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Abstract

We study statistical properties of the process Y(#) of a passive advection by quenched random layered
flows in situations when the inter-layer transfer is governed by a fractional Brownian motion X(#) with
the Hurstindex H € (0,1). We show that the disorder-averaged mean-squared displacement of the
passive advection grows in the large time ¢ limit in proportion to 2>~ , which defines a family of
anomalous super-diffusions. We evaluate the disorder-averaged Wigner—Ville spectrum of the
advection process Y(f) and demonstrate that it has a rather unusual power-law form 1/f3>~ witha
characteristic exponent which exceed the value 2. Our results also suggest that sample-to-sample
fluctuations of the spectrum can be very important.

1. Introduction

The power spectral density of a time-dependent stochastic processes Y(#) is a meaningful feature of its spectral
content which describes how its power is distributed over frequency. For stationary processes, it is usually
defined as the time-average of the form

2

}’ ( 1 )

where the symbol E{...} here and henceforth denotes the expected value with respect to different realisations of
the process Y(¢). For non-stationary processes, however, the expression given in (1) may not make sense and even
thelimit T — oo on the right hand side of it may not exist, so that one has to seek other meaningful
interpretations of the power spectral density (see e.g. [ 1-8]). Although no unique tool exists for performing a
time-dependent spectral analysis of non-stationary random functions, one of the physically plausible
approaches [3, 4] consists in using the time-averaged functional

1 T
Wr = lim — dt W(f, 1), 2
G TEIOICTJ; (f> 1) ©)

1 T .
= 1 — lft
S(f) TlgrgoTE{U; dt eV Y (¢)

where W(f, t) is the Wigner—Ville spectrum

W(f,t)= L/:OO dre 7 E{Y(t + %)Y(t - %)} 3)

The functions Syin (1) and Wyin (2) and (3) become identical, once Y(¢) is stationary.

Many naturally occurring processes, as well as many processes encountered in engineering and technological
sciences, exhibit power spectra of the form ~A /f®, where A is an f-independent amplitude. The characteristic
exponent & may be as small as & = 1 in the case of flicker noise [9] or standard Sinai diffusion [10, 11], & = 2 in
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the paradigmatic case of Brownian motion [6, 9]” and may even exceed the value of 2, e.g. for the Wigner—Ville
power spectra in (2) and (3) of a super-diffusive fractional Brownian (fBm) motion, for which one has

« = 2H + 1[4]. While the examples with &« = 1 or v > 2are very rare, there exist numerous processes for
which the power spectrum is a power-law function with 1 < o < 2. Few stray examples include electrical
signals in vacuum tubes, semiconductor devices and metal films [1, 9]. More generally, such a behaviour is
observed in sequences of earthquakes [ 16] and weather data[17], in evolution [ 18], human cognition [19],
network traffic [20], fBm motion with stochastic reset [21] and even in the distribution of loudness in musical
recordings [22]. Recent experiments have also revealed such a behaviour of spectra for transport in individual
ionic channels [23, 24], electrochemical signals in nanoscale electrodes [25], bio-recognition processes [26] and
intermittent quantum dots [5, 27]. Many other examples and unresolved problems have been discussed in [5,
27-30]. A general and rather exhaustive overview of a variety of anomalous diffusion processes can be found in
recent [31].

In this paper we discuss a physical model with a super-diffusive dynamics and calculate its Wigner—Ville
power spectral density defined in (2) and (3), which is shown here to exhibit a power-law with an exponent «
exceeding 2. We focus on a stochastic passive advection process Y(#) in the presence of quenched, random
layered flows. The model has been introduced originally by Dreizin and Dykhne [32] for the analysis of
conductivity of inhomogeneous media in a strong magnetic field, and by Matheron and de Marsily [33] for the
analysis of transport of solute in a stratified porous medium with flow parallel to the bedding. Another relevant
instance of this model concerns a random transport in microtubule networks [34]. Subsequently, different facets
of this model have been analysed in a great detail (see, e.g. [35—43]), establishing also a link, on a mathematical
level, to the well-known models of statistical mechanics such as diffusion in presence of sources and sinks, spin
depolarisation in random fields, self-repulsive polymers, and an electron in a random potential (see [39]). The
model has been also generalised to study dynamics of more complicated objects, e.g. flexible polymers, subject to
such velocity fields (see, e.g. [44—49]). While in the original settings in [32, 33] a random motion X(¢) in the
direction perpendicular to the layered velocity fields was supposed to be diffusive, these latter works [44—49]
provided some insight into the statistical properties of the process Y(¢) for anomalous inter-layer diffusion. In
particular, when X(¢) is a standard diffusion, one finds the super-diffusive behaviour of the form
(E{Y?%(t)}) ~ t*/2for the displacement along the direction of the flows, where the angle brackets here and
henceforth denote averaging with respect to the distribution of the flow velocities. For a tagged bead of an
infinite Rouse polymer, an even stronger super-diffusion has been predicted [44], (E{Y?2(t)}) ~ t7/* Here, we
consider a more general case when X(#) is a fBm motion with the Hurst exponent H, (0 < H < 1), and derive an
H-parametrised family of super-diffusive laws for (E{Y?2(¢)}) and the corresponding family of the Wigner—Ville
power spectrain (2), (3) of the form (Wy) = A/f* with o > 2.

