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ABSTRACT
The number of flat monitors from televisions, notebooks and tablets has increased 
dramatically in recent years, thus resulting in a corresponding rise in Waste from Elec-
trical and Electronic Equipment (WEEE). This fact is linked to the production of new 
high-performance electronic devices. Taking into account a future volume growth 
trend of WEEE, the implementation of adequate recycling architectures embedding 
recognition/classification logics to handle the collected WEEE physical-chemical at-
tributes, is thus necessary. These integrated hardware and software architectures 
should be efficient, reliable, low cost, and capable of performing detection/control 
actions to assess: i) WEEE composition and ii) physical-chemical attributes of the 
resulting recovered flow streams. This information is fundamental in setting up and 
implementing appropriate recycling actions. In this study, a hierarchical classifi-
cation modelling approach, based on Near InfraRed (NIR) - Hyperspectral Imaging 
(HSI), was carried out. More in detail, a 3-step hierarchical modelling procedure was 
designed, implemented and set up in order to recognize different materials present 
in a specific WEEE stream: End-of-Life (EoL) shredded monitors and flat screens. By 
adopting the proposed approach, different categories are correctly recognized. The 
results obtained showed how the proposed approach not only allows the set up of a 
“one shot” quality control system, but also contributes towards improving the sorting 
process.

1.	 INTRODUCTION
In recent decades, the volume of flat monitors deriv-

ing from televisions, notebooks and tablets present in 
Waste from Electrical and Electronic Equipment (WEEE) 
has increased dramatically (Zeng et al., 2018; Salhofer 
et al., 2011). Indeed, the continuous and rapid change in 
technologies rapidly renders devices obsolete, therefore 
proving easy to discard and replace with a newer version 
(Chancerel and Rotter, 2009; Oliveira et al., 2012; Palmie-
ri et al., 2014). However, a significant amount of valuable 
materials is contained in WEEE, and metals and/or alloys, 
precious metals, and high-quality plastics can be profitably 
recovered. Copper, aluminum, lead and zinc are the main 
valuable non-ferrous metals contained in WEEE, although 
precious metals such as gold, platinum, palladium and sil-
ver may also be detected. 

The implementation of a metal valorization action (i.e. 
recovery and recycling) at the end of an industrial process 
is a technological challenge, starting from a thorough char-

acterization of this specific material stream (Bonifazi et al., 
2018; Robinson 2009). One of the most interesting compo-
nents of WEEE is represented by Printed Circuit Boards (i.e. 
PCBs), rich in copper and potentially containing precious 
metals such as gold, silver and palladium (UNEP 2009).
Plastics are utilized in electronic equipment manufacturing 
due to their excellent properties and low-cost, with poly-
mers being lightweight, highly flexible and readily worka-
ble at low temperatures. As reported in Table 1, significant 
amounts of total generated WEEE are represented by poly-
mers (Makenji et al., 2012; Ongondo et al., 2011). Flat mon-
itors are viewed as a relatively “young” WEEE product due 
to their recent introduction onto the market. Different cate-
gories of materials may be recovered from this waste due 
to its heterogeneity. More in detail, liquid crystal displays 
(i.e. LCDs), focus of the present study, consist of several 
parts: top cover, lightbox unit (i.e. consisting of a metal 
frame, LCD glass panel, plastic frame, a number of plastic 
diffuser sheets, Perspex sheets, cold cathode fluorescent, 
reflective foil and lightbox support frame), PCB mounting 
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frame, LCD control layer (i.e. PCBs, speakers, cables) and 
back cover (Ryan et al., 2011). Table 2 shows a typical LCD 
composition in terms of materials and weight (%).

Polycarbonate (PC) or polymethyl methacrylate 
(PMMA) are found in End-of-Life (EoL) monitors and LCD 
screens (Tarantili et al., 2010; Suresh et al., 2017; Suresh 
et al., 2018). PMMA is used in monitors and screens for 
its optical clarity, high light transmission, toughness and 
high impact resistance, and both PCs or PMMAs are used 
in Light Guide Panel (i.e. LGP) manufacturing (Hwang and 
Ko, 2019). LGP is often present in EoL monitors and LCD 
screens (Lee et al., 2006; Suresh et al., 2018), as a part 
of backlight units (BLU). The identification of these plas-
tic-based fragments is therefore crucial for recycling pur-
poses, in order to obtain “waste-recovered” polymers for re-
use (Suresh et al., 2017). PMMA and optical enhancement 
films are of pure optical quality and suitable for re-use and 
alternative applications (Veit and Bernardes, 2015). The re-
covery and reuse of flat monitor optical components for 
high-end applications may also contribute towards achiev-
ing economical sustainability for small and medium recy-
cling plants (Ljungkvist et al., 2016). 

