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Abstract

We analyze the range-rate residual data from Cassini’s gravity experiment that cannot be explained with a static,
zonally symmetric gravity field. We reproduce the data using a simple forward model of gravity perturbations from
normal modes. To do this, we stack data from multiple flybys to improve sensitivity. We find a partially degenerate
set of normal-mode energy spectra that successfully reproduce the unknown gravity signal from Cassini’s flybys.
Although there is no unique solution, we find that the models most likely to fit the data are dominated by
gravitational contributions from p-modes between 500 and 700 μHz. Because f-modes at lower frequencies have
stronger gravity signals for a given amplitude, this result would suggest strong frequency dependence in normal-
mode excitation on Saturn. We predict peak amplitudes for p-modes on the order of several kilometers, at least an
order of magnitude larger than the peak amplitudes inferred by Earth-based observations of Jupiter. The large
p-mode amplitudes we predict on Saturn, if they are indeed present and steady state, would imply weak damping
with a lower bound of Q>107 for these modes, consistent with theoretical predictions.

Unified Astronomy Thesaurus concepts: Planetary interior (1248); Helioseismology (709); Gravitational
fields (667)

1. Introduction

Gravity field measurements allow us to probe the interior
structure of a planet by measuring its deviation from spherical
symmetry. For giant planets, the planet’s response to its own
rotation breaks its spherical symmetry. The deviation away
from spherical symmetry depends on the planet’s internal
density distribution (Stevenson 2019). Therefore a detailed
mapping of a planet’s gravity field can corroborate or refute
interior models. Saturn’s non-spherical gravity field was first
inferred from spacecraft tracking data of Pioneer 11 (Hubbard
et al. 1980; Null et al. 1981), and was later improved using
Voyager data (Campbell & Anderson 1989). The arrival of the
Cassini spacecraft in the Saturnian system yielded more
accurate determination of the gravity field of the gas giant by
first looking at the orbits of its satellites. Now the Grand Finale
of the Cassini mission has produced exquisite gravity field data
for Saturn, providing the first concrete constraints for Saturn’s
ring mass, zonal wind depths, and evidence for internal
differential rotation by offering gravity field measurements up
to J12 (Galanti et al. 2017; Iess et al. 2019). But behind these
spectacular new findings lurks a dark side: a small component
of Saturn’s gravity field that cannot be explained with the
canonical static, zonally symmetric gravity field expected of
gas giants.

Cassini’s radioscience experiment is carried out by measur-
ing the Doppler shift of a microwave signal in a two-way
configuration: the signal is sent from a ground station to the
spacecraft, which retransmits it back to the station preserving
phase coherency. The Doppler shift is, to first order,
proportional to the relative velocity of the spacecraft with
respect to the station. These measurements are compared with
predictions based on dynamical and observation models to

obtain data residuals. The data we use in this study are two-way
Doppler residuals, converted in a radial velocity time series,
obtained by removing the effect of empirical acceleration from
the reference solution given by Iess et al. (2019).
This additional and unknown source of gravity can be fit

with a variety of models. A static tesseral gravity field is
possible, but there is no convincing low-order fit (Iess et al.
2019). A low-order tesseral field does not provide a predictive
solution with the available data, and also depends on the
assumed rotation rate of Saturn. That is, a given gravity
harmonic solution for a subset of flybys will not accurately
predict the next flyby and requires additional harmonic terms.
The nominal method that was employed for the published
gravity harmonic results was an agnostic “empirical accelera-
tion” model that, due to the unknown origin of the source of the
additional gravity, included random acceleration vectors that
changed on a 10 minute timescale. In this context “random”

means that each acceleration vector is allowed to have any
direction with an a priori amplitude of ±4×10−10 km s−1

(Iess et al. 2019). They could be correlated (non-random) even
when the process used to create them allows for randomness.
This timescale between changing acceleration vectors was
determined empirically as the longest timescale that can
successfully reduce range-rate residuals to the noise level.
A time-dependent signal does not necessarily require normal

modes. For example, there may be a time-dependent or non-
symmetric signature from large-scale convection (Kong &
Schuber 2016). Additionally, Saturn’s envelope is differentially
rotating (Galanti et al. 2017; Chachan & Stevenson 2019). If
mass anomalies were embedded at different depths or latitudes,
then a spacecraft could encounter measurably different quasi-
static tesseral gravity fields during each flyby (Iess et al. 2019).
However, differentially rotating tesseral structure in Saturn’s
gravity field has been shown to produce structures in the rings
(El Moutamid et al. 2017), and the magnitude of the potential
perturbation inferred from observation is orders of magnitude
too small to explain the anomalous signal. Because of Saturn’s
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expected internal differential rotation rate (about 5%) (Chachan
& Stevenson 2019; Galanti et al. 2017), it is unlikely that such
structure could measurably affect the spacecraft trajectory
without showing clear structure from resonances in the rings.

This work will specifically explore the hypothesis that
Saturn’s residual gravity is a consequence of normal-mode
oscillations. It has already been demonstrated that normal
modes are capable of eliminating the range-rate residuals to the
noise level (Iess et al. 2019). This has been done by
computationally optimizing for individual mode amplitudes
using a large number of free parameters. One possible solution
involves only zonal f-modes. This solution, however, is
affected by model assumptions such as maximum modeled
spherical degree, whether to permit p-modes or g-modes,
whether to permit non-zonal normal modes, etc. These
uncertainties occur because, when optimizing with a large
number of free parameters, there is a risk of over-fitting the data
using a too-complex model. These issues are not important in
the context of constraining Saturn’s zonal gravity harmonics
and ring mass because the uncertainty can simply be absorbed
in the error ellipses for these values. However, in this work we
revisit the residuals data with a different purpose: to try to
extract a preferred normal-mode spectrum that is predictive for
further flybys, robust to changes in model assumptions, and as
simple as possible to capture the qualitative behavior of the
spectrum without over-fitting the data. Bearing this in mind,
although we find a statistical preference using our simple model
for signals dominated by low-order p-modes, readers should
remember that our findings are not conclusive proof of such a
spectrum on Saturn.

