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The use of motorized treadmills as convenient tools for the study of locomotion has been

in vogue for many decades. However, despite the widespread presence of these devices

in many scientific and clinical environments, a full consensus on their validity to faithfully

substitute free overground locomotion is still missing. Specifically, little information is

available on whether and how the neural control of movement is affected when humans

walk and run on a treadmill as compared to overground. Here, we made use of linear

and non-linear analysis tools to extract information from electromyographic recordings

during walking and running overground, and on an instrumented treadmill. We extracted

synergistic activation patterns from the muscles of the lower limb via non-negative matrix

factorization. We then investigated how the motor modules (or time-invariant muscle

weightings) were used in the two locomotion environments. Subsequently, we examined

the timing of motor primitives (or time-dependent coefficients of muscle synergies)

by calculating their duration, the time of main activation, and their Hurst exponent, a

non-linear metric derived from fractal analysis. We found that motor modules were not

influenced by the locomotion environment, while motor primitives were overall more

regular in treadmill than in overground locomotion, with the main activity of the primitive

for propulsion shifted earlier in time. Our results suggest that the spatial and sensory

constraints imposed by the treadmill environment might have forced the central nervous

system to adopt a different neural control strategy than that used for free overground

locomotion, a data-driven indication that treadmills could induce perturbations to the

neural control of locomotion.

Keywords: locomotion, muscle synergies, motor control, treadmill locomotion, overground locomotion, fractal

analysis

INTRODUCTION

Amongst the various behaviors that can be used to investigate the neural control of movement,
locomotion is an ideal choice: automatized, synergistic, general, cyclic, and phylogenetically old,
it embodies many scientifically convenient characteristics (Bernstein, 1967). However, the study
of overground locomotion in free, open spaces is often unfeasible due to logistical, technological,
and other limitations. Motorized treadmills are an intuitive solution to simplify the analysis of
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locomotion and are nowadays of widespread use in research,
clinical practice, and sports-related training (Miller et al., 2019;
Van Hooren et al., 2019). Nevertheless, despite their broad use,
a full consensus as to whether treadmills are a valid means to
generalize findings on the neural control of free locomotion is yet
to be found (Rozumalski et al., 2015; Oliveira et al., 2016; Miller
et al., 2019; Van Hooren et al., 2019).

Treadmill locomotion is often considered an invalid
alternative to overground locomotion due to the mechanical
advantage introduced by the moving belt. However, already
in 1980, the Dutch biomechanist van Ingen Schenau showed
that there are no mechanical differences between treadmill
and overground locomotion as long as the belt’s speed remains
constant (van Ingen Schenau, 1980). Yet, other factors might
affect the physiological determinants of treadmill walking and
running: the compliance of the surface, the lack of air resistance,
the fixed rather than moving visual feedback, the degree of
habituation, among others (Jones and Doust, 1996; Parvataneni
et al., 2009; Mooses et al., 2014; Miller et al., 2019; Van Hooren
et al., 2019). For instance, when comparing the energetics and
performance outcomes of treadmill and overground running in
humans, a great variability across studies arises, some of which is
related to the different speeds used for the investigation (Miller
et al., 2019). The kinematics and kinetics of running seem to
be largely independent on the chosen locomotion environment
(Van Hooren et al., 2019). As for walking, kinematics and
kinetics can vary between treadmill and overground (Hollman
et al., 2016; Yang and King, 2016), but studies on the behavior of
the triceps surae muscle fascicles and electromyographic (EMG)
activity of the lower limbs did not find significant differences
(Cronin and Finni, 2013; Ibala et al., 2019). Generally speaking,
there is widespread scientific proof that the kinematics, kinetics,
and EMG activity recorded during treadmill and overground
locomotion are similar enough to allow the use of treadmill
for scientific purposes (Lee and Hidler, 2008; Riley et al., 2008;
Parvataneni et al., 2009; Chia et al., 2014).

In this study, we set out to investigate the modular
organization of muscle activity during overground and treadmill
walking and running. We started from the general hypothesis
that previously found similarities in kinematics, kinetics, and
EMG activity do not necessarily imply that locomotion in
different environments is controlled with similar neuromotor
strategies. Since it is known that when movement is constrained
by internal or external factors the neuromotor control is affected
(Martino et al., 2015; Santuz et al., 2019, 2020a), we sought to put
together a new set of analysis tools designed to be more sensitive
to such variations. Thus, to better understand the neural control
processes underlying locomotion in different environments, we
adopted a novel framework based on both linear and non-
linear approaches for extracting information from EMG data.
First, we used non-negative matrix factorization (NMF) as a
linear decomposition tool to extract muscle synergies from the
EMG activity recorded from the lower limb during walking
and running (Bernstein, 1967; Bizzi et al., 1991, 2008; Lee and
Seung, 1999; Santuz et al., 2017a). Then, we analyzed the motor
modules, or the weighted contributions of each muscle activity,
and the timing characteristics of motor primitives, which are

the time-dependent components of muscle synergies (Santuz
et al., 2018a). Lastly, we used fractal analysis to compute the
Hurst exponent of motor primitives, in order to gain deeper
insight into their temporal structure (Santuz and Akay, 2020).
By using these tools, we recently found that both internal and
external perturbations applied to human and murine locomotion
affect the timing of motor primitives, despite minor changes in
the number and composition of motor modules (Santuz et al.,
2018a, 2019, 2020a; Santuz and Akay, 2020). Specifically, we
could systematically associate a relatively longer duration of
motor primitives (i.e., increased width of the signal) in genetically
modified mice lacking proprioceptive feedback from muscle
spindles (Santuz et al., 2019), in aging humans as compared to
young (Santuz et al., 2020a), and in young adults walking and
running on uneven terrain (Santuz et al., 2018a), on unstable
ground (Santuz et al., 2020a), or running at extremely high speeds
(Santuz et al., 2020b).

