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Abstract 

 

Since its beginnings, psychological science has frequently used dichotomous categories to describe 

behavior and mental phenomena. The most traditional dual models have impactfully equipped both 

the scientific and folkloristic psychological vocabularies of such dichotomies (e.g., conscious vs. 

unconscious, logic vs. creative, rational vs. emotional). However, while offering an affordable 

account of how the human cognitive system works, these models appear too simplistic. Substantially, 

they are grounded upon the findings obtained in decades of results in almost all the psychological 

fields, from perception to social processes, which have been later merged into a broad systemic theory 

of human cognition. However, this dual-system theory, which proposed to unify all cognitive dualities 

into System 1 (automatic, unconscious, fast, effortless, intuitive, and so on) and System 2 (controlled, 

conscious, slow, effortful, rational, and so on) entities, lacks a systematic investigation of its basic 

assumptions: for instance, that the features are aligned within and complementary between the two 

systems. These properties are essential for the tenets of the theory since a systemic theory should 

postulate the interdependence and interrelation of the elements constituting a system. In this view, 

the central thread linking all the experimental contributions in the present work is that the dual-system 

theory should resist when investigating cognitive performance either at low- and at high-level of 

complexity (complexity defined as the variety of mechanisms implicated in the phenomena of 

interest). 

Through seven studies conducted in three research lines, addressing temporal attention, task-

switching, and decision-making, the interaction between automatic and controlled features in each 

process has shown to be the rule rather than the exception. Thus, the results presented in this work 

support the idea that the dual-system theory current formulation has a weak explanatory power, 

suggesting that decomposition approaches aimed at disentangling the contribution of qualitatively 

and quantitatively different mechanisms in each cognitive process are needed to advance or put aside 

dual-process theories.  
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Introduction 

 

 

Automatic and controlled, implicit and explicit, intuitive and rational, associative and analytical, 

habitual and voluntary, bottom-up and top-down, exogenous and endogenous, parallel and serial, 

unconscious and conscious, fast and slow, hot and cold, System 1 and System 2, and so on: the 

dichotomization of the human mind's processes is old as the psychological science, partially reflecting 

even older debates like body-mind and nature-nurture. 

Since William James essays (1890), will and habit represent the two functional modes that govern 

mental functioning. This duality has been the central point of many theories in almost the totality of 

psychological fields. The meanings of the various couples of adjectives are slightly different one each 

other, sometimes more and sometimes conceptually less. Most of the reasons for such a wide 

vocabulary mostly belong to the variety of psychological fields in which they were born and, 

consequentially, the theoretical contexts in which they have been used. For example, decision-making 

and reasoning literature has focused on intuitive and rational strategies; research on attention has 

investigated bottom-up and top-down processes; research on memory has disentangled implicit and 

explicit material. How all these dichotomous categories coexist among different cognitive functions 

is currently unclear. 

Up to now, the dual nature of mind has been broadly accepted in psychological science. However, 

critiques exist, and debates are still going on.  

The success of dual-process theories (DPT) has extended to many applied fields, highlighting the 

implications that they can widely have in human contexts. Generally, these fields have found in DPT 

an excellent framework to investigate and reduce the impact of fast and automatic strategies on human 

errors. 

For instance, DPTs have been used within medical settings, specifically in the diagnostic process 

(Rotgans et al., 2019; O'Sullivan and Schofield, 2018; Phua and Tan, 2003). Medical organizations, 

involved in improving the power of health care systems, have paid much attention to the processes 

subtending professional decisions, intending to avoid biases in diagnoses and, thus, in subsequent 

actions. Making diagnoses or other kinds of relevant health choices for individuals is a process for 

which the only professional expertise often is not enough: professional experts also need to be 

decision experts. The impact of expertise in decision-making has been widely investigated at different 

levels, with experts showed to have a better understanding about the fallacies involved in decisional 

processes, to be equipped with a furnished toolbox aimed at avoiding common biases and with a 
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marked capacity of expertise-based intuition (Salas et al., 2010). Avoiding common biases, which are 

known to be a product of intuitive judgments, also has paramount importance in scientific research. 

Researchers may indeed implicitly use cognitive shortcuts in the hypothesis-testing and results' 

interpretation processes, such as confirmation and method biases (Klayman and Ha, 1987; Fanelli et 

al., 2017; Podsakoff et al., 2012; Wilholt, 2009). 

Another field in which a massive use of cognitive biases has been strongly recognized is the forensic 

and criminal investigative context (Budowle et al., 2009; Van Gelder and de Vries, 2014). A similar 

impact has also been shown in political science. Systematic cognitive biases are also studied in the 

context of policy-making and communication, allowing for the development of several tools to 

influence people's decisions, such as "nudging" (Thaler and Sunstein, 2003; Gigerenzer, 2015). 

Concepts such as ideology, stereotypes, and prejudice are widely studied in the context of DPT in 

social psychology (e.g., Yilmaz et al., 2016), and represent the bricks of voting behavior: 

contemporary politics strongly rely upon these pieces of knowledge, for instance, in the 

implementation of political campaigns (Arceanaux, 2012; Taber and Lodge, 2016). DPTs have also 

been shown to be useful in cultural analysis (Lizardo et al., 2016). Again, DPTs are prominently part 

of data regulation and privacy policies (Phelan et al., 2017; Aivazpour et al., 2017). In an information-

based society, the data breach is at the top of significant risks. However, even if almost everyone is 

sensible to their own private data, reading long informed consents is very effortful, and the time 

available is often scarce: then, in most cases, clicking on "Accept" without reading looks out to be 

the more reasonable action, generating the well-known "privacy paradox".  

Finally, a promising line of research regards Artificial Intelligence. Computational methods are often 

implemented to understand human information processing, and complex neural networks sometimes 

seem to be among our significant understandings of the human mind. Certain machine learning fields, 

such as reinforcement learning, (Sutton and Barto, 1998; Daw et al., 2011) aim to implement 

algorithms that can mimic intuitive forms of human learning from feedback, enabling them to 

generate predictions about the future.  

Notwithstanding the spreading of DPTs and the importance they have obtained in a vast set of applied 

fields, many different issues in their usage and definition have been highlighted throughout more than 

50 years of research. Since the cognitive revolution, much effort has been made to describe the 

mechanisms underlying the two ways of information processing, and what can be ascribed as 

"controlled" or "automatic". Problems mostly arose when the need for the construction of a general 

framework encompassing the whole cognitive functioning, able to contain all the DPT results 

obtained in specific psychological fields, came out, evidencing a sort of "too-short-blanket-dilemma". 

Several results, indeed, have put in doubt that this conceptualization is robust and reliable enough to 
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support such a broad theorization. Given the great popularity that DPTs have obtained in several 

human contexts, they need to be systematically destructured to test the reliability of their 

fundamentals and predections, providing human contexts with a strong and useful framework. 

From this point, the main objectives of the present thesis are to shed new lights on the dual processes 

underlying human cognition, investigating the different impacts of the two across different levels of 

complexity. The principal aim is to test the basic assumptions of dual-process theories and their 

generalizability. 

In the first chapter, the current debate on DPTs and the most relevant issues will be reviewed. 

Problems in the definition of automaticity and cognitive control will also be considered separately, 

highlighting the most influential conceptualizations. 

