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Abstract

Consider N balls initially placed in L bins. At each time step take a ball from each non-
empty bin and randomly reassign all the balls into the bins. We call this finite Markov
chain General Repeated Balls into Bins process. It is a discrete time conservative
interacting particles system with parallel updates. Assuming a quantitative chaotic
condition on the reassignment rule we prove a quantitative propagation of chaos
for this model. We furthermore study some equilibrium properties of the limiting
nonlinear process.
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1 Introduction

In recent years interacting stochastic processes with parallel updates has received
an increasing interest in the scientific literature and particularly in the probabilistic
one. Important applications are the neuronal networks models see [9], [7] and reference
therein, networks of interacting CPUs, see for example [2] and probabilistic cellular
automata dynamics, see [14] for an overview. Parallel updating rules introduce new
difficulties in the study of these processes, in particular in many cases the dynamics is
not reversible and the invariant measure is unknown. This means that the description of
the system at equilibrium and the behaviour of a huge number of interacting components
is not generally available. For this reason many authors studied the large scale limit
of these systems in the so called propagation of chaos framework (see [1],[5] and [8]).
Propagation of chaos gives the link between the microscopic and the macroscopic level,
in particular it says that the system, in the large scale limit, behaves as the components
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are independent and each one follows a non linear dynamics. Propagation of chaos is a
largely studied subject which dates back to the seminal paper of M. Kac [11], see [17]
for an introduction. However, as noted in [9], it is not clear at all that it holds for systems
with parallel updates and only few examples are known to exhibit this property. The fact
that parallel jumps may interfere with asymptotic independence makes propagation of
chaos for these models an interesting field. Quantitative estimates on the difference
between the original interacting process, when the number of components is large,
and the non linear dynamics of the infinite volume limit are needed to evaluate the
approximation error. In [1] this problem is considered in the L1 framework using the
Wasserstein-one distance for systems of interacting diffusions with simultaneous jumps
and the authors prove propagation of chaos for a wide class of models. We here study
the behaviour of the total variation distance for a General Repeated Balls into Bins
process which is not contained in this class and new ideas and techniques, accounting
the different features of these processes, are needed.

To define our model consider N balls initially placed in L bins. Take a ball from each
non-empty bin and randomly reassign the balls into the bins, then iterate independently
this procedure at each time step. The random evolution of the number of balls in each
bin is an ergodic finite state Markov chain that we call General Repeated Balls-into-Bins
(GRBB) process. A particular case of the GRBB process is the Repeated Balls-into-
Bins (RBB) process, in which the balls are uniformly and independently reassigned
into bins. For the RBB process in [5] we proved the propagation of chaos in the weak
limit sense and without any quantitative estimate. For the GRBB process the random
reassignment has a general distribution. The systems in this class are conservative
interacting particles systems, in discrete time, with parallel updates. Usually the GRBB
process is not reversible and its invariant measure cannot always be calculated.

The GRBB process, as the RBB process, appears naturally in different applicative
contexts. For example we can think to balls in every bin as customers or tasks in a
queue. Customers are served at discrete times and each served customer is reassigned
to a random queue. In this setting the GRBB process is a discrete time closed Jackson
network [10, 12]. The parallel updating is justified, see for example [2], by thinking to
customers as tasks (or tokens) in a network of parallel CPUs which are reassigned at
every round.

As noted above we are interested in the behaviour of the GRBB process for large
L. In physics this large scale limit is known as the thermodynamic limit. Assuming a
quantitative chaotic condition on the reassignment rule, see Condition 2.3, we prove a
quantitative propagation of chaos. Quantitative here means that we give the explicit rate
of convergence of the empirical measure of the GRBB process to the nonlinear process
distribution as L→ +∞, see Theorem 2.5. We obtain the same rate of [1] for systems of
interacting diffusions with simultaneous jumps. The quantitative chaotic condition on
the reassignment rule is strong but natural as it can be seen as the distance between
a canonical and the corresponding grand canonical measure. This problem is known
in literature as equivalence of ensembles in the thermodynamic limit (see for example
[4]). The existence of this strong quantitative equivalence of ensembles depends on the
model and can be a difficult problem. In this paper we prove that this condition holds for
some natural applications of our model when the number of particles is proportional to L
which is the interesting case in the thermodynamic limit. We remark that, as in [1], our
propagation of chaos result holds in finite time intervals. However, to our knowledge,
uniform in time propagation of chaos for models with parallel updates is actually an
unexplored field and except that for some trivial cases, we cannot say anything on the
propagation of chaos for the stationary measure.

The paper is organized as follows. In Section 2 we define the GRBB process and
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the nonlinear process, we then prove the theorem on quantitative propagation of chaos.
In Section 3 we apply Theorem 2.5 to three cases of the GRBB process depending on
different choices of the reassignment rule: Fermi-Dirac, Maxwell-Boltzmann and Bose-
Einstein statistics. The results of this section are mainly obtained by coupling arguments.
We give here also a mixing time bound for the process with Fermi-Dirac reassignment
rule, while the analogous problem for the Maxwell-Boltzmann reassignment rule is
contained in [6]. In the last section we study the long time behavior of the nonlinear
process.

2 Construction and main result

We denote with Z+ the set of the non-negative integers and define N := Z+ \ {0}. For
any denumerable set S we denote with |S| its cardinality. Furthermore we denote with
P(S) the metric space of probability measures on S endowed with the total variation
distance

‖p− q‖ := sup
A⊆S

(
p(A)− q(A)

)
=

1

2

∑
s∈S
|p({s})− q({s})|.

We define the empirical measure function ρL : ZL+ → P(Z+) as

ρL(ξ) :=
1

L

L∑
x=1

δξx ,

where δn is the Dirac mass at n ∈ Z+, and the map wL : ZL+ → ZL+ as

wL(ξ) := (1(ξ1 > 0), . . . ,1(ξL > 0)).

To the keep notation simple in the following we denote with the term constant a positive
number which does not depend on L. Furthermore, when this does not cause confusion,
we use the same symbol to denote different constants.

2.1 Propagation of chaos of the GRBB process

We here define the GRBB process and its corresponding nonlinear process, which
are discrete time Markov chains.

Definition 2.1. The GRBB process (ηL(t))t≥0 is the discrete time Markov chain with
values in ZL+ defined as follows. Assume that, for some t ∈ Z+, ηL(t) = ξ ∈ ZL+ and
q := ρL(ξ) then

ηL(t+ 1) = ξ − wL(ξ) +BL,q. (2.1)

BL,q is a random vector with values in ZL+. It is independent from everything, indepen-
dently generated at each time step t and satisfies

L∑
x=1

BL,qx = (1− q({0}))L. (2.2)

Last equation assures the conservation of the number of particles for the GRBB
process.

Definition 2.2. Given a measurable map ψ : P(Z+)→ P(Z+) we define the ψ-nonlinear
process (η(t))t≥0 as the discrete time random process with values in Z+ defined as
follows. For some t ∈ Z+ let q ∈ P(Z+) be the distribution of η(t) and assume that
η(t) = η ∈ Z then

η(t+ 1) = η − 1(η > 0) +Bq. (2.3)

Bq is a random variable with values in Z+, it has distribution ψ(q), it is independent
from everything and it is independently generated at each time step t.
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We want to provide a quantitative estimate on the rate of convergence of the empirical
measure of the GRBB process to the distribution of a corresponding nonlinear process.
The following is a sufficient condition to this aim.