The paper is outlined as follows: in section 2 we describe our model and introduce basic notations. In
section 3, we calculate the disorder-averaged mean-squared displacement along the Y-axis and also quantify its
sample-to-sample fluctuations by analysing the coefficient , of variation of the corresponding distribution of
E{Y?2(t)}. We show that for the Hurst index H > 0.22, the coefficient 7, of variation is less than unity, meaning
that the sample-to-sample fluctuation are significant but their overall effect is not dramatic. On contrary, for
0 < H <0.22, 7, exceeds unity which implies that the standard deviation becomes larger than the mean value.
Therefore, for such H, one expects the sample-to-sample variations of E{ Y2(¢) } to become much more
important. Further on, in section 4 we turn to the central point of our analysis—calculation of the disorder-
averaged Wigner—Ville spectral density Wyof the passive advection process. We show that the latter exhibits the
frequency f-dependence of the form A/f>~ ¥, i.e. has an exponent o which exceeds the value 2. Here we also
attempt to quantify the effective broadness of the distribution of the realisation-dependent value of Wy. To this
end, we consider the behaviour of Wy for a finite observation time T'and zero frequency, f = 0. We show thatin
this particular case, the coefficient of variation of the distribution grows (as a power law) with T, which signals
that the sample-to-sample fluctuations are most important in this limit. Next, in section 5 we concentrate on the
representation of the Wigner—Ville spectrum in form of an Ising-type chain of ‘spins’ 0 and analyse the
behaviour of the effective time-dependent couplings Jj i (f) between the ‘spins’ o and oy . Finally, we conclude
in section 6 with a brief recapitulation of our results and outline the perspectives of further research.

7 Note that while a = 2 is a valid result for Brownian motion, the observation of the A /f* law alone does not imply that one necessarily deals
with the standard diffusion. The A/f*law holds for the finite- T power spectra in (1) of super-diffusive fractional Brownian motion with the
Hurstindex H > 1/2[7], super-diffusive motion on a random Manhattan lattice [12], anomalous scaled diffusion [8], a variety of the so-
called diffusing-diffusivity models [13] and also for the running maximum of Brownian motion [14] and diffusion in periodic Sinai chains
[15], to name but a few processes. The amplitude A in the first four examples is, however, ageing, i.e. it is dependent on the observation

time T.
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Figure 1. A realisation of a pattern of random layered flows. A particle undergoes a fractional Brownian motion along the X-direction
and is passively advected along the quenched random flows in the Y-direction.

2. The model

Dynamics in our two-dimensional model system, which is depicted in figure 1, obeys the following rules:

Along the X-axis, a particle undergoes an unbiased random motion. This random motion is the so-called
fBm motion [50, 51], such that a given realisation X(¢) of the process is formally defined as a stochastic integral
with respect to the white noise measure dB;:

X@) = ;I:fo dB ((t — S)H71/2 _ (_S)Hfl/Z) n ft 4B (t — S)HI/Z:I 4)
I'H+ 1/~ , ,

where H € (0,1) is called the Hurst index. This is a Gaussian process with zero mean and covariance

E{X(1)X(1)) = é(tEH g P, )

The standard Brownian motion with independent increments is recovered for H = 1/2. When H = 1/2, the
increments are correlated so that for H > 1/2 if there is an increasing pattern in the previous steps, then it is
likely that the current step will be increasing as well, resulting ultimately in a super-diffusive motion. For H < 1/
2 the increments are negatively correlated, which entails a sub-diffusive motion.

Along the Y-axis, a particle is subject to quenched random flows. More specifically, we mark along the X-axis
the points Xy = x k, k = 0, 1, £2,... (dashed lines in figure 1), where x is the distance between adjacent
points. For simplicity, we set this distance equal to unity. At these points we have flows, depicted by arrows in
figure 1, with a velocity which is constant along the Y-axis (this constant is set equal to 1) and with k-dependent
orientation described by a quenched random variable o, = +1, such that oy = +1 corresponds to a flow in the
positive Y-direction (positive velocity), and oy = —1 corresponds to a flow orientated in the negative Y-
direction. We concentrate here solely on the case when o-s are delta-correlated and when there is no global flow
in the system, i.e. when (o;) = 0.