The experimental part that will follow is divided into three sections. The results obtained from two 

experiments on temporal attention will be presented in the first, investigating that evidence of high-

level processing at early processes such as the identification and discrimination of two rapidly 

presented stimuli exists. In the second experimental section, the phenomenon of interest is in the 

domain of control processes, and the findings obtained in three experiments will be presented. The 

focus here is on task-switching performance, an excellent example of the interplay between automatic 

and controlled mechanisms, requiring a more complex performance in the sense of greater 

coordination of different processes. Finally, the last session regards decision-making, which is at the 

top, for complexity, of the cognitive functions investigated in these works. Indeed, decision-making 

requires individuals to make inferences and calculations integrating many factors, such as 

alternatives, probabilities, outcomes, task structure, and own's affective state. According to the 

decisional environment and the degree of uncertainty presented to subjects, decision-making 

processes can be determined by bottom-up, intuitive, or top-down, analytical strategies.  
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CHAPTER 1 

Dual-process theories: the long-lasting debate 

 

 

Some early influential works have been credited to be among the pioneers of the experimental 

investigation on the human mind’s duality. Atkinson and Shiffrin (1968) firstly termed as “control” 

the ability of an individual to put under its will some psychological phenomena and the set of 

functions that allows for the guidance of behavior as “control processes”. Following the authors, 

control processes are pervasively represented in sensory, short-term, and long-term memory; they can 

guide performance mostly through the active implementation of strategies; they are sensitive to the 

instruction set, the experimental task, and the history of the subject. Several years later, the 

fundamentals of the automatic/controlled dichotomy were posed in a series of elegant experiments 

(Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977), demonstrating how extensive practice 

allows for the automatization of a task, but only when the mapping between stimuli and responses 

remains fixed, whereas controlled processes are engaged when this mapping is inconsistent. The 

essential distinction between the two processes relies upon the investment of attention over the 

sequence of nodes that guide information processing to action execution. When attention is set over 

this sequence of nodes, allowing the individual to start or guide its execution voluntarily, the 

“controlled processes” occur. 

In contrast, the unchanging environment, with the strengthening of the relations between nodes in 

memory through learning, allows for the gradual disengagement of attention. Progressively, all the 

events become directly instantiable by stimuli without the intervention of the subject’s control: thus, 

these processes consist of the automatic activation of a sequence of nodes with no need for serial 

search through memory sets, becoming faster and more efficient. The following research has provided 

additional strong evidence that two different modes of information processing exist (Logan et al., 

1980; 1992; Fisk and Schneider, 1981; Schneider and Fisk, 1982; Anderson et al., 1992; Hancock et 

al., 1986; Pashler et al., 2001), enriching the spectrum of attributes belonging to the two processes. 

Schneider and Chein (2003) outlined several different phenomena described by these studies: 

automatic processing develops after consistent training in a constant mapping between stimuli and 

responses, is fast and parallel, requires little effort and does not interfere with other concurrent tasks, 

is robust to stressors, is inflexible, and is context-independent. Differently, all the opposite 

characteristics define controlled processes: they are flexible, slow, serial, effortful, sensitive to 

stressors, and context-dependent. Assuming an evolutionary advantage for this duality of processing 
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(Schneider and Chein, 2003), it is quite easy to conceive why the two processes are useful in everyday 

cognition. Driving a car while paying attention to the road is one of the most typical examples.  

Research on dual-process theories (DPT) continued throughout decades and has found in reasoning 

a very flourishing field. Since the suggestion of an individual bounded rationality (Simon, 1955) that 

upset the homo oeconomicus view of the expected utility theories (Von Neumann and Morgenstern, 

1953), much work has been done in the description of the irrationality underlying human choices and 

actions. Biases and heuristics, i.e., effortless cognitive shortcuts, have been extensively described in 

the Kahneman and Tversky prospect theory (1979). The existence of numerous systematic biases in 

human decision-making has provided direct evidence that two types of reasoning exist, evidence 

supported by several influential authors (Kahneman and Frederik, 2002; Evans, 2003; Gigerenzer and 

Gaissmaier, 2011).  

The spreading of attributes, phenomena, and fields in DPTs has moved authors to start to 

conceptualize a broad and promising theoretical framework of a dual cognition. The successful 

definition of two systems of reasoning is generally attributed to Stanovich and West (2000): System 

1 is implicated in associative, fast, and intuitive judgments and behavior, mostly responsible for 

individual biases, prejudice, and stereotypes, while System 2 is deliberate, analytical, and slow, 

allowing for cost-benefit analyses. Research on reasoning suggested that competition for the action 

control exists between the two systems and that the role of System 2 is intrinsic in its capacity to 

override automatic System 1-type behavior (Evans, 2003).  

With this categorization, DPTs moved from a functional to a systemic definition of information 

processing. The systemic definition covers almost the totality of the dimensions of human phenomena 

distinguished into two different ways of processing, subtending common mechanisms and functions 

within all the processes belonging to each category, from attention and memory to decision-making 

and reasoning.  

Currently, DPTs are very pervasive in psychological literature: a search on SCOPUS resulted in more 

than 2k papers, with a sharp increase after 2000 (Figure 1). 

Notwithstanding the DPTs’ long tradition and their impact on psychological science, the debate about 

their nature and fundamentals is still going on. Indeed, while the existence of two qualitatively 

different processes appears to be quietly demonstrated, several recent observations have led authors 

to reconsider the reliability of an all-inclusive theory of dual processes. 

A letter exchange between two relevant groups of academics on Trends in Cognitive 

Science highlighted several weaknesses of the most prominent dual-theories, especially in the so-

called dual-typology (Melnikoff and Bargh, 2018a; 2018b; Pennycook et al., 2018). 
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Figure 1. Documents published by year (1969-2019) for a "dual-process theor*" search on Scopus. 

 

Melnikoff and Bargh (2018a) argument was prominently that dual-process theories, as conceived by 

several authors, suffer by an alignment problem, also suggested by other influential authors 

(Kruglanski and Gigerenzer, 2011; Keren and Schul, 2009). More specifically, based on the 

coexistence of their defining features, processes can be at the same time made up of automatic and 

non-automatic characteristics. Arguing against the all-or-none dimension of automaticity, the authors 

suggested that no correlation exist or has been experimentally proved, among the different traditional 

antinomian dimensions of the automatic-control distinction, i.e., awareness, controllability, 

intentionality, and efficiency (Bargh et al., 1994). For instance, according to Melnikoff and Bargh, 

dual-process theories implicitly state that if a process is non-intentional must be necessarily 

automatic, taking for granted all the other features (unconscious, uncontrollable, and efficient). 

However, as they reported, literature presents a vast number of disclaiming results, highlighting the 

non-correlation and, thus, the misalignment between features. 

A reply to this argument soon came from a group of relevant advocates of DPTs (Pennycook et al., 

2018). In their view, the correlation among types is not fundamental, because one dichotomous 

defining feature is enough to assume the duality of cognition against a continuous unimodal 

conceptualization, and that the statement of a “list of features” view is outdated and researchers in 

the field often use this wrong implicit assertion. However, as Melnikoff and Bargh answered (2018b), 

the rejection of the correlational view among features does not reflect the authors’ actual assumptions, 

providing several examples of works where the typology has been perpetrated by them.  
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According to Melnikoff and Bargh, the dual typology seems to be quite insidious. However, it looks 

reasonable that rejecting the dual typology does not mean to abandon DPTs and that critiques to DPTs 

must not be generalized to a critique of a dual view of cognitive processes. Conversely, what is 

debatable should be how the results suggesting a duality of processes have been unified in a large 

theoretical framework.  