Condition 2.3. The distribution of BL,q is symmetric. For any q ∈ P(Z+) denote with
νqL ∈ P(Z2

+) the distribution of (BL,q1 , BL,q2 ) and assume that there exists µq ∈ P(Z+) and
a constant C such that

sup
q∈P(Z+)

‖νqL − µ
q ⊗ µq‖ ≤ C

L
. (2.4)

In the context of Gibbs measures the above condition is rather natural. It can be
interpreted as an equivalence of ensembles estimate because it states that the distance
between the two sites marginal of the canonical and grand canonical ensemble decreases
as the inverse of the volume L.

Among the ψ-nonlinear processes we need to choose the one that gives the limiting
evolution of the GRBB process. This is done in the following definition.

Definition 2.4. Given a GRBB process, such that the random vector BL,q satisfies
Condition 2.3, the corresponding nonlinear process is the ψ-nonlinear process with
ψ(q) := µq.

We can now state our main result on propagation of chaos.

Theorem 2.5. Let (ηL(t))t≥0 be a GRBB process with symmetric initial distribution
and such that supLE(ηL1 (0)) < +∞. Assume that Condition 2.3 holds. Let (η(t))t≥0 be
the corresponding nonlinear process and assume that ψ : P(Z+)→ P(Z+) is Lipschitz.
Define QL(t) := ρL(ηL(t)) and let Q(t) be the distribution of η(t). If there exists a
constant C such that

P
(
‖QL(0)−Q(0)‖ > δ

)
≤ C√

L
, (2.5)

then there exists a constant C ′ such that

P
(

sup
t∈[0,T ]

‖QL(t)−Q(t)‖ > δ
)
≤ C ′√

L
. (2.6)

Proof. First of all observe that

P
(

sup
t∈[0,T ]

‖QL(t)−Q(t)‖ > δ
)

= P
(
∃ t ∈ [0, T ] : ‖QL(t)−Q(t)‖ > δ

)
≤

T∑
t=0

P
(
‖QL(t)−Q(t)‖ > δ

)
≤ (T + 1) sup

t∈[0,T ]

P
(
‖QL(t)−Q(t)‖ > δ

)
.

Thus it is enough to show that for any t ∈ [0, T ] there exists a constant C such that

P
(
‖QL(t)−Q(t)‖ > δ

)
≤ C√

L
. (2.7)

We prove (2.7) by induction on t. By hypothesis (2.7) is true for t = 0. We assume it holds
for some t ≥ 0 and prove it for t+ 1.

Observe that if Q(t) = q ∈ P(Z+) then, for any n ∈ Z+

Q(t+ 1)({n}) = q({0})P(Bq = n) +

n+1∑
k=1

q({k})P(Bq = n− k + 1) := F (q)({n}), (2.8)

where F : P(Z+)→ P(Z+). F is Lipschitz because ψ is Lipschitz.
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Adding and subtracting terms we have that

‖QL(t+ 1)−Q(t+ 1)‖ ≤ ‖QL(t+ 1)− E[QL(t+ 1)|QL(t)]‖
+ ‖E[QL(t+ 1)|QL(t)]− F (QL(t))‖+ ‖F (QL(t))−Q(t+ 1)‖.

Thus for any δ > 0,

P
(
‖QL(t+ 1)−Q(t+ 1)‖ > δ

)
≤ P

(
‖QL(t+ 1)− E[QL(t+ 1)|QL(t)]‖ ≥ δ/3

)
+ P(‖E[QL(t+ 1)|QL(t)]− F (QL(t))‖ ≥ δ/3

)
+ P

(
‖F (QL(t))−Q(t+ 1)‖ ≥ δ/3

)
. (2.9)

We bound separately the three terms on the right hand side of (2.9) with bounds smaller
that C/

√
L, for a suitable constant C.

The last one can be bounded by observing that by the Lipschitz condition on F we
have

‖F (QL(t))−Q(t+ 1)‖ = ‖F (QL(t))− F (Q(t))‖ ≤ Lip(F )‖QL(t)−Q(t)‖,

and using inductive hypothesis (2.7).
To bound the second term of (2.9) we observe that the empirical process (QL(t))t≥0

is a Markov chain with values in P(Z+). Its evolution can be described in the following
way. Assume that QL(t) = q and define for k ∈ N the discrete intervals

Λqk =


[1, L

(
q({0}) + q({1})

)
] ∩N if k = 1[

L

k−1∑
h=0

q({h}) + 1, L

k∑
h=0

q({h})
]
∩N if k ≥ 2,

(2.10)

where we define [a, b] = ∅ when a > b. Then

QL(t+ 1)({n}) =
1

L

n+1∑
k=1

∑
x∈Λqk

1(BL,qx = n+ 1− k). (2.11)

By equation (2.8) and the definition of Λqk (2.10) we have that

F (q)({n}) =

n+1∑
k=1

|Λqk|
L
P(Bq = n+ 1− k).

Thus using (2.11), conditionally to QL(t) = q,

‖E[QL(t+ 1)|QL(t)]− F (QL(t))‖ ≤

1

2L

+∞∑
n=0

n+1∑
k=1

∑
x∈Λqk

|P(BL,qx = n+ 1− k)− P(Bq = n+ 1− k)|

=
1

2L

+∞∑
k=1

∑
x∈Λqk

+∞∑
k=n+1

|P(BL,qx = n+ 1− k)− P(Bq = n+ 1− k)|

=
1

L

+∞∑
k=1

∑
x∈Λqk

‖P(BL,qx ∈ ·)− P(Bq ∈ ·)‖ = ‖P(BL,q1 ∈ ·)− P(Bq ∈ ·)‖

≤ sup
q∈P(Z+)

‖P(BL,q1 ∈ ·)− P(Bq ∈ ·)‖.
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Due to Condition 2.3 the last line is bounded by C/L. Markov inequality gives

P
(
‖E[QL(t+ 1)|QL(t)]− F (QL(t))‖ > δ/3

)
≤ 3C

δL
.

We now bound the first term of (2.9). Define for any n ∈ Z+

ML(n) := QL(t+ 1)({n})− E[QL(t+ 1)({n})|QL(t)]. (2.12)

Then for any n̄ ∈ N

P
(
‖QL(t+ 1)− E[QL(t+ 1)|QL(t)]‖ > δ/3

)
≤ P

(∑
n≤n̄

|ML(n)| > δ/3
)

+ P
(∑
n>n̄

|ML(n)| > δ/3
)
. (2.13)

For the second term in (2.13) we observe that

|ML(n)| ≤ QL(t+ 1)({n}) + E[QL(t+ 1)({n})|QL(t)],

thus by Markov inequality

P
(∑
n>n̄

|ML(n)| > δ/3
)
≤ 6

δ

∑
n>n̄

E[QL(t+ 1)({n})] ≤ 6

δ
E
[∑
n>n̄

n

n̄
QL(t+ 1)({n})

]
≤ 6

δn̄
E
[ +∞∑
n=0

nQL(t+ 1)({n})
]
.