Our investigation has at least two important applications:
first, normal modes are themselves a promising method by
which to probe the interior structure of giant planets, and this
analysis provides some evidence of their power spectrum.
Second, any gravitational signal from normal modes above the
noise level contaminates spacecraft tracking data and may be
aliased into the static model. As we will see, the behavior of the
modes are partially degenerate and the solution is non-unique.
However, the solutions are clustered in parameter space and
predict a high probability of reproducing the observed
unexplained gravity signal. The most successful models
indicate the signal is likely to be dominated by p-modes
between 500 and 700 μHz (see Figure 4).

In the Section 2, we outline some fundamentals of giant
planet seismology, spacecraft tracking, and our forward model.
In Section 3 we discuss our data reduction method including a
novel data-stacking technique, as well as error sources, and a
fitting procedure. In Section 4 we present the results of our
analysis, finding a simple two-parameter model that has a high
probability of producing a good fit to the spacecraft signal. In
Section 5 we discuss the implications of our findings.

2. The Forward Model

In order to accurately model seismic effects on Cassini’s
gravity signal, we must determine the mode’s eigenfrequencies,
and the scaling relationship between a mode’s displacement
amplitude and its effect on Saturn’s gravity field. These issues
are addressed in Section 2.1. Next we must model how a given
gravity potential perturbation affects the spacecraft tracking
signal, which is done in Section 2.2. Next we need an agnostic
parametric model for the modal energy spectrum, discussed in
Section 2.3. Finally we account for the intrinsic stochasticity of

the problem; a given mode cannot be modeled deterministi-
cally, because we have no way of knowing what the temporal
phase of each mode was when Cassini was at periapse. This is
partially circumvented with our stacking technique, discussed
in Section 3 with further technical information in the Appendix.

2.1. Background

In this paper we approximate Saturn as an adiabatic,
spherical, uniformly rotating planet. We neglect rotation to
compute the eigenfunctions and potential perturbations, but
account for rotation when considering Coriolis force frequency
splitting and the rotating gravity potential encountered in an
inertial frame. In this case, giant planet oscillations can be
decomposed into a discrete set of orthogonal normal modes
with quantum numbers (n, l, m); n corresponds to the number
of radial nodes in the displacement eigenfunction, l to the
spherical harmonic degree, and m=[−l..l] to the azimuthal
degree. Each mode has a unique displacement eigenfunction
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and a characteristic eigenfrequency ωnlm so that the total
displacement as a function of time is x w a+tcosnlm nlm nlm( ).
Because ωnlm is not precisely determined, the phase αnlm cannot
be coherently specified between flybys and is assumed random
for each mode for each flyby. ξr and ξh correspond to the radial
and horizontal eigenfunctions respectively, which together
specify the fluid displacement at any point within the planetary
sphere. For our purposes the eigenfunctions were obtained
using the GYRE stellar oscillation code (Townsend &
Teitler 2013), with an n=1 nonrotating polytrope model for
Saturn’s interior. Our goal here is independent of accurate
interior modeling; we are interested in the relative gravity
signal between modes and their order of magnitude, which is
not strongly sensitive to small changes in the interior model.
However, using an adiabatic interior model precludes g-modes,
so we account for contributions from g-modes separately.
Because Saturn’s interior structure is not precisely deter-

mined, we performed our full analysis on a variety of interior
model assumptions to demonstrate that the results are not
sensitive to small errors in modal eigenfrequencies. We tested
eigenfrequencies produced by this same polytrope model
generated with GYRE (Townsend & Teitler 2013), as well as
a sampling computed using a more sophisticated Saturn interior
model (Sa8; Gudkova & Zharkov 2006). The nominal model
uses the eigenfrequencies from Sa8. In addition, we accounted
for mode-splitting due to Coriolis forces (Christensen-Dalsgaard
2014). These split according to

dw b= Wm , 2nlm nl ( )

where Ω is Saturn’s spin rate and
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The nominal frequencies for this paper are plotted in Figure 1.
For computational reasons, we consider a finite subset of
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modes in our model. In the nominal model we consider
f-modes and p-modes up to l=8, n=7. We found equivalent
results when using instead l=10, n=5 as bounds on
parameter space. We also specially tested f-modes only up to
l=20. We do not expect g-modes to dominate the signal for at
least two reasons: first, because the stable layer where they
resonate is so deep, its effect on the gravity field would be very
weak unless its amplitude were extremely large. Second, we do
not expect its amplitude to be extremely large, because its
eigenfunction is evanescent near the surface where mode
excitation is expected to be most efficient. Nevertheless, for the
sake of completeness we tested g-modes using published
eigenfrequencies (Gudkova & Zharkov 2006).

After choosing eigenfrequencies, we compute the scaling
between displacement eigenfunctions and gravity potential
perturbations. The gravity field perturbation associated with
displacement eigenfunction ξ can be obtained by integrating
over the material sphere and accounting for fluid point
displacements according to
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one can show that the gravity harmonic coefficient perturbation
associated with the normal mode is (Marley & Porco 1993;
Stevenson 2019)
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nlm,( ) ( ) ( ) ( ) is normalized such
that the mode surface displacement is 1 cm at the planet’s
surface. With appropriate choice of coordinates, d S 0nlm .
This leads to Figure 2 that illustrates why f-modes are a priori
favored as sources of gravity perturbations. Higher-order
p-modes have nodes in their eigenfunction, leading to
destructive interference of the gravitational signature. There-
fore in order for p-modes to dominate the signal, they must
have more than an order of magnitude larger energy than
f-modes (two orders of magnitude larger amplitude).
A test particle outside of the planet on a prescribed

trajectoryr(t) encounters the potential perturbation
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where anlm is the maximum surface displacement of mode (n, l,
m) in centimeters, and Ω is Saturn’s spin rate. Notice that this
equation includes two random variables: f0 is the initial
longitudinal orientation of the modes with respect to our
coordinates, and αnlm is the initial temporal phase of the mode.
f0 is shared between all modes, but is random for each flyby.
αnlm is a random variable for each mode and for each flyby.
Although the phase difference between flybys can in principle
be determined from the mode’s eigenfrequency, in practice this
is impossible. Eigenfrequencies depend on Saturn’s interior
structure and cannot be predicted with perfect precision.
Because the time between encounters is much longer than the
period of a mode, in practice the phase of each mode must be
regarded as randomized for each flyby. This stochasticity
introduces a complication for modeling the flyby—we do not
know the initial phase and orientation of the modes when each
flyby occurred. This issue will be addressed in Section 3.

