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PARTICLE APPROXIMATION OF THE BGK EQUATION

PAOLO BUTTÀ, MAXIME HAURAY, AND MARIO PULVIRENTI

Abstract. In this paper we prove the convergence of a suitable particle sys-

tem towards the BGK model. More precisely, we consider an interacting sto-

chastic particle system in which each particle can instantaneously thermalize

locally. We show that, under a suitable scaling limit, propagation of chaos

does hold and the one-particle distribution function converges to the solution

of the BGK equation.

1. Introduction

The BGK model is a kinetic equation of the form,

(∂tf + v · ∇xf)(x, v, t) = λ
(

̺(x, t)Mf (x, v, t) − f(x, v, t)
)

, (1.1)

where

Mf (x, v, t) =
1

(2πT (x, t))d/2
exp

(

−|v − u(x, t)|2
2T (x, t)

)

and

̺(x, t) =

∫

dv f(x, v, t) , ̺u(x, t) =

∫

dv f(x, v, t)v ,

̺(u2 + Td)(x, t) =

∫

dv f(x, v, t)|v|2 .

Eq. (1.1) governs the time evolution of the one-particle distribution function

f = f(x, v, t), where (x, v) denotes position and velocity of the particle and t is the

time. Here, d = 1, 2, 3 is the dimension of the physical space. The BGK model

describes the dynamics of a tagged particle which thermalizes instantaneously at

Poisson random time of intensity λ > 0. The Maxwellian Mf has mean velocity

and temperature given by f itself.

This model was introduced by P.L. Bhatnagar, E.P. Gross, and M. Krook in

[1] as a simpler substitute to the fundamental and physically founded Boltzmann

equation. Clearly, the BGK model preserves local mass, momentum, and energy, so

that it shares many physical properties with the Boltzmann equation. Moreover, it

satisfies the H-Theorem, and therefore it exhibits the usual hydrodynamic behavior

in the limit of vanishing mean free path.

Roughly speaking the BGK model was introduced to handle situations where

the mean free path is very small (but positive) so that the hydrodynamic picture

is inadequate. To fix the ideas, we consider a stochastic particle system like the
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DSMCM (the Bird Montecarlo method), thus equivalent to the Boltzmann evo-

lution, when the intensity of the interactions is very large and the free motion is

finite. The BGK leading idea is that it is useless to compute in detail the very

many interactions taking place locally, since we know a priori that the system is

locally thermalizing. This means that we can replace the true dynamics with a

jump process in which position and velocity of a given particle are instantaneously

distributed according to the local equilibrium. Inspired by these arguments, in this

work, we present a stochastic system of N interacting particles yielding the BGK

equation in a suitable scaling limit. In this microscopic model, each particle moves

freely up to some random instant in which it performs a random jump in position

and velocity. The outgoing position and velocity are chosen according to a given

distribution and a Maxwellian respectively, both determined by the actual particle

configuration. See Section 2.2 for details.

In the limit N → ∞, we expect that the one particle distribution function

converges to the solution of the BGK equation, provided that, at initial time, the

particles are independent (i.e., their distribution factorizes).

Obviously, the dynamics creates correlations because of the jump mechanism,

which depend on the state of the full particle configuration. Note that the in-

teraction is not binary in the present context, so that we do not use hierarchical

techniques to obtain propagation of chaos.

Actually, the convergence follows from the fact that the action on a given particle

produced by any other particle is small (as in the mean-field limit), so that we can

expect to recover the propagation of chaos in the limit N → ∞.

We mention the recent work [4], where the one dimensional homogeneous linear

BGK equation has been obtained as a limit of a suitable particle process in which

the thermalization is driven by the Kac’s model. Therefore, the context and the

approach are different from the ones of the present paper.

We note that in the original work [1], the jump rate is chosen λ = ̺, namely the

jumps are favorite whenever the spatial density is high. This case is mathematically

much more involved compared with the case in which the rate λ is constant so that

here, we assume for simplicity λ = 1. From a mathematical point of view, a

constructive existence and uniqueness theorem for the BGK equation was given in

[7]. Previous non-constructive existence results, in the spirit of the Di Perna-Lions

theorem for the Boltzmann equation, were obtained in [6] (see also [3]). Regarding

the hydrodynamic limit we mention, e.g., [8]. Actually, we are not aware of any

constructive existence theorem for the solutions of the BGK equation when λ = ̺

and this makes difficult to approach the particle approximation problem. However,

the particle system yielding, at least formally, this BGK kinetic equation makes

perfectly sense as we shall discuss briefly in Section 5.

The plan of the paper is the following. The next section is devoted to notation,

preliminary material, and statement of the results. The remaining sections are

devoted to the proofs. More precisely, the convergence follows from two separate

results: the convergence of a particle dynamics towards a regularized version of the

BGK equation, and the removal of the cut-off to recover the true BGK equation
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from its regularized version. The former requires the main effort and it is the

content of Section 3, while the latter is proven in Section 4. Finally, some concluding

remarks are given in Section 5.

2. Preliminaries and statement of the results

Let Td =
(

R/(12 +Z)
)d

be the d-dimensional torus of side length one. We denote

by Mu,T = Mu,T (v), v ∈ R
d, the normalized Maxwellian density of mean velocity

u ∈ R
d and temperature T , i.e.,

Mu,T (v) =
1

(2πT )d/2
exp

(

−|v − u|2
2T

)

. (2.1)

In particular,

u =

∫

dvMu,T (v) v , T =
1

d

∫

dvMu,T (v) |v − u|2 .

2.1. The BGK equation and its regularized version. We denote by f =

f(t) = f(x, v, t), where (x, v) ∈ T
d ×R

d and t ∈ R+ is the time, the solution to the

BGK equation,

∂tf + v · ∇xf = ̺fMf − f , (2.2)

where ̺f = ̺f (x, t) is the local density defined by

̺f (x, t) =

∫

dv f(x, v, t) , (2.3)

while Mf =Mf(x, v, t) is the (local) Maxwellian given by

Mf(x, v, t) =Muf (x,t),Tf (x,t)(v) , (2.4)

where uf = uf (x, t) and Tf = Tf(x, t) are the local velocity and temperature,

̺f (x, t)uf (x, t) =

∫

dv f(x, v, t) v , (2.5)

̺f (x, t)Tf (x, t) =
1

d

∫

dv f(x, v, t) |v − uf (x, t)|2 . (2.6)

We also consider the solution g = g(t) = g(x, v, t) of the “regularized” BGK

equation,

∂tg + v · ∇xg = ̺ϕgM
ϕ
g − g , (2.7)

where

Mϕ
g (x, v, t) =Muϕ

g (x,t),Tϕ
g (x,t)(v) . (2.8)

In Eqs. (2.7) and (2.8), ̺ϕg = ̺ϕg (x, t), u
ϕ
g = uϕg (x, t), and T

ϕ
g = Tϕ

g (x, t) are smeared

versions of the local density, velocity, and temperature. More precisely,

̺ϕg (x, t) = (ϕ ∗ ̺g)(x, t) =
∫

dy ϕ(x− y)̺g(y, t), (2.9)

̺ϕg (x, t)u
ϕ
g (x, t) =

∫

dy dv ϕ(x− y)g(y, v, t) v , (2.10)

̺ϕg (x, t)T
ϕ
g (x, t) =

1

d

∫

dy dv ϕ(x− y)g(y, v, t) |v − uϕg (x, t)|2 , (2.11)
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where

̺g(x, t) =

∫

dv g(x, v, t) (2.12)

and ϕ is a strictly positive, even, and smooth smearing function, i.e.,

ϕ ∈ C∞(Td;R+) , ϕ(x) = ϕ(−x) ,
∫

dy ϕ(y) = 1 . (2.13)

Well-posedness of the BGK equation together with L∞ estimates for the hydro-

dynamical fields can be found in [7]. In particular, the following proposition follows

immediately from [7, Theorem 3.1].