We observe that

+∞∑
n=0

nQL(t+ 1)({n}) =
1

L

L∑
x=1

ηLx (t+ 1) =
1

L

L∑
x=1

ηLx (0),

because, by (2.2), the number of particles of the system is preserved. Thus by the
symmetry of the distribution of ηL(0) and the assumed uniform bound on E[ηL1 (0)] we
have

P
(∑
n>n̄

|ML(n)| > δ/3
)
≤ C

n̄
E[ηL1 (0)] ≤ C ′

n̄
, (2.14)

for a suitable constant C ′. For the first term in (2.13), using Markov and Cauchy-Schwarz
inequalities we have

P
(∑
n≤n̄

|ML(n)| > δ/3
)
≤ 9n̄

δ2

∑
n≤n̄

E(ML(n)2). (2.15)

By definition of ML in (2.12) we have that

E(ML(n)2) = E
[
E[(QL(t+ 1)({n})− E[QL(t+ 1)({n})|QL(t)])2|QL(t)]

]
= E

[
Var[QL(t+ 1)({n})|QL(t)]

]
. (2.16)

Thus, using (2.11) conditionally to QL(t) = q

QL(t+ 1) =
1

L

∑
(x,k)

ZL,qxk ,

where in the last sum (x, k) ∈ ([1, L]× [1, n+ 1]) ∩N2 and

ZL,qxk := 1(x ∈ Λqk)1(BL,qx = n+ 1− k).
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Which implies

Var[QL(t+1)({n})|QL(t) = q] =
1

L2

∑
(x,k)

Var(ZL,qxk )+
1

L2

∑
(x,k)6=(y,h)

Cov(ZL,qxk , Z
L,q
yh ). (2.17)

In the sequel of this proof to keep the notation simple we write

νqL(n,m) := P(BL,q1 = n,BL,q2 = m), νqL(n) := P(BL,q1 = n), µq(n) := P(Bq = n).

The variance term in (2.17) can be bounded, using the symmetry of the distribution of
BL,q, by

Var(ZL,qxk ) = 1(x ∈ Λqk) Var(1(BL,qx = n+ 1− k)) ≤ 1(x ∈ Λqk)νqL(n+ 1− k). (2.18)

The covariance term in (2.17) can be bounded, using the symmetry of the distribution of
BL,q, by

Cov(ZL,qxk , Z
L,q
yh )

≤ 1(x ∈ Λqk)1(y ∈ Λqh)|νqL(n+ 1− k, n+ 1− h)− νqL(n+ 1− k)νqL(n+ 1− h)|. (2.19)

Using the bounds (2.18) and (2.19) in (2.17), summing on x and y and changing the
variables n+ 1− k 7→ k and n+ 1− h 7→ h we arrive to

Var[QL(t+ 1)({n})|QL(t) = q]

≤ 1

L

n∑
k=0

|Λqn+1−k|
L

νqL(k) +

n∑
k,h=0

|Λqn+1−k||Λ
q
n+1−h|

L2
|νqL(k, h)− νqL(k)νqL(h)|.

So, exchanging the sums to obtain the second inequality below, we get

∑
n≤n̄

Var[QL(t+ 1)({n})|QL(t) = q] ≤
+∞∑
n=0

Var[QL(t+ 1)({n})|QL(t) = q]

≤ 1

L

+∞∑
k=0

νqL(k)

+∞∑
n=k

|Λqn+1−k|
L

+

+∞∑
k,h=0

|νqL(k, h)− νqL(k)νqL(h)|
+∞∑

n=k∨h

|Λqn+1−k||Λ
q
n+1−h|

L2
.

(2.20)

Since {Λqk : k ∈ N} is a partition of [1, L] ∩N:

+∞∑
n=k

|Λqn+1−k|
L

= 1

and
+∞∑

n=k∨h

|Λqn+1−k||Λ
q
n+1−h|

L2
≤

+∞∑
n=k∨h

|Λqn+1−k∨h|
L

= 1,

thus by (2.20) and Condition 2.3 there exists a constant C such that∑
n≤n̄

Var[QL(t+ 1)({n})|QL(t) = q]

≤ 1

L
+

+∞∑
k,h=0

|νqL(k, h)− νqL(k)νqL(h)
∣∣ ≤ 1

L
+ 6‖νqL − µ

q ⊗ µq‖ ≤ C

L
.

EJP 26 (2021), paper 23.
Page 7/20

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP590
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Propagation of chaos for a general balls into bins dynamics

By (2.15) and (2.16) there is a constant C

P
(∑
n≤n̄

|ML(n)| > δ/3
)
≤ Cn̄

L
.

Plugging this bound and the bound il (2.14) in (2.13) and optimizing on n̄ we arrive to

P
(
‖ML(n)‖ > δ/3

)
≤ C

( 1

n̄
+
n̄

L

)
≤ 2C + 1√

L
,

for some constant C.

Remark 2.6. It is natural to wonder if a better decay rate, in (2.4) and in the initial
condition (2.5), may improve this rate. This can be true in some cases, however simply re-
placing (2.4) and (2.5) with stronger conditions our proof does not provide automatically
a better rate in (2.6).

3 Classical occupancy models

In this section we consider the GRBB process when BL,q is distributed according to
the Fermi-Dirac, Maxwell-Boltzmann or Bose-Einstein statistics. The first two models
are examples of rather natural strategies to reassign customers in a Jackson network. In
the first case the customers are efficiently reassigned in different queues. In the second
case every customer is independently reassigned to a queue. The last case is included as
it is a simple example of a nontrivial dependent random reassigned rule.

We here show that the hypothesis of Theorem 2.5 holds for these three classical
occupancy models. In particular we prove that Condition 2.3 is satisfied for these models
when µq is the natural limit point of the one site marginal of BL,q. The obtained bounds
will have the decay of the right hand side of Condition 2.3 when the number of particles
of the considered system is proportional to L.

3.1 Fermi-Dirac statistics

We say that the random vector X = (X1, . . . , XL) follows the Fermi-Dirac statistics
with L sites and N ≤ L particles if

P(X1 = x1, . . . , XL = xL) =


1

(LN)
if (x1, . . . , xL) ∈ {0, 1}L and

∑L
k=1 xk = N ,

0 otherwise.

Given q ∈ P(Z+), let µq ∈ P(Z+) be the Bernoulli distribution with parameter 1− q({0})
and assume that BL,q follows the Fermi-Dirac statistics with L sites and (1− q({0}))L
particles. The map ψ(q) := µq is, in this case, 1-Lipschitz: given q, q′ ∈ P(Z+)

‖µq − µq
′
‖ =

1

2

∑
s∈{0,1}

|µq({s})− µq
′
({s})| = |q({0})− q′({0})|

=
1

2
|q({0})− q′({0})|+ 1

2

∣∣∣∑
s∈N

q({s})−
∑
s∈N

q′({s})
∣∣∣ ≤ ‖q − q′‖.

To prove that Condition 2.3 holds we need the following result.

Theorem 3.1. Assume that X follows the Fermi-Dirac statistics with L sites and N

particles. Denote with γNL ∈ P(Z2
+) the distribution of (X1, X2) and let λN/L ∈ P(Z+) be

the Bernoulli distribution with parameter N/L. Then,

‖γNL − λN/L ⊗ λN/L‖ =
2N

L(L− 1)

(
1− N

L

)
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Proof. We have that

‖γNL − λN/L ⊗ λN/L‖ =
1

2

1∑
h,k=0

|P(X1 = h,X2 = k)− P(X1 = h)P(X2 = k)|. (3.1)

Observing that

P(X1 = h,X2 = k)− P(X1 = h)P(X2 = k) = (−1)h+k Cov(X1, X2), h, k ∈ {0, 1},

and, because X1 + · · ·+XL = N ,

Cov(X1, X2) = − 1

L− 1
Var(X1) = − N

L(L− 1)

(
1− N

L

)
,

the result follows.

