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Abstract
The interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are 
witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. 
The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering 
the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the 
behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to 
device and human interactions are stored in databases, as well as IoT information related to the network level (wireless or 
wired) is gathered by the network operators. In this paper, we provide a systematic approach to process network data gath-
ered from a wide area IoT wireless platform based on LoRaWAN (Long Range Wide Area Network). Our study can be used 
for profiling IoT devices, in order to group them according to their characteristics, as well as detecting network anomalies. 
Specifically, we use the k-means algorithm to group LoRaWAN packets according to their radio and network behavior. We 
tested our approach on a real LoRaWAN network where the entire captured traffic is stored in a proprietary database. Quite 
important is the fact that LoRaWAN captures, via the wireless interface, packets of multiple operators. Indeed our analysis 
was performed on 997, 183 packets with 2169 devices involved and only a subset of them were known by the considered 
operator, meaning that an operator cannot control the whole behavior of the system but on the contrary has to observe it. 
We were able to analyze clusters’ contents, revealing results both in line with the current network behavior and alerts on 
malfunctioning devices, remarking the reliability of the proposed approach.

Keywords  IoT · LoRa · LoRaWAN · Machine Learning · k-means · Anomaly Detection · Cluster Analysis

1  Introduction

The Internet of Things (IoT) is a new technology paradigm 
envisioned as a global network of machines and devices 
capable of interacting with each other. According to the IoT 
Analytics forecast of 2018 (Lueth et al. 2018), the market for 
IoT has seen an unexpected acceleration in the first months 
of 2018. Currently, the number of connected devices exceeds 
17 billion, and the number of IoT devices is 7 billion. The 
focus of the IoT is to interconnect together things or smart 
devices in order to create smart environments. Each device 
or smart object is an appliance with embedded electronics 
and software which can work as a sensor or actuator. Sen-
sors are able to gather from the environments the state of 
some metrics, like temperature or air quality. Actuators are 
also responsible for changing the state of the environment, 
e.g. open the window in presence of bad air quality. For 
this purpose, IoT devices exchange data and, in most cases, 
data are stored and processed by a central server. Moreover, 
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the collected data can be used to perform device analysis 
and, in most of cases, the results of the analysis are focused 
on system optimization. LoRaWAN is a new Low-Power 
Wide Area Networks (LPWAN) technology which enables 
power efficient wireless communications over very long 
distances. Moreover, LoRaWAN End Devices (EDs) can 
remain active for several years before replacing the battery 
package. LoRaWAN works on scientific and medical (ISM) 
radio bands and following the frequency plan provided in 
LoRa Alliance Technical Committee Regional Parameters 
Workgroup (2019). For the European region, the applied fre-
quency plan is EU863-870: it provides 8 channels and 7 data 
rates. Packets sent by EDs are collected by GateWays (GWs) 
that are deployed in the covered geographic area. Packets 
are forwarded from the GWs to the Network Server (NS), 
which is responsible to process the packets, forward related 
information to the IoT applications and store the collected 
data (see Fig. 1 for the reference network architecture).

In this work, by extending the study proposed in Valtorta 
et al. (2019), we apply Machine Learning (ML) techniques 
to perform clustering of the IoT packets under their network 
behavior perspective. We develop a framework that, starting 
from a database at the NS, produces the clustering1.

This means that, by leveraging these ML tools, we are 
able to derive profiles of the behavior of IoT EDs con-
nected to the LoRAWAN network. This tool has different 
applications:

•	 it allows to monitor the system behavior and capture 
anomalies;

•	 it allows the network operator to use in an efficient way 
the system and to optimize the network planning;

•	 it paves the way toward a labeling approach that can be 
used by network operators to identify the EDs that are 
connected and in case to plan new radio resources, more 
suitable parameter settings and eventually different con-
figurations of the IoT EDs and services.

For this work, we use the data gathered from a real 
LoRaWAN deployed in Italy. Starting from the LoRaWAN 
packet structure, we extract the relevant packet fields that 
characterize the system behavior at physical and network 
layer. We use these fields to extract a set of features that 
represent the input of the ML algorithm. We apply an unsu-
pervised learning approach to model the underlying struc-
ture or distribution in the data in order to learn more about 
the data. Specifically, the idea is to use the k-means algo-
rithm to perform a grouping (cluster) analysis that identi-
fies commonalities in the data. Alongside the application of 
the k-means algorithm, we perform the study of the best k 
value required as input of the k-means algorithm, namely the 
optimal number of clusters for the dataset at hand. Finally, 
we study the peculiarity of the EDs belonging to each of the 
resulting clusters. The main contribution of this work is two-
fold. First, we identify how to apply a ML approach based on 
k-means to an IoT network and, second, we experiment this 
approach on a real LoRaWAN system. While in the recent 
literature there are papers dealing with the adoption of ML 
for IoT (see e.g. Bhatt and Morais 2018; Kurniabudi et al. 
2018; Muntean and Muntean 2009), the literature lacks in 
the application of this methodology to LoRaWAN networks.

