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A B S T R A C T   

NiTi-based alloys are one of the most well-known alloys among shape memory alloys having a wide range of 
applications from biomedical to aerospace areas. Adding a third element to the binary alloys of NiTi changes the 
thermomechanical properties of the material remarkably. Two unique features of stability and high trans
formation temperature have turned NiTiHf as a suitable ternary shape memory alloys in various applications. 
Selective laser melting (SLM) as a layer-based fabrication method addresses the difficulties and limitations of 
conventional methods. Process parameters of SLM play a prominent role in the properties of the final parts so 
that by using the different sets of process parameters, different thermomechanical responses can be achieved. In 
this study, different sets of process parameters (PPs) including laser power, hatch space, and scanning speed were 
defined to fabricate the NiTiHf samples. Changing the PPs is a powerful tool for tailoring the thermomechanical 
response of the fabricated parts such as transformation temperature (TTs), density, and mechanical response. In 
this work, an artificial neural network (ANN) was developed to achieve a prediction tool for finding the effect of 
the PPs on the TTs and the size deviation of the printed parts.   

1. Introduction 

Shape memory effect (SME) and superelasticity (SE) result in high 
demand for SMAs in various engineering areas [1,2]. They are the 
interesting engineering behavior of SMAs that can recover the initial 
shape of the deformed samples in a stress-free situation or above the 
transformation temperature. Accordingly, they widely employ in actu
ation systems or damping/vibration isolation [3–5]. Among all shape 
memory alloys (SMAs), NiTi based alloys due to some unique properties 
such as high corrosion and wear resistance, large recoverable strain 
(8%), and biocompatibility have become of interest in many industries, 
biomedical, and aerospace applications [6–9]. Adding the third element 
to NiTi gives metallurgists a powerful tool to manipulate the SMAs 
properties significantly. Transformation temperature as the key factor of 
SMAs behavior also can be modified drastically by the presence of the 
third element [10,11]. Among all possible elements can be added to 
NiTi, Hf is of big interest to engineers due to its cost (in comparison to 
other elements which may increase the TTs i.e. Zr, Au, Pt, and Pd), high 

thermomechanical stability, as well as key features of raising the TTs of 
NiTi above 100 C [12–16]. NiTiHf as a high-temperature shape memory 
alloys (HTSMAs) has a wide range of applications in different areas such 
as aerospace, oil, and automotive industries [11,16,17]. 

Beside all these unique features making NiTi alloys, a good candidate 
in many industries, high tool wear, undesirable chip, and burs formation 
make the manufacturing of the NiTi-based alloys challenging to make 
the complex shape of these alloys [18–21]. This provides a significant 
competitive advantage for the selective laser melting (SLM) as an ad
ditive manufacturing (AM) method for metallic parts that have high 
flexibility [22,23] to build complex shapes layer by layer which over
comes the aforementioned manufacturing challenges [24–31]. It’s well 
reported that the AM process parameters (PPs) such as laser power (P), 
scanning speed (v), hatch spacing (H), and layer thickness (t) play an 
important role in the thermomechanical behavior of the NiTi(Hf) 
fabricated parts. The correlation of these parameters can be defined in 
energy density (EV = P

v.H.t) impacting the behavior of the final printed 
parts [25,28,29,32,33]. However, the energy density is not the only key 
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factor and other PPs individually have an impact on the transformation 
temperatures (TTs), mechanical response, microstructure, and size of 
the fabricated parts [25]. 

Nowadays, the machine learning (ML) method has been proved a fast 
and reliable way to perform complex pattern recognition without solv
ing a physical model. Among various algorithms, Artificial Neural 
Network (ANN) is a computational model that is widely employed for 
the large database to solving complicated problems using sophisticated 
algorithm architecture [34–36]. In reality, the ANN model is a powerful 
prediction tool for discovering intricate relations between input and 
output results, especially for nonlinear relation such as welding or AM 
process [37–40]. 