Proposition 2.1. Let f0 be a probability density on T
d×R

d and suppose there are

a function a ∈ C(Rd) and positive constants C1, α > 0 such that

a(v) ≤ f0(x, v) ≤ C1e
−α|v|2 ∀ (x, v) ∈ T

d × R
d ,

a ≥ 0 , C2 :=

∫

dv a(v) > 0 .
(2.14)

Then there exists a mild solution f = f(t) = f(x, v, t) to Eq. (2.2) with initial

condition f(x, v, 0) = f0(x, v).
1 Moreover, there are a non-decreasing finite function

t 7→ Kq,t = Kq,t(f0), q ∈ N, and a non-increasing positive function t 7→ At = At(f0)

such that, for any (x, t) ∈ T
d × R+,

|uf (x, t)|+ Tf (x, t) +Nq(f(t)) ≤ Kq,t , (2.15)

̺f (x, t) ≥ C2e
−t , Tf(x, t) ≥ At , (2.16)

where

Nq(f) := sup
(x,v)∈Td×Rd

f(x, v)(1 + |v|q) . (2.17)

Finally, the above solution is unique in the class of functions f = f(t) = f(x, v, t)

such that, for some q > d+ 2, supt≤τ Nq(f(t)) < +∞ for any τ > 0.

The analysis in [7] can be extended straightforwardly to the regularized BGK

equation, in particular the L∞ estimates do not depend on the smearing function

ϕ. This is the content of the following proposition, whose proof is sketched in

Appendix A.

Proposition 2.2. Let g = g(t) = g(x, v, t) be the solution to Eq. (2.7) with initial

condition g(x, v, 0) = f0(x, v), f0 as in Proposition 2.1. Then, similar estimates

hold for the corresponding hydrodynamical fields, namely,

|uϕg (x, t)| + Tϕ
g (x, t) +Nq(g(t)) ≤ Kq,t , (2.18)

̺g(x, t) ≥ C2e
−t , ̺ϕg (x, t) ≥ C2e

−t , (2.19)

Tϕ
g (x, t) ≥ At , (2.20)

(with Kq,t, At independent of ϕ).

1This means that f solves the integral equation,

f(x, v, t) = e−tf0(x− vt, v) +

∫ t

0
ds e−(t−s)(̺fMf )(x− v(t − s), v, s) ,

which formally derives from Eq. (2.2) via Duhamel formula.
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2.2. The stochastic particle system. We consider a system of N particles mov-

ing in the d-dimensional torus Td. We denote by ZN = (XN , VN ) the state of the

system, where XN ∈ (Td)N and VN ∈ (Rd)N are the positions and velocities of

particles, respectively.

Recalling ϕ denotes a smearing localizing function with the properties detailed

in Eq. (2.13), setting XN = (x1, . . . , xN ) and VN = (v1, . . . , vN ), we introduce the

(smeared) empirical hydrodynamical fields ̺ϕN , uϕN , and Tϕ
N (depending on ZN )

defined by

̺ϕN (x) =
1

N

N
∑

j=1

ϕ(x− xj) , ̺ϕNu
ϕ
N (x) =

1

N

N
∑

j=1

ϕ(x− xj)vj ,

̺ϕNT
ϕ
N(x) =

1

Nd

N
∑

j=1

ϕ(x − xj)|vj − uϕN (x)|2 .

The system evolves according to a Markovian stochastic dynamics, whose gen-

erator LN is defined as

LNG(ZN ) = [(VN · ∇XN
−N)G](ZN )

+

N
∑

i=1

∫

dx̃i dṽi ϕ(x̃i − xi)M
ϕ
ZN

(x̃i, ṽi)G(Z
i,(x̃i,ṽi)
N ) , (2.21)

where Z
i,(y,w)
N = (X i,y

N , V i,w
N ) is the state obtained from ZN = (XN , VN ) by replac-

ing the position xi and velocity vi of the i-th particle by y and w respectively; G

is a test function on the state space, and Mϕ
ZN

(x, v) is the Maxwellian constructed

via the empirical fields,

Mϕ
ZN

(x, v) =Muϕ

N
(x),Tϕ

N
(x)(v) .

We emphasize that the process is well defined since, as ϕ is strictly positive, the

smeared hydrodynamical temperature Tϕ
N(x, t) is vanishing only if vj = uϕN (x, t) for

all j = 1, . . . , N , and this is a negligible event, and even if Tϕ
N(x, t) = 0, we could

replace the Maxwellian by a Dirac mass in uϕN(x, t), and the N particle dynamics

will be well defined in any case.

The generator Eq. (2.21) is associated to the process ZN (t) = (XN (t), VN (t))

in which at each Poisson time, of intensity N , a particle chosen with probability

1/N performs a jump from its actual position and velocity (xi, vi) to the new ones

(x̃i, ṽi), extracted according to the distribution ϕ(·−xi) for the position and then to

the empirical Maxwellian Mϕ
ZN

(x̃i, ·) for the velocity. In the sequel, we will denote

by FN (t) = FN (ZN , t) the density of the law of ZN (t) (but we will often refer to it

as simply the law of the process).

A notation warning. In what follows, we shall denote by C a generic positive

constant whose numerical value may change from line to line and it may possibly

depend on time t and initial condition f0.
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2.3. Results. The particle approximation of the BGK equation is achieved in two

steps. We first show that, for fixed smearing function ϕ, the stochastic dynamics de-

fined above is a particle approximation to the BGK regularized equation Eq. (2.7).

This is in fact the main result of the paper and it is the content of Theorem 2.3

below. We next consider a δ-approximating sequence {ϕε} of smearing functions

and show that the corresponding BGK regularized equations furnish an approxi-

mation to the BGK equation. From these results we deduce that the stochastic

dynamics constructed with smearing function ϕ = ϕεN , for a suitable choice of εN
(converging to 0 slowly as N → +∞), gives the required particle approximation of

the BGK equation.

Theorem 2.3. Suppose that the law of ZN(0) is FN (0) = f⊗N
0 , where f0 satisfies

the assumptions detailed in Eq. (2.14). Let g = g(t) = g(x, v, t) be the solution to

Eq. (2.7) with initial condition g(0) = f0 and smearing function ϕ as detailed in

Eq. (2.13). Define also

Γϕ := (1 + C8
ϕ)(1 + ‖ϕ‖8∞)(1 + ‖∇ϕ‖2∞) , Cϕ :=

(

min
x∈Td

ϕ(x)
)−1

. (2.22)

Let fN
j (t), j ∈ {1, . . . , N}, be the j-particle marginal distribution function of the

(symmetric) law FN (t),i.e.,

fN
j (x1, . . . , xj , v1, . . . , vj , t) =

∫

dxj+1 · · · dxN dvj+1 · · ·dvN FN (XN , VN , t) .