Besides the different attributes and names given to dichotomies and their relation, authors in the field 

of DPTs have also differently interpreted the duality as functional or structural, in terms of modes, 

processes, and systems, often in interchangeable ways. In a meaningful methodological paper, Keren 

and Schul (2009) analyzed the variable terminology in dual-theories, highlighting the differential 

interpretation that may arise by arguing a dual-process or a dual-system conceptualization. Keren and 

Schul warranted over the possible confusion exerted by the interchangeable definitions of systems or 

processes, each describing a very accurate picture, somehow comparable to computer’s hardware and 

software. They have primarily focused on systemic theories, highlighting some implicit assumption 

of such characterization. For instance: the failure in the isolability of the two systems, a critical feature 

for a system to be defined in this way; the misuse of binary features, which can be in some cases 

continuous in other dichotomous; the lack of an explanation for the hypothesized switch between 

systems, for instance after extended practice; the non-alignment of features, highlighting the inability 

of the two-system theories to include hybrid phenomena. 

While DPTs have been widely accepted in the psychological literature, they present a high number 

of problematic issues. Regarding defining features, it has been shown that the dichotomies do not 

always work when distinguishing between the two processes, providing evidence for their non-

correlation: as it will be shown in the next sections, several phenomena indicate that a mixture of 

these features can be simultaneously observed. These arguments raise the question of the nature of 

the dual processes. Theories differentiated in the terminology used for defining them, sometimes 

assuming a functional, sometimes a structural view of their nature. The confusion generated by this 

variety of terminology has led research to wrongly assume that these terms are, in some way, 

overlapping, often neglecting the problem. Finally, the urge to construct a comprehensive theoretical 

framework has hidden the specificity of DPs in the singular mental processes investigated. It is 

certainly conceivable that a variable range of phenomena shares the same underlying mechanisms. 

However, abandoning a specific theorization in favor of a more general one may erroneously overlook 

essential details in constructing such a relevant general theory of broad cognition. As Gigerenzer 

warranted (2011b), converging several specific theories into a more general theory of dual processes 

may move backward these theories to surrogates, rather than forward to an integrated theory of 

cognition. Such issues leave many questions still open in DPT research.  
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The problematic definition of automaticity 

 

Automaticity has been traditionally tied up with attention: the more resource-consuming a process is, 

the less it is automatic. The view that links automaticity and its opposite throughout a continuum is 

one of the most influential in early cognitive psychology, which has given rise to many models and 

theories of attention and performance. Briefly, it is assumed that the cognitive system has a limited 

amount of energy to invest in mental processes, which can be distinguished between processes that 

require no energy to be run (i.e., automatic) and processes that, instead, require a certain degree of 

resources to be controlled (i.e., non-automatic). The capacity model (Kahneman, 1973) posited that 

non-consuming processes could be run simultaneously (i.e., in parallel) with others without resulting 

impoverished, while consuming processes may interfere with one each other and could be run just 

one at a time (i.e., serially). In contrast to the effortful ones, automatic processes were defined to have 

a constant level of performance and do not improve with practice (Hasher and Zacks, 1979). 

Given that a continuum has two poles, this view gave rise to the view mentioned above of a 

dichotomized cognition. Indeed, many features of cognitive processes, such as consciousness or 

intentionality, were hard to conceive as continuous dimensions, and the all-or-none definition of 

automaticity became predominant.  However, advances in research on automaticity subsequently 

challenged this all-or-none view (Kahneman and Treisman, 1984; Bargh, 1994; Moors and De 

Houwer, 2006). Moreover, the single-capacity view of attention was challenged. Indeed, the lack of 

co-occurrence between features, the non-mutual exclusivity of modes, the problematic definition of 

learning, and the rise of multiple-resource models (Baddeley, 1996) added relevant elements to the 

unreliability of the all-or-none definition of automaticity. 

The solutions adopted were, in turn, to abandon the concept of automaticity (Regan et al., 1981), to 

support a gradual view of automaticity with different learning paths for the different features (Logan 

et al., 1985), or to allow for a free alignment of the related-features except for automaticity itself 

(Bargh et al., 1994).  

Given that abandoning the automatic categorization means throwing away decades of research and 

speculation on it, and that this probably might help hiding the problem rather than solving it, a more 

flexible definition of what is automatic appears to be the best way, at least at a conceptual level. 

However, this approach does not clarify what is the essential dimension of automaticity. According 

to Bargh (1992), a process might be automatic in the case it started either with or without 

intentionality, a position already promoted by Shiffrin and Schneider, opening the question if 

“learned” automaticity can be considered to some extent as “pure” automaticity. In this case, 
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“learned” automaticity (for example, through repetition) rises from intention, which is a more 

controlled dimension, and getting inside the mechanisms that govern the shift from one to another is 

intriguing and suggestive. Studies on practice have shown other interesting, even mixed, results. The 

central question is how the practice might effectively improve performance: by speeding up central 

stages of processing or eliminating the attentional bottleneck (Pashler et al., 2001)? The relevance of 

understanding the mechanisms of practice and learning has numerous advantages for DPTs. It allows 

clarifying whether automatization or skill learning determines a parallelization of processes, a switch 

from one system to another, or an economization of the same action control patterns. To go further 

into the discussion, the literature on habit and their formation can come in support. 

In psychology, habit is a topic very close to automaticity, and it is not surprising if it suffers from the 

same definitional issues. Habits are defined as overlearned behavioral patterns, to some extent, 

automatic, that rapidly start in response to a triggering external or internal specific stimulus and are 

detached from goals. However, they are not purely reflexive: they may have initially been effortful, 

conscious, or intentional (and it is not assumed that they necessarily lose all these features after 

habituation). In this sense, the process of habit formation has been conceived as automatic (Wood 

and Neal, 2007). Once started, habits are quite rigid and are hard to stop or alter.  

Simple S-R associations of behaviorist tradition had governed for a long time the literature on habits. 

However, they are not necessarily stimulus-driven. Indeed, they may pursue a goal, even if 

unintentionally (Moors and De Houwer, 2006), giving them the characterization of learned goal-

directed automatic responses (Verplanken and Aarts, 1999). Logan (1992) argued that learning could 

be explained in an episodic model: differently from S-R associations set up irrespectively from the 

causal relation between events and behavior, experience creates episodic traces. With repeated 

behavior following the exposure to the same or similar stimuli, the multi-step retrieval of these traces 

economizes to single-step direct memory retrieval. While in Logan’s view this shift happens in the 

quality of processes, the Adaptive Control of Thought Theory (Anderson et al., 1992) postulated that 

learning generates a more quantitative strengthen of the production rules that control the cognitive 

steps of behavior.  