Some studies have been reported the application of the ANN method 
for predicting the operational parameters and consequently optimizing 
AM processes [41]. Kwon et al. applied an ANN model for the investi
gation on the effect of laser power in the selective laser melting (SLM) 
process. They performed this modeling for 13,200 melt-pool images to 
find out how laser power can form cracks and pores determining the 
quality and the density of the printed parts [42]. This approach is fol
lowed as a convolutional neural network (CNN) approach by other re
searchers toward robust the quality of AM parts as well as gas porosity, 
crack, lack of fusion, surface finish quality [43–47]. Mehrpouya et al. also 
applied the ANN models to predict the influence of the operational pa
rameters in various laser materials processing for both metals and 
polymers [38,39,48]. In a particular study, they have developed a pre
diction model using ANN for optimizing the operational parameters in 
the additive manufacturing of NiTi alloy. The model showed a very good 
agreement between the predicted values and the experimental data with 
a rate of 97–99 % [49]. 

This paper aims to show the capabilities of the ANN model for 
optimizing the operational parameters in various manufacturing pro
cesses. This particular study investigates the influence of input param
eters, namely laser power, laser scanning speed, and hatch spacing, in 
additive manufacturing of NiTiHf high-temperature shape memory 
alloy. In particular, the ANN model is employed as a nonlinear model to 
develop the correlation between inputs and the experimental results 
including transformation temperature (TT) and the width of the printed 
samples. As a result, this model can be applied as a cheap and fast 
prediction tool for finding the optimal operational parameters in the AM 
process of NiTi alloys. 

2. Material and methods 

The vacuum induction skull melting technique was used to produce 
an ingot of slightly Ni-rich Ni50.4Ti29.6Hf20 (at. %). NiTiHf powders 
was produced via Electrode Induction-melting Gas Atomization (EIGA) 
by TLS Technique GMbh (Bitterfeld, Germany). Then, the powder was 
sieved to achieve a size distribution of 25− 75 μm. An SLM machine 
ProX200 Phenix Systems (currently 3D Systems) equipped with a 300 W 
Ytterbium fiber laser, was employed to build the parts. Printed parts had 
identical CAD sizes of 4*4*10 mm as shown in Fig. 1. The CAD files were 
then sliced into layers and multiple coupons were fabricated using 
different combinations of laser power (P), laser scanning speed (SS), and 
hatch spacing (H) which is the distance between two consecutive laser 

Fig. 1. A schematic of the SLM process.  

Table 1 
Process parameters of the fabricated coupons.  

# Power (w) Hatch Space (microns) Scan Speed 
(mm/s) 

1 100 140 200 
2 135 120 400 
3 210 120 400 
4 135 80 800 
5 175 100 600 
6 250 120 1000 
7 200 60 1000 
8 100 140 400 
9 150 60 1000 
10 150 80 200 
11 250 120 200 
12 210 80 400 
13 250 140 466.667 
14 100 60 1000 
15 250 60 1000 
16 250 60 733.333 
17 200 140 200 
18 210 120 800 
19 250 140 1000 
20 100 60 733.333 
21 100 80 200 
22 100 120 200 
23 100 60 200 
24 210 80 800 
25 250 140 733.333 
26 250 60 466.667 
27 150 140 200 
28 250 140 200 
29 250 80 1000 
30 135 80 400  

Fig. 2. Design of experiments data points. Ranges of P, SS, and H were changed 
systematically to see the effect of each parameter on the properties of the final 
part. Square and cross shapes show hatch spacing and scanning speed versus 
laser power, respectively. 
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passes. Since there was no available literature on process optimization of 
NiTiHf alloys an experiment was designed to cover wide a variety of PPs 
while keeping the number of samples at a reasonable number due to cost 
issues and difficulties in characterization. Therefore, based on our pre
vious experience with NiTi processing optimization [49,50], P, SS, and 
H were changed in the range of 100− 250 W, 200− 1000 mm/sec, and 
60− 140 μm, respectively. PPs have been presented in Table 1 and 
schematically are shown in Fig. 2. As it is evident from Fig. 2, PPs were 
chosen in a way to see the effect of one parameter while the rest is 
constant. The layer thickness (d) was constant at 30 μm for all the 
conditions. We note that PPs resulted in an energy density 
(E = P/(SS*H*d)) range of 55.5–347.2 J/mm3 to in one hand ensure 
effective melting of the powder bed to avoid porosity and on the other 
hand avoiding excessive temperature gradients, residual stresses, and 
oxidation. Argon was continuously purged inside the fabrication 
chamber during processing. The argon atmosphere resulted in a low 
oxygen level of 700 ppm and below for minimizing the impurity pick-up 
during the process. A bidirectional raster scanning strategy was chosen 
to fully meltdown the powder and create coupons as depicted in Fig. 1. 
Based on the ASTM standard, the TTs were determined by the tangent 
method from the DSC curve obtained from a Perkin-Elmer Pyris 1 Dif
ferential Scanning Calorimetry (DSC) at the heating/cooling rate of 10 
C/min in the nitrogen atmosphere. DSC was run twice for each condition 
and Af is reported from the second trial. For the size measurements, the 
top, middle, and bottom parts of the coupon were measured several 
times and the average of the measured values is reported. More infor
mation on the fabrication process can be found in [25]. 