Then, the 2-Wasserstein distance2 W2

(

fN
j (t), g(t)⊗j

)

vanishes as N → +∞ for

any j ∈ N and t ≥ 0. More precisely, there exists a non-decreasing finite function

t 7→ Lt = Lt(f0) such that, for any j ∈ {1, . . . , N} and t ≥ 0,

W2

(

fN
j (t), g(t)⊗j

)2 ≤ j

N
LtΓϕ exp(LtΓϕ) . (2.23)

In particular, the one particle marginal distribution function fN
1 (t) weakly converges

to g(t) as N → +∞ for any t ≥ 0.

Now, we fix a sequence {ϕε}, ε ∈ (0, 1), of smearing functions such that, in

addition to Eq. (2.13), fulfil the following condition,

‖ϕε‖∞ ≤ Cε−d , ‖∇ϕε‖∞ ≤ Cε−(d+1) , Cϕε
≤ Cε−1 , (2.24)

‖ϕε ∗ J − J‖∞ ≤ C(J)ε ∀ J ∈ C1(Td) , (2.25)

with Cϕε
as in Eq. (2.22) and C(J) is a constant multiple of (‖J‖∞+‖∇J‖∞). For

example, given a smooth function Φ: Rd → R+, with
∫

dzΦ(z) = 1 and compactly

2If µ and ν are two probability measures on a metric space (M, d) with finite second moment,

the 2-Wasserstein distance between µ and ν is defined as

W2(µ, ν) =

(

inf
γ∈P(µ,ν)

∫

M×M
dγ(x, x′) d(x, x′)2

)1/2

,

where P(µ, ν) denotes the collection of all measures on M×M with marginals µ and ν. Here, M =

(Td)j × (Rd)j and W2
(

fN
j (t), g(t)⊗j

)

denotes the 2-Wasserstein distance between the probability

measures with densities fN
j (t) and g(t)⊗j respectively.
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supported inside the ball of radius 1/2 centered in z = 0, it is readily seen that the

functions ϕε on T
d defined by setting

ϕε(x) =
ε+ ε−dΦ(x/ε)

1 + ε
, x ∈

(

−1

2
,
1

2

)d

, ε ∈ (0, 1) , (2.26)

satisfy the conditions in Eqs. (2.13), (2.24), and (2.25).

We next denote by gε the solution to the regularized BGK equation with smear-

ing function ϕε. Our goal is to compare gε with the solution f of the BGK equation

which satisfies the same initial condition.

Theorem 2.4. Assume f(0) = gε(0) = f0, where f0 is a differentiable density

satisfying the condition in Eq. (2.14) and such that, for some q > d+ 2,

Nq(|∇xf0|) < +∞ . (2.27)

Then, for any t ≥ 0,

∫

dxdv (1 + |v|2) |f(x, v, t)− gε(x, v, t)| ≤ Cε . (2.28)

It is now easy to construct the particle approximation to the BGK equation.

First of all, we observe that, in view of Eq. (2.22), Γϕε
≤ Cε−η with η = 10(d+ 1)

for any ε small. Then, let Z̃N(t) be the process constructed with smearing function

ϕ = ϕεN , εN → 0 to be chosen. Suppose also that the law F̃N (t) of Z̃N (t) has

initial value F̃N (0) = f⊗N
0 , where f0 satisfies the assumptions of Theorem 2.4. Let

f = f(t) = f(x, v, t) be the solution to Eq. (2.2) with initial condition f(0) = f0.

Then, from Theorem 2.3 and Theorem 2.4, for any N large enough we have,

W2

(

f̃N
j (t), f(t)⊗j

)

≤ W2

(

f̃N
j (t), gεN (t)⊗j

)

+W2

(

gεN (t)⊗j , f(t)⊗j
)

≤ C

√

j

N
ε−η
N exp(Cε−η

N ) + jCεN .

From this estimate we deduce the aimed result, which is the content of the following

theorem.

Theorem 2.5. With the above notation, choose εN = (logN)−1/γ with γ > η.

Then, letting f̃N
j (t), j ∈ {1, . . . , N}, be the j-particle marginal distribution func-

tion of the (symmetric) law F̃N (t), the 2-Wasserstein distance W2

(

f̃N
j (t), f(t)⊗j

)

vanishes as N → +∞ for any j ∈ N and t ≥ 0. In particular, the one particle

marginal distribution function f̃N
1 (t) weakly converges to f(t) as N → +∞ for any

t ≥ 0.

3. Particle approximation of the regularized BGK equation

In this section, we prove Theorem 2.3. For reader convenience, the section is

divided in several subsections corresponding to the different steps of the proof.
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3.1. Heuristics. Because of the mean field character of the interaction among the

particles, we expect that the propagation of chaos property holds as the size N of

the system tends to infinity. We claim that if this is true then the one particle

marginal distribution function fN
1 = fN

1 (t) = fN
1 (x, v, t) of the law FN (t) does

converge to the solution to Eq. (2.7). Indeed, from Eq. (2.21),

d

dt

∫

dx1 dv1 f
N
1 (x1, v1, t)ψ(x1, v1) =

d

dt

∫

dZN FN (ZN , t)ψ(x1, v1)

=

∫

dx1 dv1 f
N
1 (x1, v1, t)(v1 · ∇x1

− 1)ψ(x1, v1)

+

∫

dZN FN (ZN , t)

∫

dx̃1 dṽ1 ϕ(x̃1 − x1)M
ϕ
ZN

(x̃1, ṽ1)ψ(x̃1, ṽ1) ,

where ψ is a test function on the one-particle state space. Now, due to the law of

large numbers, if ZN is distributed according to FN (t) ≈ fN
1 (t)⊗N then

1

N

∑

i

δ(x − xi)δ(v − vi) ≈ fN
1 (x, v) (weakly) ,

whence

Mϕ
ZN

(x̃1, ṽ1) ≈Mϕ

fN
1

(x̃1, ṽ1) .

Therefore,
∫

dZN FN (ZN , t)

∫

dx̃1 dṽ1 ϕ(x̃1 − x1)M
ϕ
ZN

(x̃1, ṽ1)ψ(x̃1, ṽ1)

≈
∫

dx1 dv1 f
N
1 (x1, v1, t)

∫

dx̃1 dṽ1 ϕ(x̃1 − x1)M
ϕ

fN
1

(x̃1, ṽ1)ψ(x̃1, ṽ1)

=

∫

dx̃1 dṽ1 ̺
ϕ

fN
1

(x̃1)M
ϕ

fN
1

(x̃1, ṽ1)ψ(x̃1, ṽ1) ,

and the claim follows.

Our purpose, Theorem 2.3, is to prove rigorously this fact. This will be achieved

by showing that the dynamics remains close to an auxiliary N -particle process,

constituted by N independent copies of the non-linear jump process associated to

the kinetic equation.3 The thesis of the theorem then follows by applying the law

of large numbers to the auxiliary process.

3.2. Coupling. The auxiliary process, named ΣN (t) = (YN (t),WN (t)) ∈ (Td)N ×
(Rd)N , is defined according to the following construction.