2.2. Numerical Integration and Model Reproduction

The gravity experiments were conducted with an edge-on
geometry from Earth’s perspective for maximum signal to
noise. The orbits were highly inclined and highly eccentric.

Figure 2. Gravity harmonic coefficient perturbations for various modes per
meter of surface displacement amplitude. The (top) blue curve represents
f-modes that have the most prominent gravitational signature for a given
surface amplitude, while p-modes (below) need larger amplitudes to be
detected.

Figure 1. Eigenfrequencies including splitting due to the Coriolis force in the
rotating frame. Each curve corresponds to rising radial order n for m=0
modes, with l rising along the x-axis. Each eigenfrequency ωnlm is shown as a
point, with ¹m 0 modes deviating from the m=0 curve. This frequency-
splitting effect is most important for f-modes.
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The closest approach (C/A) of the spacecraft is about 5% of
Saturn’s radius from its cloud tops, approaching and receding
from the planet very quickly during ingress and egress.
Because of this orbital geometry, we only expect a significant
signal from the planet within about an hour of C/A. Therefore
we use the spacecraft orbital elements two hours before C/A to
compute the initial conditions. We then numerically integrate
the equation of motion for Saturn plus the potential perturbation
associated with normal modes, neglecting oblateness. Including
the measured static zonal gravity (Iess et al. 2019) affects the
simulated normal mode range-rate signal by less than 1%. We
integrate the equation of motion using Mathematica’s built-in
integrator to generate a three-dimensional velocity time series.
We then subtract the Keplerian solution from the numerical
solution to isolate the signal from the spectrum of modes we are
modeling. Finally we project the three-dimensional velocity
vector onto the line-of-sight vector connecting Saturn to the
Earth. We verify the accuracy of this method by reproducing the
signature from values of static zonal J (Iess et al. 2019) using
the method from this paper, finding good agreement. This
method is fully general for any potential perturbation, and we
will use it to inspect the behavior of normal modes.

We verified empirically the approximate linearity of
combining the velocity perturbation from various sources.
That is,

åd =v vt t 9
q

q( ) ( ) ( )

within <0.1% for the perturbation magnitudes in question.
Strictly speaking this linearity does not hold absolutely;
although gravity potential perturbations are exactly linear, a
test particle encountering these perturbations may be perturbed
from its trajectory—if this perturbation is sufficiently large the
linearity breaks down. But for the small perturbation of interest,
this nonlinearity is not important.

It is important to discuss at this point a fundamental
ambiguity in probing for normal modes from the spacecraft’s
perspective. The spacecraft is observing two sources of
variation of the gravity signal: the intrinsic geometric variation,
and the temporal variation. The geometric variation is the
physical shape of the mode, which attenuates with distance and
varies with the spacecraft’s latitude and longitude relative to
Saturn. As the spacecraft approaches and recedes from the
planet, traveling from north to south and west to east, even a
static gravity perturbation would have a time-dependent signal
from the spacecraft’s frame of reference. On the other hand, the
potential perturbation itself varies with time. The convolution
of these effects makes it difficult to have a simple intuition for
Cassini’s response to each mode. See the Appendix for further
discussion.

2.3. Spectral Model

For the spectral model, we aim to be as agnostic as possible.
We do not know with certainty by what mechanism seismic
activity is excited on Saturn, although meteor impacts (Wu &
Lithwick 2019) or exotic meteorological phenomena (Markham
& Stevenson 2018) have been suggested. Therefore we only use
simple parametric models that scale the energy of each mode as
a function of parameters. We tested a variety of scaling
relationships, including power-law dependence in frequency,

as well as power-law dependence on quantum numbers n, l, and
-l m

l

∣ ∣ . We also tested equipartition. None of these models
provided convincing fits to the data.
The nominal model used is a Gaussian frequency-dependent

model, although here too we aimed to be as agnostic as
possible. The Gaussian is convenient because it has the power
to probe for a diverse variety of frequency dependences by only
varying two parameters. Using this assumption, the mode
energy is a function of its eigenfrequency according to
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We tested extreme parameters, varying the peak of the
Gaussian between 0 and 5 mHz, well above the acoustic cutoff
frequency. We also tested widths between an extremely narrow
distribution of 10 μHz and an extremely wide distribution
of 5 mHz (see Figure 3). By varying the parameters so
widely, we can capture a wide variety of possible frequency-
dependent behavior. A Gaussian with a faraway peak behaves
approximately like an exponential relationship. A Gaussian
with an extremely narrow peak behaves approximately like a
δ-function, and one with an extremely wide peak approximates
equipartition. As discussed in Section 4, we find narrowly
peaked distributions centered on low-order p-modes to be the
most likely to fit the data, although there is considerable
degeneracy within that region of parameter space. We settled
on the Gaussian dependence on frequency after trying a variety
of parametric models because it provided the best fit to the data,
and was flexible in qualitatively approximating many diverse
behaviors. We do not claim that the real power spectrum
behaves in exactly this way.
This frequency dependence on energy has a straightforward

connection to excitation and dissipation efficiency, if the
energy spectrum is in steady state. In this case,

w
w w
w

=E
E Q

, 11in( ) ( ) ( ) ( )


where Q(ω) is the frequency-dependent quality factor and
wEin ( ) is the frequency-dependent excitation rate. The mode

energy is w=E a Mnlm nlm nlm nlm
2 2 , whereMnlm is the modal inertia

uniquely defined for each normal mode according to

ò r x=M d rnlm nlm
2 3∣ ∣ , where ξnlm is the mode eigenfunction

normalized such that the surface displacement is 1 cm.
Therefore the energy scales as the square of the amplitude.