3. Neural network solution 

3.1. The applied ANN models 

ANN model can process a large number of information or signals in 
sort of simple elements to find a direct link between input and output 
data sets. It is inspired by biological nervous systems as well as the 
human brain. In general, ANN involves two phases including the phase 
of learning and also recall. The input and output data sets are connected 
with the application of the special weight rates during the learning 
phase, then the recall phase employs one pass using the calculated 
weight obtained in the learning phase. As a matter of fact, ANN can be 
considered as a system or model which uses many neurons to generate 
one or multi-layers between input and output for solving the problem 
[51,52]. To find the optimal operational parameters in additive 
manufacturing of NiTiHf alloy, this study applied two diverse ANN 
models, namely;  

• Multi-layer perceptrons (MLP) neural network  
• Radial basis function (RBF) neural network 

For training the MLP neural network, specific algorithms were 
employed which mentioned below;  

• Levenberg–Marquardt (LM) algorithm and an adaptive learning rate 
backpropagation (BP) algorithm. 

The applied software in this study was used to train the neural 
network models using MATLAB version 2017. 

3.1.1. Multi-Layer Perceptrons (MLP) 
MLP is the most common type of neural network approach in use 

today. It has the capability to be applied for a general class of functions 
such as integral and continuous functions. In MLP, a group of neurons is 
integrated into some layers, and the first and last layers are input and 
output data respectively. The rest of the layers between them are hidden 
layers. As mentioned before, each layer receives a specific weight and 
transfer it to the next one. Fig. 3 illustrates a schematic of the MLP model 
with specified layers. The applicable formulations for the MLP model are 
mentioned as follows. Eq. (1) estimates the sum of all weighted input 
signals, then transmits to the nonlinear activation functions in Eq. (2). In 
the end, the network error is estimated through Eq. (3) based on a 
comparison between the modeling and the actual results. This process 
continues until to obtain an acceptable error for the process. 

Ynet =
∑n

i=1
Xi.Wi + W0 (1)  

Y = f(Ynet) =
1

1 + e− Ynet (2)  

Jr =
1
2
∑k

i=1
(Yi − Oi)

2 (3)  

Where Yi is the response of the neuron i̇, f(Ynet) is the nonlinear acti
vation function, Ynet is the summation of weighted inputs, Xi is the 
neuron input, Wi is the weight coefficient of each neuron input, W0 is 
bias, Jr is the error between the observed value and network response, 
Oi is the observed value of the neuron i̇. Also, the sigmoid activation 
function is used in the training and testing of models in this study [53]. 

3.1.2. Radial Basis Function (RBF) 
RBF is a class of neural networks with a wide application for solving 

Fig. 3. A schematic of the MLP model.  Fig. 4. A schematic of the RBF model.  
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various problems in science and engineering [54]. Similar to the MLP 
model, this network has three layers including input, output, and hidden 
layers, and the hidden layer includes a nonlinear activation function 
based on the multivariate Gaussian function (4), which is mentioned in 
below: 

φ(r) = e

(

− 1
2σ2

j
‖x− tj‖

2

)

(4)  

Where x is the input vector for the neuron, tj is the set of reference 
values, σj is the standard deviation (σ2 is the variance) of the function for 
each of the centers (j), and the value r (||x-tj||) is the Euclidean distance 
between a center vector and the set of data points [55]. 