The relation between the agent and the environment in learning and habit formation has been widely 

formalized, especially in the reinforcement learning accounts (Sutton and Barto, 1998) which 

explains habit formation as a strengthening of the state-action patterns according to the history of 

reward signals provided by the environment and prediction errors, offering evidence of a model-free 

action controller (Daw et al., 2011; Dolan and Dayan, 2013). This view has been applied to many 

contexts but has also been criticized as too simple, arguing for a prominent role of action-sequences 
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(Dezfouli and Balleine, 2012; Morris and Cushman, 2019) or self-reinforcing repetitive pattern of 

behavior in the sensorimotor space (Egbert and Baradiaran, 2014).  

Instead, a highly influential recent approach that included Bayesian thinking in his theorization is the 

Friston’s predictive coding theory (Hohwy, 2013) that has been proposed as a formal explanation of 

automatic learning. It assumes that individuals possess internal models of the world that are constantly 

and inferentially updated through automatic and effortless hypothesis-testing to minimize errors. In 

this context, learning happens because of the accumulation of prediction errors generated in a bottom-

up fashion. This model found broad consensus in a variety of fields, especially perception, and can 

include a previous model of learning such as S-R associations. 

Similar issues concern heuristics in decision-making literature. These have been described as implicit 

and effortless cognitive shortcuts, aimed at reducing cognitive load, mostly responsible for decision 

biases (Tversky and Kahneman, 1974), even if their evolutionary advantage has been acknowledged 

(Gigerenzer and Brighton, 2009). However, the connection between heuristics and habits is still not 

clarified: although they are often used as synonyms, they might represent different stimulus-driven 

strategies (Wood and Runger, 2016). 

Following the literature, automaticity has been equipped with a very heterogeneity of definitions, 

paradigms, and functional mechanisms (Fiedler and Hutter, 2014). Consequently, the automatic, the 

heuristic, the implicit, and the habitual fell into the large family of System 1, that Stanovich (2004) 

proposed to call more explicatively as TASS (The Autonomous Set of Systems). This set of 

subsystems shares some characteristics with the modularity of some mental processes theorized by 

Fodor two decades before (1983): they are fast and mandatory (i.e., they can be turned on by relevant 

stimuli, without the interference of the central system). However, other sets of characteristics 

described by Fodor for modular processes (such as domain-specific, informationally encapsulated, 

and cognitively impenetrable) were not involved by the authors in the set of defining features of 

TASS, because of the difficulty to test them (informationally encapsulated) or because of their non-

exhaustiveness (domain-specific). The encapsulation assumption requires modules to be independent, 

a condition not likely met by the TASS.  

In conclusion, the variety of the operational definitions of automatic processes has led to a 

conceptualization of a broad set of specific features, rather than a precise operationalization, showing 

all its limitations (Fiedler and Hutter, 2014). Thus, the puzzling conceptualization of automaticity, 

the difficulty in search of its central feature, and the reluctance in throwing away decades of research 

encouraged several authors to follow a decomposition approach, in order to avoid the use of 

overlapping explanations and definitions of automaticity (Moors and De Houwer, 2006).  
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Does automaticity, habits, and heuristics belong to the same family? Do they reflect overlearned 

behavior and experience, and do they act similarly in different contexts and mental activities? Such a 

decomposition approach seems to represent an excellent way to answer these questions.  

 

 

Similar problems on the other side 

 

Definition issues are not limited to automatic processes. Non-automatic processes, especially 

cognitive control, which is their guarantor inside the mind, must deal with their troubles, which in 

part overlap with the ones of their counterparts. Like automatic processes, cognitive control also has 

its primary condition in the investment of attention, and through this, it exerts multiple roles. Its 

abilities, such as planning, monitoring, inhibition, and mental sets updating, are a set of 

neurocognitive mechanisms, often defined as executive functions, allowing for the flexible 

adjustment of behavior in a context-dependent manner to achieve specific goals.  

The analytical, rule-based, Type 2 system has been supposed to be dependent upon the evolution of 

language. It is viewed as a central executive, from the Baddeley’s Working Memory model (Baddeley 

and Hitch, 1974), even if Stanovich (2004) warned to be cautious in interpreting this centrality to 

avoid a homunculus-like fallacy. Indeed, in the current characterization of control in DPTs, System 

2 looks out to be both the referee (of autonomous responses) and an independent agent, based on its 

resources. 

The flexibility guaranteed by cognitive control has been described for a long time with unitary and 

almost monolithic conceptions. Indeed, the most influential psychological literature has provided a 

description of cognitive control as a unique high-level entity. An illustrious theorization (Norman and 

Shallice, 1986) described it as a “Supervisory Attentional System” which acts over an automatic 

Contention Scheduling process. Subsequently, in his famed conceptualization of working memory, 

Baddeley posits the cognitive control, named as “central executive” over two different subsystems, 

relying upon specific resources, auditory-verbal and visuo-spatial. In this conception, cognitive 

control with the mental functions looks like the orchestra’s maestro, giving it personified abilities and 

features. This kind of personification has led throughout the years to the insidious homunculus 

problem: in brief, the assumption of a little man’s existence inside the human mind that governs 

mental processes. Arguably, the homunculus is invoked as an easy way to cover some weaknesses in 

the explanans, allowing for its best, even if artificial, conceptual fit to the explanandum. This 

assumption leads to the strained settlement of another little man inside the little man’s mind, and so 
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on until infinity. Being aware of the problems hidden in this kind of explanation is of paramount 

importance in cognitive control interpretation.  

The central function of control has been suggested by several results throughout the years, mostly in 

the neuroscience field (Alvarez and Emory, 2006). On the one hand, neuroimaging techniques 

allowed for the visualization in vivo of the activated areas during task performance, showing that 

prefrontal areas, mostly PFC (prefrontal cortex), were almost always activated during the 

performance in different executive tasks; on the other hand, clinical tradition showed that PFC 

damage might lead to impairments in inhibition as well as in planning, monitoring, and shifting. 

This evidence is very robust and hardly debatable. However, the central definition of cognitive control 

has been questioned even by its proponents. For instance, Baddeley (1996) advises that executive 

control is a post-hoc label of the problem, not the real explanation and that fragmenting the 

homunculus into more explanative processes is necessary for dealing with the problem. The 

fragmentation proposed by Baddeley led to the inclusion of the episodic buffer in its multicomponent 

model (Baddeley et al., 2000), a multidimensional capacity-limited store that can chunk information 

from the visuospatial and phonological WM subsystems and long-term memory. However, 

subsequent research has shown that the addition of the buffer in the model has not been able to aid in 

fragmenting the executive: indeed, contrarily to the first assumptions, studies investigating both the 

WM subsystems with concurrent tasks showed no effects of cognitive load on binding processes, 

suggesting a passive rather than an active role of the episodic buffer (Baddeley et al., 2010).  

Other strategies have been implemented to study the nature of executive processes. For instance, 

Miyake et al. (2000) tried to rule out the problem by simultaneously investigating various well-known 

executive paradigms, assumed to represent three different executive functions (i.e., set-shifting, 

inhibition, and updating) analyzing the results through structural equation modeling. Data showed a 

reasonable degree of reliability, and the model revealed three latent factors, related to the tasks 

hypothesized to rely upon. However, the three factors were not independent one each other, the model 

was weak, and the authors concluded arguing both a unitary and multiple nature of executive 

processes. Moreover, dual-task performance, which was also part of the investigation, did not 

correlate with any of the factors hypothesized and was suggested by the authors to represent an 

additional executive component to coordinate between processes. Higher mental functions such as 

reasoning, planning, and problem-solving seem to be dependent upon these three core EFs and present 

their specific developmental path (Diamond, 2013). 