Let g = g(t) = g(x, v, t) be as in Theorem 2.3 and denote by (x(t), v(t)) ∈ T
d×R

d

the one-particle jump process whose generator is given by

Lg
1ψ(x, v) = [(v · ∇x − 1)ψ](x, v) +

∫

dx̃dṽ ϕ(x̃ − x)Mϕ
g (x̃, ṽ)ψ(x̃, ṽ) , (3.1)

where ψ is a test function and Mϕ
g is defined in Eq. (2.8). We remark that if the

initial distribution has a density then the same holds at positive time and for the

probability density of (x(t), v(t)) solves the regularized BGK equation (2.7).The

auxiliary N -particle process ΣN (t) is then defined by N independent copies of the

3This process is called non-linear since its generator is implicitly defined through the law of

the process itself, see Eq. (3.1) further on.
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above process. Otherwise stated, it is the Markovian dynamics on (Td)N × (Rd)N

with generator

Lg
NG(ZN ) = [(VN · ∇XN

−N)G](ZN )

+

N
∑

i=1

∫

dx̃i dṽi ϕ(x̃i − xi)M
ϕ
g (x̃i, ṽi)G(Z

i,(x̃i,ṽi)
N ) . (3.2)

We emphasize on the fact that the only difference w.r.t. Eq. (2.21) is thatMϕ
ZN

has

been replaced by Mϕ
g .

In proving the closeness between ZN (t) and ΣN (t) we find convenient to intro-

duce the coupled process QN (t) = (ZN (t),ΣN (t)) given by the Markov process

whose generator LQ is defined in the following way. Denoting ZN = (XN , VN ),

ΣN = (YN ,WN ), with XN = (x1, . . . , xN ), VN = (v1, . . . , vN ), YN = (y1, . . . , yN ),

and WN = (w1, . . . , wN ), and letting G = G(ZN ,ΣN) a test function, we set

LQG(ZN ,ΣN ) = [(VN · ∇XN
+WN · ∇YN

−N)G](ZN ,ΣN)

+

N
∑

i=1

∫

dx̃i dṽi dỹi dw̃i Φxi,yi
(x̃i, ỹi)

×Mϕ(x̃i, ṽi; ỹi, w̃i)G(Z
i,(x̃i,ṽi)
N ,Σ

i,(ỹi,w̃i)
N ) , (3.3)

where, for given x̃, ỹ ∈ T
d, Mϕ(x̃, v; ỹ, w) is a joint representation (to be fixed

later on) of the Maxwellians Mϕ
ZN

(x̃, v) and Mϕ
g (ỹ, w), and, for given x, y ∈ T

d,

Φx,y(x̃, ỹ) is the joint representation of the probability densities ϕx(x̃) = ϕ(x̃ − x)

and ϕy(ỹ) = ϕ(ỹ − y) defined as

Φx,y(x̃, ỹ) = ϕx(x̃)δ(x̃− x− ỹ + y) , (3.4)

where δ(x) denoted the Dirac measure on T
d centered in x = 0. We remark that

in particular, for any integrable function J on T
d,

∫

dx̃dỹΦx,y(x̃, ỹ)J(x̃− ỹ) = J(x− y) . (3.5)

In term of process, (ZN ,ΣN ) performs jumps at random Poisson time of intensity

N : at each jump time, i is chosen uniformly and (xi, vi, yi, wi) → (xi + ξ, yi +

ξ, ṽi, w̃i), where the common position jump ξ is distributed according to ϕ and

(ṽi, w̃i) according to the aforementioned joint representation of the two Maxwellians

Mϕ
ZN

(x̃i, ·) and Mϕ
g (ỹi, ·) to be specified later.

Let now RN (t) = RN (ZN ,ΣN , t) be the law of QN (t) and assume that, initially,

RN (0) = δ(XN − YN )δ(VN −WN )f⊗N
0 (XN , VN ) .

Then, setting

IN (t) :=

∫

dRN (t)(|x1 − y1|2 + |v1 − w1|2)

and noticing that, as RN (t) is symmetric with respect to particle permutations,

IN (t) =
1

j

∫

dRN (t)

j
∑

i=1

(|xi − yi|2 + |vi − wi|2) ∀ j ∈ {1, . . . , N} ,
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the proof of Theorem 2.3 reduces to show that

IN (t) ≤ CΓϕ

N
exp(CΓϕ) . (3.6)

Indeed, from the definition of the 2-Wasserstein distance it follows immediately

that W2

(

fN
j (t), g(t)⊗j

)

≤
√

jIN (t).

To prove Eq. (3.6) we compute,

d

dt
IN (t) =

∫

dRN (t)LQ(|x1 − y1|2 + |v1 − w1|2)

=

∫

dRN (t) (v1 · ∇x1
+ w1 · ∇y1

)|x1 − y1|2

−N

∫

dRN (t) (|x1 − y1|2 + |v1 − w1|2)

+

N
∑

i=2

∫

dRN (t) (|x1 − y1|2 + |v1 − w1|2) +
∫

dRN (t) |x1 − y1|2

+

∫

dRN (t)

∫

dξ ϕ(ξ)

∫

dṽ1 dw̃1 Mϕ(x1 + ξ, ṽ1; y1 + ξ, w̃1)|ṽ1 − w̃1|2 .

Here, the first two terms in the right-hand side arise from the stream part (VN ·
∇XN

G+WN · ∇YN
G) and the loss part (−NG) of the generator LQ, respectively.

The loss part is largely compensated by the third term, which is the sum over all

the particles but particle 1, see the last term in the right-hand side of Eq. (3.3).

The last two terms are those arising from the remaining term i = 1, separating the

position and velocity contributions and having used Eq. (3.5) in the former and

Eq. (3.4) in the latter.

We observe that the stream part is equal to

2

∫

dRN (t) (v1 − w1) · (x1 − y1) ≤
∫

dRN (t) (|x1 − y1|2 + |v1 − w1|2) ,

while, concerning the last term, we choose Mϕ the optimal coupling that realizes

the 2-Wasserstein distance between the marginals, whose square is given by (see,

e.g., [5])

W2

(

Mϕ
ZN

(x, ·),Mϕ
g (y, ·)

)2
= |uϕN (x)− uϕg (y)|2 + d

∣

∣

∣

√

Tϕ
N(x) −

√

Tϕ
g (y)

∣

∣

∣

2

.

Collecting together the above formulas, we find that

d

dt
IN (t) ≤ IN (t) +

∫

dRN (t)D(ZN ,ΣN ) , (3.7)

where

D(ZN ,ΣN ) =

∫

dξ ϕ(ξ) |uϕN (x1 + ξ)− uϕg (y1 + ξ)|2

+

∫

dξ ϕ(ξ) d
∣

∣

∣

√

Tϕ
N (x1 + ξ)−

√

Tϕ
g (y1 + ξ)

∣

∣

∣

2

. (3.8)

Our goal is to estimate from above the integral in the right-hand side of Eq. (3.7)

with a constant (independent of N) multiple of IN (t) plus a small (order 1/N) term.