This work partially follows the baseline set in our previ-
ous study presented in Valtorta et al. (2019). With respect 
to that preliminary study, here we address the complete 
operator database, by merging 4 different datasets related to 
3 application services. Furthermore, we apply the cluster-
ing algorithm by packets, where the information of packets 
belonging to an ED is utilized fully in the clustering model 
and in the post clustering analysis.

The aim of clustering by packet is to use the variables that 
indicate transmission quality measures and to label packets 
according to the category of behavior regardless of the ED 
they belong to. In this way, the clustering mostly captures 
the radio behavioral perspective. More, we were able to trace 
the behavior of a device in the considered system.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the main related works. Section 3 briefly 
recalls the LoRaWAN architecture and service. The 
ML approach is presented in Sect. 5 while the resulting 

Fig. 1   LoRaWAN network 
architecture

1  Valtorta et al. (2019).
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behavioral clustering and the relevant analysis are discussed 
in Sect. 6. Finally, Sect. 7 concludes the paper.

2 � Related works

The interest in applying ML approaches to IoT systems is 
growing fast. Several papers proposed to use ML for anom-
aly detection or security issues (Aceto et al. 2019; Verze-
gnassi et al. 2019). The paper by Bhatt and Morais (2018) 
focuses on the development of a hybrid network anomaly 
detection system that, by making use of ML techniques, is 
able to effectively detect malicious traffic data. Tailored to 
the dimensionality reduction in learning models induced 
for IoT networks, in Nõmm and Bahşi (2018) the authors 
showed that it is possible to induce highly accurate unsuper-
vised learning models with reduced feature set sizes, which 
enables to decrease the required computational resources. 
Also, new datasets are required for the development and 
testing of novel ML techniques. Indeed, in Nivaashini and 
Thangaraj (2018) the authors build a novel dataset from the 
wireless network packet traffic flow captured through Wire-
shark that holds different attack profiles. The profiling issues 
are also very interesting in the IoT field since they pose new 
challenges and pave the way to new applications. Marchette 
(1999) proposed two interesting clustering methods applied 
to network data. These techniques allow the clustering of 
machines into “activity groups”, which consist of machines 
which tend to have similar activity profiles. Here the first 
aim of the author is to apply these methods in security 
domains; in fact, they allow the user to determine whether 
current activity matches these profiles, and hence to deter-
mine whether there is “abnormal” activity on the network. 
Zhang et al. (2014) presented a k-means-based approach for 
clustering data packets in wireless multi-hop networks. They 
addressed the problems existing in such networks, namely 
imbalance of node power consumption and unfairness of 
node transmission, and addressed the trade-off between the 
energy consumption and other factors affecting the wire-
less multiple hop networks thanks to k-means clustering. 
The work by Kim and Kim (2019) analyzed the transmis-
sion mechanism inside a LPWAN. The authors proposed 
a method which employs a k-means clustering algorithm 
to classify EDs according to the traffic characteristic. Each 
cluster is assigned to a different priority in order to optimize 
channel access times: this, in turn, allows to avoid collisions 
and improve transmission efficiency. In the same year, Zhang 
and Chen (2019) studied an adaptive clustering algorithm for 
dynamic heterogeneous wireless sensor networks in order 
to adapt the dynamic change of topology in such networks. 
Their model dynamically selects cluster heads according to 
each node’s energy and according to the average network 
energy, yielding longer network lifetime. Mostafa (2019) 

has given a more general and theoretical view on moni-
toring IoT networks. To tackle the problem of monitoring 
the network and leave it unconstrained during its normal 
operation, he proposed several integrated graph-based opti-
mization models and efficient algorithms for monitor place-
ment and scheduling problems. For what concerns security 
issues, Kumar and Lim (2019) analyzes devices traffic in 
order to detect malware activities. They present EDIMA, a 
distributed modular solution which can be used towards the 
detection of IoT malware activity in large-scale networks by 
means of supervised ML algorithms.

In Alenezi et al. (2019), the authors proposed a priority 
scheduling technique that reduces collision rate and trans-
mission delay, thus enhancing throughput. For this purpose, 
they employ the k-means clustering to group the LoRa nodes 
into k clusters, and by prioritizing the clusters, each clus-
ter sends packets based on the priority. For an example of 
detection and classify outliers in Wireless Sensor Networks 
(WSNs), Zhang et al. (2009) proposed on-line one-class 
Support Vector Machines to detect the outlier and anomaly 
in WSNs that can sequentially update the normal behavior 
model of the sensed data.

While clustering algorithms have been widely used to 
preserve security in the IoT EDs, to classify EDs, to adapt 
the dynamic change of network topology or, in general, to 
analyze demands on the traffic characteristics, a detailed 
study on characterizing the packets behavior in LoRaWAN 
in order to improve the network performance is still not 
available in the current literature, other than our previous 
preliminary study (Valtorta et al. 2019), as already discussed 
in Sect. 1. However, in Valtorta et al. (2019), we used to 
cluster by ED rather than by packet: under this viewpoint, 
each ED corresponds to a pattern which has been described 
by several statistics drawn from the packets it sent. This 
approach is helpful in order to characterize network behav-
iors at ED level (e.g., spotting malfunctioning EDs), whereas 
in this work we analyze the data at packet level (i.e., each 
pattern is a packet rather than an ED).