3. Data Stacking

There is a fundamental ambiguity when modeling normal
modes that does not exist for a static gravity field: the phase of
the mode in question. If we only had one flyby, breaking this
ambiguity would be hopeless; since we have multiple, we can
do better. By combining multiple flybys, we can average out
the effect of initial phases. This can be done perfectly if there is
a large number of identical flybys. Indeed, one can show (see
the Appendix) for a particle on a prescribed trajectory r t( )
encountering a potential perturbation of the form of
Equation (8), where f0 and αnlm are random variables for
each flyby, that the summed squared potential obeys the
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asymptotic relationship
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where dºA a Cnlm nlm nlm, and f tnlm ( ) is a deterministic function
time independent of f0 and αnlm. This approximation is valid at
large N. It is possible to derive a similar expression for
acceleration perturbations, simply the gradient of the potential
perturbations, and for velocity perturbations (see the
Appendix). In fact these derivations depend on assuming a
prescribed trajectory, but in reality the potential perturbations
perturb the trajectory itself. We verify empirically that for a
sufficiently large number of flybys
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where dvnlm i,
2 is a randomly generated squared time series of

velocity perturbation associated with the spacecraft encounter-
ing the potential perturbation due to a 1 cm displacement
amplitude mode with quantum numbers (n, l, m).

We note that the stochastic behavior of the modes
approaches deterministic behavior when summing over a large
number of flybys to demonstrate why such an exercise is
useful: it reduces the stochastic component of the signal and
amplifies the deterministic component. In the real experiment,
however, there were only five flybys, not enough to simply
stack the data and compare them against the asymptotic
average. Therefore, we ran a Monte Carlo simulation, leaving
the initial phase as a free random variable, and combined the
signal from five randomly selected flybys with an input
spectrum scaled according to Section 2.3. In this case, we use
the relationship from Equation (9) to obtain the expression
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which is equivalent to Equation (13) in the limit of large N, but
for finite N has stochastic components that should be
accounted for.
With N=5 we can eliminate significant ambiguity. The raw

data are shown as the red scattered points in Figure 6 for each
flyby (the black curves are model fits to the data). The raw data
were obtained by subtracting the observed spacecraft signal
from a model excluding stochastic acceleration (Iess et al.
2019). We take these points and bin them into 150 s windows
so that most points in time will have contributions from all
flybys (see Section 3.1 for why this is important). We then
average the square value of the corresponding data point across
the five flybys to obtain an average value. After accounting for
various quantifiable sources of error, we produce Figure 5 that
shows the stacked data with error bars in red, with a black
curve as a good-fit forward model.

3.1. Error Sources

To average these data, we must propagate the errors from the
input data, and account for additional errors from the stacking
process. We have identified three quantifiable sources of error
in the tracking system, which we use for the error bars. The first
source of error is the intrinsic noise in the system (Iess et al.
2019). This source of error affects all data points.
The second source of error is the fact that part of the “real”

non-static, non-zonal gravitational signal may have been
aliased into the uncertainty about the static zonal gravity
harmonic coefficient J (Iess et al. 2019). To understand how
this impacts the data, we ran a Monte Carlo simulation
systematically adding the gravitational signal δJl for each zonal
gravity harmonic l, and running that modified data through our
stacking pipeline. We modeled each δJl as a statistically
independent, normally distributed random variable using the
published 1σ formal uncertainty (Iess et al. 2019) (although the
total value for different Jl are correlated, small deviations δJl
can be approximately independent). We found the impact of
this effect by taking the standard deviation of the stacked data

Figure 3. Probability maps for different input parameters. Darker colors correspond to models that have a higher probability of satisfactorily fitting the data. (a) A
coarse-grained plot, which searches a wide range of parameter space including models that approximate exponential behavior, delta-functions, or white noise,
indicating a preferred region of parameter space. (b) A finer-grained sampling in this region, illustrating the degeneracy within that region.
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for 1000 such simulations and used those values as an
additional independent source of error to add in quadrature
with instrumental noise. This source of error is most important
near closest approach.

The third source of error is only applicable to a subset of
points, but is the most important source of error for those
points. Because we will be comparing these data to simulations
without gaps or sampling issues, we need to account for the
fact that some data points do not average all five flybys. This
occurs because the time window in which the spacecraft is
blocked by Saturn’s rings is slightly different for each flyby,
and because some of the data sets end before others. When we
only average a subset of data points together, there will be a
systematic offset from the otherwise smooth behavior of the
average. We quantify this offset by taking samples of points
that have data from all five flybys, then calculate the average
systematic offset caused by using only a subset of those data
points. We use this average value as an additional source of
error, which is simply a function of the number of data points
averaged. If there are five data points, this source of error is
zero. Note that this error is systematic, so a series of points all
missing one data set will not be randomly scattered around the
main curve but will be systematically offset from it.
Accounting for these three quantified sources of error produces
the red points and error bars in Figure 5, which is the time
series data set we will attempt to reproduce (with an example
black curve model fit).