Then, Eq. (3.6) will follow from Grönwall’s inequality.
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3.3. Estimates. In estimating the function D defined in Eq. (3.8), it is convenient

to replace ̺ϕg , u
ϕ
g , T

ϕ
g with the fields ˜̺ϕN , ũϕN , T̃ϕ

N given by

˜̺ϕN (x) =
1

N

N
∑

j=1

ϕ(x − yj) , ˜̺ϕN ũ
ϕ
N (x) =

1

N

N
∑

j=1

ϕ(x− yj)wj ,

˜̺ϕN T̃
ϕ
N (x) =

1

Nd

N
∑

j=1

ϕ(x− yj)|wj − ũϕN (x)|2 ,

i.e., the empirical fields constructed via the variables YN = (y1, . . . , yN) and WN =

(w1, . . . , wN ), distributed independently according to g(t)⊗N . By the law of large

numbers, the error due to this replacement in estimating the right-hand side of

Eq. (3.8) will be shown to be small (order 1/N).

More precisely, since from Eq. (2.20),

∣

∣

∣

√

Tϕ
N (x)−

√

Tϕ
g (y)

∣

∣

∣
=

∣

∣Tϕ
N(x) − Tϕ

g (y)
∣

∣

√

Tϕ
N(x) +

√

Tϕ
g (y)

≤
∣

∣Tϕ
N (x)− T̃ϕ

N (y)
∣

∣

√

Tϕ
N (x) +

√
At

+

∣

∣T̃ϕ
N (y)− Tϕ

g (y)
∣

∣

√
At

,

we have,

D(ZN ,ΣN) ≤ D1(ZN ,ΣN ) + E(ΣN ) , (3.9)

where

D1(ZN ,ΣN ) =

∫

dξ ϕ(ξ) 2|uϕN (x1 + ξ)− ũϕN(y1 + ξ)|2

+

∫

dξ ϕ(ξ) 2d

∣

∣

∣

∣

∣

Tϕ
N (x1 + ξ)− T̃ϕ

N (y1 + ξ)
√

Tϕ
N (x1 + ξ) +

√
At

∣

∣

∣

∣

∣

2

(3.10)

and

E(ΣN ) =

∫

dξ ϕ(ξ) 2|ũϕN (y1 + ξ)− uϕg (y1 + ξ)|2 (3.11)

+

∫

dξ ϕ(ξ) 2d

∣

∣T̃ϕ
N (y1 + ξ)− Tϕ

g (y1 + ξ)
∣

∣

2

At
. (3.12)

Lemma 3.1. Recall the definition of Γϕ in Eq. (2.22). Then, for any t ≥ 0,

D1(ZN ,ΣN )

≤ CΓϕ

(

1 +
1

N

∑

j
|wj |4

)( |XN − YN |2 + |VN −WN |2
N

+ |x1 − y1|2
)

. (3.13)

Proof. Before evaluating the difference between the empirical fields, we introduce

the normalized weights,

pj =
ϕ(x1 + ξ − xj)

∑

k ϕ(x1 + ξ − xk)
, qj =

ϕ(y1 + ξ − yj)
∑

k ϕ(y1 + ξ − yk)
.

Recalling the definition of Cϕ in Eq. (2.22), we have,

max{pj; qj} ≤ Cϕ‖ϕ‖∞
N

. (3.14)
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Moreover, since

pj − qj =
ϕ(x1 + ξ − xj)− ϕ(y1 + ξ − yj)

∑

k ϕ(x1 + ξ − xk)

+ ϕ(y1 + ξ − yj)

∑

k[ϕ(x1 + ξ − xk)− ϕ(y1 + ξ − yk)]
∑

k ϕ(x1 + ξ − xk)
∑

k ϕ(y1 + ξ − yk)
,

it also follows that

|pj − qj | ≤
Cϕ‖∇ϕ‖∞

N
(|x1 − y1|+ |xj − yj |)

+
C2

ϕ‖ϕ‖∞‖∇ϕ‖∞
N2

∑

k

(|x1 − y1|+ |xk − yk|)

≤ Cϕ‖∇ϕ‖∞
N

(

1 + Cϕ‖ϕ‖∞
)

|x1 − y1|+
Cϕ‖∇ϕ‖∞

N
|xj − yj |

+
C2

ϕ‖ϕ‖∞‖∇ϕ‖∞
N

|XN − YN |√
N

, (3.15)

where in the last bound we used that, by the Cauchy-Schwarz inequality,
∑

k |xk −
yk| ≤

√
N |XN − YN |.

Regarding the first term in the right-hand side of Eq. (3.10), we notice that

|uϕN(x1 + ξ)− ũϕN(y1 + ξ)| ≤ U1 + U2 ,

where, by Eqs. (3.14) and (3.15),

U1 =
∑

j

pj |vj − wj | ≤
Cϕ‖ϕ‖∞

N

∑

j

|vj − wj | ,

U2 =
∑

j

|pj − qj ||wj | ≤
Cϕ‖∇ϕ‖∞

N

(

1 + Cϕ‖ϕ‖∞
)

|x1 − y1|
∑

j

|wj |

+
Cϕ‖∇ϕ‖∞

N

∑

j

|xj − yj||wj |+ C2
ϕ‖ϕ‖∞‖∇ϕ‖∞

|XN − YN |√
N

1

N

∑

j

|wj | .

Therefore, again by the Cauchy-Schwarz inequality,

|uϕN(x1 + ξ)− ũϕN(y1 + ξ)|2 ≤ 2U2
1 + 2U2

2 ≤ 2C2
ϕ‖ϕ‖2∞

|VN −WN |2
N

+ C(1 + C2
ϕ‖ϕ‖2∞)C2

ϕ‖∇ϕ‖2∞
|WN |2
N

( |XN − YN |2
N

+ |x1 − y1|2
)

. (3.16)

The estimate of the second term in the right-hand side of Eq. (3.10) is more tricky

and requires some effort. We first notice that
∣

∣

∣

∣

∣

Tϕ
N(x1 + ξ)− T̃ϕ

N(y1 + ξ)
√

Tϕ
N(x1 + ξ) +

√
At

∣

∣

∣

∣

∣

≤ T1 + T2 ,

where (omitting the explicit dependence on x1 + ξ and y1 + ξ)

T1 =
1

d

∑

j

pj

∣

∣

∣

∣

∣

|vj − uϕN |2 − |wj − ũϕN |2
√

Tϕ
N +

√
At

∣

∣

∣

∣

∣

, T2 =
1

d

∑

j

|pj − qj |
|wj − ũϕN |2√

At

.
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Now,

T1 =
1

d

∑

j

pj

∣

∣

∣

∣

∣

(vj − uϕN − wj + ũϕN ) · (vj − uϕN + wj − ũϕN)
√

Tϕ
N +

√
At

∣

∣

∣

∣

∣

≤ T1,1 + T1,2 ,

with

T1,1 =
1

d

∑

j

pj
(|vj − wj |+ |uϕN − ũϕN |)|vj − uϕN |

√

Tϕ
N +

√
At

,

T1,2 =
1

d
√
At

∑

j

pj(|vj − wj |+ |uϕN − ũϕN |)|wj − ũϕN | .

By the Cauchy-Schwartz inequality with respect to the weights {pj} and Eq. (3.14),

T1,1 ≤
1

d

√

∑

j
pj(|vj − wj |+ |uϕN − ũϕN |)2

√

Tϕ
N

√

Tϕ
N +

√
At

≤ 1

d

√

2Cϕ‖ϕ‖∞
N

|VN −WN |2 + 2|uϕN − ũϕN |2

and

T1,2 ≤ 1

d
√
At

√

∑

j
pj(|vj − wj |+ |uϕN − ũϕN |)2

√

∑

j
pj |wj − ũϕN |2

≤ 1

d
√
At

√

2Cϕ‖ϕ‖∞
N

|VN −WN |2 + 2|uϕN − ũϕN |2
√

Cϕ‖ϕ‖∞
N

∑

j
|wj − ũϕN |2 .

