 = [0, 100), T2 = [100, 150].

Dealing with a problem with continuous control actions, the DeepRL algorithm
selected to train the neural networks is the “Twin-Delayed Deep Deterministic policy
gradient” (TD3) (Fujimoto et al., 2018), as it represents the state-of-the-art solution
regarding the precision of value function estimation, which is a crucial element for the
functioning of the proposed approach (we recall that Property 1 was proven under
Assumption 1).

All the neural networks were trained for 105 time-steps. The training hyper-
parameters were kept the same as the ones proposed by the authors of (Fujimoto
et al., 2018) in (Fujimoto et al., 2020), save for the policy noise ε and its clip c that
were set respectively to 0.3 and 0.6, for the agent controlling the system over T2, and
0.4 and 0.8, for the one trained for T1. We mention that both actor and critic net-
works were characterized by two hidden layers of 256 neurons with ReLu activation
functions, followed by an output layer with a hyperbolic tangent activation function
for the actors and a linear output layer for the critics. All the network weights were
initialized as default in Pytorch 1.2.

4.1.3. First Simulation Results

Compliant with the procedure detailed in Section 3, the first agent to be trained was
the one related to T2, for which training we sampled the initial conditions of the
system uniformly over [−0.1, 0.1] for the cart position and over [−0.05, 0.05] for the
other variables. For TD3 agents, two critic networks Q1,Q2 are trained, and between
the two only the one providing the lower estimation is used at each time-step.

Figure 2 compares the estimation provided by min(Q1
2,Q2

2) with the actual dis-
counted reward observed during the evaluation (i.e., with no training) episodes. Each
validation round in Figure 2 details, as in (Fujimoto et al., 2018), the mean and half
of the standard deviation observed over 100 episodes, each with different initial condi-
tions. It is clear from the figure that the estimations converge to the actual values, as
the two curves overlay and the error between the two quantities converges in mean to
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Figure 3. Simulation 1: Evolution of the cart position when controlled by A2.

Figure 4. Simulation 1: Evolution of the cart position when controlled by A1.

zero with a very small deviation. The validation rounds were done every 5000 training
time-steps and a similar behaviour was observed for all the other critics used in this
section.

Figure 3 shows that the trained agent correctly steers the system towards the region
in which p(t) > 0, with a small initial fluctuation to account for unfavorable initial
conditions (e.g., negative starting position or particularly inclined pole). Note that
the behaviour of this agent is in-line with the standard DeepRL solutions, as, in light
of the proposed partition of the time-steps, this agent is subject to a stationary (non
time-varying) reward.

Once this first agent was trained, it was possible to utilise its initial estimation of

the discounted reward as a final reward function ρf1 for the other agent, according to
equation (24). The distribution of p(0) was set uniform over [−0, 3, 0.3]m, while the
initial values of all the other state variables were drawn from a uniform distribution
between −0.05 and 0.05, as in the original simulation environment. The cart behaviour
is reported in Figure 4: we note that the system is correctly steered to the region
p(t) < 0 and is then driven towards p(t) > 0, with a crossing time that occurs, in
mean, at t = 91. This behaviour is due to the fact that the agent is able to foresee

that the objective is going to change, thanks to the final reward ρf1 provided at time
t = 100 during the training, which was learned by the other agent as the estimation of
the future discounted reward after t = 100. Note that without the information from
the first agent regarding ρf1 , this agent would have shown a behaviour equivalent (in
fact symmetric) to the one of figure 3, without the additional crossing of the p(t) = 0
line. In fact, what we observe is that the agent prefers to sacrifice some immediate
rewards (obtained for p(t) < 0) in favour of a greater reward in the subsequent task,
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Figure 5. Simulation 1: Evolution of the cart position when controlled by the complete FH-MDP agent. Red

dashed vertical line: switching instant between the two agents.