There are additional sources of error that are likely to prevent
us from getting a perfect fit to the data. First, we do not know
the actual eigenfrequencies of the modes. We attempted
multiple assumptions for the frequencies to verify that our
conclusion is not affected by different choices. In fact, the
signature from a flyby is a slowly varying function of mode
frequency, so expected errors (less than 10% in frequency)
should not affect the general, qualitative behavior of the flyby
signature. Nevertheless, errors in frequency yield systematic
modeling errors, small temporal offsets for small errors, and
slowly varying qualitative behavior for larger errors, such that
the fit will not be perfect. This impacts the goodness of fit. An
additional source of possible modeling error is the simplicity of
our assumptions (a smoothly varying amplitude spectrum). For
example, the excitation mechanism may be partly stochastic in
nature (Goldreich et al. 1994; Markham & Stevenson 2018),
and the real frequency dependence may be more complicated or
jittery than a simple Gaussian. Accounting for this possibility,
however, would violate the purpose of this investigation: to
keep the number of parameters small, and the spectral model
simple. Another cause of error we have not formally accounted
for is the difference in geometry between the flybys. To first
order, the orbit is similar and the Saturn–Earth orientation is
nearby during each flyby. But the subtle differences in
geometry means we should not expect the assumption of fixed
geometry and identical orbit initial conditions to reproduce the
data exactly. Nevertheless, this is a necessary assumption in
order to use the stacking method to amplify the deterministic
component of the signal. We note these sources of error not to
rigorously quantify their effect, but to justify our relatively lax
error tolerance for goodness of fit; the upshot here is that we are
trying to evaluate the probability of reproducing the general
qualitative behavior of the signature for a given power
spectrum, not to provide a single exact reconstruction of the

gravity field Cassini encountered (doing so would be
impossible with the available data in any case).

4. Analysis and Results

Now that we have added error bars to account for the
straightforwardly quantifiable sources of error, we can attempt
to fit them. We do this with a reduced χ2 test according to

åc =
-

-
D f

x m

e

1
, 15

i

D
i i

i

2
2

2

( ) ( )

where D is the number of data points, f is the number of
degrees of freedom in the model (three in our case: the two
Gaussian parameters and the scaling coefficient), xi is data
point i, mi is its corresponding modeled value, and ei is the
error. Choosing an appropriate model is subtle. One choice is to
use the asymptotic average of an infinite number of flybys for a
given spectral model. As demonstrated in Section 3, we expect
the data to converge toward this average. But given the finite
number of flybys, there will be variation from this asymptotic
mean. Therefore in order to evaluate the likelihood of a given
model, we conducted 2000 tests of five simulated flybys for
each modeled spectrum.
To produce our forward model, we ran 104 simulated signals

from individual modes, for the subset of considered modes
(recall our results are not sensitive to the specific choices of
considered modes or computed eigenfrequencies. For more
discussion see Section 2). After simulating a large number of
range-rate signals for each individual mode, we chose five to
combine their squared signal using Equation (14), where anlm
for a given model is computed according to Equation (10) with

w=E a Mnlm nlm
2

nlm
2

nlm. This is the forward model we use to try
to fit Figure 5. Our tolerance threshold for goodness of fit is
χ2=50. This is a large value, but we consider it sufficient to
qualitatively reproduce the essential shape of the data (for
further discussion as to why this is appropriate, see
Section 3.1). Choosing a different threshold does not
significantly affect the results, but reduces the probability of
fitting within the tolerance threshold for all models. We then
use the large number of experiments to assign a probability of
reproducing the data within tolerance for a given input
spectrum. The results show a degenerate set of distributions
that can reproduce the signal. We found a strongly favored
region of parameter space after coarse sampling using extreme
parameters, then followed up with a finer sampling in that
region.
The probability plots are shown in Figure 3, which illustrates

a clearly preferred region of parameter space, but degeneracy
within that region. Each grid cell of Figure 3 represents a
particular spectral model. The shading indicates the probability
of reproducing the data within our tolerance threshold, if that
spectrum were Saturn’s normal-mode spectrum. The degen-
eracy can be partly understood by considering the contributions
to the gravity signal a moving spacecraft encounters. The
degeneracy can be understood in two ways. First, as shown in
Figure 4, there is a great deal of overlap between favored
models. Second, because the spacecraft is moving through
space, a static field would have a time-dependent signature.
Because normal modes oscillate in time, there is another source
of time dependence that would be experienced even by a
stationary test particle. The synthesis of these two contributions
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allows gravity perturbations with different properties to
produce a similar signal along the Saturn–Earth line-of-sight
axis from the spacecraft’s frame of reference. We elaborate on
this second degeneracy source in Section 2.2 and in the
Appendix.

Although we cannot identify a single conclusive power
spectrum, we can exclude a wide variety of simple spectra, and
find the highest-probability models favor a relatively narrowly
peaked distribution. The location of the peak is also
constrained, with the most likely models having a peak
between 500 and 700 μHz.

Although the exact width and frequency peak cannot be
precisely determined, we can exclude a wide variety of models
as implausible, and note a clear clustering of models that have a
high probability of reproducing the observed signal. Low-order
f-modes lie generally below 200 μHz (see Figure 1). No good-
fit models favor significant contributions from f-modes. We
demonstrate an example of what we consider to be a
“plausible” fit near the cutoff threshold in Figure 5. This
particular run has χ2=4, among the better fits we were able to
obtain.

We also assessed the frequency content of the residual data.
This proved to be less diagnostic than fitting the time series.
This is perhaps unsurprising, because in order to fit the
frequency content, we only need a model that varies on the
correct timescales, driven largely by the geometric r R l( )
effect. By contrast, in order to fit the time series data, we have
to match much more specific behavior. Looking at Figure 5, the
time series model must fit several specific phenomena. From
left to right on the figure, the best models the steepness of the
“ramp up” before C/A, the timing of the peak after C/A, the
width of the main curve, the timing of the plateau/turnover,
and other features. We find that the plausible time series fits are
also compatible with the data’s Fourier transform. However,
the Fourier transform is much more degenerate and possible to
fit with a wide variety of models, and it is difficult to obtain any
new information.