On the other hand, in view of Eq. (3.15) and by the Cauchy-Schwarz inequality,

T2 ≤ Cϕ‖∇ϕ‖∞
d
√
AtN

∑

j

[

(

1 + Cϕ‖ϕ‖∞
)

|x1 − y1|+ |xj − yj |
]

|wj − ũϕN |2

+
C2

ϕ‖ϕ‖∞‖∇ϕ‖∞
d
√
At

|XN − YN |√
N

1

N

∑

j

|wj − ũϕN |2

≤ Cϕ‖∇ϕ‖∞
d
√
At

[

(

1 + Cϕ‖ϕ‖∞
)

|x1 − y1|+
|XN − YN |√

N

]

√

1

N

∑

j
|wj − ũϕN |4

+
C2

ϕ‖ϕ‖∞‖∇ϕ‖∞
d
√
At

|XN − YN |√
N

1

N

∑

j

|wj − ũϕN |2 .

We finally observe that, as |ũϕN | ≤ Cϕ‖ϕ‖∞|WN |/
√
N ,

1

N

∑

j

|wj − ũϕN |2 ≤ 2(1 + C2
ϕ‖ϕ‖2∞)

|WN |2
N

,

1

N

∑

j

|wj − ũϕN |4 ≤ 4

N

∑

j
|wj |4 + 4C4

ϕ‖ϕ‖4∞
|WN |4
N2

. (3.17)
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From the above estimates on T1,1, T1,2, T2, and inequalities Eqs. (3.16) and (3.17),

we conclude that
∣

∣

∣

∣

∣

Tϕ
N(x1 + ξ)− T̃ϕ

N(y1 + ξ)
√

Tϕ
N(x1 + ξ) +

√
At

∣

∣

∣

∣

∣

2

≤ CΓϕ

( |WN |4
N2

+
1

N

∑

j
|wj |4

)

|x1 − y1|2

+ CΓϕ

( |WN |2
N

+
|WN |4
N2

+
1

N

∑

j
|wj |4

) |XN − YN |2
N

+ CΓϕ

(

1 +
|WN |2
N

) |VN −WN |2
N

. (3.18)

Since 1
N |WN |2 ≤

√

1
N

∑

j |wj |4, Eq. (3.13) follows from Eqs. (3.16) and (3.18) (recall
∫

dξ ϕ(ξ) = 1). � �

Lemma 3.2. Recall the definition of Γϕ in Eq. (2.22). Then, for any t ≥ 0,
∫

dRN (t)
1

N

∑

j

(

|vj |8 + |wj |16
)

≤ C exp(CΓϕ) . (3.19)

Proof. From the estimate on Nq(g) in Eq. (2.18) and the symmetry of FN (t) we

have,
∫

dRN (t)
1

N

∑

j

(

|vj |8 + |wj |16
)

=

∫

dZN FN (ZN , t) |v1|8 + C ,

so that we only need an upper bound on the first term in the right-hand side.

To this purpose, recalling the explicit expression of the generator Eq. (2.21), we

compute,

d

dt

∫

dFN (t) |v1|8

= −
∫

dZN FN (ZN , t) |v1|8 +
∫

dZN FN (ZN , t)

∫

dξ ϕ(ξ)

×
∫

dṽ1M
ϕ
ZN

(x1 + ξ, ṽ1)|ṽ1|8

= −
∫

dZN FN (ZN , t) |v1|8 +
∫

dZN FN (ZN , t)

∫

dξ ϕ(ξ)

×
∫

dηM0,1(η)
∣

∣uϕN(x1 + ξ)−
√

Tϕ
N(x1 + ξ) η

∣

∣

8
, (3.20)

where M0,1 is the Gaussian centered in 0 with unitary variance. Since, in view of

Eq. (3.14),

|uϕN (x1 + ξ)| ≤ Cϕ‖ϕ‖∞
N

∑

j

|vj | , Tϕ
N(x1 + ξ) ≤ Cϕ‖ϕ‖∞

N

∑

j

|vj |2 ,

the Gaussian integral in the right-hand side of Eq. (3.20) is bounded by a constant

multiple of (Cϕ‖ϕ‖∞)8 1
N

∑

j |vj |8, so that, by using again the symmetry of FN (t),

d

dt

∫

dFN (t) |v1|8 ≤ C(Cϕ‖ϕ‖∞)8
∫

dFN (t) |v1|8 ,

from which the lemma follows by Grönwall’s inequality and the assumption on the

initial distribution function f0 given in Eq. (2.14). � �
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3.4. Conclusion (proof of Eq. (3.6)). Our task is to estimate from above the

integral in the right-hand side of Eq. (3.7) with a constant multiple of IN (t) plus a

small (order 1/N) term. To this end, we use Eq. (3.9) and decompose
∫

dRN (t)D(ZN ,ΣN ) = K1 +K2 , (3.21)

with

K1 =

∫

dRN (t)D1(ZN ,ΣN ) , K2 =

∫

dg(t)⊗N E(ΣN ) .

Recalling the definition Eq. (3.11) of E , from the law of large numbers we have that

K2 ≤ C

N
. (3.22)

Now, we want to use Lemma 3.1 to bound K1 by means of IN (t). This is not

immediate, due to the factor
(

1 + 1
N

∑

j |wj |4
)

appearing in the right-hand side of

Eq. (3.13). The strategy is to decompose the domain of integration, by introducing

the “good set”

Ga =
{

(ZN ,ΣN ) :
∑

j
|wj |4 ≤ Na

}

, a > 0 ,

where the right-hand side of Eq. (3.13) is under control, and show that for a suffi-

ciently large the contribution of the integration outside Ga is order 1/N(due to the

law of large numbers). With this in mind, we decompose

K1 = K1,1 +K1,2 , (3.23)

with

K1,1 =

∫

Ga

dRN (t)D1(ZN ,ΣN ) , K1,2 =

∫

G∁
a

dRN (t)D1(ZN ,ΣN ) .

In view of Eq. (3.13), if Ct(a) = CΓϕ(1 + a) then, for any (ZN ,ΣN ) ∈ Ga,

D1(ZN ,ΣN ) ≤ Ct(a)

( |XN − YN |2 + |VN −WN |2
N

+ |x1 − y1|2
)

so that, noticing that the law RN (t) is symmetric,

K1,1 ≤ Ct(a)

∫

dRN (t)

( |XN − YN |2 + |VN −WN |2
N

+ |x1 − y1|2
)

≤ 2Ct(a)IN (t) . (3.24)

In estimating K1,2, we first observe that

K1,2 ≤
(

∫

dRN (t)D1(ZN ,ΣN )2

)1/2(
∫

∑
j |wj |4>Na

dg(t)⊗N

)1/2

≤ CΓϕ exp(CΓϕ)

(

∫

∑
j |wj |4>Na

dg(t)⊗N

)1/2

, (3.25)

where, in the last inequality, we first used that the square of the right-hand side

in Eq. (3.13) is bounded by a constant multiple of Γϕ
1
N

∑

j

(

|vj |8 + |wj |16
)

, and

then we applied Eq. (3.19). We now show that, by the law of large numbers, if a is

large enough then the integral in the right-hand side of Eq. (3.25) is vanishing as
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N → +∞. More precisely, from the estimate on Nq(g) in Eq. (2.18), there is M =

M(t, f0) such that
∫

dy dw g(y, w, t)|w|4 ≤ M . Therefore, letting ξN = 1
N

∑

j |wj |4
and E(ξN ) =

∫

dg(t)⊗NξN , if a > 2M we have
∫

∑
j |wj |4>Na

dg(t)⊗N ≤
∫

|ξN−E(ξN )|>M

dg(t)⊗N .