Figure 6. Simulation 1: Evolution of the cart position when controlled by one FH-MDP agent (as in standard

DeepRL solutions).

that can be attained by placing the cart in the region p(t) > 0 at t = 100 with a
favorable pole angle.

Figure 5 reports the evolution of the cart position evaluated when controlled by
both agents in a switched control fashion. The figure clearly shows that the overall
controller manages to handle the time-varying reward, a task that would have been
impossible for a standard DeepRL agent trained on a state representation that did not
include t, as will be discussed in the following subsection. We note how the system
evolves in a way that is very similar to the composition of the figures 3 and 4, save
for the fact that the agent is able to keep the cart in the region p(t) > 0 for all times
100 < t ≤ 150. The agent prevents the loss of some high rewards in T2 (+4 according
to (47)) by renouncing to a few positive, but low, rewards towards the end of T1,
anticipating the crossing of p(t) = 0, in average, to t = 93.

The following subsection compares the results of the proposed agent with a standard
DeepRL agent and shows the advantages of the proposed framework to address time-
varying tasks.

4.1.4. Approximated FH-MDP Benchmark

For the sake of comparison, Figure 6 reports the behaviour of the cart when controlled
by a single TD3 agent trained to solve the problem formulated as a FH-MDP (i.e.,
without including the time-step t in the system state) over the entire time horizon.
This comparison was designed to show how a state-of-the-art agent solves the given
control task under the state aggregation discussed in section 2.2.2.
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In this case the system is quickly driven to p(t) > 0, as, according to (47), the
expected reward in that region is larger than the one associated with p(t) < 0. Overall,
this agent is correctly trained, in the sense that it seeks the maximum reward that
it can obtain with the observations it is provided with, but the lack of the explicit
knowledge on the time instant at which the various cart-pole states are visited leads
to an overall less performing control strategy compared to the previous one.

Overall, the mean trajectory of the FH-MDP agent, reported with a solid line in
Figure 6, obtained a cumulative reward of 240, whereas the proposed agent reported
in Figure 5 obtained an average cumulative reward of 336. The proposed agent obtains
on average 96% of the highest possible reward equal to 350 - computed starting from
favourable initial conditions and with a perfect crossing of the line p(t) = 0 at t = 100).
The result of the proposed agent is even stronger considering that the reward 350 can
not be achieved from arbitrary initial conditions (e.g., when the cart starts in an
undesired position or the pole is significantly inclined).

The reason behind the performance difference between the two solutions is to be
found in the different approximation of the value function that is available to the
two agents: due to the state space aggregation, the FH-MDP performs only a single
estimation of the value function over the entire episode length. On the contrary, the
FH-MDP agent estimates the value function over all the time-steps. This is the reason
why the proposed agent is able to correctly anticipate changes in the episode objective
and in the future rewards.

To summarise, Figure 6 shows that standard DeepRL implementations are not able
to cope with time-varying rewards unless, as proposed in section 2.2.1, the state space
is augmented with the time-step.

4.2. Second Simulation: Stochastic Time-Varying Reward

4.2.1. Task Description

For this simulation, we considered the case in which the time-varying reward function
has a stochastic behaviour, i.e.:

ρ(p(t), t) =


+1.5 if t ≤ 150 + τ and p(t) < 0

+4 if 150 + τ < t ≤ 200 and p(t) > 0

−0.5 otherwise

, (48)

with τ distributed uniformly over [0, 10] time-steps. This scenario represents a situation
in which it is not possible to know a priori the switching instant of the control objective
and hence an immediate partition as the one proposed in the first simulation is no
longer possible. However, for the sake of presentation clarity, we assume that the
controller knows that the objective does not change in the first 100s.