Next, we assume that when the particle appears in-between the neighbouring points X, it does not
experience any drift in the Y-direction. However, once it arrives at any X, it is passively (and instantaneously)
advected on a fixed distance y = 1 along the direction defined by the arrow (flow) at this point. Consequently,
the current position of the particle along the Y-axis obeys

Y1) = Y MIX®lo (6)

k=—o00
where Ni[X (¢)]is a trajectory X(f)-dependent random variable—the so-called local time [52, 53]—which
measures how many times within the time interval (0, ) the point X has been visited by X(#). This random
variable can be formally represented as

Nipxn = [ " dr sk — X(), %)

where &(...) denotes the Dirac delta-function.
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3. Disorder-averaged mean-squared displacement of Y(#)

We analyse first the mean-squared displacement of the particle along the Y-axis. Thanks to (6), we can formally
write this average as

oo

E{Y*(0} = > > oowB{NIXOINe[X (D]} ®)

k=—o00k/=—00

In order to calculate the expected value of the product of two local times taken at two different positions in space,
we need to know the two-point probability distribution function for the fBm. The probability

P(X(7)|m; X (13)|m; 0]0) that a fBm, starting at the origin, appears at position X(7;) at time moment 7; and at
position X(7,) at time moment 7, (7; and 7, being unordered) is given by

P(X ()75 X () |75 0]0) = !

21— g?

2 2
exp[_ T (XT%(’? RAEaRE X(:;f’y)ﬂ v
where gis the correlation coefficient
_ BX@WX0)) 1"+ "~ n — ol 10)
i arfri
Since |71 — 74| < | — m|F, wehave that 0 < g < 1. Therefore, by using (9) we readily find that
E{MIXOINkIX ()]} = j;t dn ]: dn, P(k|7i, K'|7, 0]0). €3))

The above expression represents the desired two-point correlation function of the local times of a fBm at two
different (or coinciding) points taken at the same time moment t. By inserting (11) into (8), performing the
averaging over the distribution of { 5} } and summation over k, (as well as appropriately changing the integration
variables), we get

E{Y20)) = X2 BINIXON)

t2 2H
fo f \/ ¢2(Xb %)

x 05] 0, exp| — b — P (12)
T 200 = 02, o)
where
2H 2H 2H
x4+ x X — X
P(x1, x) = = 2 I lHl 2 <L (13)

2x; " x;

and 65(...) is the Jacobi’s theta function. Turning to the limit t — oo, we find

93(0, exp( e ]] AL P oy

202H(1 — 2 (3, %)% I — xlf

(14)

where the symbol o(¢) means that the omitted terms grow with ¢ slower than ¢/, Note that taking into account
only the leading in the limit # — oo term in the right hand side of (14), is tantamount to converting the
summation over k into an integral—by using the Euler—Maclaurin summation formula—and discarding all the
correction terms Consequently, we arrive at the following asymptotic large-t form

2 2 H _dxdx 2-Hy _ \/Z 2 A 2-H
(BY2(1)}) = ff T o) = S s o) (15)

which represents the desired result on the H-parametrised family of anomalous laws describing the passive
advection of a fBm by random layered flows. Note that forany H € (0, 1) the disorder-averaged mean-squared
displacement exhibits a super-diffusive behaviour. In particular, for H = 1/2 we recover the result

(E{Y?%(t)}) ~ t*/? obtained previouslyin [32, 33]. For H = 1/4, we find an even stronger super-diffusive law
—(E{Y?(t)}) ~ t7/* obtained earlier in [44] for the dynamics of a tagged monomer in an infinite Rouse
polymer in the presence of such random flows. In general, we observe that the smaller H is, the more pronounced
becomes the super-diffusive behaviour of Y(¢), which is a simple consequence of the fact that for a more spatially
confined sub-diffusion, the particle spends more time in a given layer, and hence, is advected on larger scales.

4
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Figure 2. Disorder-averaged mean-squared displacements along the flow direction (panel (a)) and in the direction perpendicular to it
(panel (b)) for different values of H. In both plots the violet colour corresponds to H = 1/3, green—to H = 2/5,cyan—to H = 3/5
and orange—to H = 2/3. Straight lines (in the log-log scale) in panel (a) present the power law (E{Y2(¢)}) o t>~H,(15), whilein
panel (b)—thelaw E{X2(¢)} o t2H,(5).