Therefore, by the law of large numbers (i.e., Chebyshev’s inequality),
∫

∑
j |wj |4>Na

dg(t)⊗N ≤ C

N
,

so that

K1,2 ≤ CΓϕ

N
exp(CΓϕ) . (3.26)

In view of Eqs. (3.7), (3.21), (3.23), (3.24), (3.26), and (3.22), we conclude that,

for any 0 < s ≤ t,

d

ds
IN (s) ≤ [1 + 2Ct(a)]IN (s) +

CΓϕ

N
exp(CΓϕ) , (3.27)

which implies Eq. (3.6) by Grönwall’s inequality.

4. Lipschitz estimates and removal of the cut-off

In this section we prove Theorem 2.4. A preliminary result is the following

lemma, where we provide L∞ bounds on the spatial derivatives of the solutions

to either the BGK equation, Eq. (2.2), or its regularized version, Eq. (2.7). We

emphasize that, in the latter case, these estimates do not depend on the smearing

function ϕ.

Lemma 4.1. Under the hypothesis of Theorem 2.4, for any t ≥ 0,

Nq(|∇xf(t)|) +Nq(|∇xg(t)|) ≤ C , (4.1)

where f(t) [resp. g(t)] is the solution to the BGK [resp. regularized BGK] equation

with initial condition f(0) = g(0) = f0 given by Proposition 2.1 [resp. Proposition

2.2].

Proof. We prove the claim for the solution to the BGK equation, the case of the

regularized BGK equation can be treated in the same way.

By differentiating Eq. (2.2) we have,

(∂t + v · ∇x + 1)∇xf = ̺fMfQf ,

with

Qf =
∇x̺f
̺f

+
(Dxuf)

T (v − uf)

Tf
+

( |v − uf |2
2T 2

f

− d

4πTf

)

∇xTf .

Therefore, by Duhamel formula,

∇xf(x, v, t) = e−t∇xf0(x−vt, v)+
∫ t

0

ds e−(t−s)(̺fMfQf)(x−v(t−s), v, s) . (4.2)
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To estimate the Nq-norm of the integral in the right-hand side of Eq. (4.2) we first

observe that

(1 + |v|q)|v − uf |jMf ≤ C(1 + |v − uf |q + |uf |q)|v − uf |jMf

≤ CT
(j−d)/2
f (1 + T

q/2
f + |uf |q) ∀ j = 0, 1, 2 .

Moreover,

|∇x̺f | ≤
∫

dv |∇xf | ≤ CNq(|∇xf |) ,

|Dxuf | ≤
|uf ||∇x̺f |

̺f
+

1

̺f

∫

dv |∇xf | |v| ≤ C
(1 + |uf |)Nq(|∇xf |)

̺f
,

|∇xTf | ≤
Tf |∇x̺f |

̺f
+

1

̺f

∫

dv |∇xf | |v − uf |2

≤ C
(Tf + 1 + |uf |2)Nq(|∇xf |)

̺f
,

where we used that if q > d+ 2 then

∫

dv |∇xf ||v|j =
∫

dv |∇xf ||v|j
1 + |v|q
1 + |v|q ≤ CNq(|∇xf |) ∀ j = 0, 1, 2 .

Therefore, in view of Eqs. (2.15) and (2.16), from the above estimates we deduce

that Nq(̺fMfQf ) ≤ CNq(|∇xf |). The estimate on Nq(|∇xf |) then follows from

Eq. (4.2) and Grönwall’s inequality. � �

Proof of Theorem 2.4 We introduce the shorten notation ̺ε, uε, T ε to denote the

smeared local fields defined as in Eqs. (2.9), (2.10), and (2.11) with ϕε in place of

ϕ.

From Duhamel formula,

f(x, v, t)− gε(x, v, t) =

∫ t

0

ds e−(t−s)(̺fMf − ̺εMgε)(x − v(t− s), v, s) ,

so that, setting

D(t) =

∫

dxdv (1 + |v|2) |f(x, v, t)− gε(x, v, t)| ,

we have (after the change of variable x→ x+ v(t− s) on T
d)

D(t) ≤
∫ t

0

ds

∫

dxdv (1 + |v|2)
∣

∣(̺fMf − ̺εMgε)(x, v, s)
∣

∣ . (4.3)

To estimate the right-hand side in Eq. (4.3) we argue as in [7]. We set, for

λ ∈ [0, 1],

(̺λ, uλ, Tλ) = λ(̺f , uf , Tf) + (1− λ)(̺ε, uε, T ε)
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and let Mλ(v) =Muλ,Tλ
(v), so that

∫

dv (1 + |v|2) |̺fMf − ̺εMgε | ≤
∫ 1

0

dλ

∫

dv (1 + |v|2)
{

|̺f − ̺ε|Mλ

+ ̺λ|∇uMλ| |uf − uε|+ ̺λ

∣

∣

∣

∣

∂Mλ

∂T

∣

∣

∣

∣

|Tf − Tgε |
}

≤ C(|̺f − ̺ε|+ |uf − uε|+ |Tf − Tgε |) ,

where, in obtaining the last inequality, we first used that
∫

dv (1 + |v|2)Mλ ≤ 1 + |uλ|2 + Tλ ,

∫

dv (1 + |v|2) |∇uMλ| ≤ C
1 + |uλ|2 + Tλ√

Tλ
,

∫

dv (1 + |v|2)
∣

∣

∣

∣

∂Mλ

∂T

∣

∣

∣

∣

≤ C
1 + |uλ|2 + Tλ

Tλ
,

and then applied the lower and upper bounds on the hydrodynamical fields given

in Propositions 2.1 and 2.2. Now, again from these propositions,

|uf − uε| ≤ C̺f |uf − uε| ≤ C(|̺fuf − ̺εuε|+ |uε| |̺f − ̺ε|)

≤ C

∫

dv (1 + |v|2) |f − gε|+ C|̺f − ̺ε| ,

|Tf − T ε| ≤ C̺f |Tf − T ε| ≤ C(|̺fTf − ̺εT ε|+ |T ε| |̺f − ̺ε|)

≤ C

∫

dv (1 + |v|2) |f − gε|+ C|̺f − ̺ε| .

Finally,

|̺f − ̺ε|(x) ≤
∫

dv
∣

∣

∣
f(x, v, t)−

∫

dy ϕε(x− y)gε(y, v, t)
∣

∣

∣

≤
∫

dv (1 + |v|2) |f − gε|+
∫

dy dv ϕε(x− y)|gε(y, v, t)− gε(x, v, t)|

≤
∫

dv (1 + |v|2) |f − gε|+ Cε ,

where we used Eq. (2.25) and Lemma 4.1 in the last inequality.

