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A robot swarm is a decentralized system characterized by locality of sensing and
communication, self-organization, and redundancy. These characteristics allow robot
swarms to achieve scalability, flexibility and fault tolerance, properties that are
especially valuable in the context of simultaneous localization and mapping (SLAM),
specifically in unknown environments that evolve over time. So far, research in SLAM
has mainly focused on single- and centralized multi-robot systems—i.e., non-swarm
systems. While these systems can produce accurate maps, they are typically not
scalable, cannot easily adapt to unexpected changes in the environment, and are
prone to failure in hostile environments. Swarm SLAM is a promising approach to SLAM
as it could leverage the decentralized nature of a robot swarm and achieve scalable,
flexible and fault-tolerant exploration and mapping. However, at the moment of writing,
swarm SLAM is a rather novel idea and the field lacks definitions, frameworks, and
results. In this work, we present the concept of swarm SLAM and its constraints, both
from a technical and an economical point of view. In particular, we highlight the main
challenges of swarm SLAM for gathering, sharing, and retrieving information. We also
discuss the strengths and weaknesses of this approach against traditional multi-robot
SLAM. We believe that swarm SLAM will be particularly useful to produce abstract
maps such as topological or simple semantic maps and to operate under time or cost
constraints.
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1 INTRODUCTION

A robot swarm is a decentralized system that can collectively accomplish missions that a single
robot could not accomplish alone. Locality of sensing and communication, self-organization, and
redundancy enable desirable properties such as scalability, flexibility, and fault tolerance
(Brambilla et al., 2013; Dorigo et al., 2014) that make a robot swarm the ideal candidate to
perform missions in large unknown environments in which the risk that individual robots fail or
are lost is high. In particular, a robot swarm could autonomously perform simultaneous
localization and mapping (SLAM) by using self-organized exploration schemes to navigate in
hazardous dynamic environments. Yet, no well-defined methodology exists for performing SLAM
with a robot swarm.

SLAM has been largely studied (Durrant-Whyte and Bailey, 2006) and most of the existing
methods are generic, platform- and application-independent. They have been developed mostly for
single robots that are usually heavily equipped and expensive. This implies that any hardware failure
seriously affects the whole system. Also, they cannot be directly adapted to centralized multi-robot
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systems, even less to robot swarms as they usually require external
infrastructures to ensure inter-robot communication or
localization (a single point of failure that hinders fault tolerance).

Some important questions need to be addressed before
effective swarm SLAM can be achieved: How should the
swarm explore the environment and gather information? How
should the robots share the information gathered? How should
the information be retrieved and used to produce maps?

2 LITERATURE REVIEW

Mapping consists in creating a representation of the environment
based on known robots poses and sensors data. Nowadays, it is
frequently hypothesized that poses are a priori unknown and
need to be estimated. Hence, the SLAM problem has been studied
extensively in the past decades (Parker, 2000; Durrant-Whyte and
Bailey, 2006; Dissanayake et al., 2011). A large number of
methods have been developed through the years:

• for producing different types of maps—mostly occupancy
grids (Elfes, 1989), but also topological (Fraundorfer et al.,
2007) and semantic maps (Wolf and Sukhatme, 2008);

• to operate in generic environments (Thrun, 1998; Bailey,
2002), but also in specific ones such as underwater (White
et al., 2010) or highly populated regions (Hähnel et al.,
2003b);

• and using a wide variety of sensors such as cameras,
LIDARs, and sonars (Elfes, 1987; Hähnel et al., 2003a;
Kelly and Sukhatme, 2011).

Popular methods include GMapping (Grisetti et al., 2007;
Grisetti et al., 2005), HectorSLAM (Kohlbrecher and Meyer,
2012), and KartoSLAM (Gerkey, 2014), as they are widely
used in ROS (Madhira et al., 2017). SLAM was originally
developed for single-robot systems and its adaptation to multi-
robot systems is a more recent research direction. Mapping with
multi-robot systems has been addressed in the form of two sub-
problems: multi-robot SLAM (Thrun et al., 2000) and multi-
robot exploration (Senthilkumar and Bharadwaj, 2012).

Multi-robot SLAM concerns the collective production of maps
and estimation of robots’ position. Saeedi et al. (2016) provided a
review of the many methods—based on the Extended Kalman
Filter (EKF-SLAM), particle filters (PF-SLAM), and map
merging, among others—that have been proposed. The review
enumerates ten open issues related to multi-robot SLAM (e.g.,
uncertainty on robots’ relative poses, loop closure detection, out-
of-sequence measurements, etc.) and evaluates widely used
methods against these issues. Most of these methods are only
able to address satisfactorily one or two issues, the maximum
being four. A number of challenges remain: in particular, scaling
the number of robots and the environment size or operating in
dynamic scenarios.