In figure 2 we depict the disorder-averaged mean-squared displacement along the flows (panel (a)) and in the
direction perpendicular to it (panel (b)). Here, the symbols represent the numerical data, while the straight lines
in panel (a) correspond to the asymptotic behaviour given by (15), and the straight lines in panel (b)—to the
definition in (5). We observe a very good agreement between our theoretical prediction in (15) and the
numerical results. Further on, in figure 3 we depict realisations of individual trajectories of a particle moving
randomly in quenched random velocity fields for two values of H: H = 1/3 and H = 2/3, for three realisations
of random flows (different colours).

3.1. Sample-to-sample fluctuations of the mean-squared displacement

Here we address the question of the sample-to-sample fluctuations of E{ Y?(¢)} as defined in (8) for different
realisations of the patterns of random flows. In order to quantify these fluctuations, we focus on the variance of
E{Y?(t)}, which is defined as follows

Var,(B{Y?*()}) = (E*{Y*(1)}) — (E{Y*(D)})?
=200 0o pk EHMIX (OINKIX (D]} (16)
We turn to thelimit + — 0o and concentrate on the leading term which dominates the large-time asymptotic

behaviour of the variance. It is plausible then to convert the infinite sums in (16) into integrals, which can be
readily made dimensionless by an appropriate change of the integration variables. In doing so, we get

2 _ Ak 4—2H
Var,(B{Y*(#)}) T t , 17)

with 7, being the (time-independent) coefficient of variation of the distribution B, (E{Y2(¢)}) of E{Y?2(¢)}.

This coefficient is defined by
Var,(E{Y?(1)})
y= | B D) (18)
T RO

A straightforward calculation allows us to write the following expression for v, :

1/2
A -HC-H/ et dadxdesdsg
V=T (fofofofo Ja ] ’ ()

where g, for a given H, is a numerical factor defined by
q= (%) 4+ (ox3) + (oxa)™ + (x4x)*H

1
— Z(Xle + T + x4+ T — g — P — Jxs — xR (20)

The coefficient of variation -, is a meaningful characteristic of the effective broadness of the distribution
showing how E{Y?(¢)} fluctuates from sample to sample. Being unable to perform exactly the four-fold integral
(19) entering the expression for ,, we evaluate it numerically and plot it as a function of the Hurst index in
figure 4. We observe that -, is a monotonically decreasing function of H which perfectly makes sense because for
afixed time interval (0, f) the span of the trajectory X(#) is a monotonically increasing function of H. Further on,

5
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Figure 3. Realisations of particle trajectories for H = 1/3 (left panels) and H = 2/3 (right panels). Panels (a) and (b) depict
realisations of the X-component of the trajectories as a function of time ¢, while the panels (c) and (d) present the evolution of the Y-
component. Panels (e) and (f) present a typical realisation of a trajectory on the (X, Y)-plane.
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Figure 4. The coefficient v, of variation of the distribution function of the random variable E{ Y2(¢)} as a function of H.

we notice that v,(H) is less than unity for most of the values of H in the interval (0, 1) meaning that sample-to-
sample fluctuations here are not very significant. The coefficient of variation exceeds slightly 1 (such that the
standard deviation becomes greater than the mean value) only for H < 0.22; note that
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7,(0) = (4/ 3)1/4 ~ 1.075. Only in this region, i.e. for very spatially confined sub-diffusive processes X(¢), the
sample-to-sample fluctuations may become rather significant (see, e.g. [54, 55]).

4. Disorder-averaged Wigner—Ville power spectral density Wy

We turn next to the calculation of the corresponding power spectral density of the passive advection process Y(¥).
To this end, it is first expedient to somewhat simplify these expressions. We formally rewrite the covariance of
the process Y(¢) as

B(Y@Y(@®) = [ "dn ) * dn Q(n, ), 1)
with
Qmm =3 Y oowEsGk - XK — X(m). (22)
k=—o0k’=—00

The Wigner—Ville spectrum of the process Y(¢) then reads
t+7/2 t—7/2
W(f, )= f dre ¥ f dri f dn Q(7i, 1)

= f dTe"ﬁf dT]f dn, 0 (t + - - 7'1) 0(1‘ - % — 7'2) Q(n, ™), (23)

where 6(...) denotes the Heaviside theta-function. In (23), we can straightforwardly perform the integral over 7
to get

R Y A A (e O A L) ()
Inserting the latter expression into (3) and performmg the integration over t, we find
Wf: Ll — d’]‘lf dT2 ( *Tl+7—2)
2f2 T—oo T
x (eHT=m — e’” T=m)2 Q(m, 7). (25)