4.2.2. Controller Design

In this simulation, the control horizon is split in the two sets T1 = [0, 100), T2 =
[100, 200] and the problem is modeled as a partially aggregated FH-MDP (see Sec-
tion 3.3), with an aggregated FH-MDP1 over the first period T1 (during which the
reward function is invariant and depends on the visited state only) and an augmented
FH-MDP2 over the time period T2 (during which the reward function is time-varying).
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Figure 7. Simulation 2: Evolution of the cart position when controlled by the complete partially aggregated
FH-MDP agent. Red dashed vertical line: switching instant between the two agents; blue vertical line and

shaded band: expected task/objective switching instant and the region over which it is uniformly distributed.

4.2.3. Second Simulation results

Figure 7 reports the behaviour of the system when controlled by the two trained
agents. In the figure, we can observe that the overall control system steers the cart-
pole in the region p(t) < 0 for the first 150s, experiencing only minor fluctuations
when the controlling agent switches from the FH-MDP1 one to the FH-MDP2 one at
time t = 100. Then, as shown in Figure 7, the controller drives the system to p(t) > 0
starting from t = 152 (with small standard deviation), quite close to the expected
time-switching instant t = 155 of equation (48), losing about 1% of the cumulative
reward compared to the perfect crossing case. This simulation demonstrated that it is
not necessary to have exact information regarding the structure of the time-varying
rewards to design a DeepRL agent according to the proposed framework. In fact, even
an arbitrary partition, chosen for computational reasons as the presented one, allows
the combined agent to correctly solve the stochastic control problem.

5. Conclusions and Future Works

This work presents a framework to address time-varying objectives in finite-horizon
DeepRL, following a strategy inspired by switching control systems.

To enable the solution of problems in which the objective function changes with
time, the proposed solution relies on the augmentation of the state space by including
the visit time into the state definition. To overcome the scalability problem caused by
the state augmentation, the paper shows that the Bellman’s principle of optimality
can be applied to divide the original task into a set of sub-tasks, each one defined
over a time interval that is a subset of the episode duration and solved by a specific
DeepRL agent. The overall task is then solved by a controller that uses in sequence
the trained DeepRL agents, each one operating during its associated control interval.

The proposed solution does not affect the quality of the value function estimation
and, on the contrary, it was shown to improve it in the cases in which the visiting
time of the system states contains information useful to anticipate upcoming objective
changes.

The paper reported two proof-of-concept simulations that demonstrated the capabil-
ities of the proposed framework to solve time-varying tasks on a typical benchmarking
control task for RL problems, comparing it to a standard DeepRL agent that does not
include the current time-step in the system state.
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Future research directions involve the inclusion of constrained problems in the for-
mulation and the continuous learning setting.
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Gábor, Z., Kalmár, Z., & Szepesvári, C. (1998). Multi-criteria reinforcement learn-
ing. In Proceedings of the international conference on machine learning ICML
(Vol. 98, pp. 197–205).

23



Giuseppi, A., & Pietrabissa, A. (2020, July). Chance-constrained control with lex-
icographic deep reinforcement learning. IEEE Control Systems Letters, 4 (3),
755–760.

Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012, November). A sur-
vey of actor-critic reinforcement learning: Standard and natural policy gradients.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42 (6), 1291–1307.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. Retrieved
from https://arxiv.org/abs/1801.01290

Hallak, A., Castro, D. D., & Mannor, S. (2015). Contextual markov decision processes.
Retrieved from https://arxiv.org/abs/1502.02259

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996, May). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4 , 237–285.

Kelly, S., & Heywood, M. I. (2018, September). Emergent solutions to high-
dimensional multitask reinforcement learning. Evolutionary Computation, 26 (3),
347–380.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., & Silver, D.
(2015). Continuous control with deep reinforcement learning. Retrieved from
https://arxiv.org/abs/1509.02971

Liu, C., Xu, X., & Hu, D. (2015, March). Multiobjective reinforcement learning: A
comprehensive overview. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 45 (3), 385–398.