Here, we aimed at uncovering some neuromotor control
features of overground and treadmill locomotion using a novel
combination of machine learning and fractal analysis. Based on
our previous findings on perturbed and unperturbed locomotion
(Akay et al., 2018; Santuz et al., 2019, 2020a; Santuz and Akay,
2020), we hypothesized that: (a) treadmill, as compared to
overground, would perturb more the locomotor system due
to the increased sensory and spatial constraints; and (b) the
neural control of treadmill locomotion would be forced to be
more regular by the aforementioned constraints, thus resulting
in motor primitives having a Hurst exponent lower in treadmill
than in overground.

MATERIALS AND METHODS

This study was reviewed and approved by the Ethics Committee
of the Humboldt-Universität zu Berlin. All the participants gave
written informed consent for the experimental procedure, in
accordance with the Declaration of Helsinki.

Experimental Protocol
For the experimental protocol we recruited 30 healthy and
regularly active young adults (15 females, height 173 ± 10 cm,
body mass 68 ± 12 kg, age 28 ± 5 years, means ± standard
deviation). None of them was using orthotic insoles, had any
history of neuromuscular or musculoskeletal impairments, or
any head or spine injury at the time of the measurements or
in the previous 6 months. All the volunteers completed a self-
selected warm-up running on a treadmill, typically lasting 3–
5min (Santuz et al., 2016, 2018b). After being instructed about
the protocol, they completed the measurements described in
detail below.

The experimental protocol consisted of walking at 1.4 m/s and
running at 2.8 m/s overground and on a single-belt treadmill
(mercury, H-p-cosmos Sports & Medical GmbH, Nussdorf,
Germany) equipped with a pressure plate recording the plantar
pressure distribution at 120Hz (FDM- THM-S, zebris Medical
GmbH, Isny im Allgäu, Germany). The speeds were chosen
since walking at 1.4 m/s and running at 2.8 m/s are close to
the average comfortable locomotion speeds commonly reported
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in the scientific literature (Santuz et al., 2016, 2017a). Three
pairs of photocells installed at 300 cm from each other were
used to control the overground locomotion speed. After an
accommodation period which usually involved 10–20 attempts to
meet the requested speed, we recorded those trials that presented
an error in matching the speed lower than ±0.05 m/s in walking
and±0.10 m/s in running.

EMG Recordings
The muscle activity of the following 13 ipsilateral (right
side) muscles was recorded: gluteus medius (ME), gluteus
maximus (MA), tensor fasciæ latæ (FL), rectus femoris (RF),
vastus medialis (VM), vastus lateralis (VL), semitendinosus (ST),
biceps femoris (long head, BF), tibialis anterior (TA), peroneus
longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis
(GL), and soleus (SO). The electrodes were positioned as
previously reported (Santuz et al., 2018b, 2019). For the treadmill
recordings, after the warm-up the participants were allowed to
at least 60 s habituation (Santuz et al., 2018a). We recorded 10
overground and one treadmill trials (60 s) per locomotion type,
per participant by means of a 16-channel wireless bipolar EMG
system (Wave Plus wireless EMG with PicoEMG transmitters
including 3D accelerometers, Cometa srl, Bareggio, Italy) with
an acquisition frequency of 2 kHz. For the recordings, we
used foam-hydrogel electrodes with snap connector (H124SG,
Medtronic plc, Dublin, Ireland). The overground trials were
then concatenated (i.e., joined together) in a single one, so that
for each participant four total trials were used for subsequent
analysis: (1) concatenated overground walking; (2) concatenated
overground running; (3) treadmill walking; and (4) treadmill
running. The first 30 gait cycles of each trial were considered
for subsequent analysis (Santuz et al., 2018b). All the recordings
can be downloaded from the supplementary data set, which is
accessible at Zenodo (doi: 10.5281/zenodo.3932767).

Gait Parameters
The gait cycle breakdown (foot touchdown and lift-off timing)
was obtained by processing 3D acceleration data for the
overground and plantar pressure distribution for the treadmill
trials. For the segmentation of the overground attempts, we
positioned one of the PicoEMG sensors with 3D accelerometer
(142Hz) over the second-last pair of shoe eyelets, tightening
the sensor using Velcro straps. We processed the obtained data
using validated algorithms previously reported (Santuz et al.,
2018a, 2020a). Treadmill recordings were segmented applying a
previously published algorithm (Santuz et al., 2016) to the plantar
pressure distribution data, recorded through the plate integrated
in the treadmill. Other calculated gait spatiotemporal parameters
were stance and swing times, cadence (i.e., number of steps per
minute), and the strike index, calculated as the distance from
the heel to the center of pressure at impact normalized with
respect to total foot length (Santuz et al., 2016). For stance, swing,
and cadence, we calculated the step-to-step percent coefficient
of variation as the ratio between the standard deviation and the
mean of each trial (Erra et al., 2019).

While for the treadmill trials the strike index was calculated by
processing plantar pressure distribution data (Santuz et al., 2016),

for the overground trials we made use of kinetics and kinematics
data. In order to locate the center of pressure at touchdown,
an infrared motion capture system (Vicon Nexus, version 1.7.1,
Vicon Motion Systems, Oxford, UK) and a 900 × 600-mm force
plate (AMTI BP600, Advanced Mechanical Technology, Inc.,
Watertown, MA, USA) were used. The plate was positioned in
the middle of the 18-m long pathway and colored with the same
tint as the floor, to avoid the recognition by the participants. Nine
infrared cameras operating at 250Hz recorded the position of
two spherical reflective markers (ø 14mm) placed on the heel and
toe cap of the right shoe, approximately over the Achilles tendon
insertion on the calcaneus and the first toe tip, respectively. The
ground reaction forces were recorded at 1 kHz, and the center of
pressure location during the stance phase was calculated using
the recorded data. The participants were asked to walk or run on
the straight pathway, always starting with the same foot from the
same line chosen after the habituation trials as the ideal one to
let them meet the plate always with the same foot, and were not
told about the existence of the force plate. It was the operator’s
task to check whether the plate was met by the right foot. If
not, the trial was repeated. Strike index values range from 0 to
1, denoting the most posterior and the most anterior point of
the shoe, respectively (Santuz et al., 2017b). Values from 0.000 to
0.333 are indication of a rearfoot strike pattern, while values from
0.334 to 1.000 represent a mid/forefoot strike pattern (Santuz
et al., 2016).