3 � LoRa technologies and LoRaWAN protocol

This section provides a brief overview of the LoRaWAN 
technology, at physical and network level. For details we 
refer the reader to the survey in Raza et al. (2017).

3.1 � LoRa modulation scheme

LoRa is a new long-range communication technology pro-
posed by Semtech (2015) which is based on a chirp spread 
spectrum modulation that uses the entire frequency band to 
modulate chirp pulses. A chirp is a sinusoidal signal whose 
frequency increases or decreases over time that encodes a 



	 D. Garlisi et al.

1 3

certain number of information bits. Conversely to the most 
common FSK modulation, LoRa modulation maintains the 
same low-power characteristics, but improves the noise and 
interference immunity and, consequently, increases the com-
munication range. The result is that a single GW can cover a 
region of different square kilometers.

While LoRa defines the physical layer and is a proprietary 
technology (Semtech 2015), LoRaWAN specification defines 
the network layer: this specification is publicly available and 
it is promoted by the open-source (LoRa Alliance Technical 
Committee 2017). As shown in Fig. 1, a LoRaWAN archi-
tecture is based on three main components: 

1.	 ED: is the low-power consumption sensor/actuator that 
communicates with GWs using LoRa modulation;

2.	 GW: is the intermediate element that collects packets 
from the EDs and and forwards them to the NS over an 
IP backhaul (e.g. Ethernet, 3G). There can be multiple 
GWs in a LoRa deployment.

3.	 NS: is the network server responsible for deduplicat-
ing and decoding packets sent by the EDs. The related 
packet information is sent to the application server. The 
NS can also generate packets to be sent back to the EDs, 
when an ED configuration is required.

The LoRaWAN network has a star-of-stars topology and, 
differently from traditional cellular networks, the EDs are 
not associated with a specific GW. LoRaWAN does not 
enable device-to-device communications, packets can only 
be transmitted from an ED to the NS, or vice-versa.

In LoRa, EDs support multi-rate by exploiting six differ-
ent Spreading Factors (SFs), from 7 to 12. The selection of 
the SF has an impact on duration and delivery probability 
of the generated packet. Communication on different SFs in 
the same channel are in principle orthogonal (Croce et al. 
2017). In LoRa, basic chirps are simply a ramp from fmin 
to fmax (up-chirp) or from fmax to fmin (down-chirp). Chirps 
are cyclically-shifted to produce different symbols, and 
this cyclical shift carries the information. A symbol, with a 
length of N chips, can be cyclically shifted from 0 to N − 1 
positions. The reference position is given by the un-shifted 
symbols at the beginning of the LoRa packet, present in 
the packet preamble. The SF defines two fundamental val-
ues: (1) the number of chips contained in each symbol is 
N = 2SF ; (2) the number of raw bits that can be encoded by 
that symbol is SF.

The LoRa Data Rate (DR) depends on the Bandwidth 
(BW) in Hz, the SF and the Coding Rate (CR) as:

where the symbols/s are given by BW∕2SF and the chan-
nel coding rate CR is 4∕(4 + RDD) with the number of 

(1)DR = SF ⋅

BW

2SF
⋅ CR

redundancy bits (RDD) from 1 to 4 used for the cyclic 
redundancy check (CRC). The adopted bandwidth can be 
configured as well: 125 kHz, 250 kHz and 500 kHz (typi-
cally 125 kHz for the 868 ISM band). The combination of 
an high SF and a small bandwidth produces a more robust 
transmitted signal that can cover very large distances (more 
than 10 km). LoRaWAN specification also provides an 
Adaptive Data Rate (ADR) algorithm to set the best SF and 
transmission power values for each ED according to the 
Signal to Noise Ratio (SNR) perceived by GW. This type 
of optimization reduces the Time-On-Air value, ensuring 
minor energy consumption and collision probability. The 
NS includes a module that enables the ADR algorithm: the 
Network Controller (NC).

In LoRaWAN, the system capacity is larger because the 
receiver can detect multiple simultaneous transmissions by 
exploiting the orthogonality when different SFs are used. 
Moreover, if the multiple simultaneous transmissions are 
generated with the same SF, a low difference in the sig-
nal strength (few dB values) can generate a channel capture 
effect that ensures the correct reception of the stronger sig-
nal. These features enable a LoRaWAN network to have a 
very high capacity and make the network scalable (Bianchi 
et al. 2019). A network can be deployed with a minimal 
amount of infrastructure and, as larger capacity is needed, 
more GWs can be added. Other LPWAN alternatives do 
not have the scalability of LoRaWAN due to technology 
trade-offs. In LoRaWAN, MAC commands can be used from 
the NS to configure ED parameters such as SF or power 
transmission.

The LoRaWAN terminology distinguishes between 
uplink and downlink messages. EDs send uplink messages 
to the NS. Downlink messages are sent by NS to only one 
ED and are relayed by a single GW: they usually contain 
MAC commands, useful to customize the parameters used 
for the communication between the ED and the network. 
LoRaWAN messages used for the radio physical layer have 
the same format both for uplink and downlink.

As shown in Fig. 2, at physical layer (topmost row of the 
figure) the LoRa packet is composed by the preamble, the 
physical header (PHDR), the physical header cyclic redun-
dancy check (PHDR_CRC), the physical payload (PHYPay-
load) and the CRC of the packet. The PHDR is mandatory 
both for uplink and downlink messages, while the CRC is 
mandatory only in uplink communications.