The treatment of EoL monitors and LCD screens in-
volves a series of complex activities: manual disassembly, 
removal of hazardous components (i.e. mercury-containing 
fluorescent lamps, CCFL from LCD panels) and mechanical 
recycling (i.e. size reduction and sorting stages). Typically, 
materials having a commercial value that can be recov-
ered from flat monitors include metals (i.e. zinc-coated 
steel, aluminum and cable copper content), PCBs, PMMA 
light diffusers, optical enhancement films and recyclable 
plastics ABS, HIPS and polycarbonate (Veit and Bernardes, 
2015). Indeed, heterogeneous materials such as metals, 
PCBs, electrical components and plastics were detected in 
the analyzed sample. These product ranges are of consid-
erable interest for their residual economic value in a full 
circular economy logic. More in detail, a Near Infrared (NIR) 
- Hyperspectral Imaging (HSI) based approach was applied 
to characterize materials in the analysed sample, in order to 
define quality control/sorting logics in a recycling scenario.

Due to the potential risks associated with the incor-
rect treatment of WEEE and the considerable amount of 
"resources" contained in these wastes, it is essential to en-

sure the implementation of appropriate actions in a WEEE 
recycling process, both from an economic and environmen-
tal point of view. Generally, the chemical composition and 
physical properties of a material will define the recycling 
options available. Therefore, the importance of characteri-
zation is linked to the possibility of developing processing 
steps aimed at the recovery of secondary raw materials for 
use in a range of industrial applications. The present study 
was carried out in line with this perspective.

2.	 MATERIALS AND METHODS
2.1	Samples

The samples analyzed (Figure 1) consisted of EoL flat 
monitors and screens originating from a shredding line (i.e. 
hammer mill shredder) of a WEEE recycling plant, following 
semi-automatic disassembling aimed at removing the main 
electronic components. Sample collection was performed 
by a coning and quartering procedure, followed by manual 
sorting; each collected and analyzed sample weighed 215 
g. The main components detected in the samples studies 
included Light Guide Panel (LGP) fragments, black plastics, 
metals, PCBs and electrical components and other mate-
rials (i.e. different polymers/plastics and cellulose-based 
particles). Weight percentages of the hand-sorted material 
categories are shown in Figure 1. 

In order to build the hierarchical classification model, 
the sample was split into two sub-sets: i) a training set to 
calibrate the classification model and ii) a validation set 
to validate the model. The training set was composed of 
228 particles (77% in weight of the sample), subdivided 
according to material categories: “ LGP fragments” (33 
Wt%), “Black plastics” (25 Wt%), “Metals, PCBs and electri-
cal components” (32 Wt%) and “Other” (10 Wt%), whilst the 
validation set was made up of 68 particles (approx. 23% 
in weight of the total sample). Nine hyperspectral images 
were acquired: 7 images were used for training purposes, 
while 2 images were used to validate the hierarchical mod-
el (Figure 2).

2.2	Hyperspectral imaging
HSI utilizes an integrated hardware and software archi-

tecture to digitally capture and handle spectra (Hyvarinen 

Material type Weight (%)

Metals 60

Plastics 15

Cathode ray tube (CRT) and liquid crystal display 
(LCD) screens

12

Metals/plastic mixture 5

Pollutants 3

Cables 2

Printed circuit boards 2

Others 1

Total 100

TABLE 1: Typical materials contained in a WEEE product (Makenji 
et al., 2012).

Material type Weight (%)

Ferrous 45

Plastic 21

PCBs 10

Glass 9

Non-Ferrous 3

Speaker 3

Hips 2

Sheets 2

Others 6

Total 100

TABLE 2: Typical materials contained in an LCD (Ryan et al., 2011).
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et al., 1998; Geladi et al., 2007), allowing both spatial and 
spectral information to be collected concomitantly from 
the investigated material. This information is enclosed in a 
3D dataset (i.e. the “hypercube”), in which two dimensions 
are spatial and the other provides spectral information. The 
HSI technology facilitates the study of several physical and 
chemical characteristics of a sample: different features 
can thus be analyzed according to the investigated wave-
lengths.