Theorem 3.1 assures that Condition 2.3 holds as

sup
q∈P(Z+)

‖νqL − µ
q ⊗ µq‖ = sup

N/L≤1

‖γNL − λN/L ⊗ λN/L‖ ≤
1

L
.

We observe that in the present case the GRBB process (ηL(t))t≥0 started with N ≤ L
particles is ergodic and reversible with invariant measure given by the Fermi-Dirac
statistics with L sites and N particles. Thus in this case propagation of chaos holds also
at equilibrium. For completeness below we give an upper bound for the mixing time for
the GRBB process when N ≤ L. If N > L the GRBB process is not irreducible as there
are blocked configurations.

Proposition 3.2. Let (ηL(t))t≥0 be the GRBB process when BL,q follows the Fermi-Dirac
statistics with L sites and (1− q({0}))L particles. Assume that ηL(0) ∈ ZL+ and

N :=

L∑
x=1

ηLx (0) ∈ [2, L/2].

Then (ηL(t))t≥0 is ergodic and its invariant measure πN,L is the Fermi-Dirac distribution
with L sites and N particles. Furthermore

tmix := inf
{
t ≥ 0: ‖P(ηL(t) ∈ ·)− πN,L‖ ≤ 1/4

}
≤ 13− 4L log

(
1− N − 1

L

)
.

where P(ηL(t) ∈ ·) is the distribution of ηL(t).

Proof. Define the decreasing sequence of events A1 ⊇ A2 ⊇ · · · ⊇ AN , where

An :=
{
η ∈ ZL+ :

L∑
x=1

1(ηx > 0) ≥ n
}
,

and the increasing sequence 0 := τ1 ≤ · · · ≤ τN of hitting times

τn := inf
{
t ≥ τn−1 : ηL(t) ∈ An}.

We notice that τN is the first time such that in every site there is at most one particle and
that at time t = τN+1 the system is distributed with its stationary measure independently
from its state at time t = τN . So τN + 1 is a strong stationary time and we can use
Proposition 6.11 of [13] to get tmix ≤ inf

{
t ≥ 0: P(τN + 1 > t) ≤ 1/4

}
. By Markov
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inequality we have tmix ≤ 4E(τN + 1) + 1. To bound E(τN ) we introduce the random
variables σn := τn+1 − τn so that

E(τN ) =

N−1∑
n=1

E(σn). (3.2)

Now observe that σn > t if and only if ηL(τn + t) ∈ An \An+1. In fact if τn+1 > τn + t then
ηL(τn + t) 6∈ An+1 but ηL(τn + t) ∈ An because τn + t > τn. Thus ηL(τn + t) ∈ An \An+1.
On the other hand if ηL(τn + t) ∈ An \An+1 then ηL(τn + t) 6∈ An+1 thus τn+1 > τn + t.

By strong Markov property

P(σn > t) = P(ηL(τn + t) ∈ An \An+1)

=
∑

η∈An\An+1

P(ηL(1) ∈ An \An+1|ηL(0) = η)P(ηL(τn + t− 1) = η). (3.3)

A configuration in An \ An+1 is a configuration where there are n mobile particles,
N − n blocked particles and L − n empty sites. So, if ηL(0) = η ∈ An \ An+1, we have
that ηL(1) ∈ An \ An+1 if and only if the process puts a mobile particle on every site
occupied by a blocked particle. Let pk,m be the probability that, following the Fermi-
Dirac statistics with L sites and m ≤ L particles, the sites {1, . . . , k} are occupied. Thus
if k̄ ∈ {1, . . . , N − n} is the number of sites occupied by the blocked particles in the
configuration η, then

P(ηL(1) ∈ An \An+1|ηL(0) = η) = pk̄,n ≤ p1,n = n/L.

Plugging this bound into (3.3) we get

P(σn > t) ≤ n

L

∑
η∈An\An+1

P(ηL(τn + t− 1) = η) =
n

L
P(ηL(τn + t− 1) ∈ An \An+1)

=
n

L
P(σn > t− 1),

which, iterating, implies

P(σn > t) ≤
(n
L

)t
.

So, by summing the geometric series, E(σn) ≤ L/(L− n) and by (3.2)

E(τN ) ≤ L
L−1∑

n=L+1−N

1

n
≤ L

L−N + 1
+ L log

(
L− 1

L−N + 1

)
.

Thus

tmix ≤ 4E(τN + 1) + 1 ≤ 5 +
4L

L−N + 1
− 4L log

(
1− N − 1

L

)
and the result follows.

3.2 Maxwell-Boltzmann statistics

We say that the random vector X = (X1, . . . , XL) follows the Maxwell-Boltzmann
statistics with L sites and particles N if

P(X1 = x1, . . . , XL = xL) =

{(
N

x1,...,xL

)
1
LN

, if (x1, . . . , xL) ∈ ZL+ and
∑L
k=1 xk = N ,

0 otherwise.

Given q ∈ P(Z+), let µq ∈ P(Z+) be the Poisson distribution with parameter 1−q({0}) and
assume that BL,q follows the Maxwell-Boltzmann statistics with L sites and (1− q({0}))L
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particles. In this case the GRBB process is the RBB process studied in [2], [5] and [6]. To
apply Theorem 2.5 we have to show that Condition 2.3 holds and the map ψ is Lipschitz.
To check Lipschitz property take q, q′ ∈ P(Z+) and set q0 := q({0}), q′0 := q′({0}). Then

‖µq−µq
′
‖ =

1

2

+∞∑
k=0

1

k!

∣∣(1−q0)ke−(1−q0)−(1−q′0)ke−(1−q′0)
∣∣ ≤ 1

2

+∞∑
k=0

k + 1

k!
|q0−q′0| ≤ 3‖q−q′‖.

Condition 2.3 is implied by the following result.

Theorem 3.3. Assume that X follows the Maxwell-Boltzmann statistics with L sites and
N particles. Denote with γNL ∈ P(Z2

+) the distribution of (X1, X2) and let λN/L ∈ P(Z+)

be the Poisson distribution with parameter N/L. Then

‖γNL − λN/L ⊗ λN/L‖ ≤
4N

L2
.

Proof. Let γ̄NL := P(X1 ∈ ·) be the one site marginal of γNL .

‖γNL −λN/L⊗λN/L‖ ≤ ‖γNL −γ̄NL ⊗γ̄NL ‖+‖γ̄NL ⊗γ̄NL −γ̄NL ⊗λN/L‖+‖γ̄NL ⊗λN/L−λN/L⊗λN/L‖

= ‖γNL − γ̄NL ⊗ γ̄NL ‖+ 2‖γ̄NL − λN/L‖, (3.4)

where, in the last line, we used the fact that for arbitrary probability measures γ, µ and
ν:

‖γ ⊗ µ− γ ⊗ ν‖ = ‖µ− ν‖.

We bound separately the two terms in equation (3.4).
The second term is bounded using Poisson approximation of binomial distribution

(see for example [16] §12) so that

‖γ̄NL − λN/L‖ ≤
N

L2
. (3.5)

To bound the first term in (3.4) we construct a coupling, namely we define (X1, X2) ∼ γNL
and (Y1, Y2) ∼ γ̄NL ⊗ γ̄NL . We take X1 as a binomial random variable with parameters
N and 1/L, i.e. X1 ∼ γ̄NL and consider U1, . . . UN i.i.d. uniformly distributed random
variables with values in [0, 1] independent from X1. Define next

X2 :=

N−X1∑
k=1

1
(
Uk ≤

1

L− 1

)
,

where here and in the sequel we use the convention that
∑0
k=1 := 0. An elementary

computation shows that (X1, X2) has the distribution of the two components of a ran-
dom vector following the Maxwell-Boltzmann statistics with N particles an L sites, i.e.
(X1, X2) ∼ γNL . Define Y1 := X1 and

Y2 :=

N∑
k=1

1
(
Uk ≤

1

L

)
.