Muscle Synergy Extraction
Muscle synergies were extracted from the recorded EMG activity
through a custom script (R v3.6.3, R Core Team, 2020, R
Foundation for Statistical Computing, Vienna, Austria) using
the classical Gaussian NMF algorithm (Lee and Seung, 1999;
Santuz et al., 2017a, 2018a,b). The raw EMG signals were band-
pass filtered within the acquisition device (cut-off frequencies
10 and 500Hz). Then the signals were high-pass filtered, full-
wave rectified, and lastly low-pass filtered using a 4th order
IIR Butterworth zero-phase filter with cut-off frequencies 50Hz
(high-pass) and 20Hz (low-pass for creating the linear envelope
of the signal), as previously described (Santuz et al., 2018a).

After subtracting the minimum, the amplitude of the EMG
recordings obtained from the single trials were normalized to
the maximum activation recorded for every individual muscle. In
other words, every EMG channel was normalized to its maximum
for every trial (Santuz et al., 2018b, 2019, 2020a). Each gait cycle
was then time-normalized to 200 points, assigning 100 points to
the stance and 100 points to the swing phase (Santuz et al., 2017b,
2018a,b, 2019, 2020a). The reason for this choice is 2-fold (Santuz
et al., 2018b). First, dividing the gait cycle into two macro-phases
helps the reader understanding the temporal contribution of
the different synergies, diversifying between stance and swing.
Second, normalizing the duration of stance and swing to the same
number of points for all participants (and for all the recorded gait
cycles of each participant) makes the interpretation of the results
independent from the absolute duration of the gait events.

Synergies were then extracted through NMF as follows
(Santuz et al., 2018a,b). The 13 muscles listed above were
considered for the analysis (ME, MA, FL, RF, VM, VL, ST, BF,
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TA, PL, GM, GL, and SO). The m = 13 time-dependent muscle
activity vectors were grouped in a matrix V with dimensions
m × n (m rows and n columns). The dimension n represented
the number of normalized time points (i.e., 200∗number of gait
cycles). The matrix V was factorized using NMF so that V ≈

VR =MP. The new matrix VR, reconstructed by multiplying the
two matrices M and P, approximates the original matrix V. The
motor modules (Gizzi et al., 2011; Santuz et al., 2017a) matrix
M, with dimensions m × r, contained the time-invariant muscle
weightings, which describe the relative contribution of muscles
within a specific synergy (a weight was assigned to each muscle
for every synergy). The motor primitives (Dominici et al., 2011;
Santuz et al., 2017a) matrix P contained the time-dependent
coefficients of the factorization with dimensions r× n, where the
number of rows r represents the minimum number of synergies
necessary to satisfactorily reconstruct the original set of signals
V. M and P described the synergies necessary to accomplish
the required task (i.e., walking or running, overground or on
a treadmill). The update rules for M and P are presented in
Equations (1) and (2).







Pi+1 = Pi
Mi

TV

Mi
TMiPi

(1)

Mi+1 = Mi
V(Pi+1)

T

MiPi+1(Pi+1)
T (2)

The quality of reconstruction was assessed by measuring the
coefficient of determination R2 between the original and the
reconstructed data (V and VR, respectively). The limit of
convergence for each synergy was reached when a change in
the calculated R2 was smaller than the 0.01% in the last 20
iterations (Santuz et al., 2017a), meaning that, with that amount
of synergies, the signal could not be reconstructed any better.
This operation was first completed by setting the number of
synergies to one. Then, it was repeated by increasing the number
of synergies each time, until a maximum of 10 synergies. The
number 10 was chosen to be lower than the number of muscles,
since extracting a number of synergies equal to the number of
measured EMG activities would not reduce the dimensionality
of the data. Specifically, 10 is the rounded 75% of 13, which
was the number of considered muscles (Santuz et al., 2019). For
each synergy, the factorization was repeated 10 times, each time
creating new randomized initial matrices M and P, in order to
avoid local minima (D’Avella and Bizzi, 2005). The solution with
the highest R2 was then selected for each of the 10 synergies. To
choose the minimum number of synergies required to represent
the original signals, the curve of R2 values vs. synergies was fitted
using a simple linear regression model, using all 10 synergies.
The mean squared error (Cheung et al., 2005) between the curve
and the linear interpolation was then calculated. Afterwards, the
first point in the R2-vs.-synergies curve was removed and the
error between this new curve and its new linear interpolation
was calculated. The operation was repeated until only two points
were left on the curve or until the mean squared error fell
below 10−4. This was done to search for the most linear part
of the R2-vs.-synergies curve, assuming that in this section the

reconstruction quality could not increase considerably when
adding more synergies to the model.