Multi-robot exploration concerns the collective exploration of
the environment. Despite the importance of exploration in
SLAM, this task has been directly addressed more rarely than
mapping and localization. Indeed, most multi-robot SLAM

methods rely on path planning rather than exploration
schemes specifically designed for multi-robot systems (Rone
and Ben-Tzvi, 2013).

Multi-robot SLAM is still a growing field, and a number of
research directions are yet to be explored. Among them, swarm
SLAM is an alternative, promising approach that takes
advantage of the characteristics of robot swarms. Although
existing SLAM methods could be implemented in robot
swarms, they would introduce constraints that would affect
the flexibility and the fault tolerance of the system:
centralized mechanisms or complex inter-robot interactions.
The issues that one can encounter when adapting SLAM to
robot swarms are described by Barca and Sekercioglu (2013).
Mapping is one of the research issues mentioned by Mohan and
Ponnambalam (2009) in their swarm robotics review but the
authors do not elaborate on it. A rather simple swarm SLAM
demonstration and a distributed localization algorithm have
been reported by Rothermich et al. (2004). However, the authors
do not explain how the individual maps are merged nor the role
of the designer in the definition of the robots’ behavior.
Moreover, the method was not properly evaluated and some
information about the experimental conditions is missing, e.g.,
the duration of the experiments. It is only recently that
Ramachandran et al. (2020) performed a real swarm SLAM
experiment, which evaluates the efficiency of the so-called
Informed Correlated Lévy Walk—i.e., a variant of random
walk. Kegeleirs et al. (2019) performed another swarm SLAM
experiment. A swarm of 10 e-puck robots had to map different
bounded indoor environments using different exploration
schemes. Individual maps were produced by each e-puck
using GMapping and were merged afterward on a remote
computer. This current limitation of the approach prevents
the realization of a fully decentralized method.

3 SWARM SLAM

A robot swarm presents characteristics that differentiate it from
centralized multi-robot systems.

First, robots in a swarm only interact with close peers and the
neighboring environment. Contrary to most centralized multi-
robot systems, they do not need global knowledge nor supervision
to operate. Hence, modifying the size of the swarm does not
require reprogramming the individual robots nor have major
impact on the qualitative collective behavior. This allows robot
swarms to achieve scalability—i.e., preserving performances as
more agents join the system—as they can cope with any size of
environment, within a reasonably large range. However, a
method only working on very expensive robots will not be
practically scalable in real-word application because of
economical constraints that would likely prevent the
acquisition of a large swarm. Hence, swarm SLAM methods
should be designed taking into account the cost of the
individual robots.

Then, as swarms are decentralized and self-organized,
individual robots can dynamically allocate themselves to
different tasks and hence meet the requirements of specific
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environments and operating conditions, even if these conditions
evolve at operation time. This adaptation capability provides
swarm SLAM with flexibility. The use of pre-existing
infrastructures or sources of global information is not to be
proscribed altogether, but the method should perform well
regardless of the availability of these resources. For example, a
pre-existing, incomplete map could be given to the robots to help
them meet a critical time requirement, but the robots should be
able to produce satisfactory results even if they start without any
information. Flexibility is also required regarding the robotics
platform: if a swarm SLAM method only works with a very
specialized hardware configuration, its flexibility is compromised.
Indeed, any environment or operating condition that hinder this
configuration to operate would prevent the adoption of the
method. Also, implementing a specialized configuration on
many robots might increase the required amount of resources
to an extent that would prevent any realistic large-scale
application.

Finally, a robot swarm is characterized by high redundancy
resulting from the large number of robots composing it.
Redundancy, together with the absence of centralized control,
prevents robot swarms from having a single point of
failure—i.e., a component that, if unexpectedly missing or
failing, prevents correct operation. Hence, a swarm SLAM
method can achieve fault tolerance as the swarm can cope
with the loss or failure of some robots (and also with noise,
thanks to redundancy of measurements). This also requires that
any equipment entirely depending on uncontrollable conditions
should not be essential to succeed. For example, robots can use
Wi-Fi to transmit information only if they can make use of a local
communication system, should the network become unavailable.
Again, fault tolerance has economical implications: losing robots
should not have a significant impact on either the cost of the
mission or its success. If the robots in the swarm are not
expendable, a method using these robots cannot be considered
fault tolerant as it could not be used in applications where losing
robots is possible.