To verify that our results were not excessively biased by our
assumptions, we ran a variety of tests and alternatives, in
addition to trying various parametric models as described in
Section 2.3. We also explored the possibility that the signal
may be dominated by a single mode, by testing that hypothesis
against each mode in our sample. This possibility seems
plausible based on our results given the narrowness of the peak
in many best-fit cases. We found some modes within the

preferred region of parameter space had a finite probability of
reproducing the data, but the probability was lower than our
preferred spectral models. Consistent with our spectral method,
f-modes were not favored. No f-mode had a probability higher
than 2% of producing the observed signal.
We separately tested all f-modes up to spherical order 20 for

completeness, because of the a priori expectation that they
should be the most gravitationally important modes, and
because some of their frequencies overlap with the degenerate
region of parameter space that can give some probability of
providing a tolerable fit to the data. High degree f-modes are
discussed in more detail in the Appendix. Even allowing for
higher-order f-modes, we did not find any simple combinations
that satisfactorily reproduce the data. Perhaps f-modes are
inefficiently excited for reasons beyond their frequency; for
example, some excitation models depend on compressibility
(Goldreich et al. 1994), and in the Sun mode power declines for
increasing l even at fixed eigenfrequency.
We also tested g-modes. Although our interior model

assumptions did not produce g-modes, we tested them specially
using published eigenfrequencies (Gudkova & Zharkov 2006),
and separately testing asymptotic approximations for their
eigenfrequencies (Tassoul 1980). Without the eigenfunctions,
we tested the spectral model by varying the gravity harmonic
coefficient perturbations directly with frequency dependence.
We did not find any solution that could satisfactorily reproduce
the data with g-modes. We also explored the possibility of
using a given mode’s eigenfrequency as a tunable parameter,
varying our expectation for each f-mode’s eigenfrequency
between half and three times its theoretically predicted value.
Although some frequencies fit better than others, none came
close to the goodness of fit we obtain with our spectral model.
We also tested the full pipeline omitting one flyby, testing each
subset of four flybys to ensure the results were consistent, and
not a spurious peculiarity of these five particular flybys. That is,
we wanted to ensure that if one of the flybys had had a problem
such that it did not successfully transmit data, it would not have
altered our conclusion. As expected, with fewer flybys the
preferred region of parameter space could not be as tightly
constrained, but the results were consistent and favored the
same region shown in Figure 3. If future missions can perform
the same experiment with a larger number of flybys, we may be
able to make stronger conclusions.

Figure 4. Plotting different allowable solutions, with the darkness of the curve
corresponding to the probability that, if that spectrum is correct, we would
observe the data within our tolerance level. The curves are normalized in the
plot such that their integrated value is unity (using Hz rather than μHz as the
ordinate).

Figure 5. Example fit to the stacked data. The data are represented with error
bars according to Section 3.1, with the black curve corresponding to an
example energy spectrum with ω0=600 μHz and σ=40 μHz.

7

The Planetary Science Journal, 1:27 (12pp), 2020 September Markham et al.



All plausible spectral models predict large peak mode
amplitudes on the order of several kilometers for a small
number of modes (of order 5–10) near the peak frequency.
Mode amplitudes inferred from velocity map time series of
Jupiter are of order 100 m (Gaulme et al. 2011), so in order to
explain our findings we require the peak amplitudes to be at
least an order of magnitude larger on Saturn than have been
observed on Jupiter.

This method also allows us to fit the range-rate residuals
from each individual flyby. We begin with a sample amplitude
spectrum with a high probability of reproducing the data (see
Figure 3). We then run a suite of simulations with random
initial phases of each mode and show the best-fit results for
each flyby in Figure 6. Each fit optimizes for the best-fit scaling
coefficient, and all are in agreement within a factor of two.

5. Discussion

We can reproduce the behavior of the non-zonal and/or non-
static component of Saturn’s gravity field using a simple three-
parameter forward model for mode amplitudes (Gaussian peak,
width, and scaling). Our model uses a simple interior model
and is not sensitive to detailed assumptions about Saturn’s
interior structure, spin rate, or rotation profile. For the
amplitude spectrum of the modes, we rely only on a general

understanding of Saturn’s eigenfunctions and the equation of
continuity in order to compute its gravitational effect for a
given amplitude. We can also compute the mode inertia to scale
the gravity signal for a given mode energy.
The best way to think of these results is in the Bayesian

sense; we do not claim incontrovertible proof of p-modes on
Saturn. Rather, given this particular data set, we present the
probability that different models will reproduce these data in
Figure 3. These probabilities should be used to update prior
assumptions about Saturn’s normal mode spectrum, bearing in
mind that more complex models with more degrees of freedom
(e.g., from Iess et al. 2019) are not captured by our analysis.
We find a moderate preference for models that have a

frequency peak between about 500 and 700 μHz with a narrow
width, although models with peaks as low as 250 μHz or as
high as 1000 μHz also have nonzero probability. Intriguingly,
the inferred narrowness of the peak is analogous to the
narrowly peaked five minute modes observed on the Sun.
Observing the power spectrum of the solar modes, one finds a
peak frequency near 3000 μHz with a full width half maximum
(FWHM) of order 300 μHz (Frohlich et al. 1997), indicating a
ratio of the FWHM to peak frequency of order 1/10.
Converting the standard deviation of our Gaussian frequency-
dependent functions to the corresponding FWHM, we likewise

Figure 6. Forward calculation fits for individual flybys using our simple spectral model. The parameters used here are ω0=600 μHz and σ=40 μHz. The red
scattered points are the data, and the black curves are the best-fit models.
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obtain a solution of order 1/10 (for example in the case of the
fit shown in Figure 5). This may indicate some similarity
between the two systems, for example that the peak frequency
is set by some dynamical process with a characteristic
timescale. On the Sun this timescale is the eddy turnover time
in the top scale height of the convective zone. Although the
same mechanism cannot excite the observed amplitudes on
Saturn, less frequent moist convective events with a character-
istic turnover timescale (see, e.g., Markham & Stevenson 2018)
could produce similar strong frequency dependence. On
Jupiter, new theories to explain the ammonia distribution
require updrafts that traverse 100 km in 1000 s (Guillot et al.
2020). If similar dynamics occur on Saturn, the timescale is
roughly consistent with the peak frequencies inferred by this
work. Others have suggested a large impact as a source of
Saturn’s oscillations (Wu & Lithwick 2019). Although a
150 km impactor could in principle excite kilometer-scale
oscillations in p-modes, the scaling suggests the gravity signal
from f-modes should always dominate. Therefore, if this is
indeed the dominant excitation mechanism on Saturn, there
must be some other reason to preferentially dissipate f-modes
or preferentially amplify p-modes.