The PHYPayload carries the MACheader, the MACpay-
load and the cryptographic message integrity (MIC) (2nd 
row in Fig. 2). The MACheader contains information about 
the LoRaWAN version used (v1 or v2) and the Message 
Type (MType). The Mtype field enables to distinguish reg-
istration packets (Join-Request/Accept) from Unconfirmed-
data and Confirmed-data packets (4th row in Fig. 2). MIC 
is a code computed over the MHDR. The MACpayload 
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contains Frame Header (FHDR), Port Field (FPort) and the 
Frame Payload (FRMPayload) (3rd row in Fig. 2).

The FHDR field has information about the ED short 
address (DevAddress) as well as other control information 
carried in the Frame Control field (FCtrl) such as the status 
of the ADR for the communication (bottom most row in 
Fig. 2). The Frame Port (FPort) field has a 0 value in case 
of FRMPayload containing only MAC commands while it 
is used by the application to discriminate the content of the 
payload, so the value of the packet is application-specific. 
FRMPayload is the payload containing MAC commands or 
application data, which is encrypted using AES with a key 
length of 128 bits.

Note that, together with the physical layer messages, 
the NS also receives additional information regarding the 
physical parameters of the communication, such as SNR and 
Received Signal Strength Indicator (RSSI). Each ED has a 
packet counter (FCnt field) to number subsequent data pack-
ets sent to the NS. The DevEUI is a global ED identifier in 
IEEE EUI64 address space that uniquely identifies the ED, 
while the DevAddr consists of 32 bits address and identifies 
the ED within the current network (the DevAddr is allocated 
by the NS of the ED once it joins the network successfully).

4 � LoRaWAN in a real large scale scenario

In this work, we consider data from a LoRaWAN network 
infrastructure located in Italy, provided by the UNIDATA 
S.p.A. operator. The deployed network covers a wide Ital-
ian geographic area and collects a huge amount of IoT 
data. The goal of this IoT national network is to provide 
several application services, mainly related to metering 
operations. The main application services provided by 
the network are: (1) water metering; (2) gas metering; 
(3) energy consumption metering; (4) GPS tracking; (5) 
smart street light. Figure 3 presents four different EDs 
used in this LoRaWAN network. The UNIDATA network 
currently involves more than 4000 EDs and 140 GWs. In 
2019, the total amount of EDs whose transmissions were 
received by the UNIDATA GWs were 89,528 (they include 
EDs from different operators). Moreover, the network col-
lected a total of 372,119,877 packets (2.25% generated by 
EDs registered with UNIDATA).

The UNIDATA GWs are connected to the NS of the 
operator, located in Rome, where also the database is 
deployed. The database contains several records, each one 

Fig. 2   LoRaWAN packet struc-
ture [bit]

Fig. 3   Four different types of 
meters EDs used in the UNI-
DATA LoRaWAN network
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representing a particular flow of information gathered from 
the network. For instance, there are data flows represent-
ing uplink and downlink packets, information exchanged 
between GW and the NS, or between EDs and NS, or pack-
ets which have been de-duplicated because they have been 
received several times. The latter case happens when dif-
ferent GWs cover the same geographic area and the same 
packet reaches the NS from different GWs. Each packet 
represents a record index storing several fields.

Our data analysis has been performed over the “pre-dedu-
plication” record; in such a way we are sure that the whole 
analyzed traffic comes from the EDs to the NS, passing 
through different GWs. The most relevant database fields, 
and the relative description, are reported in Table 1. A subset 
of these fields have been extracted and pre-processed and 
represent the key features considered in our analysis.

4.1 � Selected application services

To build a suitable dataset for our analysis we referred to 
12 months of activity in the period ranging from January to 
December 2019. Furthermore, we consider 3 types of appli-
cation services and 4 different datasets with a total number 
of 2350 EDs, namely: two water meter services, one energy 
meter service, one smart street light service. A detail infor-
mation on the used dataset that includes the number of EDs 
and packets is reported in Table 2.

As for the water meter service, each ED forwards the 
measurement approximately 18 times per week. For this 
application service, Fig. 4a shows the trend of the average 
number of packets received per hour each week. From the 
figure, we can notice an average of about 25 packets per 

hour. We can evaluate a packet error rate of 22%, indeed 
the average sent packets for hours is 32.1: the difference 
between the expected value and the measured one is due 
to the fact that not all packets transmitted are received by 
the GWs. Finally, the figure shows that the trend is mostly 
regular throughout the observation period. UNIDATA also 
implements a network controller that optimizes the SFs 
value for each ED. The value of SF12 is the most conserva-
tive one and is the default one for the EDs in the network. 
For the water meter dataset, Fig. 4b shows the average num-
ber of packets received per hour per week, for each SF. In 
the figure, each SF is represented by a different color and 
marker, the association between the color and the SF value 
is shown in the legend of the figure. From the figure it is 
possible to notice that in the first 3 months of the year the 
EDs used SF12: for that period, in fact, the NC has not yet 
activated, and the EDs use the default SF value. In the fol-
lowing three months, the configuration of the SF is active, 
but a very high conservative margin has been maintained: 
only the nodes with a high SNR value have been configured 
with SF7. From the figure, we can notice that only two SFs 
are present (SF7 and SF12). Afterward, all the SF values 
are used. Most of the EDs in the network have a high SNR 