Motor Primitive Geometrics and Functional
Classification of Synergies
We compared motor primitives by evaluating the one-
dimensional statistical parametric mapping (SPM), center of
activity (CoA), and the full width at half maximum (FWHM)
(Cappellini et al., 2006, 2016; Pataky, 2010, 2012; Martino et al.,
2014; Santuz et al., 2018a, 2019). The CoA was defined cycle by
cycle as the angle of the vector (in polar coordinates) that points
to the center ofmass of that circular distribution (Cappellini et al.,
2016), and then averaged. The polar direction represented the
gait cycle’s phase, with angle 0≤ θt ≤ 2π. The following equations
define the CoA:







A =
∑p

t=1 (cos θt × Pt) (3)

B =
∑p

t=1 (sin θt × Pt) (4)
CoA = arctan(B/A) (5)

where p is the number of points of each gait cycle (p = 200).
The FWHM was calculated cycle by cycle after subtracting the
cycle’s minimum as the number of points exceeding each cycle’s
half maximum, and then averaged (Martino et al., 2014). As
a tool for visualizing differences in FWHM, we created heat
maps (Figure 6) by counting cycle by cycle how many points
of the relevant motor primitive exceeded half maximum and
then averaging the obtained values over the 30 gait cycles per
trial. The CoA and FWHM calculations and the subsequent SPM
analysis were conducted only for the motor primitives relative
to fundamental synergies. A fundamental synergy can be defined
as an activation pattern whose motor primitive shows a single
main peak of activation (Santuz et al., 2018a). When two or
more fundamental synergies are blended into one (or when
one synergy is split into one or more synergies), a combined
synergy appears.

Combined synergies usually constitute, in our locomotion
data, 10–30% of the total extracted synergies. While fundamental
synergies can be compared given their similar function (i.e.,
motor primitives and motor modules are comparable since they
serve a specific task within the gait cycle), combined synergies
are often so different one from another that their classification
is not possible. Due to the lack of consensus in the literature on
how to interpret them, we excluded the combined synergies from
the FWHM analysis. The recognition of fundamental synergies
was carried out by clustering similar motor primitives through
NMF, using the same algorithm employed for synergy extraction
with the maximum number of synergies set to the maximum
factorization rank plus one. The obtained “principal shapes” for
each of the four locomotion conditions were then compared
to the motor primitives in order to cluster similar shapes. A
primitive was considered similar to one of the principal shapes
if the NMF weight was equal at least to the average of all weights.
We then calculated the R2 of all the primitives that satisfied
this condition, with the relevant principal shape. If the R2 was
at least the 25% (or four times if the R2 was negative) of the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 October 2020 | Volume 8 | Article 581619

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Mileti et al. Overground and Treadmill Locomotor Synergies

average R2 obtained by comparing all the remaining primitives
with their own principal shape, we confirmed the synergy as
fundamental and classified it based on function. Primitives that
were not clustered were labeled as combined.

Fractal Analysis of Motor Primitives
To estimate the long-range dependence of motor primitives, we
conducted a fractal analysis and calculated the Hurst exponent
(H) following the rescaled range (R/S) approach (Hurst, 1951;
Mandelbrot and Wallis, 1969). We proceeded as follows: (1)
calculated the mean of the considered motor primitive of length
n; (2) subtracted the mean to the original primitive; (3) calculated
the cumulative sum of the obtained time series; (4) found the
range R of this series (the range is the difference between
the maximum and minimum values of a series); (5) calculated
the standard deviation S; (6) computed the rescaled range R/S;
(7) repeated the previous for N = n/2, n/4, n/8. . . and until a
minimum of N = 200, which is the normalized period of each
motor primitive (Santuz and Akay, 2020); and (8) calculated H as
the slope of the log(N) vs. log(R/S) curve.

H can vary between 0 and 1. For 0.5 < H < 1; in the long
term, high values in the series will be probably followed by other
high values (i.e., positive autocorrelation); in other words, the
series is persistent or has long-term memory (Mandelbrot, 1983;
Gneiting and Schlather, 2004; Tarnopolski, 2016). For 0 < H <

0.5, in the long term high values in the series will be probably
followed by low values, with a frequent switch between high and
low values (i.e., negative autocorrelation); in other words, the
series is anti-persistent or has short-term memory (Mandelbrot,
1983; Gneiting and Schlather, 2004; Tarnopolski, 2016). A Hurst
exponent of 0.5 indicates a completely random series without
any persistence (Mandelbrot, 1983; Qian and Rasheed, 2004;
Tarnopolski, 2016).

Statistics
To investigate the effect of locomotion environment and type
on the factorization rank, gait parameters, CoA, FWHM, and
H of motor primitives and motor modules, we fitted the
data using a generalized linear model with Gaussian error
distribution. The homogeneity of variances was tested using
the Levene’s test. If the residuals were normally distributed, we
carried out a two-way repeated measures ANOVA with type
II sum of squares for the dependent variables factorization
rank, cadence, stance and swing time, CoA, FWHM, H, and
muscle, the independent variables being the locomotion type
(i.e., walking or running) and environment (i.e., overground or
treadmill). If the normality assumptions on the residuals were
not met, we used the function “raov,” a robust (rank-based)
ANOVA from the R package Rfit (Kloke and McKean, 2012;
McKean and Kloke, 2014). We then performed a least significant
difference post-hoc analysis with false discovery rate adjustment
of the α level. Moreover, differences in motor primitives were
tested using a two-way repeated-measures ANOVA based on
the one-dimensional SPM analysis (Pataky, 2010, 2012), with
independent variables locomotion environment (i.e., overground
or treadmill) and gait cycle (30 levels, each being one of
the 30 recorded gait cycles per trial, per participant). To

account for the bias related to the order of gait cycles,
we performed the repeated-measures ANOVA SPM 10,000
times, randomizing at each repetition the gait cycle order
for each participant. Results are reported as mean of the
10,000 resamples.

All the significance levels were set to α = 0.05, and the
statistical analyses were conducted using custom R v3.6.3 or
Python (v3.8.2, Python Software Foundation, 2020, Wilmington,
Delaware, United States) scripts. The spm1d (Pataky, 2012) open-
source Python package v0.4.3 (spm1d.org) was used to generate
F-values maps, F∗ limit, and areas for the SPM analysis.

Data Availability
In the supplementary data set accessible at Zenodo
(doi: 10.5281/zenodo.3932767) we made available: (a) the
metadata with anonymized participant information; (b) the raw
EMG, already concatenated for the overground trials; (c) the
touchdown and lift-off timings of the recorded limb, (d) the
filtered and time-normalized EMG; (e) the muscle synergies
extracted via NMF; and (f) the code to process the data. In total,
120 trials from 30 participants are included in the supplementary
data set.