Most notably, we cannot reproduce the time series data with
f-modes, either with a single f-mode dominating the signal or
with a straightforward superposition of f-modes. This finding is
consistent with inferred amplitudes of f-modes that have been
measured using Saturn’s rings (kronoseismology; Hedman &
Nicholson 2013; Fuller 2014; Wu & Lithwick 2019), which are
determined to be on the order of a meter in amplitude and
should not produce this large a signal in Cassini’s gravity
experiment. Assuming the amplitudes inferred from ring data,
the detectability should have been marginal (δv∼0.05 mms−1

instead of the observed ∼2 mms−1). The p-modes that are
required to produce the observed signal would need surface
amplitude on the order of kilometers, implying radial velocities
of meters per second. These p-modes, despite their large
amplitudes, are not expected to show structure in the rings,
because the relevant resonant radius for these frequencies is
well inside Saturn’s C ring.

The required p-mode amplitudes are at least an order of
magnitude larger than were observed on Jupiter (Gaulme et al.
2011). Interestingly, early analysis of the Juno mission
indicates a similar unexplained gravity signal on Jupiter that
is approximately 20 times weaker than the signal observed on
Saturn (Durante et al. 2020). This is interesting, because this
analysis indicates that if the relevant amplitudes were those
observed by Gaulme et al. (2011), then we should expect a
similar time-dependent signal diminished in scale by about an
order of magnitude. Replicating our analysis of Cassini’s
gravity data for Juno, which has many more planned gravity
orbits than Cassini, may be a promising future application of
the method outlined in this paper. We can test to see if the
inferred normal mode spectrum from gravity measurements on
Jupiter is consistent with the corresponding power spectrum
obtained with Earth-based observations.

Because we predict large peak amplitudes, we must consider
whether these are plausible and consistent with existing data.
Voyager radio occultation measurements of Saturn have error
estimates between 6 and 10 km, and the measurements found
incompatible radii between the northern and southern hemi-
sphere on the order of 10 km (Lindal et al. 1985). These
uncertainties are compatible with the time-dependent shape

variations our analysis predicts. Our analysis here would
predict that future measurements of Saturn’s shape cannot
obtain better accuracy than around a few kilometers. A series of
highly accurate measurements of Saturn’s shape should have a
time-dependent component on the order of kilometers.
We must also consider how our findings can constrain Q.

Using a set of N modes excited to 10 km amplitude a (a high
estimate, see Table 1), powered by the full luminosity of Saturn
 as a lower bound on Q, we compute

w
> ~


Q

a MN
10 16

2 3
7 ( )

for the relevant peak modes we have identified, where M is the
modal mass and N∼5–10 corresponds to the number of
modes with significant amplitude (for example, greater than a
kilometer). This Q is compatible with estimates so far based on
theory (Markham & Stevenson 2018; Wu & Lithwick 2019).
We must also check that the modes can still be approximated

as linear perturbations, i.e., u u ud

dt
·  , whereu is the

velocity vector. For the peak modes we identified, the
frequency is sufficiently high that the motion is almost purely
vertical. du

dz
is most significant near the surface when the

atmospheric properties vary quickly. We know in this region

~ - - w
w
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⎠⎟ (Christensen-Dalsgaard 2014),

where H is the scale height and ωc is the acoustic cutoff
frequency. Therefore the condition that the system can be
treated linearly is

w
w

w- - H u1 1 17
c

2

( )
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ 

the ratio of the left-hand side to the right-hand side using
ω∼5×10−3 for 1 km amplitude modes is about 10−3. This is
the maximum value near the surface; the value is much smaller
in the interior where most of the mode inertia is. If the inferred
amplitudes are correct, nonlinear effects are important for
p-modes on both Saturn and Jupiter.
Many questions remain, and it is clear that the field of giant

planet seismology—both observational and theoretical—is in

Table 1
Sample Spectrum Using ω0=600 μHz and σ=40 μHz, Listing Modes with

Amplitudes Larger Than 100 m

(n, l) ωnlm ( μHz) anlm (m)

(2, 4) 497 107
(2, 5) 525 461
(2, 6) 551 1220
(2, 7) 575 2140
(2, 8) 597 2700
(3, 2) 553 1190
(3, 3) 599 2350
(3, 4) 633 1900
(3, 5) 662 965
(3, 6) 689 334
(4, 2) 667 794

Note. This spectrum should not be taken too seriously as good-fit solutions are
degenerate and non-unique—the general orders of magnitude should be paid
attention to more than the specific modes.
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its infancy. Here we demonstrate that the unexpected and
unexplained components of Saturn’s “dark” gravity field can be
straightforwardly modeled as simple frequency-dependent
seismic activity. This provides one more piece of plausible
evidence that the giant planets are seismically active, and
should motivate further observations and theoretical study.

Appendix

A.1. Potential Perturbation

In the following derivation, we will assume the spacecraft is
on a prescribed Keplerian orbit, and assess the gravity potential
field it encounters as a function of time. In reality, the data we
have are a velocity time series; we cannot measure the gravity
potential directly. However, we demonstrate how a gravity
potential with stochastic elements can be averaged toward
deterministic behavior that isolates information about the
amplitude spectrum. This same basic procedure will be
employed to forward model the velocity time series, although
the details in that case are considerably more complicated.