Table 1   Key fields present in a pre-deduplicated record index

Parameter Description

CHANNEL Channel used to send the packet
CODR Coding rate
CREATED_AT Timestamp indicating the time when the entry has been created in the database
DATR​ SF and data rate of the packet
DEV_ADDR Unique identifier of the ED in the network
DEV_EUI Unique identifier of the physical ED (None if the ED is unknown)
FREQUENCY Frequency (in MHz) were the packet is sent
GATEWAY​ MAC ADDRESS of the GW that received the packet
SNR Received signal to noise ratio of the packet, also named LoRaSNR (LSNR), (dB) measured at the GW
RSSIC Received signal strength indicator of the channel including noise and interference, (dBm) measured at the GW
RSSIS Received signal strength indicator of the signal of the LoRa packet only, excluding noise, (dBm) measured at the GW
FCnt Frame counter: counter (increased by 1 for each packet sent from an ED); used to evaluate error rate
SIZE Packet size (bytes)
TMST Internal clock timestamp from GW: used for synchronizing the downlink with the end transmission of the uplink to 

communicate response to ED

Table 2   Used datasets

Dataset Application service # of EDs # of PACKETS

1 Gas meter 300 201,495
2 Gas meter 1618 513,343
3 Energy meter 141 494,004
4 Smart street light 291 68,933
TOT 3 2350 1,277,775
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value, for this reason, most of the EDs have been configured 
with SF7.

Furthermore, with regards to the energy meter application, 
this type of EDs uses tick-counters connected to the distribu-
tor energy meters to detect energy consumption (see Fig. 3c). 
Each ED forwards the measurement on average 1 time per 
hour. Figure 5a shows the trend of the average number of pack-
ets received per hour in each week. The figure shows that the 
number of packets received increasing over time due to the 
progressive installation of the EDs throughout the year. In the 
last months of the year, the average number of packets received 
was around 105. Again the difference is due to the fact that 
not all packets are correctly received. Also for this dataset, we 
report the average number of packets received for each SF. 
Figure 5 shows the average number of packets received per 

hour per week, for each SF: the figure confirms that in the first 
3 months of the year the EDs use only SF12, for this period the 
ADR was disabled. In the following months, the SF configura-
tion is active, all EDs have a high SNR value, this produces an 
SF configuration equal to 7.

Finally, we merge the 4 datasets ahead of the pre-pro-
cessing stage and we obtain a dataset of 1,277,775 packets.

5 � The k‑means algorithm and best k 
selection

As introduced in Sect. 1, the core of our machine learning 
framework relies on k-means Lloyd (1982) and MacQueen 
(1967), which is a partitional data clustering algorithm 

Fig. 4   Mean number of received packets per hour per week in a period of 1 year for the water meters dataset

Fig. 5   Mean number of received packets per hour per week in a period of 1 year for the energy meters dataset



	 D. Garlisi et al.

1 3

(Jain et al. 1999; Martino et al. 2018a) and, as such, given a 
dataset S = {�1,… , �n} of n observations, it partitions the 
data into k non-overlapping clusters, i.e. S = {S1,… ,Sk} 
such that Si ∩ Sj = � if i ≠ j and ∪k

i=1
Si = S . k-means finds 

a (sub-)optimal partition of the data in such a way that the 
intra-cluster variance (also known as Within-Clusters Sum 
of Squares – WCSS) is minimized:

where �(i) is the centroid for cluster i, defined as the center 
of mass of the cluster itself and d(⋅, ⋅) reads as the Euclid-
ean distance. The k-means workflow can be summarized as 
follows: 

1.	 select a set of k initial centroids;
2.	 assignment step: assign each data point to the closest 

centroid;
3.	 update step: re-evaluate centroids for all clusters;
4.	 loop 2–3 until convergence (e.g., centroids stop changing 

or a maximum number of iterations is reached).

Conversely to other data clustering paradigms such as free 
clustering (Baldini. et al. 2019; Xu et al. 1999), the number 
of clusters k to be returned is an input parameter provided by 
the end-user and finding a suitable value is strictly problem-
and-data-dependent and hardly known a-priori. Typically, 
one tries several k candidates and selects the best value by 
studying the objective function in Eq. (2) and/or by means of 
internal validation indices (Martino et al. 2018b). Common 
strategies include:

The Elbow Plot (Thorndike 1953) consists in plotting the 
WCSS as function of k and choose the first k value cor-
responding to the point where the curve become flat. The 
rationale behind this criterion is that is pointless to add 
more clusters if they do not give a better modelling of the 
data (the curve flattens since the WCSS does not change 
significantly)
The Davies–Bouldin Index (Davies and Bouldin 1979) 
measures the intra-cluster separation against the inter-
cluster variance. Let Si be the statistical dispersion of 
cluster i, namely the average pattern-to-centroid distance, 
and let Mi,j be the distance between centroids belonging 
to clusters i and j. For a clustering solution to be good Si 
should be small (compact cluster), whereas Mi,j should be 
large (different clusters are well far apart), hence for each 
pair of clusters one can define the following penalty score 

(2)WCSS =

k
∑

i=1

∑

�∈Si

d(�, �(i))2

(3)Ri,j =
Si + Sj

Mi,j

 and the Davies-Bouldin score for cluster i is defined as 

 Finally, the Davies–Bouldin score for the overall cluster-
ing solution is taken by averaging each cluster’s score: 

 The Davies–Bouldin index is negative-oriented: the 
closer to 0, the better the clustering solution.