The development of finer neuroimaging techniques and experimental paradigms has led the field to 

converge into an idea of a divisible PFC into more localized areas, which are thought to be responsible 

for domain-specific EFs (Yuan and Raz, 2014). Evidence supports the unitary and multiple nature of 
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EF, thus maintaining a superordinate cognitive control network, consisting of a broader network of 

areas (Niendam et al., 2012). Indeed, growing evidence is highlighting the role of other cortical areas 

in the circuits responsible of high-order mental functions, such as parietal cortices (e.g., Gruber and 

Goschke, 2004; Collette and Van der Linden, 2002; Sdoia et al., 2020), cerebellum (e.g., Stoodley, 

2012; Picazio et al., 2020), and basal ganglia (e.g., O’Reilly and Frank, 2006; Hazy et al., 2007). 

Moreover, models addressing a distributed control have been constructed (Hazy et al., 2006; 

Vandierendonck, 2016). For instance, in their WM model, Vandierendonck et al. (2015) suggested 

substituting to the central executive a distributed “production system”, which consists of a procedural 

knowledge base, made up of rules in long-term procedural memory, and a processing engine, which 

can execute these procedures when these patterns fit in the constraints stored in a specific passive 

component of WM, the executive memory. 

Interestingly, in the Vandierendonck et al. ’s model, learning is represented by the strengthening of 

the production rules caused by cumulative activation and experience. It is highly plausible that 

prediction error can participate in these learning mechanisms by updating a model contained in the 

supposed executive WM store. The authors also proposed that a procedure is activated given its 

relevance and specificity: the more complex the rule, the more specific it is. Learning by practice 

might act in simplifying the rules, according to Logan, from a multi-step to a single-step procedure, 

leading the behavior to be less specific and more general, i.e., with a reduced instantiation of control. 

Although the idea that the executive is distributed rather than central is getting a broad consensus, the 

homunculus conception seems to be deeply rooted. Indeed, the problem looks too much often to be 

neglected.  

Besides the robust traditional conception of unitary mechanisms, other points might be identified for 

the problems arisen in the definition of control processes. First, executive functions are not purely 

observable processes. They operate over a plethora of underlying mental phenomena. This has been 

defined as a “task-impurity problem” (Miyake et al., 2000): differences in the non-executive 

processes required by task performance can be critical when distinguishing among functions. 

Secondly, and relatedly, Verbruggen et al. (2014) argued that researchers have often confounded tasks 

with mechanisms. Indeed, different executive processes might act in concert to determine the actual 

performance in a task. Consequently, tasks traditionally implemented for measuring “executive 

functioning” as a whole or more specific mechanisms such as inhibition or switching between task 

sets might not merely assess “executive functioning”, “inhibition”, or “task-switching”. For instance, 

the performance in a simple task-switching paradigm requires individuals at least to process certain 

sensory information, maintain the goal representation, update task sets, inhibit previous irrelevant 

sets, create associations between stimuli and responses, and learn from feedback. Indeed, it is possible 
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to assume that the automatization of performance in a task requiring an initial degree of control, might 

develop over some but not all the aspects that compose the whole task execution, following different 

paths, and that some processes are more resistant to automatization or cannot be automatized at all. 

Research on trial-compatibility effects in highly used paradigms such as the Stroop and the Simon 

tasks revealed other interesting effects. The two tasks exert a response conflict, but in the first case, 

that conflict is generated by a stimulus-stimulus conflict, while in the second from a stimulus-

response conflict. These two kinds of conflicts are found to be independent, suggesting modularity 

rather than a centrality of cognitive control (Egner et al., 2007; Hommel et al., 1997). 

In conclusion, even in this case, it seems that a clear definition of the mechanisms underlying control 

processes are still not clear. A unitary and monolithic conceptualization of control appears to be 

outdated, even though most of the results are still seen under this lens. As for the automatic processes, 

control processes vary greatly depending upon the cognitive functions investigated, the tasks used, 

and the theories taken as supportive. Only specific dissociations between tasks and functions, through 

the implementation of specific methodological designs, might shed light on how control is exerted 

over the whole mental functioning. 

 

Interactions 

 

The conceptual limitations in the definition of automaticity and control put in doubt a simplistic view 

of two separate systems and the substantial distinction of their features. Indeed, ample evidence 

suggests that bottom-up and top-down processes interact in a way that does not fit with a continuous 

or dichotomic conception. 

Pashler et al. (2001) described how different processes, traditionally defined as bottom-up (such as 

attentional capture) or top-down (such as task-switching), might indeed be influenced and thus, rely 

upon both ways of strategies. Results on involuntary attentional capture strongly suggest that the 

ability to be interfered by distractors in a search is mostly explained by the relation between distractor-

target features rather than by the concrete features of distractor stimuli itself (Folk et al., 2002). It 

seems that irrelevant information does not merely draw the subject’s attention implicitly, but it draws 

attention relatedly to the subject’s voluntary goals aimed at detecting target-related features. 

Voluntary and stimulus-driven processes might be integrated in orienting selective attention: equally 

salient distractors showed not to have the same attractiveness if one of the two possesses some of the 

to-be-attended target-features. This effect has also been confirmed in neuroimaging studies, which 

showed a more massive BOLD response in temporoparietal junction and ventral frontal cortex for 

target-colored distractors rather than for non-target-colored ones presented in to-be-ignored 
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peripheral locations (Serences et al., 2005). Even though this contingent capture hypothesis has been 

recently challenged (Belopolsky et al., 2010), suggesting that the prominent role of top-down 

processes is the rapid disengagement from salient stimuli rather than filtering them out and that top-

down processes have been shown to modulate later stage of attention rather than early ones (Parrott 

et al., 2010). However, research on priming effects in attentional paradigms have firmly indicated 

that unconscious processing can be modulated by the top-down effects instantiated by subjects’ 

intentions (Ansorge and Neumann, 2005), task instructions (Nakamura et al., 2007), and expectancy 

(Kunde et al., 2003; Eckstein and Perrig, 2007). An attentional sensitization model over unconscious 

information processing has been proposed (Kiefer et al., 2012), suggesting that automatic influences 

can be enhanced or attenuated depending upon the match between their task-relevancy and internal 

task-sets, arguing for “conditional” automaticity in which at least some unconscious processes are 

constrained to the amount of attentional resources. This model is supported by results in single-cell 

studies revealing that the neuron’s firing probability is increased if the stimulus feature processed by 

the neuron is being attended to (Treue and Martinez Trujillo, 1999). Thus, it seems that low order 

processes might not be so inflexible. Even the cognitive impenetrability of a low process such as 

perception has been questioned, but further research in this field is required (Firestone and Scholl, 

2016). 

This concept of conditional automaticity can also be described according to the SNARC effect 

(Fischer et al., 2003). The SNARC effect is the automatic activation of a mental spatial number line, 

following a left-to-right direction, at least in Western individuals (Zebian, 2005), resulting in a 

preference response for left/right-sided targets when cued by unpredictable small/big digits. 