The file “metadata.dat” is available in ASCII and RData format
and contains:

• Code: the participant’s code
• Sex: the participant’s sex (M or F)
• Locomotion: the type of locomotion (W = walking, R

= running)
• Environment: to distinguish between overground (O) and

treadmill (T)
• Speed: the speed at which the recordings were conducted in

[m/s] (1.4 m/s for walking, 2.8 m/s for running)
• Age: the participant’s age in years
• Height: the participant’s height in [cm]
• Mass: the participant’s body mass in [kg].

The files containing the gait cycle breakdown are available
in RData format, in the file named “CYCLE_TIMES.RData.”
The files are structured as data frames with 30 rows (one for
each gait cycle) and two columns. The first column contains
the touchdown incremental times in seconds. The second
column contains the duration of each stance phase in seconds.
Each trial is saved as an element of a single R list. Trials
are named like “CYCLE_TIMES_P0020_TW_01,” where the
characters “CYCLE_TIMES” indicate that the trial contains
the gait cycle breakdown times, the characters “P0020” indicate
the participant number (in this example the 20th), the characters
“TW” indicate the locomotion type and environment (O =

overground, T = treadmill, W = walking, R = running),
and the number “01” indicate the trial number. Please note
that the running overground trials of participants P0001,
P0007, P0008, and P0009 only contain 21, 29, 29, and 26
cycles, respectively.

The files containing the raw, filtered, and the normalized
EMG data are available in RData format, in the files
named “RAW_EMG.RData” and “FILT_EMG.RData.” The raw
EMG files are structured as data frames with 30,000 rows
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(one for each recorded data point) and 14 columns. The
first column contains the incremental time in seconds. The
remaining 13 columns contain the raw EMG data, named
with muscle abbreviations that follow those reported above.
Each trial is saved as an element of a single R list.
Trials are named like “RAW_EMG_P0003_OR_01,” where the
characters “RAW_EMG” indicate that the trial contains raw
emg data, the characters “P0003” indicate the participant
number (in this example the 3rd), the characters “OR” indicate
the locomotion type and environment (see above), and the
numbers “01” indicate the trial number. The filtered and time-
normalized emg data is named, following the same rules,
like “FILT_EMG_P0003_OR_01.”

The muscle synergies extracted from the filtered and
normalized EMG data are available in RData format, in the file
named “SYNS.RData.” Each element of this R list represents one
trial and contains the factorization rank (list element named
“synsR2”), the motor modules (list element named “M”), the
motor primitives (list element named “P”), the reconstructed
EMG (list element named “Vr”), the number of iterations
needed by the NMF algorithm to converge (list element named
“iterations”), and the reconstruction quality measured as the
coefficient of determination (list element named “R2”). The
motor modules and motor primitives are presented as direct
output of the factorization and not in any functional order.Motor
modules are data frames with 13 rows (number of recorded
muscles) and a number of columns equal to the number of
synergies (whichmight differ from trial to trial). The rows, named
with muscle abbreviations that follow those reported above,
contain the time-independent coefficients (motor modules M),
one for each synergy and for each muscle. Motor primitives
are data frames with 6,000 rows and a number of columns
equal to the number of synergies (which might differ from
trial to trial) plus one. The rows contain the time-dependent
coefficients (motor primitives P), one column for each synergy
plus the time points (columns are named e.g., “time, Syn1,
Syn2, Syn3,” where “Syn” is the abbreviation for “synergy”).
Each gait cycle contains 200 data points, 100 for the stance
and 100 for the swing phase which, multiplied by the 30
recorded cycles, result in 6,000 data points distributed in
as many rows. This output is transposed as compared to
the one discussed in the methods section to improve user
readability. Trials are named like “SYNS_ P0012_OW_01,” where
the characters “SYNS” indicate that the trial contains muscle
synergy data, the characters “P0012” indicate the participant
number (in this example the 12th), the characters “OW” indicate
the locomotion type and environment (see above), and the
numbers “01” indicate the trial number. Given the nature of
the NMF algorithm for the extraction of muscle synergies, the
supplementary data set might show non-significant differences
as compared to the one used for obtaining the results of
this paper.

All the code used for the pre-processing of EMG data and
the extraction of muscle synergies is available in R format.
Explanatory comments are profusely present throughout the
script “muscle_synergies.R.”

FIGURE 1 | Gait parameters. Boxplots depicting stance, swing, and cadence

for the four locomotion conditions.
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RESULTS

Gait Parameters
The stance and swing times and the cadence are reported
in Figure 1. The coefficient of variation of stance, swing,
and cadence, together with the strike index are reported in
Table 1. A main effect of locomotion type (walking compared to
running) was found for stance, swing, and cadence (p < 0.001).
Stance and swing phase duration were significantly lower and
cadence higher in running (p < 0.001). Treadmill, compared to
overground locomotion, made swing times decrease (p= 0.032).
No environment by type interaction (p > 0.05) was observed
for any of the gait parameters. All the other comparisons were
statistically (p > 0.05) not significant.

Muscle Synergies
The minimum number of synergies necessary to reconstruct the
EMG data (i.e., the NMF factorization rank) was 4.6 ± 0.5 for
overground walking, 4.5 ± 0.6 for treadmill walking, 4.2 ± 0.6
for overground running and 4.6 ± 0.7 for treadmill running,
with no significant differences (overground vs. treadmill p =

0.077; walking vs. running p= 0.239). The average reconstruction
quality (i.e., the R2 or the EMG variability accounted for by the
factorization) was 0.829 ± 0.028 for overground walking, 0.843
± 0.027 for treadmill walking, 0.850 ± 0.025 for overground
running and 0.869 ± 0.026 for treadmill running. An effect of
locomotion environment (overground vs. treadmill, p = 0.001)
and type (walking vs. running, p < 0.001) was found for the
reconstruction quality, but no environment by type interactions
(p = 0.567). The percentage of combined synergies was 16.1%
for overground walking, 19.1% for treadmill walking, 19.0% for
overground running, and 23.0% for treadmill running.