The expression in the right-hand-side of (25) is still quite complicated since it involves oscillating functions of 7,
and 7, and the integration limits are mixed. We notice then that the existence of the limit in the right-hand-side
of (25) implies that the two-fold integral

[T an [T an e(T - m)(eif(w — e T2 Q(r, 1) 26)
0 0 2

grows linearly with Twhen T — o0. In turn, this means that the Laplace transform of the expression in (26),
(with respect to T'with the Laplace parameter A > 0), diverges as 1/ in the limit A — 0. This permits us to
formally rewrite (25) as

o0 o0
W, = 4lim 7f dri [ dny e YOm0 Q(r, ), 27
T [ an Qm, ) 27)
which appears to be more convenient for further calculations.

We focus next on the disorder-averaged Wigner—Ville spectrum (Wy). The disorder-averaged function Q(7;,

T,) reads

(Q(1, m)) = ! 05| 0 exp( In — nl* ) (28)
L 12 3 > - .
27771 7'2 1 — g2 2 — %)

Since we are interested the behaviour in the limit A — 0, we have to focus on the asymptotic behaviour of the
Jacobi theta-function in the limit 7 — oo and 7, — o¢. In this limit the expression in the exponential in the
theta-function tends to zero such that we find that, in the leading order, the theta-function behaves as

_ _pH H
6’3(0, exp( leTl 2HT2| - ]] ~ yJ2m(l — gz)(i] , (29)

2ri7 Ty (1 — g9) |7 — 7l

which yields
1

_ (30)
mh - Tz|H

(Q(n, m) ~
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Inserting this expression into the two-fold integral in (27) and performing the integrations, we find

. . T — H)sin (ﬂ)
—if (i—m)—3(n+n _ |2 2 /1
fo dﬁfo dr, e/ 3 (Q(, 7)) = ,/; = L+ oW, (31)

where the symbol O (1) means that the omitted terms are constant in the limit A — 0. Inserting the latter
expression into (27) and taking subsequently the limit A — 0, we obtain the following result for the disorder-
averaged Wigner—Ville power spectral density:

5 I'(1 — H)sin (%)

wy) = |2 . (32)
I \/; FiH

This result is the central point of our analysis and defines an H-parametrised family of super-diffusive spectra

characterised by the exponent & = 3 — H > 2forany0 < H < 1. Notice also that the H-dependent overall

factor is a positive definite, monotonically increasing function of H. We further note that for the case when X(#)

is a standard Brownian motion, we have

1
(Wp) = 12 (33)

while for H = 1/4 we get

(W) = %, @ = %r@/@ ~ 0.374, (34)

which particular case corresponds to the dynamics of a tagged bead in an infinite Rouse chain.
4.1. Sample-to-sample fluctuations of the Wigner—Ville spectrum at zero-frequency

Consider the following finite-time averaged Wigner—Ville spectrum in (2) and (3) at a finite observation time T
(such that we drop thelimit T — oo in (2)) and denote the resulting expression as W}T). Then, the disorder-

averaged W}T) reads
(Wib) = *zflszo dn fo dn, QT — 7 — m) (/T — e FT-2)2(Q(r, 7)), (35)

with (Q (7, 7)) given by (30). In the limit f — 0 the integrand in the latter expression stays finite. Performing
next the change of the integration variables 7 = Tx;, 7 = T, we realise that the asymptotic behaviour of the
finite-time disorder-average Wigner—Ville spectrum follows

(WY ~ T'-H Wy(H), (36)
where U, (H) is the function

1 o0 b 9(2 —xl—xz)(Z—xl—xz)z
V(H)=— dx; dx;
l( ) vV 8w f(; 1fO ? |X1 — X2|H

9—H+7/2
- . (37)
~JT(1 — H)2 - H)Y3 - H)4 - H)
Notice that forany0 < H < 1 the disorder-averaged (W{") grows as a power law of the observation time T.
For H — I theexponent1 — Hin the observation time vanishes while the overall factor ¥(H) diverges.
Next, in order to define the coefficient of variation in this zero-frequency limit, we have to evaluate the
variance of the finite-time Wigner—Ville spectrum:

Var(WiD) = (WiD)2) — (WiP)2, (38)
To this end, introducing an auxiliary function
g, m, T) = 0T — 7 — m) (el =M — eV (T=m)2, (39)
we formally express the variance as
Var(W) = ﬁ fo Y dn - fo " dn (s 7 TV (T3 T TR ) (40)
where
R(T,...,1) = X P(k|7i, k|7, 0|0) P (k|T3, k7, 0]0) + 3=, P(k|7i, 1|72, 00)P (k| 73, 1|73, 0]0)
+ 2ok P(KITi, kT2, 0|0) P (11|73, 1|74, 0]0). (41)
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The above summations can be carried out precisely as it was already done in our previous calculations which lead
us to (28). Consider, for the sake of simplicity, the first sum on the right hand side of (41). It is straightforward to
show that