Clearly Y1 and Y2 are i.i.d. random variables with common binomial distribution with
parameters N and 1/L, i.e. (Y1, Y2) ∼ γ̄NL ⊗ γ̄NL . Thus, defining the event

A :=
{N−X1∑

k=1

1
(
Uk ≤

1

L− 1

)
=

N−X1∑
k=1

1
(
Uk ≤

1

L

)}
,
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we have,

‖γNL − γ̄NL ⊗ γ̄NL ‖ ≤ P((X1, X2) 6= (Y1, Y2)) = P(X2 6= Y2)

= P(X2 6= Y2, A) + P(X2 6= Y2, A
c). (3.6)

We bound separately the two terms on the right hand side of equation (3.6). For the first
one, we observe that the only way to have that A occurs and X2 6= Y2 is that

N∑
k=N−X1+1

1
(
Uk ≤

1

L

)
> 0.

Thus, by the independence of X1, U1, . . . , UN :

P(X2 6= Y2, A
)

= 1− P
(
UN−X1+1 >

1

L
, . . . , UN >

1

L

)
= 1−

N∑
n=0

P(X1 = n)
(

1− 1

L

)n
.

Using the binomial distribution of X1, an explicit computation shows that

P(X2 6= Y2, A) = 1−
(

1− 1

L2

)N
≤ N

L2
. (3.7)

For the second term in equation (3.6) using again the independence of X1, U1, . . . , UN
we can write

P(X2 6= Y2, A
c)

≤ P(Ac) =

N∑
n=0

P(X1 = n)P
( 1

L
< Uk ≤

1

L− 1
for some k ∈ {1, . . . , N − n}

)
≤

N∑
n=0

P(X1 = n)

N−n∑
k=1

P
( 1

L
< Uk ≤

1

L− 1

)
=
N − E(X1)

L(L− 1)
=
N

L2
. (3.8)

Plugging bounds (3.8) and (3.7) into equation (3.6) we obtain

‖γNL − γ̄NL ⊗ γ̄NL ‖ ≤
2N

L2
,

which together with the bound (3.5) and equation (3.4) proves the result.

Remark 3.4. We studied the mixing time for the GRBB process when BL,q follows the
Maxwell-Boltzmann statistics with L sites and (1− q({0}))L particles in [6]. We proved
that the process with L sites and rL particles has mixing time is of order L.

3.3 Bose-Einstein statistics

We say that the random vector X = (X1, . . . , XL) follows the Bose-Einstein statistics
with L ∈ N sites and particles N ∈ N if

P(X1 = x1, . . . , XL = xL) =


1

(L+N−1
N )

, if (x1, . . . , xL) ∈ ZL+ and
∑L
k=1 xk = N ,

0 otherwise.

We note that a sample of this distribution can be obtained drawing N balls from an
L-color Pólya urn with double replacement. Namely, put L numbered balls in an empty
urn. Then one ball is randomly extracted from the urn, its number recorded and it is
returned into the urn with an additional ball with the same number. Repeating this
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procedure N times yields a random vector X = (X1, . . . , XL), where Xk is the number of
times that a ball with number k has been drawn in the N extractions. Then X follows
the Bose-Einstein statistics with L sites and N particles, see e.g. Lemma 2.7 of [13].
This connection of the Bose-Einstein statistics with the L-color Pólya urn will be a key
ingredient in the proof of Theorem 3.5 below.

Given q ∈ P(Z+), let µq ∈ P(Z+) be the geometric distribution supported on Z+

and parameter 1/(2− q({0})) and assume that BL,q follows the Bose-Einstein statistics
with L sites and (1 − q({0}))L particles. To apply Theorem 2.5 we have to show that
Condition 2.3 holds and the map ψ is Lipschitz. To check Lipschitz property proceeding
as in Section 3.2 we get for any q, q′ ∈ P(Z+)

‖µq − µq
′
‖ ≤ 4‖q − q′‖.

Condition 2.3 is implied by the following result.

Theorem 3.5. Assume that X follows the Bose-Einstein statistics with L sites and N

particles. Denote with γNL ∈ P(Z2
+) the distribution of (X1, X2) and let λN/L ∈ P(Z+) be

the geometric distribution with support Z+ and parameter 1/(1 +N/L):

λN/L({k}) := 1(k ∈ Z+)
1

1 +N/L

(
1− 1

1 +N/L

)k
.

Then

‖γNL − λN/L ⊗ λN/L‖ ≤
14N

L2
.

Proof. Let γ̄NL := P(X1 ∈ ·) be the one site marginal of γNL . As in (3.4) we get

‖γNL − λN/L ⊗ λN/L‖ ≤ ‖γNL − γ̄NL ⊗ γ̄NL ‖+ 2‖γ̄NL − λN/L‖. (3.9)

We bound separately the two terms in the right hand side of inequality (3.9). For the
second one we use Theorem 3 of [18] to get

‖γ̄NL − λN/L‖ ≤
6

L
. (3.10)

To bound the first term in (3.9) we construct a coupling using the L-color Pólya urn with
double replacement. We define (X1, X2) ∼ γNL and (Y1, Y2) ∼ γ̄NL ⊗ γ̄NL . We generate X1

as the 1 site marginal of X, namely X1 ∼ γ̄NL and define Y1 := X1.
Given X1 = n, to generate X2 and Y2 we consider two urns named urn A and urn B.

Initially in urn A there are L− 1 balls numbered from 2 to L, while in urn B there are L
balls numbered from 1 to L. We distinguish two cases, case n < N and case n = N .

Case n < N . We draw a ball from urn A, assume that it is ball k, then we try to
extract the same ball from urn B. To this end, independently, we generate a Bernoulli
random variable with success probability (L− 1)/L. In case of success we extract the
ball k from urn B; in case of failure we extract the ball 1 from urn B. The extracted balls
are then returned in their urns with a ball with the same number.

The next extractions are defined inductively. Assume that t extractions have been
made with 0 < t < N − n. For k ∈ {2, . . . , L} let tk be the number of balls k drawn from
urn A in the t extractions and fk, the number of times that the attempt to extract the
same ball k from urn B failed in the t extractions. For the t + 1 extraction we draw a
ball from urn A and make a test by generating a Bernoulli random variable with success
probability

(L+ t− 1)(1 + tk − fk)

(L+ t)(1 + tk)
. (3.11)
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In case of success we extract a ball k from urn B; in case of failure we extract a ball 1
from urn B. We then use double replacement.

We iterate the preceding rule until t = N − n. Next we go on extracting a ball from
urn B with double replacement for other n steps. Define X2 as the number of times that
ball 2 has been drawn from urn A and Y2 as the total number of times that ball 2 has
been drawn from urn B.

Case n = N . We define X2 = 0. To define Y2 we draw a ball from urn B with double
replacement. Define Y2 as the number of times that ball 2 has been drawn from urn B.