Four fundamental synergies were clustered in all gait
conditions. In both walking (Figure 2) and running (Figure 3),
the first synergy functionally referred to the body weight
acceptance, with a major involvement of knee extensors and
hip extensors and abductors. The second synergy described
the propulsion phase, to which the plantarflexors mainly
contributed. The third synergy identified the early swing,
showing the involvement of foot dorsiflexors. The fourth and
last synergy reflected the late swing and the landing preparation,
highlighting the relevant influence of knee flexors (in both
walking and running), and foot dorsiflexors (mostly in running).
No main effect of the locomotion environment was found for
any of the motor modules in walking or running. In walking, the
SPM analysis detected significant differences in the descending
part of the late swing primitive (between the 179th and 185th
normalized time points, p = 0.001), as shown in Figure 2. In
running (Figure 3), the SPM highlighted differences in both the
ascending (points 34–44, p < 0.001) and descending (points
63–82, p < 0.001) portion of the propulsion primitive.

Motor Primitive Geometrics
The CoA of the propulsion primitive shifted earlier in time when
switching from overground to treadmill locomotion in both
walking and running (Figure 4). Moreover, the CoA of motor
primitives was different between walking and running in all

synergies: higher in weight acceptance and early swing; lower in
propulsion and late swing (Figure 4). The weight acceptance and
propulsion primitives were wider (i.e., higher FWHM) relative to
the stance phase in running than in walking, but the locomotion
environment did not show an effect on FWHM. The widening
is visible in both the box plots of Figure 5 and the heat maps
of Figure 6.

Fractal Analysis of Motor Primitives
The H values and the rescaled range vs. window length log–log
plots are shown in Figure 7. H values of motor primitives were
lower in treadmill compared to overground in both walking
and running. Moreover, the mean H values were lower than
0.5 in all four conditions, indicating anti-persistent behavior of
motor primitives (Mandelbrot, 1983; Gneiting and Schlather,
2004). Anti-persistence means that, in the motor primitives of
treadmill locomotion, short-term oscillations between high and
low values were less random than in overground. In other words,
the power-like decay of motor primitive’s autocorrelation
was faster in treadmill than in overground locomotion
(Tarnopolski, 2016).

DISCUSSION

Fractal analysis revealed that motor primitives were more regular
in treadmill than in overground locomotion, as hypothesized.
This novel finding suggests that the spatial and sensory
constraints imposed by the treadmill environment might have
forced the CNS to adopt a different neural control strategy.While
no difference was found in the FWHM of motor primitives for
overground and treadmill locomotion, we could show that the
CoA of the propulsion primitive was shifted earlier in time when
our participants walked and ran on a treadmill. This partially
confirmed our hypothesis that treadmills induce perturbations
to locomotion.

Gait spatiotemporal parameters were in general scarcely
affected by the locomotion environment. We found only a
decreased swing duration in treadmill compared to overground
running. This is in agreement with most of the relevant literature
reports (Lee and Hidler, 2008; Parvataneni et al., 2009; Oliveira
et al., 2016; Van Hooren et al., 2019; Santuz et al., 2020a).
Moreover, the coefficient of variability of the cadence, measured
in steps per minute, was significantly lower in treadmill for both
walking and running, suggesting a higher degree of regularity
of treadmill locomotion imposed by the less variable speed
(Dingwell and Cusumano, 2000).

We and others showed in previous studies that both the
number and function of muscle synergies are largely shared
across locomotion types and settings. For instance, in mice the
number of synergies for walking and swimming is identical
(Santuz et al., 2019) as it is in humans for walking and
running (Cappellini et al., 2006; Lacquaniti et al., 2012; Santuz
et al., 2017a) or in locomotion at different speeds (Ivanenko
et al., 2004; Santuz et al., 2020b). When adding external (e.g.,
mechanical) or internal (e.g., aging or pathology) perturbations
to locomotion, the number of synergies is not affected in
both mice (Santuz et al., 2019) and humans (Maclellan et al.,
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TABLE 1 | The step-to-step percent coefficient of variation (CV) of stance, swing and cadence is reported as the ratio between mean and standard deviation.

Locomotion type Environment Stance CV Swing CV Cadence CV Strike index

Walking Overground 3.8 ± 3.5% 4.4 ± 4.2% 2.1 ± 2.1% 0.063 ± 0.030

Treadmill 2.5 ± 1.8% 4.0 ± 3.0% 1.2 ± 0.4% 0.047 ± 0.018

Running Overground 7.4 ± 3.4% 4.3 ± 1.7% 2.6 ± 1.4% 0.066 ± 0.029

Treadmill 7.1 ± 15.9% 4.5 ± 8.6% 1.9 ± 2.3% 0.073 ± 0.051

The strike index is the distance of the center of pressure at touchdown from the most posterior part of the heel, normalized to foot length.

FIGURE 2 | Motor modules and motor primitives of the four fundamental synergies for overground and treamill walking. The motor modules are presented on a

normalized y-axis base: each muscle contribution within one synergy can range from 0 to 1 and each point represents individual trials. For the mean motor primitives

(shaded standard deviation), the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided by a

vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between overground and treadmill found by statistical parametric mapping are

shown as vertical shaded areas with relevant p-value. Muscle abbreviations: ME, gluteus medius; MA, gluteus maximus; FL, tensor fasciæ latæ; RF, rectus femoris;

VM, vastus medialis; VL, vastus lateralis; ST, semitendinosus; BF, biceps femoris; TA, tibialis anterior; PL, peroneus longus; GM, gastrocnemius medialis; GL,

gastrocnemius lateralis; SO, soleus.