05(0; exp(—Bi, — Bsy))

P(leb k|7—2) 0|0)P(k|T3, k|7'4, Olo) ~ > (42)
CmArnnm)I1 — g2(1, 7)1 — §2(7 )
where
1 n— 7
B;; = s 43
7 1 — g; 2(7',7'1)2H ( )
and

05(0; exp(— By — Bsy)) = |————. (44)
3 12 34 Blz T B34

Other sums can be tackled in essentially the same way.
Noticing next that in the limit f— 0 the integrand in (40) stays finite, we find

Var(Wi) = f dr - f dr 0T — 7 — WOQT — 75 — 7)

x QT — 11 — »)?QT — 5 — 7)*R(Tp,...,To). (45)

Similarly to the analysis of the mean value (36), here we perform the following change of the integration
variables: 7= Txj j = 1,....,4, which permits us to cast the variance into the form

Var(W§") = T6-3H0,(H),

with U,(H) being a dimensionless function of the Hurst index H. Combining (36) and (46), we conclude that the
probability density characterising the finite-time Wigner—Ville spectrum at zero-frequency has a coefficient of
variation v, ~ T?~1/2, implying that the distribution broadens with T'and the sample-to-sample fluctuations
become substantially more important. However, we are not in position to determine the coefficient of variation
for finite f > 0 here. In principle, we expect that similarly to what happens with a super-diffusive fBm, 7, will
attain a finite value in the limit T — oo (see [7]). This analysis goes beyond the scope of the present work and will
be published elsewhere.

5. Effective couplings in the Ising-like model representation of the Wigner—Ville spectrum

In this last section we represent the Wigner—Ville spectrum Wras a Hamiltonian of an Ising-like chain of ‘spin’
variables oy, (which prescribe the directions of the flows), and analyse the form of the effective couplings in this
representation. Taking advantage of our previous results, we have that the Laplace-transformed over the
observation time T power spectral density admits the following form

Wy = llm Z Z Jiw (N oo, (46)

k, ook!=—00
where the couplings Ji i (\) are defined by

e f(m—m)—A(M+m)/2

Jok (N =

A d7'1
?ﬂfo f H\/f

g koK 1 ko (K)?
— == - —| = 47
8 eXp[ 2(1 — gz)(ﬁ’ rﬁ’) 2(1 + g)(rle M T3 ]] @7

By noticing that J; y()\) are evidently real-valued, even functions of f, we can also rewrite (47) in the form

A dn At
b= [0 H\/—COS(f(Tl—Tz))e k2

1-g°

2
g k 14 1 k? (k")?
xexp|l-———|— - —| - ———|— + , (48)
p( 2(1 — gz)(TlH T? 21+ 9) 7'12H T%H
which is somewhat easier to handle. Still, we are able to determine Ji i/(\) for arbitrary k and k” only for the
Brownian motion with H = 1/2. For arbitrary H, it turns possible only to determine Jj x ().
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Figure 5. The rescaled couplings Ji x(\) /Jo,0 (M) for the Brownian motion X(2); see (49). Left panel: f = 5 - 102, right panel:
f=5-10"%inboth the figures \ = 5 - 10>

5.1.Particular case H = 1/2

Itis expedient to get first some idea on the form of Ji j/(A). This can be done in the special case H = 1/2 in which
the integrals in (48) can be performed exactly. After straightforward calculations, we find that for H = 1/2 the
couplings in (46) are given explicitly by

/2 (e V2 g e IKI2X) R A e

7812 iy JA—2f |

which expression holds for any value of the parameters f, A, kand k. Note that Ji ;/(\) are real-valued functions
and we have chosen the form in (49), which involves the unit imaginary number i just for the sake of
compactness. Note, as well, that Ji ;/()\) are oscillatory functions of |k — k’| with a period of oscillations ~1 / \/}
in thelimit A — 0. In figure 5 we show the couplings J,x(\) as functions of k and k' for a fixed frequency f. Quite
generally, Ji ;s () reach their maximal values at the origin, i.e. for k = k/ = 0, and vanish for large kand k’. Itis
evident from figure 5 that the decay of the couplings is spatially anisotropic, with k = k’ being the direction of a
slowdecayand k = —k’—the direction of a fast decay. Upon decreasing the frequency, the spatial dependence
of the couplings acquires further anisotropic structure, as illustrated in the right panel of figure 5.