6 � LoRaWAN clustering: results from a packet 
perspective

The main idea of this work is to study the radio and network 
behavior of LoRaWAN by means of a large-scale analysis on 
a database containing millions of packets. As a consequence, 
this may be addressed as a per-packet approach. Also, as 
we will see later, it allows to infer interesting characteris-
tics of the EDs and to consider the packets transmitted by a 
device over time as a collection of different behaviors that 
we are aiming to group in clusters. The motivation behind 
this approach is to use the full packet data available for each 
ED to allow the clustering algorithm to extract behavior pat-
terns. We take into account a range period of one year and, 
within this period, EDs can change behavior. Yet, thanks 
to the clustering per-packet approach, we can evaluate if a 
generic ED changes behavior during the time. In this sec-
tion, we show the dataset pre-processing and the results of 
the proposed approach.

6.1 � Dataset pre‑processing

For the cluster analysis, we select all fields present in Table 1 
except the CODR, since most of the packets, being com-
pliant with the approved LoRaWAN protocol, maintain the 
same value. We also excluded the TMST field due to some 
devices stopping transmission for periods of months, which 
resulted in big timestamp differences that create outliers.

Starting from these fields, we engineered one additional 
feature in the pre-processing phase, which takes into account 
the information related to the missing frames of the same 
ED. This information is elaborated via the FCnt field. The 
FCnt increments are included per-packet to indicate the pres-
ence or absence of errors.

An important characteristic of this approach is the 
removal of ED ID (DEV_ADDR and DEV_EUI fields) 
from the packet when it is processed by the clustering algo-
rithm, which allowed each ED to exist in different clusters 
following the characteristics of the packets transmitted over 
time. After cleaning the merge data by dropping packets 

(4)DBIi = max
j≠i

Ri,j

(5)DBI =
1

k

∑k

i=1
DBIi
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containing empty values for our key features, we obtain 
the final dataset of 997, 183 packets and 2169 devices. 
Each packet has different characteristics in terms of signal 
strength, error elaborated by FCnt increments, frequency, 
channel, gateway and size, hence the clustering algorithm 
exploits all of these characteristics and groups packets with 
significant similarities across all of the aforementioned 
dimensions to deliver the final partition. The post-clustering 
analysis is a crucial part of this approach since clustering is 
an unsupervised problem by definition and does not exist any 
a-priori relationship between the input data and the resulting 
clusters. We characterize a cluster by the most occurring val-
ues of categorical variables and the distribution and spread 
of numerical variables, which helps in understanding what 
kind of packets each cluster represents. We analyze an ED 
behavior by calculating the frequency of occurrence of this 
ED in the resulting clusters and noting what is considered a 
typical behavior and an atypical behavior for each ED.

6.2 � Evaluation results

In Sect. 5 it has been discussed that determining a-priori a 
suitable value for k (i.e., the number of clusters) is hard in 
many real-world applications. To this end, we considered 
several candidates k = {2, 3,… , 20} and Fig. 6 shows the 
Davies-Bouldin Index (Fig. 6a), and the WCSS (Fig. 6b) 
as function of k. By jointly considering the two indices, 
a suitable value of k⋆ = 5 has been chosen; indeed, the 
Davies–Bouldin index reaches its minimum value ( < 1 ) 
and k = 5 lies pretty much towards the middle of the WCSS 
elbow, which can be seen for k ∈ [4, 8].

Figure 7 shows the frequency distribution of the SNR 
for the elements of the 5 different clusters. As we can see, 
these histograms show a clear distinction between the 5 
different clusters in terms of SNR spread and variation. As 
for cluster 0, it contains the highest number of packets and 
it contains the highest values for SNR concentrated close 

Fig. 6   WCSS and Davies–Boul-
din indices as function of k 

Fig. 7   SNR per cluster for the 
merged dataset k 
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to 20 dB. This cluster shows the notably well-functioning 
behavior and this is due to very strong signals and/or low 
noise. However, the behavior in cluster 0 is largely due to 
the high values of RSSIS as it can be noticed by Fig. 8.

Cluster 3 is of special interest since by comparing the 
SNR and RSSIS distributions, we can see that most of the 
packets in this cluster have SNR > 0 while the RSSIS is cen-
tered and skewed towards the low values of RSSIS. This 
shows that this kind of behavior could be linked to the exist-
ence of lower noise, which could be a result of the usage of 
certain frequencies or channels that are less noisy. We could 
also attempt to explain this behavior by further exploring the 
period of transmission of these packets in cluster 3.