However, more recent research has extensively shown that this activation is slow and that top-down 

processes exerted by instructions and culture might generate and change this preference (Ristic et al., 

2006; Núñez, 2011). 

As regards controlled processes, task-switching paradigms have been extensively used as measures 

of top-down influences on performance. In the standard version of the task, where participants are 

asked to perform two different tasks in an unpredictable sequence, reaction-times are typically slower 

when participants are required to switch from one task to another compared to when the two tasks are 

repeated. The switch cost (i.e., the difference between RT switch and repetition trials) is traditionally 

taken as a control engagement measure, reflecting time-consuming top-down reconfiguration 

processes between high-order task sets. Indeed, numerous findings revealed that the switch-cost 

depends on the cue-stimulus interval (Rogers and Monsell, 1995), which is the time available to 

subjects to switch between task sets: the longer the interval, the lower the switch cost. However, even 

at long intervals, when participants have enough preparation, a residual switch cost is still observed 
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(Rogers and Monsell, 1995; Liefooghe et al., 2009), suggesting that other than top-down processes 

may concur in determine the switch-cost. Then, some authors suggested that rather than think about 

why switch trials are slower than repetition trials, in this case, it could be more useful to think about 

why repetition trials are faster than switch ones, indicating the role of priming effects (Schneider and 

Logan, 2005). Several results showed a different role of task recency and contingencies in task-

switching paradigms (van’t Wout, 2018; van’t Wout et al., 2015), evidencing additive and combining 

weights for bottom-up and top-down attentional mechanisms (Summer and Ahmed, 2006; Koch and 

Allport, 2006; Ruthruff et al., 2001). 

One strong evidence that controlled and automatic processes interact in guiding behavior comes from 

the investigation of cognitive adaptation to conflicts. The conflict-monitoring hypothesis argued that 

top-down mechanisms are responsible for reconfiguring task sets after incompatible trials because of 

the higher effort requested by the task. This reconfiguration is known to adjust performance on the 

following task, depending upon its congruency. Especially after incongruent trials, congruency effect 

(i.e., faster response for congruent trials) is reduced, eliminated, or reversed (incongruent trials 

became faster than congruent ones). Control-based views of conflict adaptation highlighted the role 

of task-relevant information (Botvinick et al., 2001), the specificity of conflict type (Egner, 2008; 

Notabaert and Verguts, 2008; Zhao et al., 2015), local task sets (Hazeltine et al., 2011), active 

representations (Verguts and Notebaert, 2009), and just weak evidence exists that working memory 

resources and conflicts resolution are functionally interrelated (Moss et al., 2020). Other authors 

suggested that this sequence effect is dependent upon the number of features that change from one 

trial to another (i.e., word and ink color in the Stroop task), with faster responses when both or no 

stimuli change, compared to trials when features are partially repeated (for instance, the ink color is 

repeated but not the word). Again, this evidence has suggested that besides top-down reconfiguration 

processes, also bottom-up repetition influences congruency effects. Indeed, other conflict adaptation 

views have focused on feature integration (Hommel et al., 2004) and stimulus-response contingency 

learning (Schmidt, 2013). Notabaert et al. (2006) found that the congruency effect was reduced in a 

complete alternation Stroop version only when participants were given enough time to reconfigure 

the task set (coherently with the time-consuming feature of top-down processes). Differently, in a 

partial repetition version it was eliminated even with a little response stimulus interval.  

Feature and control-based theories regarding the nature of the congruency sequence effect exist, both 

supported by many results. The results indicating that bottom-up and top-down strategies may 

cooperate rather than compete for behavior have led authors to reconsider their interactive functioning 

and propose integrative accounts (Egner, 2014; Braem et al., 2014). For instance, Egner (2014), 

suggested that bottom-up and top-down processes act complementarily intending to reach the same 
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goal: learning to bind external features of stimuli and contextual cues to internal task sets and states 

into episodic traces, useful for optimal adaptation (in terms of speed and accuracy) to future events. 

Egner proposed a multi-level account of learning, operating at different levels of abstraction, from 

concrete features to abstract goal representations, able to consider both conflict-specificity among 

tasks (Egner et al., 2007) and generalization to new events.  

Besides, in reasoning research, the interplay between intuitive and logical reasoning has been 

conceptualized in a different number of ways. In brief, the Default Interventionist model (Evans, 

2007) asserts that Type 2 processes started later, and their role is to override fast and impulsive 

responses emerging from the Type 1 system. Differently, in the Parallel model of Sloman (1996), 

associative and ruled-based processes start in parallel, a suggestion supported by the number of 

studies reporting that the detection of conflict between responses is detected very early in the task. 

However, this model has been strongly criticized: indeed, it assumes that controlled processes are 

always active, a feature that seems to be quite not economically adequate for our neurocognitive 

system. Then, an integrated model of the two (De Neys, 2012) described that Type 2 processes are 

activated only when a conflict is detected. However, an intuitive logical component is activated early 

and can respond logically in a fast way, allowing for some logical judgments to be made quickly, 

some knowledge-based responses to be effortful, and both Type 1 and Type 2 processes to lead to 

biases. Similarly, computational and neurobiological research in decision-making provides evidence 

that the binary view of mind does not precisely reflect what happens when a statistical brain is making 

choices and planning behavior (Daw, 2018). Alternatives to the System 1/System 2 theory of 

cognition proposed to split the processes differently, for instance, according to the type of 

representation used by individuals, as in the Fuzzy Trace Theory (Brainerd and Reyna, 2001). 

The described results are just some findings showing that a combinatory rather than discrete role must 

be integrated into DPTs. Further research from different paradigms may integrate and add results in 

this converging evidence. 

  

 

From simple to complex tasks 

 

The issues presented in the DP frameworks are strictly dependent upon the intrinsic problematic 

definitions of automaticity and control. For instance, assuming an all-or-none or a continuum 

conceptualization of automaticity or a central vs. a distributed view of cognitive control has 

substantial consequences on DP’s theoretical foundation. As outlined above, the reasons for such a 

tricky issue can be mostly found in the middle of the two processes: the link between automatic and 
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controlled processes is more than just a slider, and their interplay might be more profound than it can 

be distinguished through the current theoretical lenses. Also, besides the misalignment observed in 

the process features within a cognitive field, it remains to be investigated the misalignments between 

cognitive functions. As Monsell and Driver argued (2000), control research has focused more on what 

is controlled rather than on how control is exerted, and the same can be addressed to research on 

automaticity. To get out of the dichotomy, which appears to be effective in explaining what is 

automatic or controlled but not how, a right approach, according to Logan (2003), could be the 

investigation of how control acts over mental processes by studying how the underlying psychological 

mechanisms can be controlled and in what extent. In doing this, the study on the interplay between 

automatic and controlled processes in different contexts and tasks might be an excellent path to 

follow. The need to understand how these mechanisms are exerted and interact according to the 

environment’s different levels of complexity has already been indicated (Monsell and Driver, 2000). 