Fig. 4 depicts a schematic of the RBF model that input (X1, Xn) and 
output (Y1, Yn) vectors are connected through radial basis functions. As 
can be seen, there is not a weighted between inputs and hidden layers in 
the RBF model while the link between the hidden layer and output is 
weighted [56,57]. The neurons in the hidden layer apply the functions to 
estimate various parameters as the final output resulting from the 
network. 

3.2. Neural network setup 

Two types of neural networks, including MLP and RBF models, were 
used to predicts the operational parameters in additive manufacturing of 
NiTiHf shape memory alloy. In particular, the experimental parameters, 
namely laser power, laser speed, and hatching space, were considered as 
the input parameters for the ANN models, while the transformation 
temperature and width of samples were chosen as the output of the 
models. All investigated samples in this modeling are divided into three 
groups;  

• 60 % training  
• 20 % cross-validation  
• 20 % testing 

Fig. 5 demonstrates the ANN model in this study including two 
hidden layers applied for both MPL and RBF models. This model in
cludes the process parameters (laser power, laser velocity, and hatch 
spacing) as the inputs and also transformation temperature and sample 
width in the outputs. However, it is notable that the transformation 
temperature and sample width attend to the input subset separately to 
enhance the accuracy of the neural model [49,58]. 

Fig. 5. A schematic of the applied neural network model.  

Table 2 
Energy density, actual size, and austenite finish temperatures of the samples.  

# Energy Input (J/mm3) Width (mm) Austenite Finish Temperature (℃)  # Energy Input (J/mm3) Width (mm) Austenite Finish Temperature (℃)  

1 119.0 4.72 154 16 189.4 4.5 331 
2 93.8 4.58 256 17 238.1 4.74 348 
3 145.8 4.6 332 18 72.9 4.34 258 
4 70.3 4.33 143 19 59.5 4.09 255 
5 97.2 4.61 260 20 75.8 4.38 146 
6 69.4 4.08 254 21 208.3 4.8 144 
7 111.1 4.28 276 22 138.9 4.78 150 
8 59.5 4.42 160 23 277.8 4.8 280 
9 83.3 4.26 187 24 109.4 4.41 294 
10 312.5 4.92 353 25 81.2 4.36 288 
11 347.2 5.05 378 26 297.6 4.66 363 
12 218.8 4.72 347 27 178.6 4.78 332 
13 127.6 4.51 327 28 297.6 5.05 346 
14 55.6 4.09 119 29 104.2 4.25 294 
15 138.9 4.25 304 30 140.6 4.58 239  
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4. Results and discussion 

4.1. The experimental results 

To evaluate the effect of PPs on the dimensional accuracy and TTs of 
the fabricated samples, width and austenite finish temperatures were 
measured and tabulated in Table 2. A size deviation up to 25 % was 
observed based on the condition. Energy density and scanning speed 
were the significant factors among PPs affecting the size of the parts. As 
the energy density increased, melt pools expanded and got larger, more 
powder was attached to the surrounding of the parts and as a result, 
printed samples’ width varied compared to the CAD file and increased in 
sizes. Moreover, this size deviation was linearly increased by decreasing 
the scanning speed. No significant changes were observed by changing 

hatch spacing and laser power. In term of TTs, samples could be cate
gorized into three different ranges (100 ℃ -200 ℃ ; 200 ℃ -300 ℃ ; 300 
℃ - 400 ℃) based on their austenite finish temperatures. There are 
several mechanisms affecting TTs in NiTi alloys; two of which are nickel 
content and impurity content (oxygen, carbon …). During the high- 
temperature melting process of AM, Ni evaporation is one of the main 
reasons that deplete the matrix resulting in higher TTs. In addition, 
impurities such as oxygen pick up, created Ti(Hf) precipitates which 
result in lower TTs. The general trend of TTs showed that the higher 
energy density resulted in a higher loss of Ni content from the matrix, so 
the TTs went up. It should be noted that the TTs were not solely affected 
by energy density, each individual parameter can impact the TTs. For 
example, based on the Austenite finish temperatures obtained from DSC 
curves Plotted in Fig. 6, the samples 21 (Ev = 210 J/mm3) and 12 

Fig. 6. The effect of energy density on the austenite finish temperature.  