2014; Santuz et al., 2018a, 2020a; Holubarsch et al., 2019;
Janshen et al., 2020). Several studies have attempted in the
past to highlight potential discrepancies between overground
and treadmill locomotion from many perspectives concluding
that spatiotemporal, kinematic, kinetic, and muscle-tendon
interaction measures are scarcely influenced by the locomotion
environment (Van Hooren et al., 2019). One study also examined

muscle synergies, finding that motor primitives underwent
“minimal temporal adjustments” (Oliveira et al., 2016). Here,
we extended that investigation by adding walking to the
analysis, unmistakably confirming that the number of muscle
synergies was conserved across locomotion types (i.e., walking
and running) and environments (i.e., overground and treadmill).
The four extracted synergies described the two macro phases
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FIGURE 3 | Motor modules and motor primitives of the four fundamental synergies for overground and treamill running. The motor modules are presented on a

normalized y-axis base: each muscle contribution within one synergy can range from 0 to 1 and each point represents individual trials. For the mean motor primitives

(shaded standard deviation), the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided by a

vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between overground and treadmill found by statistical parametric mapping are

shown as vertical shaded areas with relevant p-value. Muscle abbreviations: ME, gluteus medius; MA, gluteus maximus; FL, tensor fasciæ latæ; RF, rectus femoris;

VM, vastus medialis; VL, vastus lateralis; ST, semitendinosus; BF, biceps femoris; TA, tibialis anterior; PL, peroneus longus; GM, gastrocnemius medialis; GL,

gastrocnemius lateralis; SO, soleus.

of the gait cycle: the stance (weight acceptance and propulsion
synergies) and the swing (early and late swing synergies), similar
to what was found in other studies (Santuz et al., 2018a,b,
2020a,b). These observations indicate that overground and
treadmill locomotion share largely similar modular organization
of muscle activations, despite small temporal adjustments of
motor primitives, a fact, however, that does not exclude further
alterations of the neuromotor control that are invisible to the
naked eye.

Fractal analysis can expose local or global properties of a time
series that would be otherwise hardly visible to the naked eye
and/or simply too difficult to quantify (Santuz and Akay, 2020).
In a recent study where we used the Higuchi’s fractal dimension,
we found similar local complexity of motor primitives for
overground and treadmill locomotion (Gneiting and Schlather,
2004; Santuz et al., 2020a). Here however, we set out to analyze
the global, rather than local, fractal properties ofmotor primitives

by estimating the parameter H. There is no specific advantage
in analyzing the local or global fractal properties of motor
primitives: both characteristics are informative, even though on
a different level. While the Higuchi’s fractal dimension tells us
what happens in the short term by “zooming in” on the signal,
H helps us depict a general picture of what happens in the long
term (Gneiting and Schlather, 2004; Santuz and Akay, 2020). H
can vary between 0 and 1, withH= 0.5 indicating a random series
(Mandelbrot, 1983; Qian and Rasheed, 2004). For 0.5 < H < 1,
in the long term, a positive or negative trend is visible, making
the time series persistent or with “long memory” (Mandelbrot,
1983; Gneiting and Schlather, 2004). For 0 < H < 0.5, the series
is anti-persistent: in the long term, high values in the series
will be probably followed by low values, with a frequent switch
between high and low values as in motor primitives extracted
from locomotion (Mandelbrot, 1983; Gneiting and Schlather,
2004). We found that H values were (i) lower than 0.5 in all the
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FIGURE 4 | Box plots representing the center of activity (CoA) values for the motor primitives of the four fundamental muscle synergies. Individual trial values are

presented as points.

analyzed conditions, (ii) independent on the locomotion type,
and (iii) lower in treadmill than in overground locomotion.

First, H < 0.5 is an indication of anti-persistence, meaning
that our motor primitives did not show a trend. To make an
example of a persistent (i.e., with trend) time series, one can
think at the space vs. time graph of a person walking overground
at self-paced comfortable speed. Such a curve would be close
to a line with slope equal to the speed of the person. As the
person walks with almost constant speed, the distance traveled
increases as well, showing a positive trend: the distance from the
starting point is more likely to increase as time passes rather than
to oscillate around a certain value. This example is intuitively
dissimilar from the behavior of motor primitives, which are
time series that oscillate around a mean value (i.e., they are

anti-persistent), due to the fact that locomotion is quasi-periodic
(Santuz and Akay, 2020). Thus, it is possible to explain from a
physiological perspective why we obtained H < 0.5 for all the
analyzed locomotion conditions.

Second, the fact that H is independent on the locomotion
type (i.e., walking or running) suggests that speed does not
have an influence on the global fractal properties of motor
primitives. While at increasing locomotion speeds the local
complexity of motor primitives decreases (Santuz et al., 2020b),
the global regularity (as measured by H) is not affected.
From a neurophysiological point of view, this behavior has no
easy explanation. Neural circuits for the control of locomotor
type and speed have been found in several regions of the
vertebrate CNS: from the diversified populations of inhibitory
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FIGURE 5 | Box plots representing the full width at half maximum (FWHM) values for the motor primitives of the four fundamental muscle synergies. Individual trial

values are presented as points.

V1 and excitatory V2a spinal interneurons in the zebrafish
spinal cord (Ampatzis et al., 2014; Kimura and Higashijima,
2019), to the human prefrontal cortex (Suzuki et al., 2004;
Bulea et al., 2015) and the murine and human brainstem
(Al-Yahya et al., 2011; Capelli et al., 2017), passing through
the feline cerebellum (Armstrong, 1988) and the V0 and
V3 commissural interneurons for left-right alternation and
synchronization in the mouse system (Danner et al., 2016).
All these circuits have one important thing in common: they
implement a flexible modular organization of neuronal excitation
and inhibition for smoothly controlling the type and speed of
locomotion. Following our results, we speculate that the modular
activation of muscles, the final effectors for motion creation and
control, might be constantly tuned to maintain similar patterns,

despite the profound changes happening in the underlying
neural circuits.