Several points have to be emphasised.

First, we notice that the result in (49) permits us to reproduce (32) in the particular case H = 1/2.Indeed,
noticing that (o op) = & ¢, we have

Jow(A) =

(49)

(Wp) = /1\113)220:,30 Jek(N)

JA2+M2+4f2[ F] |
1+2

1—e‘m Efs/2

= lim

A—0 12 X + 4f?

which is precisely our result in (33), obtained by taking into account only the leading asymptotic behaviour of
the Jacobi theta-function. This means, in turn, that the arguments used for the derivation of the result in (33) are
correct.

(50)

Second, we notice that taking the limit A — 0 and performing the summation operations can not be
interchanged. Indeed, for any fixed k and k" we have limy ¢ Jy x(A) = 0, which signifies, in turn, that for small A
the sums in (46) are dominated by the terms with large k and k'. Further, since J; x/()\) are linked to the
correlation function of the local occupation times at two different points, they depend simultaneously on both
the distances |k| and |k’| from this sites to the origin (the starting point of the trajectory X(#)) and also on their
relative distance |k — k’|. In these dependences, which are simple exponential functions for H = 1/2, the
characteristic decay of Ji y(\) with |k — k’| depends on both fand A and here we can safely set A = 0. On
contrary, we have to keep the dependence of the characteristic decay length on A in the terms dependent only on
kand k' (the sum of two exponential functions in the first factor in the right hand-side of (49)).

5.2. Arbitrary H € (0, 1)
We turn next to the general case of an arbitrary H € (0, 1) focussing on the diagonal terms For k = k/, the
couplings Ji k(M) in (48) read

10
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cos (f (1 — m))e Atm)/2

A © dn e dn
AN = —— - -
Tk N Mfzfo Tfffo T

_ _pH
Xexp( In = 7l kz). (51)

21 — gy

Itis convenient next to change the integration variables 7, = 7{ and 11 = ¢/ A and rewrite J; x (A) in (51) as

N gy [ dg (i _ )
T =" [ 0o | TNk STA

11— &P
2(1 — ¢%(1, &M

where ¢(1, £) is defined in (13). Inspecting the integral over d¢, we note that the cosine term oscillates heavily
when fis kept fixed and A — 0, which means that in this limit the integral over d¢ is concentrated in the vicinity
of ¢ = 1,i.e.for 7, ~ 71. Expanding then ¢(1, £) in the vicinity of £ = 1

61,6 =1— %u — PR 4 o((1 - 6P, (53)

x e 0+ 2exp ( (k)\H)Z), (52)

aswell as other £-dependent functions in the kernel and taking into account only the leading in this limit terms,
we find that the integral in (52) can be approximately rewritten as

N)\ZH—I o _(k)\H)Z 00 d¢ (i B )
JATONES 2Wf2f0 6 eoexp( o )d¢ I el pen - ¢) (54)

Performing then the integral over d¢, we find
. TH
ra —H)sm(T) A\ foc d—¢e*‘?ex _(k)\H)Z
T 3y pH P 202H ’

which form often arises in the analysis of various physical problems via the optimal fluctuation method (see, e.g.
[56,57]). On the other hand, the integral in (55) defines the so-called special Kritzel function (see, e.g. [58])

Z)(x) = j;oc dz z" lexp(—z’ — x/2), (56)

Tk (V) =~ (55)

and therefore, the diagonal couplings can be formally represented as

. TH
I'(1 — H)sin (T) \H 7 (1—H)/(H) (kNF)2/2). 57)

Jek(N) =
k(A T pood 1/(H)

Before we proceed to the analysis of the asymptotic behaviour of J x (A) in (57), it seems expedient to consider
first a particular case of Brownian motion (H = 1/2). Here, we have

Z1(x) = yTe ¥R, (58)
such that
A
Tk () = gf: e i, (59)

which expression agrees perfectly well with our previous result in (49) with k set equal to k’. Further on,
summing the expression in the second line in (55) over all k, and taking an appropriate limit in the resulting
Jacobi theta-function, we recover exactly our result in (32) for the disorder-averaged Wigner—Ville spectrum.

The k-dependence of the diagonal couplings given in (57) is plotted in figure 6. The case of the Brownian
motion, corresponding to (49) with k = k/, is depicted with a dotted line. We observe that upon increasing the
Hurst index, the diagonal coupling increases monotonically for any k, while for any fixed H the large-|k|
behaviour indicates the stretched-exponential decay predicted by the asymptotic result (63).