We begin with Equation (8). The full potential of all modes
for a given flyby i is
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with dºA a Cnlm nlm nlm. fi is the random initial longitudinal
orientation of Saturn (the same for each mode, but random for
each orbit because Saturn’s spin rate is not precisely known),
and anlm i, is the temporal phase of each mode—random for
each mode and for each flyby because we do not know the
eigenfrequency with sufficient precision to impose phase
coherency between subsequent close encounters. The uncer-
tainty in f0 can be absorbed into α; for zonal modes, f0 does
not matter, and for tesseral/sectoral modes it can be added into
α so that there is only one relevant random variable. We can
rewrite this expression using the harmonic addition theorem:
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the random variable anlm i, . Now we square this expression
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where we substitute a single index q to refer to a given mode
(n, l, m) for notation convenience.

From here, we perform the crucial step of summing over
many such flybys. This total can be expressed as
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In this case, we can assume random variables behave as
true statistical averages. We make use of the fact that

a a d då ¢ ¢ ¢ ijcos cosq q i j q i q j qq, , , , , . Similarly aå ¢ cosq q i j q i, , , ,

a ¢sin 0q j, . Using this asymptotic behavior, we can write
for a sufficiently large number of N flybys,
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Thus a particle on a prescribed trajectory encountering potential
perturbations due to normal modes will, when averaging over
many such encounters, approach a deterministic curve that does
not depend on the initial phase of each mode.

A.2. Acceleration and Velocity

The gravity experiment does not directly measure the gravity
potential. The data we have are the velocity perturbation along
a single axis. Our data-stacking method is most straightfor-
wardly derived for gravity potential perturbations. To calculate
gravitational acceleration we apply d d= - Fgnlm nlm to obtain
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This gives us the components we need to project onto Åˆ, the
unit vector pointing toward Earth. The total gravitational
acceleration perturbation from normal modes can be written

åd =Å Åg t A g t , A7
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nlm nlm,( ) ( ) ( )

where we can express
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where fi(t) are tedious but nevertheless well defined functions
of time independent of α. Just as above, if we have an
expression in this form, we can express the asymptotic average
of the sum of a large number of flybys as
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where f (t)2 is a function of f1(t) and f2(t).
A similar procedure can be followed for velocity perturba-

tions, and this is the source of frequency dependence (absent in
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averaged potential perturbations) wnlm by temporally integrat-
ing the gravitational perturbations. In fact it is not this simple; a
perturbed spacecraft will deviate from its Keplerian trajectory,
which leads to errors from the exact solution of order
D Dr r t( ) . A better approximation is to dynamically solve
the equation of motion, accounting for displacement from the
initial Keplerian trajectory to linear order, although this method
produces higher-order errors from the exact solution. The
method we eventually used, solving the exact equation of
motion explicitly then subtracting the Keplerian solution, is not
conducive to an analytic expression. Because of this, we
verified these results by testing them numerically against
simulations to be sure they did approach a deterministic curve
when stacked.

To do this, we performed 104 Monte Carlo simulations of
random flybys for each mode. We then averaged random
subsets of these samples to verify that they asymptotically
approach an asymptotic curve. We also directly simulated
various examples of a spectral superposition of different
modes, running 104 flybys. We then compared these stacked
results against the superposition of a spectrum of averaged
squared modes, finding excellent agreement with
Equation (13). We therefore have an analytic approximation
that motivates the stacking procedure, as well as more exact
numerical tests to make sure the results from the analytic
approximation are robust to this application. These tests verify
the validity of our data-stacking procedure. In practice, we have
a finite number of flybys, N=5. A random set of five flybys
will deviate somewhat from the asymptotic behavior of 104

flybys, so for the actual probabilistic fitting routine we used
Equation (14). We used the statistical method outlined in
Section 4 to account for this, by directly solving for the
probability that a given spectrum will produce a good fit to
the data.

A.3. Spacecraft Sensitivity and Model Intuition

We must consider whether the particular orbit of Cassini
biases its ability to detect certain modes. If the convolution of a
particular mode’s space-dependent eigenfunction and time-
dependent eigenfrequency appears stationary in Cassini’s frame
during close approach, then Cassini will preferentially detect
signals from this mode. For example, because Cassini’s orbit is
nearly polar, there may be an intrinsic preference for sectoral
(m=±l) modes, as seems to be true for f-modes (see
Figure A1). A different example is if a mode’s half-period is
near the timescale of Cassini’s motion from the northern to the
southern hemisphere, which appears to be the case for tesseral
modes with m=l−1 in Figure A1. Moreover, because
Cassini’s orbit moves from west to east, it is plausible that it
would preferentially detect m>0 modes whose pattern rotates
in the prograde direction, an intuition also supported by
Figure A1. According to Figure A1, this quasi-resonant effect
does indeed make Cassini more sensitive to certain modes. All
these effects are implicitly accounted for in the forward model
in the main text.
Another important consideration is high-degree f-modes. If the

strong frequency dependence we predict applies equally to
f-modes, then we must consider whether Cassini would detect
them. There are two sources of attenuation: the intrinsic geometric
attenuation with distance of high-degree gravity harmonics (R/r)l,
and the monotonically decreasing gravity potential coefficient
response to each mode that obeys + -l l 1 1 2( ( )) (Wu &
Lithwick 2019). We use a characteristic radius for Cassini’s close

encounter ò= ~
-

r v R r t dt R1.15c R v

R v

2

2
( )/

/

/
, where v is the

periapse velocity. High-degree f-mode eigenfrequencies obey
w ~ +l l 1GM

R
2 1 2

3 ( ( )) , so the modes in the most likely peak
frequency region have l∼50–100. Using our attenuation
estimates, these modes would be reduced by at least five orders

Figure A1. The x-axis is the frequency in the inertial frame in that Cassini’s orbit is defined. This is why different m-values are so spread out in frequency when in
Saturn’s rotating frame they are very close. The y-axis is the average maximum squared velocity response to a particular mode, using fixed gravity potential
perturbation coefficients for each mode.
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of magnitude compared to low-order f-modes, significantly more
severe than the two–three orders of magnitude reduction in low-
order p-modes. Therefore, we do not expect Cassini to detect
high-order f-modes, even if they likewise had kilometer-scale
amplitudes.
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