Third, the found lower H values in treadmill compared
to overground suggest that motor primitives for treadmill
locomotion are more regular than those for overground walking
or running. If primitives were all perfect sinusoidal time series
with period equal to the gait cycle, Hwould be zero. Conversely, if
primitives were oscillating around their mean value in a random
way, H would be 0.5. It follows that if H decreases from 0.5 to
0, the level of randomness in the time series decreases as well,
while regularity increases. A reason for the increased regularity of
motor primitives might be the intrinsic regularity of the treadmill
belt’s speed (Dingwell and Cusumano, 2000; Riley et al., 2008).
Even though it has been shown that treadmill belts slightly
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FIGURE 6 | Heat maps representing the average occurrence of values bigger than half maximum for each trial (rows of the maps). We calculated trial by trial, for each

of the 200 time points (columns of the maps) and gait cycle, the number of times a motor primitive was exceeding half maximum and reported the mean results in a

color-coded fashion: from white (the primitive never exceeded half maximum) to blue or red (the primitive exceeded half maximum in all the 30 gait cycles of that trial).

Missing primitives are reported as fully white rows.

decelerate at touchdown only to recover the set speed later in
the stance phase and accelerate at lift-off (Van Hooren et al.,
2019), the oscillations are likely small and, most importantly,
systematic as shown by the lower CV of cadence in both
walking and running. The enforced average speed (Dingwell and
Cusumano, 2000) and other parameters such as the limited belt
dimensions (Van Hooren et al., 2019), could have contributed to
make treadmill a more restricted locomotion environment than

overground. Physiologically speaking, this could suggest that a
more regular neural control strategy was needed to overcome
the sensory constraints imposed by the treadmill environment,
showing that treadmills might be influencingmotor coordination
more than previously thought.

Recently, we used the FWHM of motor primitives as a
measure of robustness, concluding that wider (i.e., active for
a longer time) primitives indicate more robust motor control
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FIGURE 7 | Left: box plots representing the Hurst exponent (H) values, calculated as the average exponent of all primitives per trial. Individual trial values are

presented as points. Right (same color code as the left panel): log–log plot of the rescaled range (R/S) vs. window size (n, in number of normalized time points) for the

four locomotion conditions. The slope of each regression line is H. Standard deviations are presented as shaded areas around each relevant regression line.

in perturbed locomotion settings (Santuz et al., 2018a, 2020a;
Janshen et al., 2020). Our idea of robust control is based
on the optimal feedback control theory, which postulates that
motor systems selectively combine sensory feedback and motor
commands to optimize performance (Todorov and Jordan, 2002;
Scott, 2004; Tuthill and Azim, 2018). It is known that the
treadmill environment, as compared to free locomotion over
solid and even ground, can reweight the sensory feedback due
to many factors, such as the level of familiarity with the device,
the dimensions of the belt or the stationarity of visual feedback
(VanHooren et al., 2019). The constraints imposed by the limited
space and necessity of matching the belt’s speed (Dingwell and
Cusumano, 2000), can act as external perturbations. However,
our current results exclude that the CNS coped with those
potential perturbations by widening the motor primitives.

Yet, when looking into the timing of main activation as
described by the CoA, we found that motor primitives for
treadmill locomotion were shifted earlier in time in both walking
and running. This happened in one synergy out of four: the one

for propulsion. The coordinated activity of foot plantarflexors

characterize this synergy providing themain support and forward

acceleration of the body mass (Arampatzis et al., 1999; Liu
et al., 2008; Hamner and Delp, 2013; Santuz et al., 2018a; Bohm
et al., 2019). It has been shown in humans that proprioceptive
feedback from group II (muscle spindles) and/or group Ib (Golgi
tendon organs) afferents is of paramount importance for the
activation of plantarflexors (Dietz et al., 1994; Sinkjaer et al.,
2000). Additionally, mouse studies reported a crucial role of the
proprioceptive feedback from plantarflexors in regulating the
amplitude of muscle activity at different speeds (Mayer et al.,
2018). We reinforced those observations showing that genetically
modified mice lacking muscle spindles undergo a redistribution

of the motor modules for propulsion when compared to wild
type (Santuz et al., 2019). Moreover, we found that mutants
could not manage to modulate the timing of motor primitives
when external perturbations were added to locomotion (Santuz
et al., 2019). Thus, the shifted CoA of the propulsion motor
primitive might indicate that treadmill locomotion likely induced
alterations in the proprioceptive sensory feedback from foot
plantarflexors (i.e., PL, GM, GL, and SO). Additionally, we
and others found similar shifts of the propulsion primitive’s
CoA in both wild type mice (Santuz et al., 2019) and healthy
humans (Maclellan et al., 2014; Santuz et al., 2018a) undergoing
external perturbations, suggesting from yet another perspective
that treadmills might perturb locomotion in ways that were never
discussed before.

We acknowledge that some of the found differences between
treadmill and overground locomotion were of small entity and
originated from an unconventional blend of linear and nonlinear
analysis approaches. To what extent the found outcomes
stemmed from functionally significant alterations in the CNS’s
neuromotor strategies cannot be unquestionably clarified at
this point.

CONCLUSION

In this study, we used a novel combination of machine learning
and fractal analysis in an effort to understand those neuromotor
control features of overground and treadmill locomotion that
were not grasped by previous literature. Specifically, we found
time-related alterations of motor primitives, the basic activation
patterns common to functionally-related muscle groups. First,
the primitives for the propulsion phase of both walking and
running showed their main activation earlier in treadmill than
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in overground. This is similar to what previously reported for
perturbed locomotion as compared to unperturbed. Second,
motor primitives were on average more regular in treadmill
than in overground locomotion, a data-driven suggestion that
treadmills might constrain the muscle activation patterns for the
control of human locomotion.
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