Inserting the above bounds in Eq. (4.3) we finally have,

D(t) ≤ C

∫ t

0

dsD(s) + Cε ,

which implies Eq. (2.28) by Grönwall’s inequality. �

Remark 4.2. Note that the convergence part of the particle approximation is carried

out by using a weak topology. Actually, this is natural since such a proof is based on

the law of large numbers. In contrast, in removing the cut-off we used a weighted L1

topology. A direct use of the weak topology could be possible also in this part of the

proof, but in this context it is much less natural, being the proof more complicate

and the result weaker.
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5. Concluding remarks

Let us consider, for the moment, the non-physical particle dynamics introduced

in the present paper as really describing the behavior of the microscopic world.

Then, it makes sense to exploit the scaling and the regime for which the kinetic

picture given by the BGK model is appropriate. Proceeding as for the most popular

kinetic equations, let (XN , VN ) ∈ (Td)N ×(Rd)N be the macroscopic variables. The

evolution of the microscopic system takes place in T
d
ε , the d-dimensional torus of

side ε−1, where ε is a scale parameter. In other words, the microscopic variables

are

(ε−1XN , VN , ε
−1t)

(velocities are unscaled), and the time evolution of the law F̄N of the microscopic

process is given by the Fokker-Planck equation,

(∂ε−1t + VN · ∇ε−1XN
)F̄N (ε−1XN , VN , ε

−1t) = −γNNF̄N (ε−1XN , VN , ε
−1t)

+ γN

N
∑

i=1

∫

dx̃i

∫

dṽi ε
−dϕ(ε−1(xi − x̃i))M

ϕ

(ε−1X
i,x̃i
N ,V

i,ṽi
N )

(ε−1xi, vi)

× F̄N (ε−1X i,x̃i

N , V i,ṽi
N , ε−1t) ,

where γN modulates the intensity of the jump process suitably and ϕ is not scaled.

Note that x̃i in the above formula is a macroscopic variable which belongs to the

unitary torus.

Actually ϕ describes the interaction. A possible choice is the characteristic

function of the unitary sphere or a smooth version of it. This means that only the

particles at distance at most 1 from a given particle determine its random jumps.

Denoting by

FN (XN , VN , t) = ε−dN F̄N (ε−1XN , VN , ε
−1t)

the law expressed in the macro-variables, we arrive to

(∂t + VN · ∇XN
)FN (XN , VN , t) = −γN

ε
NFN (XN , VN , t)

+
γN
ε

N
∑

i=1

∫

dx̃i

∫

dṽi ϕε(xi − x̃i)M
ϕε

(X
i,x̃i
N ,V

i,ṽi
N )

(xi, vi)FN (X i,x̃i

N , V i,ṽi
N , t) . (5.1)

Here, we used that

Mϕ
(ε−1XN ,VN )(ε

−1xi, vi) =Mϕε

ZN
(xi, vi) ,

with ϕε(x) = ε−dϕ(x/ε), as follows by a direct inspection. Indeed, it follows that

uϕN(ε−1xi) = uϕε

N (xi) Tϕ
N(ε−1xi) = Tϕε

N (xi)

with the convention that the left-hand side is computed via ε−1XN , VN and the

right hand side via XN , VN .

Next, we assume the microscopic density O(1), thus N = ε−d (hydrodynamical

density). We recall here that the hydrodynamic limit consists in scaling space

and time only, the evolution for the hydrodynamical fields being obtained via the

quick local thermalization toward the local equilibrium. In contrast, the kinetic
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description requires a suitable modification of the dynamics to moderate the number

of the interactions per unit (macroscopic) time. In the present context, we do this

by rescaling γN = ε.

In conclusion, we recover the particle dynamics we have considered, but the

condition ε = N−1/d is too severe for our approach, as we need ε ≈ (logN)−a for

some positive a.

Moreover, in contrast with the setting discussed in the present section, in our

derivation of the BGK equation we have assumed that ϕ is strictly positive, ex-

cluding the case of the characteristic function of a unitary ball. Therefore, we face

now a new potential divergence related to a possible rarefaction in a given box.

However, this issue could probably be handled via extra probabilistic estimates.

We finally mention that if we consider the Fokker-Planck equation (5.1) with

γN replaced by 1
N

∑

j ϕ(xi − xj) we expect, at least formally, to recover the BGK

equation with λ = ̺(x).

Appendix A. Proof of Proposition 2.2

We first observe that the smeared fields, defined in Eqs. (2.9), (2.10), and (2.11),

coincide with the usual hydrodynamical fields associated to the smeared distribution

function gϕ(x, v) :=
∫

dy ϕ(x − y)g(y, v), i.e.,

̺ϕg = ̺gϕ , ̺ϕg u
ϕ
g = ̺gϕugϕ , ̺ϕg T

ϕ
g = ̺gϕTgϕ .

Therefore, according to [7, Proposition 2.1], we find the following pointwise esti-

mates for ρϕg , u
ϕ
g , and T

ϕ
g :

(i)
ρϕ

(Tϕ)d/2
≤ CN0(g

ϕ) ;

(ii) ρϕ(Tϕ + (uϕ)2)(q−d)/2 ≤ CqNq(g
ϕ) either for q > d+ 2 or for 0 ≤ q < d ;

(iii)
ρϕ|uϕ|d+q

[Tϕ + (uϕ)2)Tϕ]d/2
for q > 1 .

Above, C,Cq are constants independent of ϕ and

Nq(f) = sup
v

|v|qf(v) , q ≥ 0 ,

for a given positive function f .

As a consequence, following [7], we infer

sup
v

|v|qMϕ
g (x, v) ≤ CqNq(g

ϕ)

and hence, writing the equation for g in mild form and recallig Eq. (2.17), we

obtain

Nq(g(t)) ≤ Nq(f0) + Cq

∫ t

0

dsNq(g
ϕ(s)) .

The a priori bound Nq(g(t)) ≤ Nq(f0) exp(Cqt) follows by the obvious inequality

Nq(g
ϕ(s)) ≤ Nq(g(s)) and the Grönwall’s lemma.

Provided this estimate, by arguing exactly as in the proof of [7, Theorem 3.1], we

construct the solution g(t) by establishing the Lipschitz continuity of the operator
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g → ρϕgM
ϕ
g − g in L1((1 + v2)dxdv) and using the standard iteration scheme.

Moreover, exactly as in [7], the bounds (2.18), (2.19), and (2.20) follow from this

construction and the previous a priori estimates.
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P.le Aldo Moro 5, 00185 Roma, Italy

Email address: pulviren@mat.uniroma1.it

http://arxiv.org/abs/2002.08667

	1. Introduction
	2. Preliminaries and statement of the results
	2.1. The BGK equation and its regularized version
	2.2. The stochastic particle system
	2.3. Results

	3. Particle approximation of the regularized BGK equation
	3.1. Heuristics
	3.2. Coupling
	3.3. Estimates
	3.4. Conclusion (proof of Eq. (3.6))

	4. Lipschitz estimates and removal of the cut-off
	5. Concluding remarks
	Appendix A. Proof of Proposition 2.2
	References