NIRS (Near InfraRed Spectroscopy) techniques are 
utilized to perform both qualitative and quantitative 
analysis in different fields: i.e. in the primary/secondary 
raw materials sector (Masoumi et al., 2012; Bonifazi et 
al. 2015), in cultural heritage (Agresti et al., 2013; Capo-
bianco et al., 2015), in the agricultural and food industry 
(Teixeira dos Santos et al., 2013; Kumuravelu et al., 2015; 
Tsuchikawa et al. 2015; Serranti et al. 2018a; Serranti et 
al. 2018b), in the pharmaceutical and chemical industry 

FIGURE 1: Diagram of the analyzed sample: product resulting from a milling line of a WEEE recycling plant and main material categories 
resulting from manual sorting. The composition (weight %) of the different main material categories is reported.

FIGURE 2: Digital images representing the samples used as validation set.
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(Larrechi et al. 2003; Roggo et al. 2007), in clinical appli-
cation (Gasbarrone et al. 2018; Bonifazi et al. 2018a; Cur-
rà et al., 2019) and, more generally, in analytical science 
(Pasquini, 2003).

In recent years, the use of NIR-HSI has grown rapidly in 
many sectors, including the solid waste sector (Bonifazi et 
al., 2019). In literature, different HSI-based approaches are 
proposed for plastic recycling (Ulrici et al., 2013; Bonifazi 
et al., 2015), construction and demolition waste recycling 
(Palmieri et al., 2014; Serranti et al., 2015; Bonifazi et al., 
2015; Bonifazi et al., 2017; Bonifazi et al., 2018c) and WEEE 
recycling (Palmieri et al., 2014; Bonifazi et al. 2018b). 

The novelty of the present study relies on the possibili-
ty of recognizing different material categories in a specific 
WEEE stream (i.e. shredded EoL flat monitors and screens) 
by utilizing a hierarchical modelling-based approach.

2.2.1	Hyperspectral images acquisitions and data handling
Hyperspectral imaging acquisitions were carried out 

at the Raw Materials Laboratory (Latina, Italy) of the De-
partment of Chemical Engineering, Materials and Environ-
ment (Sapienza - University of Rome, Italy). A NIR Spectral 
CameraTM equipped with an ImSpectorTM N17E (SPECIM 
Ltd, Finland), a spectrograph working in the Near Infrared 
wavelength range (i.e.1000 - 1700 nm), was used to per-
form hyperspectral image acquisitions. Spectral Scanner 
(ver. 1.2) software was used to acquire and collect hy-
perspectral data. Spectral data were then analyzed using 
PLS_Toolbox (Version 8.7, Eigenvector Research, Inc.) un-
der MATLAB (Version R2019a, The Mathworks, Inc.) envi-
ronment. 

2.2.2	Hierarchical classification procedure
The hierarchical classification procedure was set up 

based on 3 rules. In other words, three classification steps 
were performed to recognize different materials constitut-
ing the representative sample of the investigated WEEE 
(Figure 3). In the 1st classification step, LGP fragments (i.e. 
“Light Guide Panel fragments” class) were distinguished 
from other materials (i.e. “Other (1)”); in the 2nd step, “Black 
Plastic” was distinguished from “Other (2)” starting from 

the “Other (1)” class; in the 3rd classification step, the parti-
cles belonging to the “Other (2)” class were identified either 
as “Metals, PCBs and electrical components” or as “Other 
(3)”. Following this approach, each final recovered product 
could thus be forwarded to the relevant recycling lines in 
order to recover metals/alloys and/or plastics.

In order to recognize the different analyzed categories, 
a Partial Least Squares - Discriminant Analysis (PLS-DA) 
was applied for each step of the classification, according to 
a cascade detection procedure (Barker and Rayens, 2003; 
Ballabio and Consonni, 2013). An ad hoc combination of 
pre-treatment algorithms was applied to the data for each 
rule (Rinnan et al., 2009). In the 1st rule, preprocessing al-
gorithms applied were Standard Normal Variate (SNV) and 
Mean Center (MC); in the 2nd rule, the algorithm applied was 
MC; in the 3rd rule, preprocessing algorithms applied were 
SNV, Smoothing and MC. Each model was cross-validated 
using the Venetian-blinds algorithm. 

Since PC and PMMA are the most common polymers in 
LGP (Chen and Yu, 2007; Hwang and Ko, 2018), an addition-
al classification procedure was set up and implemented to 
identify polymers. Virgin PC and PMMA were used as train-
ing samples in order to recognize the polymer constituting 
LGP fragments. In this case, PLS-DA was chosen as clas-
sification method (Barker and Rayens, 2003; Ballabio and 
Consonni, 2013) and Mean Center was used as pre-pro-
cessing algorithm (Rinnan et al., 2009).