Liu, L., & Sukhatme, G. S. (2018, July). A solution to time-varying markov decision
processes. IEEE Robotics and Automation Letters, 3 (3), 1631–1638.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., & Wierstra,
D. (2013). Playing atari with deep reinforcement learning. Retrieved from
https://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . .
Hassabis, D. (2015, February). Human-level control through deep reinforcement
learning. Nature, 518 (7540), 529–533.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., & Vian, J. (2017). Deep decentral-
ized multi-task multi-agent reinforcement learning under partial observability.
In Proceedings of the 34th international conference on machine learning ICML
(Vol. 70, pp. 2681–2690).

Padakandla, S., J, P. K., & Bhatnagar, S. (2019). Reinforcement learning in
non-stationary environments. Applied Intelligence 2020. Retrieved from
arXiv:1905.03970

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic
programming. Wiley.

Rachelson, E., Fabiani, P., & Garcia, F. (2009, November). TiMDPpoly: An improved
method for solving time-dependent MDPs. In 2009 21st IEEE international
conference on tools with artificial intelligence. IEEE.

Shimkin, N. (2011). Learning in complex systems, lecture notes. Retrieved from
https://shimkin.net.technion.ac.il/courses/learning-in-complex-systems-2011/

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.
Tanaka, F., & Yamamura, M. (2003). Multitask reinforcement learning on the distri-

bution of MDPs. In Proceedings 2003 IEEE international symposium on com-
putational intelligence in robotics and automation. computational intelligence in

24



robotics and automation for the new millennium (cat. no.03ex694). IEEE.
Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., . . . Pas-

canu, R. (2017). Distral: Robust multitask reinforcement learning. In Advances
in neural information processing systems 30 (pp. 4496–4506). Curran Associates,
Inc.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with
double Q-learning. In Thirtieth aaai conference on artificial intelligence.
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ANNEX

Figures 8 and 9 shows a simple example of FH-MDP modeled by an augmented FH-
MDP and by an aggregate FH-MDP, respectively.
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Figure 8. Example of augmented discrete state space Z, with X = {1, 2, 3}, U = {1, 2, 3}, T = 4, g([x, t], u) =

[u, t + 1] and with transitions probabilities p([xt, t], ut, [xt+1, t + 1]). Bold transitions characterize a possible

episode path starting from the initial state z0 = [2, 0], passing via the states z1 = [2, 1], z2 = [2, 2] and
z3 = [3, 3] and with final state zT = z4 = [1, 4]. For simplicity, let the reward function be function of the next

state only, i.e., ρ([x, t], ut, [xt+1, t]) = ρ(xt+1), and the terminal reward function of the terminal state only, i.e.,
ρf ([x, T ], uT ) = ρf (x). The reward-to-go of a state x depends on the visit time but the one of an augmented

state z is stationary: for example, the reward-to-go of x = 2 at time t = 0, i.e., of the augmented state [2, 0], is

equal to the reward gained by the system along the path: ρ(2) + γρ(2) + γ2ρ(3) + γ3ρf (1); the reward-to-go of
x = 2 at times t = 1 and t = 2, i.e., of the augmented states [2, 1] and [2, 2], are equal to ρ(2) +γρ(3) +γ2ρf (1)

and ρ(1) + γρf (1), respectively.

Figure 9. Same problem of Fig. 8 with aggregate discrete state space X = {1, 2, 3}, with h(x, u) = u and with

transition probabilities p̄(xt, ut, xt+1). Bold transitions characterize the same episode path of Fig. 8, which, in
T = 4 time-steps, starts from the initial state x0 = 2, passes via the states x1 = 2, x2 = 2 and x3 = 3 and ends

in the final state x4 = 1. Under the same reward assumption of Fig. 8, the reward-to-go of a state x depends
on the visit time. For example, the reward gained by the system along the path starting from state 2 at time
t = 0 is ρ(2) + γρ(2) + γ2ρ(3) + γ3ρf (1); the rewards-to-go in the same state x = 2 visited at time t = 1 and
t = 2 are ρ(2) + γρ(3) + γ2ρf (1) and ρ(3) + γρf (1), respectively.
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