We claim that in both cases (X1, X2) ∼ γNL and (Y1, Y2) ∼ γ̄NL ⊗ γ̄NL . The first claim is
a Bose-Einstein statistics property: for any n,m ∈ Z+ such that n+m ≤ N

P(X1 = n,X2 = m) = P(X2 = m|X1 = n)P(X1 = n)

= γ̄NL ({n})γ̄N−nL−1 ({m}) = γNL ({n} × {m}),
(3.12)

where γ0
L−1 := δ0.

To prove that (Y1, Y2) ∼ γ̄NL ⊗ γ̄NL note that for any n,m ∈ {0, . . . , N}

P(Y1 = n, Y2 = m) = P(Y2 = m|X1 = n)P(X1 = n),

so the result follows if we can show that

P(Y2 ∈ ·|X1 = n) = γ̄NL , n ∈ {0, . . . , N}. (3.13)

To prove (3.13) we will show that Y2, conditionally to X1 = n, is the number of balls 2
extracted in N draws from an L-color Pólya urn. Then, by Lemma 2.7 of [13], after N
extractions the number of times that ball 2 has been extracted has γ̄NL distribution. Let
Tk(t), k ∈ {1, . . . , L}, be the number of balls k drawn from an L-color Pólya urn in t steps.
Then T (t) := (T1(t), . . . , TL(t)) is a homogeneous time Markov chain, see for example
[13] §2.4, called Pólya urn process.

If n = N (3.13) holds because by construction B is a Pólya urn.
Assume that n < N . To show that B is a Pólya urn we must verify that balls are

uniformly drawn from B at each draw.
To compute the probability to extract a ball k from B we observe that if k ∈ {2, . . . , L},

k is extracted from B if and only if it is extracted from A and the test is a success, while
ball 1 is extracted from B if and only if the test fails. So at the first extraction, ball k,
k ∈ {2, . . . , L} is chosen from urn B with probability

1

L− 1

L− 1

L
=

1

L
.

Ball 1 is chosen with probability 1/L.
Assume that t extractions have been made with 0 < t < N − n. Recall that tk and

fk, k ∈ {2, . . . , L}, denote the number of balls k drawn from urn A and the number of
times that the attempt to extract the same ball k from urn B failed respectively in the t
extractions. Then urn A has tk + 1 balls k while urn B has 1 + f2 + · · ·+ fL balls 1 and
1 + tk − fk balls k, t2 + · · ·+ tL = t.

Thus at the t + 1 extraction, ball k with k ∈ {2, . . . , L} is chosen from urn B with
probability

tk + 1

L− 1 + t

(L+ t− 1)(1 + tk − fk)

(L+ t)(1 + tk)
=

1 + tk − fk
L+ t

while ball 1 is chosen with probability

1−
L∑
k=1

1 + tk − fk
L+ t

=
1 + f2 + · · ·+ fL

L+ t
.
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In any case the balls are chosen uniformly. We iterate the preceding rule until t = N − n.
At this time the urn B is an L-color Pólya urn process after N − n steps. Next we go
on extracting a ball from urn B with double replacement for other n steps. So, after N
extraction, B is an L-color Pólya urn process after N steps and Y2 is the number of times
ball 2 has been extracted in N draws, i.e. (3.13) holds.

We observe that, as in (3.6),

‖γNL − γ̄NL ⊗ γ̄NL ‖ = P(X2 6= Y2).

Define the event D as “a ball 2 has been drawn from urn A in the first N −X1 extractions
and the associated test failed” and the event E as “a ball 2 has been drawn from urn B
in the last X1 extractions”. Then

P(X2 6= Y2) ≤ P(D ∪ E) ≤
N∑
n=0

P(D|X1 = n)P(X1 = n) +

N∑
n=0

P(E|X1 = n)P(X1 = n).

(3.14)
If n = N the first term in (3.14) is zero. If n < N we write

P(D|X1 = n) =

N−n∑
j=1

P(D|X1 = n,X2 = j)P(X2 = j|X1 = n). (3.15)

Observe that by (3.12)
P(X2 = j|X1 = n) = γ̄N−nL−1 ({j}), (3.16)

and that if X1 = n and X2 = j the event Dc occurs if and only if all the j tests associated
to the extractions of a ball 2 are success. By (3.11) the probability that the test at
extraction t is a success, if all the preceding tests are successful (i.e. f2 = 0), is

L+ t− 1

L+ t
≥ 1− 1

L
.

Thus

P(D|X1 = n,X2 = j) = 1− P(Dc|X1 = n,X2 = j) ≤ 1−
(

1− 1

L

)j
≤ j

L
. (3.17)

By plugging this bound and equation (3.16) into equation (3.15) we get

P(D|X1 = n) ≤ 1

L

N−n∑
j=1

jγ̄N−nL−1 ({j}) =
N − n
L(L− 1)

.

Thus
N∑
n=0

P(D|X1 = n)P(X1 = n) ≤ N

L(L− 1)
− N

L2(L− 1)
=
N

L2
. (3.18)

We consider the second term in (3.14). If X1 = n, B is an L-color Pólya urn from which
N − n balls have been drawn. Because the L-color Pólya process is an homogeneous
Markov chain, the number of times that a ball 2 will be draw in the last n extractions
has distribution γ̄nL. Thus

P(E|X1 = n) = 1− γ̄nL({0}) = 1−
(
n+L−2

n

)(
n+L−1

n

) =
n

n+ L− 1
≤ n

L
.

and
N∑
n=0

P(E|X1 = n)P(X1 = n) ≤ N

L2
.
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By plugging this bound and the bound (3.18) into equation (3.14) we get

‖γNL − γ̄NL ⊗ γ̄NL ‖ ≤ P(X2 6= Y2) ≤ 2N

L2
.

The above estimate, together with (3.10) concludes the proof.

4 Equilibrium properties of the nonlinear process

In this section we study the long time behavior of the ψ-nonlinear process, corre-
sponding to the GRBB process. We will introduce some technical hypothesis on the
nonlinear process which are satisfied in all the examples of Section 3.

We need some additional notation. Given µ ∈ P(Z+) we denote with mµ the mean of
µ, with σ2

µ its variance and with µ̂ its characteristic function.
The condition below is the analogue, for the nonlinear process, of equation (2.2),

which assures the conservation of particles for the GRBB process.

Condition 4.1. Assume that E(Bq) = 1 − q({0}) for any q ∈ P(Z+) and that the map
ψ : P(Z+)→ P(Z+) depends only on q({0}).
Remark 4.2. If Condition 2.3 and equation (2.2) hold, Condition 4.1 is equivalent
to uniform integrability of the family {BL,q1 }L∈N. In fact Condition 2.3 implies that
BL,q1 ⇒ Bq as L→ +∞ and by equation (2.2): E(BL,q1 ) = 1− q({0}).

Particles conservation of the GRBB process gives conservation of the mean of the
corresponding nonlinear process as explained in the following lemma.

Lemma 4.3. Assume Condition 4.1 and E(η(0)) = r ∈ [0,+∞]. Then E(η(t)) = r, ∀t ≥ 0.

Proof. The proof is obtained by induction. Assume first that E(η(t)) = r < +∞. By
equation (2.3):

E (η(t+ 1)|η(t)) = η(t)− 1(η(t) > 0) + P(η(t) > 0)

Then
E (η(t+ 1)) = E [E (η(t+ 1)|η(t))] = r.

When r = +∞, again for equation (2.3), we have that η(t + 1) is obtained by adding a
finite mean random variable to an infinite mean one.