3.	 EXPERIMENTAL RESULTS
3.1	Hierarchical classification

Raw reflectance spectra used to calibrate the hierar-
chical classification model is shown in Figure 4. Validation 
set with real classes and the prediction map, as resulting 
from the hierarchical classification modelling, are shown 
in Figure 5. Figure 6 illustrates the reference map of par-
ticles. The number of pixels correctly classified (Table 3) 
was computed for each particle, according to its label, as 
shown in Figure 6. 

The hierarchical model reached a Recognition (number 
of particles correctly assigned divided by the total number 
of particles in the set) equal to 0.926, 5 particles (4 “Oth-

FIGURE 3: Flow-chart of the implemented hierarchical classification modelling. *Starting from Light Guide Panel (LGP) fragments, a clas-
sification procedure was applied to perform polymers (PC and PMMA) identification.
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er (3)” particles and 1 “Metals, PCBs and electrical com-
ponents” particles) out of 68 were not correctly classified 
(7.35 %).

3.2	Polymer identification
The image obtained, including only the particles classi-

fied as “LGP fragments”, was used as validation set to per-

form a new classification addressed at identifying polymer 
type. Literature reports (Hwang and Ko, 2018) reveal how 
LGP is mostly constituted by PC or PMMA. This fact can be 
“simply” verified comparing the reflectance spectra of two 
polymers: indeed, LGP collected spectral signatures are, on 
initial visual inspection, very similar to PMMA (Figure 7). To 
correctly assess LGP polymeric composition, reflectance 

FIGURE 4: Raw spectra of modelled classes from calibration set.

FIGURE 5: Validation set with real classes (a) and the prediction map resulting from the hierarchical classification modelling (b).

(a) (b)
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spectra of virgin PC and PMMA pellets were acquired and 
utilized to build the PLS-DA classification model.

Raw reflectance spectra of PC and PMMA classes were 
pre-processed using the mean center algorithm prior to the 
classification procedure. Classification results, in terms 
of prediction map, are shown in Figure 8. Sensitivity and 
Specificity in calibration, cross-validation and validation are 

FIGURE 6: Reference map with particle labels used to compute the 
number of pixels correctly classified for each particle.

Particle 
label Real Class Pixels correctly 

classified (%)

1 Metals, PCBs and Electrical Components 76.15%

2 Other (3) 95.11%

3 Other (3) 100.00%

4 Other (3) 98.85%

5 Metals, PCBs and Electrical Components 71.50%

6 Other (3) 99.13%

7 Other (3) 100.00%

8 Other (3) 99.51%

9 Other (3) 99.34%

10 Other (3) * 28.60%

11 Other (3) 97.14%

12 Metals, PCBs and Electrical Components 82.33%

13 Other (3) 98.74%

14 Other (3) 97.34%

15 Metals, PCBs and Electrical Components 88.52%

16 Other (3) 95.65%

17 Light Guide Panel fragments 90.33%

18 Other (3) * 19.68%

19 Other (3) 100.00%

20 Black plastics 88.48%

Particle 
label Real Class Pixels correctly 

classified (%)