Simple and complex tasks do not merely differ in a low vs. high cognitive level supposed. Even 

though in most cases simple processes strongly rely upon automatic functions, and complex processes 

upon controlled ones, they also differ in the sense of contextual complexity and number of cognitive 

processes required to play a role. In this sense, cognitive processes are required to interact in order to 

optimize behavioral performance according to goals and sub-goals, integrating the information 

generated by the two processes. For instance, research on reasoning has shown that more complex 

logical arguments with conflicting responses are more sensitive to produce belief-biased responses, 

providing evidence that the task’s structure determines the timing in which a response is available 

(Handley and Trippas, 2015). If the whole cognition works in a duality mode, the notion of a broad 

DPT makes necessary also to assume that the same interactive way works for all cognitive function, 

either if one is asking subjects to report two digits embedded in a stream of letters or to infer an 

implicit probabilistic structure. The two situations differ in the complexity (do not read difficulty) of 

the task. However, it is arguable that, in the context of a DPT, this optimizing interaction can be seen 

in simple perceptual and attentional processes, as well as in more complex reasoning tasks, in ways 

determined by the task considered.  

The central point of the current debate on DPTs is represented by the utility of having a dual-process 

typology. However, what is not clear is whether a defining feature exist and, consequently, if it can 

be coherently operationalized in an extensive set of cognitive functions. Even with the rejection or 

acceptance of the dual-process typology (which is not equal to the rejection or acceptance of the dual-

process theory), the question about whether mental phenomena share or not single- o multiple- 

process allowing for its automatization or control remains open. 
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Eventually, one solution in experimental paradigms is to look at how manipulations that are known 

to give rise to automaticity (for example, through practice) or cognitive control (for example, exerting 

conflicts between a set of mental representations) can modulate the studied phenomenon, taking in 

consideration its structural and conceptual complexity. Moreover, to not bump into confirmation 

biases, an opposite approach must be taken. If it is assumed that dual processes always interact, this 

approach gives us a picture of the specific task performance changes. Conversely, it appears strictly 

necessary to investigate negative conditions, such as observing the effects over a controlled process 

by knocking out the features that render it controlled, as it is done through stress induction. Therefore, 

does the given performance turn out to get opposite features (automatic)? Or do specific features of 

the phenomenon vary while others remain stable? A reductionist approach seems necessary, 

especially when the focus of the investigation are the most complex mental functions. 

Up to now, several dual-process theories have been proposed, mostly lacking exhaustiveness and 

exclusiveness of explanation. Attempts to unify them in a broader framework have also been made, 

but the way in which these relate is still ignored. Evans (2009) posed a question: “How many dual-

process theories do we need?”. If possible, integration appears to be a real need in psychological 

research: however, the risk to be redundant and confusing as knowledge increases is actual. The 

efforts to unify the dual-process theories will be beneficial in the understanding of human cognition, 

either for supporting a functional or an architectural view of the mind. How did higher cognition 

evolve, how it interacts with low-level abilities, and how do habits develop are just a few of the 

number of questions that can be faced with a more solid theoretical background. However, integration 

does not mean to theorize just a broader label for all the dual processes described. Instead, in the 

present view, it requires to be investigated through a sort of directional approach: from the most 

simple, earliest, and lower stage to the most complex, latest, and higher level of information-

processing. Making adequate and precise progress in psychological theories is more urgent than 

having a totalized theory of dual-cognition and advancing knowledge in this way could be quite useful 

in avoiding big jumps or the construction of surrogates (Gigerenzer, 2011b). Thus, the Evans’ 

question can be reformulated as “How many dual-processes do we have?” or “Have we developed a 

higher cognition for each (default) ability?”.  
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CHAPTER 2 

 

Controlled processes in temporal attention: 

an experimental contribution to Attentional Blink theories 

 

 

The most peculiar capacity of attention is that it can be oriented not only to environmental stimuli but 

also to the deployment of information processing. Its pivotal role in qualifying cognitive processes 

through the engagement and disengagement of cognitive control made it one of the fundamentals of 

dual process theories since the beginnings (Schneider and Shiffrin, 1977).  

Simultaneously, attention is a cognitive process itself, and, like the others, it also possesses a dual 

nature: it can be oriented exogenously or endogenously, reflecting bottom-up and top-down 

processing directions (Posner, 1980). 

Consequently, attention may be subjected to the same contingencies observed in other cognitive 

functions. Indeed, the top-down modulation of attentional phenomena has been extensively observed 

(e.g., Gazzaley and Nobre, 2012; Burnham, 2019).  

Interestingly, this top-down modulation can be observed both in spatial orientation and in the 

temporal resolution of attention, which this section is focused on. Results highlighting the interactive 

role of bottom-up and top-down processes in temporal aspects of attention will be outlined, and an 

experimental contribution to the field will be presented. 

 

 

The Attentional Blink: a blind spot in temporal attention 

 

In the broad set of limitations of the human cognitive system that arise in the everchanging world, the 

temporal resolution capacity of information processing plays a pivotal role. Indeed, most individuals 

exhibit an evident impairment in detecting relevant subsequent stimuli among irrelevant ones if a 

short temporal window separates them. When individuals must detect two or more stimuli target 

embedded in a rapid serial stream of distractors, the accurate detection of the second one, having 

correctly identified the first, is severely impaired. This drop in performance is usually found when 

the interval (Lag) between the two targets lasts about 200-500 msec, describing a U-shape function. 

This interesting phenomenon is named Attentional Blink (AB; Raymond et al., 1992), and is usually 

investigated in a Rapid Serial Visual Presentation (RSVP) paradigm in which every stimulus (usually 
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digits and letters) is presented in the foveal vision for about 80-100 msec with or without an 

interstimulus blank interval (ISI). In the standard task, the RSVP is presented at the center of the 

screen, and subjects must report the targets' identity after the RSVP. The factorization of the interval 

between the two stimuli (T1 and T2) is defined as Lag, which is the number of positions in the stream, 

after which T2 appears relatively to T1 (i.e., Lag 3 is three positions after T1, 240-300 msec of 

interval). One curious and paradoxical phenomenon is that when T2 is presented immediately after 

T1, with no intervening distractors (Lag 1), the performance is usually spared, even though several 

alternative paradigms have been shown to eliminate the Lag 1 sparing effect. 

Notwithstanding the AB is a very robust effect, some issues are still not clarified. First, it is not 

currently known why some individuals do not present the standard AB. Secondly, there is no broad 

consensus about the parametrization of the AB. Even though the standard scoring method is generally 

used (the proportion of T2|T1 over T1-only accurate responses), an effective change of the whole 

curve may happen, for instance, in its amplitude or extension, making difficult to link specific 

predictions for specific changes. Thirdly, several variants of the standard paradigm are often made, 

such as the lags used, their number, or the timing parameters, sometimes rendering impossible a 

comparison between results. Finally, there is still confusion about the processes underlying the whole 

AB phenomenon. Indeed, since the early ‘90s, literature has flourished of theories explaining the 

functional and structural mechanisms responsible for this phenomenon (Dux and Marois, 2009). 

Even though with different mechanisms, capacity-limited theories posit that resource limitations in 

central processing are responsible for the drop in T2 performance. In the interference theory (Shapiro 

et al., 1994), both targets enter the working memory according to their featural template, as well as 

the following items (T1+1 and T2+1) due to their proximity to targets. In working memory, these 

items receive an attentional weighting, according to which they compete for their successful retrieval. 