Cluster 2 shows a concentration on the far negative end 
and a small spread towards the positive end. A correspond-
ing distribution could be also seen in Fig. 8 which could be 
largely due to the geographic positioning for the EDs that 
are unique to this cluster and it is due to bad radio condi-
tions at a certain time for EDs that are not unique to this 
cluster. However, a noticeable feature of this cluster is that 
all the packets included in it are error free, which means that 
devices that are unique to this cluster are error free devices 
despite the low SNR.

Cluster 1 has a wide variance in SNR and it contains a 
medium number of packets. This cluster is characterized by 
variations in other features of the packets which are to be 
further explored by linking the variation in behavior to the 
variation in radio parameters (i.e., frequency, channel, and 
so on). However, one notable fact about cluster 1 is the dis-
tribution FCnt increment “error”. The mean of the error in 
this cluster is significantly higher than all the other clusters 
and the standard deviation is also very high, which shows 

that this cluster includes the packets with the highest error 
rates and highest variation in error.

Cluster 4 is an anomaly of 1 packet, which shows per-
formance similar to cluster 0 but its distinction comes from 
another feature which is the error containing an extreme 
value of order 105.

By observing the distribution of RSSIS in each cluster we 
can note that clusters 1, 2 and 3 are the clusters of interest 
in terms of attempting to optimize radio conditions for EDs. 
Cluster 2 is specifically a cluster of concern and it will be 
important to investigate whether the packets in this cluster 
are transmitted by a significant number of devices or if it is 
a small number of devices with bad conditions (i.e., noisy 
channel, distance from the gateway).

Figure 9 shows the counts of SFs used in each cluster. 
Both Cluster 0 and 3 use SF7 most of the time due to their 
good conditions, there is no need for using a higher SF 
except for a very small percentage of transmissions. Cluster 
2 uses SF12 most of the time which in line with our intuition 
about a cluster with bad radio conditions. Finally, cluster 
1, spans on almost all SFs due to the high variability in the 
performance of this cluster as we have seen in the previous 
figures. We can notice that 47% of the SF used in this cluster 
is SF7 which indicates satisfactory radio conditions, while 
53% of the packets are transmitted with higher SFs in an 
attempt to improve their transmission quality. 

From Fig. 10a we can derive the clusters containing the 
big chunks of our data. Clusters 0, 1 and 3 contain 97% of 
the data which means these clusters represent the 3 most 
common behaviors. On the other hand, clusters 2 and 4 are 
fringe clusters in terms of number of packets contained in 
them, which could indicate that these clusters represent 
anomalous behavior or packets with a high error. Indeed, 

Fig. 8   RSSIS per cluster for the 
merged dataset k 
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we were able to verify this fact for cluster 4 as it contains 
only one packet with a FCnt counter increment of the order 
of 105 . In our approach this is related to errors, but probably 
this is an anomaly that deserves a deeper analysis. 

However, by examining the clusters in terms of number 
of EDs contained in them in Fig. 10b, we can observe that 

cluster 1 contains 1925 EDs, which indicates that this behav-
ior is not only restricted to fringe EDs but more than 88% of 
EDs might exhibit such behavior at some point, amounting 
to 27% of total packets in the dataset.

From the previous RSSI and SNR analysis on cluster 2, 
we observed that this cluster signifies the extreme negative 

Fig. 9   Spreading factor count 
per cluster

Fig. 10   Cluster population 
breakdown for merged dataset

(a) Number of Packets per cluster (b) Number of EDs per cluster

(c) Number of EDs unique per cluster
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in RSSI and SNR. Further analysis of this cluster is to exam-
ine the behavior of EDs in this cluster over different periods 
of time to determine whether this behavior is caused by the 
ED or the radio conditions. By looking at this behavior in 
the light of Fig. 10a and b we can understand that it is exhib-
ited by approximately 67% of the devices but it is respon-
sible for only 3% of the packets. We could infer that most 
of the devices exhibiting this behavior are doing so as an 
anomaly due to some variation in their radio parameters or 
noise levels related to environmental conditions. However, 
the devices unique to this cluster indicate bad positioning or 
some malfunction that needs to be examined.

6.3 � Labeling method and device behavioral 
tracking

In this section we discuss our suggested labeling method 
following the post-clustering analysis in order to establish 
an informative labeling that establishes the basis for future 
works.

Table 3 shows the number of devices existing in each 
cluster for a certain percentage of packets. For example clus-
ter 2 has 759 devices that transmit 1–20% of their packets 
in this cluster, meaning that this cluster is an anomaly clus-
ter for 759 of the devices. Similarly, there are 105 devices 
that are pure to cluster 2; meaning, there is 105 devices that 
transmit in cluster 2 a 100% of the time.

•	 We label a cluster as pure for an ED if the cluster is 
responsible for 100% of the packets transmitted by this 
ED.

•	 We label a cluster as typical for an ED if the cluster is 
responsible for more than 80% and less than 99% of the 
packets transmitted by this ED.

•	 We label the cluster as normal for an ED if the cluster is 
responsible for 20–80% of the packets transmitted by this 
ED.

•	 We label the cluster as anomalous for an ED if the cluster 
is responsible for less than 20% of the packets transmitted 
by the ED.

•	 We label the cluster as neutral for an ED if the cluster 
is responsible for 0 packets transmitted by the ED.