Lastly, we consider the asymptotic behaviour of Ji  in (57) in the limits =|k|\ < 1and [k|\T — oco. For
the sake of notational convenience, we rescale k by defining x = kN/+/2.

+ Small-x asymptotic behaviour. The leading and the first sub-leading terms in the expansion of the Kritzel
function obey [58]

H-1

24338/ ) ~ 2 — 1) + T E L e-mrn, (60)

sothat J; 1 (A) in (57) follows

11
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P E T (N)

Figure 6. The rescaled diagonal couplings Ji,x (\)f>~* given by (57) as functions of k for the values of H shown in the inset. In this
figure A = 0.1; different values do not change the plot in a qualitative way.

I2(1 — H)sin (2 M5
( )sm( 5 ) N - ( 2H ) k|0 -H/H | (61)
f3-H 2HT'(1 — H)

Jok(N) =

+ Large-r asymptotic behaviour. Recalling the properties of the Kritzel function summarised in [58], we find

H \/?
7 (1—H)/QH) (K2) ~ 2 7T (2H)!/ @QHF1) |4g|(1=2H) /(1-+2H)
1/(2H) 2H 11 ||

CH+D \ nen
exp(— QHYH/GHTD |k . (62)

Therefore, the couplings Ji x(\) in (57) exhibit a stretched-exponential dependence on both kand A

I'(1 — H)sin (ﬂ) A\
2 (2H)1/(2H+1)|K|(1—2H)/(1+2H) % ex (

JTHQCH + 1) f3-H

In the particular case H = 1/2, the decay with k in the latter expression becomes purely exponential. For
super-diffusive fBm process X(t), the decay of Ji () with k is slower than exponential, i.e.

Jexk(A) ~ exp (—|k)withz = 2/(2H + 1) < 1.On contrary, for sub-diffusive processes X (¢), Ji,x(\)
vanishes faster than an exponential, Ji x(\) ~ exp (—|k[*) withz = 2/(2H + 1) > 1.Inparticular, for

H = 1/4 (the case of a tagged bead in an infinite Rouse polymer), one finds Ji x(A) ~ exp (— |k[*/3).

 @H+))
(2H)2H/(2H+1)

Jex(N) = IKIZ/(ZH“))- (63)

6. Conclusions

To recap, we have studied here a model of anomalous diffusion of a tracer particle in presence of stratified layers
of quenched random flows. The particle undergoes a fBm motion with the Hurst index H € (0, 1) in the direction
perpendicular to the flows (along the X-axis) and is passively advected in random directions (with no global bias)
by the flows along the Y-axis. Averaging the squared displacement Y?(¢) along the flows over the flow realisations,
as well as over the fBm-trajectories, we obtained the mean-squared displacement along the flow direction and
showed that for large times it grows in proportion to t>~, which law defines a family of super-diffusive
processes. In order to quantify the sample-to-sample fluctuations of the displacement along the random flow,
we computed the coefficient of variation of the probability distribution function of the displacement. We
showed that such fluctuations are typically not very important for H 2 0.22 but may become important for
sufficiently small values of H.

Next, we introduced the Wigner—Ville power spectral density (see (2) and (3)) of the random process Y(#)
and derived an exact result showing that the disorder-averaged Wigner—Ville spectrum < Wy> scales with the
frequencyas f~3, which defines a family of rather unusual super-diffusive spectra. To estimate the sample-to-
sample fluctuations of the spectrum, we examined the limit of zero frequency of the Wigner—Ville spectrum
averaged over a finite time interval of duration T. We found that the ratio of the standard deviation of the
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spectrum and of the mean value diverges with T, which implies that the distribution of the spectrum with respect
to different realisations of disorder progressively broadens with the observation time.

Lastly, representing the Wigner—Ville spectrum of the process Y(¢) for a given realisation of flows as an Ising-
like model of ‘spins’ oy, which define the local direction of the flows along the X-axis, we have analytically
determined the coupling terms in this model, in the Laplace domain. In particular, we showed that the latter
exhibit a non-trivial dependence on the distance from the origin and the Laplace parameter.

In general, our analysis reveals that sample-to-sample fluctuations are important, both for the dynamical
characteristics and the spectral behaviour. This issue is beyond the scope of the current work and will be
examined elsewhere. Another interesting direction for a further research concerns effects of a truncation of
power-law correlations of the fractional Gaussian noise for the interlayer transport, which is present in realistic
systems and is described in terms of tempered approaches [59]. Such a truncation often restores a normal
diffusion, meaning that we can expect a crossover to the standard Matheron—de Marsily behaviour atlong
times, and hence, a corresponding change in the small-fasymptotics of the Wigner—Ville spectrum.
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