To study the long time behavior of the ψ-nonlinear process we introduce the following
discrete time queue process.

Definition 4.4. Let µ ∈ P(Z+). The Gµ/D/1 queue (ζ(t))t≥0 is the Markov chain with
values in Z+ defined as follows. Assume that, for some t ≥ 0, ζ(t) = ζ ∈ Z+ then

ζ(t+ 1) = ζ − 1(ζ > 0) +B. (4.1)

B is a random variable with distribution µ. It is independent from everything and
independently generated at each time step t.

The long time behavior of the Gµ/D/1 queue and its invariant probability measure are
described in the theorem below.

Theorem 4.5. The Gµ/D/1 queue with mµ < 1 is an aperiodic irreducible positive
persistent Markov chain. Its invariant probability measure πµ has characteristic function

π̂µ(x) =
(1−mµ)µ̂(x)(eix − 1)

eix − µ̂(x)
, x ∈ R, (4.2)

and

mπµ =
σ2
µ +mµ(1−mµ)

2(1−mµ)
. (4.3)
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Proof. By Markov inequality 1 − µ({0}) ≤ mµ < 1 so that µ({0}) > 0 and the chain is
aperiodic. The irreducibility and positive persistence follow directly by the dynamics
of the Gµ/D/1 queue. Let πµ be the invariant probability measure of the Gµ/D/1 queue
(ζ(t))t≥0, then by invariance and (4.1)

π̂µ(x) =
∑
ζ

πµ({ζ})eixζ =
∑
ζ

πµ({ζ})Eζ
[
eix(ζ(1))

]
= µ̂(x)

∑
ζ

πµ
(
{ζ}
)
eix(ζ−1(ζ>0))

= µ̂(x)
[
πµ({0})(1− e−ix) + π̂µ(x)e−ix

]
.

Thus

π̂µ(x) =
eix − 1

eix − µ̂(x)
πµ({0})µ̂(x).

Taking the limit for x→ 0 in the above equation we get

1 = π̂µ(0) =
πµ({0})
1−mµ

,

so that πµ has characteristic function given by (4.2). Equation (4.3) follows from (4.2) by
computing π̂′µ(0).

The next lemma links the ψ-nonlinear process starting from πµ with the Gµ/D/1 queue.

Lemma 4.6. Given µ ∈ P(Z+) with mµ < 1 consider a ψ-nonlinear process starting from
πµ. If ψ(πµ) = µ then the ψ-nonlinear process is the Gµ/D/1 queue.

Proof. Assume that η(t) ∼ πµ for a t ≥ 0. Then (2.3), as q = πµ, holds with Bq ∼ µ. Thus
equation (2.3) defines the one step evolution of the Gµ/D/1 queue with arrival distribution
µ and η(t+ 1) ∼ πµ.

Below we state a lemma which assures a uniform bound on exponential moments of
the Gµ/D/1 queue and will be used in the proof of Theorem 4.9.

Lemma 4.7. Let (ζ(t))t≥0 be the Gµ/D/1 queue with mµ < 1. Then there exist a positive
constant λµ, such that for any λ ∈ [0, λµ] there is a positive constant C, depending only
on λ and µ such that

Eζ(e
λζ(t)) ≤ Ceλζ ,

for any ζ ∈ Z+.

Proof. As mµ < 1, we can find λµ such that e−λµ̂(−iλ) ∈ (0, 1) for any λ ∈ (0, λµ]. For
λ ∈ (0, λµ] define f(ζ) := eλζ and let P be the transition matrix of the Markov chain
(ζ(t))t≥0. Define γ := 1− e−λµ̂(−iλ) and C := µ̂(−iλ)(1− e−λ). Then

Pf(ζ) = Eζ(e
λζ(1)) = eλ(ζ−1(ζ>0))µ̂(−iλ).

Thus

Pf(ζ)− f(ζ) =

{
µ̂(−iλ)− 1 if ζ = 0,

eλζ
(
e−λµ̂(−iλ)− 1

)
if ζ > 0

and
Pf(ζ)− f(ζ) ≤ −γf(ζ) + C. (4.4)

Iterating (4.4) we obtain

P tf(ζ) ≤ (1− γ)tf(ζ) +
C

γ
t ≥ 0,

and
Eζ(e

λζ(t)) ≤ Ceλζ .
The case λ = 0 is trivial.
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The next technical condition is a thinning condition of the family {µq}q∈P(Z+). It holds
for any of the applications of Section 3, see Remark 4.10 below.

Condition 4.8. For any q ∈ P(Z+) let µq be the distribution of Bq and X1, X2, . . . be

independent Bernoulli random variables, independent from Bq. Then
∑Bq

k=1Xk, where∑0
1 := 0, has distribution µq

′
for some q′ ∈ P(Z+).

Condition 4.8 is used in the next theorem to prove that the nonlinear process weakly
converges to a unique stationary distribution.

Theorem 4.9. Assume that E(η(0)) = r ∈ [0, 1), E(eλη(0)) < +∞ for some λ > 0,
Conditions 4.1 and 4.8 hold and that there exists a unique π̄ ∈ {πµq}q∈P(Z+) such that
mπ̄ = r. Then η(t)⇒ π̄ as t→ +∞.

Remark 4.10. We briefly discuss the hypothesis and the consequences of the above
theorem. The uniqueness assumption on π̄ ∈ {πµq}q∈P(Z+) with mean r is used to identify
the weak limit in the statement of the theorem. In the context of conservative particles
systems the finite volume ergodic measures are usually parametrized by the mean
occupation number. Thus it is rather natural to expect that the same holds for the infinite
volume limit.

For the applications of Section 3 the Condition 4.8 can be verified by computing
and recognizing the characteristic function of the random sum

∑Bq

k=1Xk while the
uniqueness assumption on π̄ can be verified using (4.3) and Condition 4.1. We omit these
computations for brevity. However, as π̄ is the only measure with mean r which has
characteristic function given by (4.2), it is possible to recover its expression by using
equations (4.2), (4.3) and inverting the characteristic function. For the Fermi-Dirac
case we obtain a Bernoulli measure, for the Maxwell-Boltzmann case the stationary
measure of the M/D/1 queue (see Example 6.4 of [15]) while for the Bose-Einstein case
the geometric distribution supported on Z+.

Proof of Theorem 4.9. We first observe that by Lemma 4.3 we have E(η(t)) = r for
any t ≥ 0 and this, via Markov inequality, implies the tightness of the sequence of
distributions of (η(t))t≥0. Furthermore, denoting with q(t) the distribution of η(t), by
equation (2.3) we have, for any x ∈ R,

E
(
eixη(t+1)

)
= E

[
E
(
eixη(t+1)|η(t)

)]
= E

[
eix(η(t)−1(η(t)>0))E

(
eixB

q(t)

|η(t)
)]

= µ̂q(t)(x)E
(
eix(η(t)−1(η(t)>0))

)
.

By tightness we can choose a subsequence (η(t̄))t̄≥0 of (η(t))t≥0 with weak limit point η̄.
Taking the limit, for t̄→ +∞, in the previous equation we get:

E
(
eixη̄

)
= µ̂q̄(x)E

(
eix(η̄−1(η̄>0))

)
, (4.5)

where q̄ is the distribution of η̄. Observe that

E
(
eix(η̄−1(η̄>0))

)
= E

(
eixη̄, η̄ = 0

)
+ e−ixE

(
eixη̄, η̄ > 0

)
= q̄(0) + e−ix

[
E
(
eixη̄

)
− q̄(0)

]
.