The cluster purity analysis aims at quantifying the extent 
to which a cluster represents only certain devices as well 
as the stability in the behavior of certain devices in terms 
of being restricted to one cluster. Cluster purity could 
be examined in Fig. 10c or by observing the last row of 
Table 3.

By observing Figs. 7 and 8 in the light of Fig. 10c, 
we are interested in isolating the devices that exist purely 
in cluster 2 since this means that the behavior of these 
devices is almost always on the negative end, and multi-
ple actions could be attempted to optimize their behavior. 
We observed a total amount of 105 such devices, which 
is approximately 7% of the total devices in cluster 2 that 
need to be examined in terms of parameter optimization or 
other possible actions that could improve their radio con-
ditions. EDs unique to cluster 0 are devices with perfect 
conditions and probably very close to the gateway which 
is confirmed by the low number of pure EDs belonging to 
cluster 0. Cluster 3 also contains only 15% of pure devices, 
which is coherent with our initial observation on this clus-
ter being a representative of optimal radio conditions and/
or optimized parameters.

Figure 11 sketches an example of behavioral tracking 
for two devices. The tracking system allows an at-a-glance 
visual summary of how many times the device changes 
cluster (i.e., behavior) over time, hence it helps in deter-
mining devices with heavily unstable behavior (namely 
EDs that span a wide number of different clusters over 
time or devices that switch behavior with high frequency, 
e.g. Fig. 11b), or devices that are quite stable and rarely 
change their behavior over time (see e.g. Fig. 11a).

In conclusion, alongside the satisfactory results in terms 
of internal validation indices ( DBI < 0.2 and s > 0.9 ), we 
further analyzed the resulting clusters by considering the 
distribution (in terms of either histograms or PDFs) of the 
most interesting features of the ’most central’ elements of 
the clusters. With the help of field-experts, we were able 
to address the clustering solution in terms of knowledge 
discovery and the proposed approach has been demon-
strated to be suitable also for anomaly detection purposes. 
Finally, PDF of the relevant information EDs are showed 
for each clusters, the results presents good clustering per-
formance. Future research endeavours can consider the 
intrinsic structured nature of the data available within the 
LoRaWAN network for a more in-depth analysis. Indeed, 
in this work we considered basic statistics drawn from 
some features of the available packets, whereas one can 
perform similar analyses on entire packets or sequence 
of packets by means of clustering algorithms such as 

Table 3   Cluster mobility

Behavior 
Freq. (%)

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

1–20 97 118 759 83 0
20–40 25 106 248 14 1
40–60 17 177 162 9 0
60–80 15 280 95 4 0
80–99 54 754 87 9 0
100 20 442 105 25 0
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k-medoids which do not necessarily require the input data 
to be in a vector form.

7 � Conclusion and future work

In this work, we have presented a study on the behavio-
ral clustering of IoT EDs. The study was performed on a 
real database that collects LoRaWAN packets received by 
a network deployed by an Italian operator. We explored the 
dataset by using a ML approach on 997, 183 packets gener-
ated by 2169 EDs running 3 different IoT applications. We 
used the k-means algorithm in order to find suitable groups 
of packets presenting a similar behavior. To this aim, we 
removed the ED address from the available information in 
order to capture the clustering only under radio and network 
perspectives. The soundness of the proposed clustering solu-
tion has been addressed by jointly considering two internal 
validation indices (WCSS and Davies–Bouldin), which also 
helped in tackling the problem of finding the best k value for 
the dataset at hand. Thanks to this study we were able to cap-
ture the key behavior of our system. Indeed, we discovered 

that on a side there are clusters that collect packets behav-
ing in a good manner, and on the other side some packets 
have quite a bad performance in the system (mostly due to 
the radio conditions). Moreover, we were able to observe 
that some EDs generate packets that are always assigned to 
the same cluster. These EDs perceive stable conditions. On 
the contrary, some EDs have packets in multiple clusters. 
This means that not all their packets have the same behav-
ior. Future research can be dedicated to automatizing the 
optimization efforts after a reliable clustering and anomaly 
detection algorithm is in place. The goal of the algorithm 
proposed in this paper is to establish a groundwork for such 
an algorithm, in which the accuracy of anomaly detection 
and optimization efforts rely on the post-clustering analy-
sis and the interpretation framework of the produced clus-
ters. Similarly, the possibility of having groups of EDs with 
similar behaviors allows the network operator to tune and 
optimize parameters on a cluster-wise fashion rather than 
an ED-wise fashion.

Another potentiality for this algorithm is to be evolved 
into a semi-supervised learning algorithm that can have both 
an interpretive and predictive quality using a labeling system 

Fig. 11   ED 3 & ED 4 behavior 
over time

(a) ED 3

(b) ED 4
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such as the one proposed in Sect. 6.3. A different evolution 
of this algorithm could be to have separate algorithms for 
supervised and unsupervised learning in which the unsu-
pervised algorithm continuously obtains and updates labels, 
and feeds those labels to a supervised learning algorithm 
as input. The reliability of labeling could be improved over 
time as the structure of the existing clusters becomes more 
distinct from one another until we have a labeling system 
with good predictive properties.
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