Considering these characteristics, we think that swarm SLAM
is not meant to target the same applications as multi-robot SLAM:
a robot swarm is most useful in cases where the main constraint is
time or cost rather than high precision. Hence, they seem best
suited to produce rough abstract maps, such as topological or
simple semantic maps, rather than precise metric maps. Indeed,
when a precise map is required, one usually has sufficient time to
build it: a patrolling robot has sufficient time to build a complete
map of the building it is supposed to protect before beginning its
protection task. On the contrary, when time (or cost) is the main
constraint, it is usually acceptable to produce approximate but
informative maps: robots sent to explore a disaster area and to
locate survivors can quickly give to the rescuers an approximate
path to the victims location. Swarm SLAM methods also seem
appropriate to map hazardous dynamic environments. When the
environment evolves over time, a single or a small group of robots
needs time to update the map, while a sufficiently large swarm
could do it very quickly. For example, the underground
exploration of unknown caverns subject to landslides could
benefit from the expendable nature and the coverage offered

by robot swarm. Also in this case, precision is not necessarily
required, as the very fact that something has changed in the
environment is usually the most valuable information: a rough
representation of this modification could be sufficient.

4 CHALLENGES

Given the current state of the art, it is unrealistic to expect that a
swarm SLAM method can perfectly satisfy all the above
constraints, at least in the short term. Scalability should be
assessed more often, but large-scale experiments are difficult
to perform, even with inexpensive robots. Flexibility should be
achieved within reasonable constraints: a method that works
indoor but not outdoor is not flexible, but a method that
requires chains to be added to the robots wheels to allow
them to operate in the snow could still be considered flexible.
Fault tolerance is still an open issue in swarm SLAM as the most
common way to produce a map in a multi-robot system, map-
merging, implies some sort of centralization and hence a single
point of failure. Moreover, if an heterogeneous swarm (i.e., a
swarm composed of different robot types) could by itself
constitute a single point of failure (if one type of robots is
completely lost/destroyed), fault tolerance could still be
achieved if the swarm comprises sufficiently many robots of
each type.

In addition, metrics for scalability, flexibility and fault
tolerance should be defined in order to evaluate swarm
SLAM methods. In practice, these notions depend on aspects,
such as economic or scientific hypotheses, whose quantification
would be either difficult or based on arbitrary decisions—e.g., is
a method not working in outer space flexible enough? Therefore,
the researchers should thoroughly discuss the scalability
(i.e., how large the operating environment can be?), the
flexibility (i.e., how compliant the system is to different
operating conditions?), and the fault tolerance (i.e., how
resistant the system is to failure and perturbations?) of their
methods, in particular in research involving real robots. Metrics
specific to the SLAM algorithm, the exploration capabilities, and
swarm robotics should also be taken into account. The SLAM
algorithm should be categorized by its complexity, computation
time and footprint as well as its accuracy, in the form of relative
pose error (RPE) and absolute trajectory error (ATE). The
exploration capabilities should be evaluated in terms of
completeness and time to achieve. In the case of swarm
SLAM, it is expected that completeness is reached once a
sufficient portion of the environment has been explored and
mapped, due to the inherent probabilistic nature of robot
swarms. Finally, the complexity in the design of the swarm
control software as well as the communication efforts should
also be taken into account. The environmental conditions, the
dynamics of this environment as well as the number of robots in
the swarm and their cost would be parameter of the evaluation.

Before a scalable, flexible and fault-tolerant swarm SLAM
method can be achieved, some questions need to be answered.

How should the swarm explore the environment and gather
information?
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Exploration is an essential part of SLAM. Path planning is
usually the adopted strategy in multi-robot SLAM, but other
exploration schemes such as Frontier-based exploration or
potential fields have also been studied (Rone and Ben-Tzvi,
2013). However, in swarm robotics, simpler exploration
schemes are generally used, in particular random walks
(Dimidov et al., 2016; Kegeleirs et al., 2019). A straightforward
option would be to adapt path planning techniques to robot
swarms. Yet, these techniques have been designed for centralized
systems and do not take advantage of the decentralized, collective
behaviors of robot swarms. We believe that a better option would
be to take advantage of swarm-specific behaviors such as
aggregation/dispersion and flocking. Also, when working with
robot swarms, one should consider how the control software of
the individual robots will be designed. Studies have shown that
the automatic off-line design of robot swarm can outperform
manual design (Birattari et al., 2019; Birattari et al., 2020) by
building control software from simple atomic behaviors. A recent
work in automatic design has also shown that exploration
capabilities might come from the interaction between atomic
behaviors and not only from the exploration schemes embedded
in these atomic behaviors (Spaey et al., 2020). Using simple,
swarm-specific exploration schemes would hence be beneficial to
both the design process and the efficiency of a swarm SLAM
method.