21 Black plastics 90.12%

22 Other (3) 100.00%

23 Other (3) 95.80%

24 Light Guide Panel fragments 80.87%

25 Other (3) 100.00%

26 Metals, PCBs and Electrical Components 56.97%

27 Light Guide Panel fragments 83.39%

28 Metals, PCBs and Electrical Compo-
nents ***

29.05%

29 Light Guide Panel fragments 84.20%

30 Light Guide Panel fragments 90.14%

31 Other (3) 95.10%

32 Other (3) 92.08%

33 Other (3) 98.89%

34 Other (3) 100.00%

35 Black plastics 84.95%

36 Other (3) 99.15%

37 Black plastics 83.25%

38 Black plastics 81.98%

39 Black plastics 89.53%

40 Black plastics 82.85%

41 Light Guide Panel fragments 86.39%

42 Other (3) 99.64%

43 Metals, PCBs and Electrical Components 69.26%

44 Other (3) 100.00%

45 Black plastics 90.92%

46 Light Guide Panel fragments 83.35%

47 Light Guide Panel fragments 87.50%

48 Black plastics 90.75%

49 Other (3) ** 8.83%

50 Metals, PCBs and Electrical Components 91.93%

51 Other (3) * 43.77%

52 Other (3) 100.00%

53 Metals, PCBs and Electrical Components 71.63%

54 Metals, PCBs and Electrical Components 88.24%

55 Other (3) 99.29%

56 Other (3) 62.42%

57 Other (3) 92.60%

58 Other (3) 92.64%

59 Black plastics 80.74%

60 Other (3) 98.81%

61 Metals, PCBs and Electrical Components 54.37%

62 Other (3) 96.97%

63 Metals, PCBs and Electrical Components 90.82%

64 Metals, PCBs and Electrical Components 81.83%

65 Other (3) 99.72%

66 Black plastics 88.54%

67 Black plastics 85.50%

68 Other (3) 99.96%

* Misclassified as “Metal, PCBs and Electrical components”, ** Misclassi-
fied as “Black plastics”; *** Not Classified - “NC”

TABLE 3: Number of pixels correctly classified computed for 
each particle, reported in Figure 6.
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shown in Table 4: the built model identifies only PMMA as 
LGP constituent.

4.	 CONCLUSIONS
The present study was carried out with the aim of rec-

ognizing different categories of materials present in EoL 
milled monitors and flat screens using NIR-HSI techniques. 
Three classifiers were built to identify “Light Guide Panel 
fragments” (LGP), “Black Plastics” and “Metals, PCBs and 
electronical components”. A hierarchical classification mod-
el was set-up and implemented, facilitating identification of 
the target categories in each step.

 Promising results in classification were achieved. The 
presence of a few misclassified pixels is likely due to light 
scattering phenomena, sample surface heterogeneity and 
a possible presence of impurities. In order to improve the 
classification, a “machine vision” logic capable of assign-
ing only one of the available classes according to a set 

threshold should be implemented. The logic to be used for 
thresholding should be based on the correctly assigned 
pixel percentage in each particle domain (e.g. correctly as-
signed pixels > 50 % of the total pixels included in the par-
ticle domain). Therefore, only one class could be attributed 
to each object in the image to be predicted.

FIGURE 7: Raw spectra of virgin “PC” and “PMMA” polymers compared with LGP spectral signatures.

Class Sensitivity Specificity

Calibration
PC 1.000 1.000

PMMA 1.000 1.000

Cross-validation
PC 1.000 1.000

PMMA 1.000 1.000

Validation
PC - 0.133

PMMA 0.866 -

TABLE 4: Performance indicators for PLS-DA model classifying 
“PC” and “PMMA” polymers.

FIGURE 8: Reference map with particle labels used to compute the number of pixels correctly classified for each particle.
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Additionally, HyperSpectral imaging in the NIR range 
was used to identify Light Guide Panel (LGP) fragments 
and subsequently recognize the constituting polymer type. 
An automatic NIR-HSI based recognition system of poly-
carbonate (PC) and polymethyl methacrylate (PMMA) ap-
plied to LGP fragments was developed. More in detail, Par-
tial Least Square Discriminant Analysis (PLS-DA) method 
was used to set up the classification, starting from virgin 
pellets used as training set. All LGP fragments were cor-
rectly distinguished from the other particles. All LGP frag-
ments were classified as PMMA, which, assuming that only 
one polymer constituting the analyzed LGP, is a reasonable 
finding. The results obtained represent a meaningful start-
ing point for the implementation of a fast, non-invasive and 
reliable procedure for use as a driving force in the separa-
tion and quality control of materials originating from spent 
flat monitor waste stream. 

The possibility of conducting a full quality check of 
materials throughout the entire chain of the recycling plant 
would likely contribute to the development of “on-line” qual-
ity control strategies and facilitate the issuing of material 
certification directly on site. The proposed approach fea-
tures the advantages of being rapid, non-destructive and 
low cost. The reduction of processing costs is an impor-
tant goal to pursue in the secondary raw materials sector, 
in which the use of expensive devices should be avoided in 
order to yield an efficient and economically feasible recy-
cling process. The implemented procedure may be profita-
bly employed to set up on-line strategies aimed at boosting 
the efficiency of recycling processes, reducing costs and 
improving the “final quality” of recovered products. Finally, 
if fully implemented, the proposed NIR-HSI approach would 
afford the possibility of developing a system capable of rec-
ognizing a series of different materials in a WEEE stream, 
suited to use not only as an analytical core with which to 
perform quality control, but also as a sorting engine.
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