Fig. 7. Comparison between the measured and predicted width (above) and transformation temperature (bottom) in the training/testing phase for the MLP model.  
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(Ev = 218 J/mm3) approximately had the same energy density, but the 
TTs are 144 C and 347 respectively. This showed that energy density is 
not the only reason for various TTs. Among PPs, laser power plays a 
more significant role with respect to scanning speed and hatch spacing. 
Based on the results, on the same level of the energy density, the higher 
power resulted in higher TTs. Since the focus of this paper is more on the 
modeling, a more in-depth analysis of the experimental data, as well as 
more information on the effect of PPs, can be found in [25]. 

4.2. Modeling of experimental data and results 

The results of the ANN models, including MLP and RBF models, were 
compared together according to the coefficient of determination (R2). In 
fact, the R2 index represents a linear correlation between the predicted 
and measured values. The outcomes of the MLP model including testing 

Fig. 8. The trend of testing samples for width (left) and transformation temperature (right)-MLP model.  

Table 3 
The statistical report of linear regression in the training/testing phase for width 
and transformation temperature for the MLP model.  

Networks Training Testing 

Multi-layer perceptron, MLP (Width)   
Pearson’s r 0.98967 0.98797 
Adj. R-Square 0.97816 0.9701 
Residual sum of squares 

Coefficient of Determination (R2) 
0.02981 
0.97944 

0.01012 
0.97608 

Multi-layer perceptron, MLP (TT)   
Pearson’s r 0.99266 0.98936 
Adj. R-Square 0.98447 0.97355 
Residual sum of squares 

Coefficient of Determination (R2) 
1520.60 
0.98538 

377.442 
0.97884  

Fig. 9. Comparison between the measured and predicted width (above) and transformation temperature (bottom) in the training/testing phase for the RBF model.  
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and training results for sample width (above) and transformation 
temperature-TT (bottom) are shown in Fig. 7. As can be seen, the graphs 
illustrate very good fitting lines between the measured experimental and 
predicted output data set. 

The scatter diagram in Fig. 8 shows the trend of testing samples for 
both outputs, transformation temperature and width, based on the MLP 
model. It shows how the measured and predicted data (based on the 
model) are close to each other. As a result, Table 3 provides statical 
reports with more details regards these graphs. As visible, the R2 index 
for sample width and transformation temperature are achieved by 
almost 97.6–97.8 %. 

The results of training and testing achieved from the RBF model are 
shown in Fig. 9 as well. The correlation between the measured and 
predicted results are presented with a very good fitting for sample width 
(above) and transformation temperature (bottom). In the following, 
Fig. 10 provides the trends of testing samples for both width and TT 
parameters in two scatter diagrams. The predicted results from the 
model fit closely with the experimental results. 

Table 4 provides more details related to the predicted results for the 
RBF model. It is notable that the amount of R2 index is around 98.8–98.9 
% for both outputs parameters including sample width and trans
formation temperature. This rate is only 1% higher than the MLP model, 
however, it statistically means a lot and shows a very good fit between 
the experimental data and the results achieved from the ANN model as 
well. 

5. Conclusion 

The aim of this research is to show the potential of the ANN model for 
achieving the optimal operational parameters in various manufacturing 
processes. As a matter of fact, the neural network solution can be very 
powerful in predicting, controlling, and managing laser processing and 
can be a suitable alternative to numerical and analytical models. In 

particular, this paper investigates two neural network models, namely 
MLP and RBF, to predict the operational parameters in additive 
manufacturing of NiTiHf alloy. Input parameters, including laser power, 
velocity, and hatching space, were achieved based on the experiment 
and utilized as the input for the neural network model as well. In this 
way, the performance of the models was evaluated through a compari
son between the experimental data set and the regression model. 

This study presented a reliable prediction model for estimating the 
transformation temperature and sample width based on various input 
parameters. The predicted parameters were evaluated quantitively 
using the mean error method and the coefficient of determination (R2). 
The results obtained from MLP and RBF models effectively showed a 
good fit between the experimental and predicted data which proves the 
reliability of the model for predicting the printing parameters. However, 
the RBF neural network model represented a better agreement between 
the predicted values and the experimental data set with the R2 index 
around 98.8–98.9 % for both transformation temperature and sample 
width. 
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