Regarding the information to be gathered, the experiment of
Kegeleirs et al. (2019) has shown that a robot swarm can produce
an occupancy grid of a closed indoor environment in simulation,
but struggles in reality because of poor-quality close-range
proximity sensors. This means that, provided with the right
sensors, a robot swarm can potentially produce any kind of
map, as shown by Allen et al. (2020). However, swarm SLAM
methods would benefit from low-cost, simple robots that will
likely have imprecize sensors. They should hence focus on more
abstract maps that do not require high precision. A promising,
distributed approach for building semantic maps has been
proposed by Rosinol et al. (2020), even though its
computational complexity might be too high for robot swarms.

Concerning localization, a distributed localization method is
required, but little research exists on this subject (Roumeliotis and
Bekey, 2002; Prorok et al., 2012). Nonetheless, if high precision is
not a requirement, an approximation of each robot’s location is
acceptable and the localization issue becomes easier to solve.

How should the robots share the information gathered?
When mapping with multiple robots, information must be

shared at some point. The most common approaches in multi-
robot SLAM are raw and processed data sharing (Saeedi et al.,
2016). With a robot swarm, neither seems optimal. Sharing raw
data from the sensors is straightforward, but it might scale poorly
as the huge amount of data could become impossible to transfer
quickly enough. Sharing processed data could solve this problem
by reducing the amount of data to be shared, but most existing
methods are centralized and rely on external infrastructures such
as GPS or remote computers to assemble the different subsets
of data.

A fault-tolerant option would be to use a mobile ad-hoc
network such as the one proposed by Di Caro et al. (2005), or

the distributed approach presented by Majcherczyk et al. (2020).
When mapping dynamic environments, if the valuable
information is only the location at which a modification
happened, a very schematic map could be sufficient and
drastically reduce the amount of data to be shared. A few
promising candidates to achieve fully decentralized swarm
SLAM are distributed mapping (Fox et al., 2006; Ghosh et al.,
2020; Lajoie et al., 2020) and graph-based mapping (Kümmerle
et al., 2011)—the latter seems particularly appropriate for
building topological or semantic maps.

Some practical issues also need to be addressed. Reaching a
consensus in a decentralized system requires additional delays
and data sharing, which cannot be neglected for cost- or time-
constrained applications. Yet, in swarm SLAM, this consensus is
controlled by locality and effective divide-and-conquer strategies
could lessen the consensus cost (Yazdani et al., 2019). Also,
practical scenarios might require a more sparse distribution of
the swarm that would limit inter-robot communication
(Tarapore et al., 2020).

How should the information be retrieved and used to
produce maps?

Retrieving the map without centralizing the information is an
open issue in swarm SLAM. Indeed, the most intuitive approach,
map-merging, requires the individual maps to be gathered on a
single system to merge them, like in the experiment of Kegeleirs
et al. (2019). A solution could be to merge the individual maps in
all the robots and then to retrieve the map from any of them, but
this is unrealistic without the use of an external infrastructure.
Again, a mobile ad-hoc network could preserve the system’s fault
tolerance. In this case, we believe that the amount of data
transiting by each robot for sharing an occupancy grid would
be too hefty in a large environment, causing important delays. It
would also require significant storage capacity on each robot,
increasing the general cost. However, this solution might work
with abstract maps that require less data, especially when
mapping dynamic environments.

Finally, one can consider a situation in which retrieving the
map is not necessary. Indeed, retrieving the map mostly
makes sense if a human operator needs it, either for
themself or for transferring it to another robotic system.
While this is often the case, as the purpose of most SLAM
methods is precisely to build maps to be used by another
party, one could consider maps that are only useful for the
robots that built it. For example, a cleaning robot builds maps
whose sole purpose is to help the robot navigate the
environment. In swarm robotics, building a map could help
the robots in their exploration and improve their
performance. This map does not need to be accessible to
the human operators and can hence be shared, completely or
even partially, among the robots only.

5 CONCLUSION

In this paper, we have reviewed the current state of the art in
multi-robot and swarm SLAM. Swarm SLAM is currently an
emerging research topic that lacks definitions, frameworks, and
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results. We have presented swarm SLAMmethods as alternatives
to autonomously build a map in a decentralized, scalable, flexible
and fault-tolerant way. This implies a number of constraints that
we have discussed, both in their technical and economical
implications. We have then sketched our vision of future
applications of swarm SLAM as well as the main challenges in
this SLAM approach. We believe that swarm SLAM could play an
important role in time- or cost-constrained scenarios or for
monitoring dynamic environments. However, to fulfill these
goals, swarm SLAM still needs appropriate, distributed data
sharing strategies, both among robots and between robots and
human operators. Moreover, a thorough examination of swarm
exploration schemes could benefit to both swarm SLAM and
swarm robotics in general.
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