Plugging this expression in the right hand side of equation (4.5) and solving it we get

E
(
eixη̄

)
=
q̄(0)(eix − 1)µ̂q̄(x)

eix − µ̂q̄(x)
.

Taking the limit for x → 0 in the above equation we obtain that q̄(0) = 1 −mµq̄ . Thus,
by Theorem 4.5, the limit points of the distributions of (η(t))t≥0 belong to {πµq}q∈P(Z+).
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As, by hypothesis, there is only one element in {πµq}q∈P(Z+) with mean r, to prove the
uniqueness of the limit it is enough to show that

E(η̄) = lim
t̄→+∞

E(η(t̄)) = r, (4.6)

by proving uniform integrability of the sequence (η(t))t≥0 (see for example Theorem
25.11 of [3]). In fact the nonlinear process (η(t))t≥0 can be coupled with a Gµqr /D/1
queue (ζ(t))t≥0 with qr({0}) = 1− r, so that P(η(t) ≤ ζ(t)) = 1 for any t ≥ 0, and uniform
integrability of (η(t))t≥0 will follow by uniform integrability of (ζ(t))t≥0. Observe that

P(η(t) > 0) ≤ E(η(t)) = r.

Take a sequence of i.i.d. {Bqrt }t≥0, distributed accordingly with µqr and for any t > 0

take and a sequence of i.i.d. Bernoulli random variables Y1 t, Y2 t, . . . with parameter
P(η(t) > 0)/r such that sequences with different t are independent and independent
from each Bqrt . Now define

Bt :=

Bqrt∑
k=1

Yk t.

Then {Bt}t≥0 are independent random variables and by Condition 4.8 have distribution
belonging to {µq}q∈P(Z+). By Condition 4.1 and Condition 4.8 Bt ∼ µq(t) because
E(Bt) = P(η(t) > 0). This implies Bt ≤ Bqrt a.s. for any t ≥ 0. If ζ(0) = η(0) and we
define

η(t+ 1) := η(t)− 1(η(t) > 0) +Bt

ζ(t+ 1) := ζ(t)− 1(ζ(t) > 0) +Bqrt

we thus have η(t) ≤ ζ(t) a.s. for any t > 0. To obtain uniform integrability of the
nonlinear process observe that by Lemma 4.7, taking λ > 0 small enough,

E(eλη(t)) ≤
∑
η

P(η(0) = η)Eη(eλζ(t)) ≤ Cr E(eλη(0)) < +∞.

References

[1] L. Andreis, P. Dai Pra, M. Fischer: McKean-Vlasov limit for interacting systems with simulta-
neous jumps. Stoch. Anal. Appl. 36, (2018), no. 6, 960–995. MR-3925147

[2] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, G. Posta: Self-stabilizing repeated balls-into-
bins. Distrib. Comput. 32, (2019), no. 1, 59–68. MR-3901936

[3] P. Billingsley: Probability and measure. Third edition. John Wiley & Sons, New York, 1995.
MR-1324786

[4] N. Cancrini, F. Martinelli: Comparison of finite volume canonical and grand canonical Gibbs
measures under a mixing condition. Markov Process. Related Fields 6, (2000), no. 1, 23–72.
MR-1758982

[5] N. Cancrini, G. Posta: Propagation of chaos for a balls into bins model. Electron. Commun.
Probab. 24, (2019), paper no. 1, 9 pp. MR-3908646

[6] N. Cancrini, G. Posta: Mixing time for the Repeated Balls into Bins dynamics. Electron.
Commun. Probab. 25, (2020), paper no. 60, 14 pp. MR-4137945

[7] A. De Masi, A. Galves, E. Löcherbach, A. Presutti: Hydrodynamical limit for a system of
interacting neurons. J. Stat. Phys. 158, (2015), 866–902. MR-3311484

[8] N. Fournier, E. Löcherbach: On a toy model of interacting neurons. Ann. Inst. Henri Poincaré
Probab. Stat. 52, (2016), no. 4, 1844–1876 MR-3573298

EJP 26 (2021), paper 23.
Page 19/20

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3925147
https://mathscinet.ams.org/mathscinet-getitem?mr=3901936
https://mathscinet.ams.org/mathscinet-getitem?mr=1324786
https://mathscinet.ams.org/mathscinet-getitem?mr=1758982
https://mathscinet.ams.org/mathscinet-getitem?mr=3908646
https://mathscinet.ams.org/mathscinet-getitem?mr=4137945
https://mathscinet.ams.org/mathscinet-getitem?mr=3311484
https://mathscinet.ams.org/mathscinet-getitem?mr=3573298
https://doi.org/10.1214/21-EJP590
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Propagation of chaos for a general balls into bins dynamics

[9] A. Galves, E. Löcherbach: Modelling networks of spiking neurons as interacting processes
with memory of variable length. Journal de la Société Française de Statistiques 157, (2016),
17–32. MR-3491721

[10] J. R. Jackson: Jobshop-like queueing systems. Management Sciences Research Project 81,
(1963).

[11] M. Kac: Foundations of kinetic theory. Proceedings of the Third Berkley Symposium on
Mathematical Statistics and Probability 1954–1955 vol. III. University of California Press,
Berkley and Los Angeles, 1956. MR-0084985

[12] F. P. Kelly: Networks of queues. Advances in Appl. Probability 8, (1976), no. 2, 416–432.
MR-0415800

[13] D. A. Levin, Y. Peres: Markov chains and mixing times. Second edition. American Mathemati-
cal Society, Providence, 2017. MR-3726904

[14] P.-Y. Louis, F.R. Nardi (Editors): Probabilistic Cellular Automata. Springer, 2018. MR-3791805

[15] J. Shortle, J. Thompson, D. Gross, C. M. Harris: Fundamentals of Queueing Theory. Fifth
edition. John Wiley & Sons Inc., Hoboken NJ, 2018. MR-3791493

[16] A. N. Shiryaev: Probability. Second edition. Springer, Berlin, 1995. MR-1368405

[17] A-S. Sznitman: Topics in propagation of chaos. École d’Été de Probabilités de Saint-Flour
XIX-1989, Lecture Notes in Math. 1464. Springer, Berlin, 1991. MR-1108185

[18] T. C. Brown, M. J. Phillips: Negative binomial approximation with Stein’s method. Methodol.
Comput. Appl. Probab. 1, (1999), no. 4, 407–421. MR-1770372

EJP 26 (2021), paper 23.
Page 20/20

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3491721
https://mathscinet.ams.org/mathscinet-getitem?mr=0084985
https://mathscinet.ams.org/mathscinet-getitem?mr=0415800
https://mathscinet.ams.org/mathscinet-getitem?mr=3726904
https://mathscinet.ams.org/mathscinet-getitem?mr=3791805
https://mathscinet.ams.org/mathscinet-getitem?mr=3791493
https://mathscinet.ams.org/mathscinet-getitem?mr=1368405
https://mathscinet.ams.org/mathscinet-getitem?mr=1108185
https://mathscinet.ams.org/mathscinet-getitem?mr=1770372
https://doi.org/10.1214/21-EJP590
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Construction and main result
	Propagation of chaos of the GRBB process

	Classical occupancy models
	Fermi-Dirac statistics
	Maxwell-Boltzmann statistics
	Bose-Einstein statistics

	Equilibrium properties of the nonlinear process
	References