The processing of the items started with the T1 detection lasts about 500 msec: the AB takes place 

when the temporal proximity of the target is short because the attentional weight of T2 is not able to 

overcome the stronger one of T1. Differently, in the bottleneck models, such as the two-stage theory 

of Chun and Potter (1995), before entering the working memory, features of stimuli in the RSVP are 

first processed in parallel. When relevant features are detected, the target item undergoes encoding 

and consolidation, a serial and effortful process. Due to the temporal proximity of the two targets, T2 

is not able to enter Stage 2 because it is already busy in the consolidation of T1. 

Similarly, in the more recent eSTST (episodic Simultaneous Type/Serial Token) model (Wyble and 

Bowman, 2009), the failure in reporting T2 is determined by the time-consuming consolidation stage. 

The difference with the two-stage model relies upon types and tokens: items in the RSVP activate 

high-level types that must be bound to working memory tokens by an attentional blaster to be 
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correctly identified, generating episodical information aimed at distinguishing separate objects. The 

attentional enhancing function of the blaster is slow and is transiently suppressed after the first target, 

to allow for the construction of episodes aiming at avoiding otherwise overlapping and overwhelming 

information. A conceptually different capacity limited component can also be found in the Temporary 

Loss of Control (TLC) theory (Di Lollo et al., 2005), which suggested that a central processor is 

responsible for monitoring the RSVP in search of targets switching to a consolidation mode at the 

detection of T1. Since this central processor is serial, while it is engaged in the consolidation of T1, 

the monitoring of the stream is made by exogenous processes sensitive to stimuli category features. 

Then, the different category of the T1+1 item leads to a disruption of the filter, and the consolidation 

of T2 becomes less efficient. Other theories subtending capacity limitations to be responsible for the 

AB focused on physiological processes, as in the Locus Coeruleus-Norepinephrine model (LC; 

Nieuwenhuis et al., 2005), which explained the AB according to the dynamic of the phasic 

noradrenergic responses of the LC to target stimuli. 

Conversely, other theories do not rely upon capacity limitations to account for the AB, instead of 

focusing on the temporal deployment of attention. For instance, the gating theory (Raymond et al., 

1992) proposed that an inhibitory mechanism prevents physical features of T1+1 to interfere with 

target features and, thus, at a short interval, T2 is still inhibited and cannot be processed. This 

mechanism acts as a gate: with the detection of physical target features (e.g., the color) the gate opens 

for identification and closes when different features are presented in the RSVP. Similarly, in the Boost 

and Bounce model (Olivers and Meeters, 2008), T1 detection exerts an attentional boosting prolonged 

to the T1+1 item. If the T1+1 item turns out to be a distractor, then a transient suppression of the 

attentional enhancement (bounce) takes place, preventing a proximal T2 from reaching 

consciousness. Differently from the gating model, this mechanism is aimed at inhibiting distractors 

rather than to prevent features binding errors between T1 and the following item. The inhibition in 

the Boost and Bounce model acts at a late stage of visual processing: sensory and semantic 

information provides the items with an attentional strength modulated by the precedent and successive 

items. Working memory encodes item information, binds them to the response, and maintains the 

attentional set, promoting an input filter aimed at enhancing target-like and suppressing distractor-

like features.  

This brief presentation of theories on AB roughly shows that, whatever it is considered, a duality of 

processes is described (e.g., early and late-stage, parallel and serial processing, enhancement and 

inhibition, exogenous and endogenous). However, even though much research has been produced, 

the question of how top-down processes might influence performance and the relative weight of the 

two processes in determining the AB phenomenon remains speculation. 
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The notion that the AB phenomenon is not purely bottom-up is known, and evidence exists indicating 

the role of top-down modulations. The interplay between the two processes has been extensively 

documented, even if a summarizing and theoretically relevant joint of results has not been made. This 

unified view of AB-related phenomena can be outlined through several effects and manipulation used 

in literature. 

 

Dual processes in the Attentional Blink 

 

Attention and, specifically, its visual component, is well-known to be controlled by at least two 

mechanisms, top-down cognitive-driven, and bottom-up stimulus-driven, each suggested to rely upon 

separate neural networks (Corbetta and Shulman, 2002). 

Top-down mechanisms are known to be deployed when conflicts between representations or 

processes arise. More finely, in the visual system, the degree of top-down attentional investment 

seems to depend upon the number of conflicts that remain unsolved by bottom-up mechanisms 

(McMains and Kastner, 2011). Interestingly, feedback signals from the frontal to the occipital cortex 

are essential for visual detection and awareness. However, interference between bottom-up occipital 

feedforward and top-down frontal feedback signals may arise when individuals are attending to 

RSVPs, allowing for bottlenecks to take place (Martin et al., 2019).  

The interactive effects of top-down and bottom-up processes in the AB have been sparsely 

investigated through several different manipulations. 

Training and practice effects have been an object of interest in the AB literature due to their possible 

theoretical relevance. In a capacity-limited interpretation, practice effects should not eliminate the 

AB, addressing this phenomenon to a more structural view. Indeed, studies investigating the effects 

of training found only an attenuated AB (Maki and Padmanabhan, 1994; Braun et al., 1998). 

Choi et al. (2012) found that a short T2-colour salient training leads to a long-term elimination of the 

AB, together with changes in prefrontal areas. The authors suggested that practice effects induced by 

the salient color training might have improved the temporal resolution of attention through top-down 

signals. However, the specific role of salient bottom-up features was not extensively investigated, 

which could have a role in explaining some of the differences with previous studies. Similar results 

have been obtained by using temporal cues (Martens and Johnson, 2005, Badcock et al., 2013) and 

rhythmic entrainment (Ronconi et al., 2016), suggesting that presumably, the expectations and the 

learning of the contingencies of the environment (and the reward of a behavioral success, as Choi et 

al. argued), otherwise hidden by the standard AB, could have played a role improving the structural 

knowledge of the task. In turn, this understanding could have strengthened the working memory set 
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(or the filter) to suppress distractors and enhance target features, especially if just two lags are 

designed in the task as in Choi et al.’s study. Indeed, Tang et al. (2014) failed to replicate their results 

varying the number of stimuli before T1 or the lags between T1 and T2. In contrast, Willems et al. 

(2018) obtained a similar improving effect even through a non-salient training paradigm but with a 

constant lag, suggesting that the Choi et al.’s results must be read in terms of increased expectations 

rather than improved attentional control. Differently from these top-down accounts of training, other 

studies on effects of practice have shown that training can increase a T2-related N2 component of 

ERPs, evidencing the improvement in the temporal selectivity processes rather than top-down 

mechanisms of reallocation of resources between the targets (Nakatani 2009; 2012). Relatedly, Enns 

et al. (2017) controlled ceiling effects in the training program, evidencing that the improvements are 

linked to more general perceptual cognition rather than on specific AB processes. In addition, training 

in a response selection paradigm has also shown to reduce the AB (Garner et al., 2014; Verghese et 

al., 2018), suggesting that irrelevant training might improve generalized sensory consolidation. This 

transfer effects have also been interestingly investigated concerning video-games training beneficial 

effects (Olfers and Band, 2018): studies looking for transfer effects of video-game training found that 

training in action games reduces the AB (Oei and Patterson, 2013; Baniqued et al., 2014), even though 

some methodological issues have been highlighted (Kristjànsonn, 2013).  

In summary, there is no consensus about the components on which training exerts its beneficial 

effects, with other literature showed that learning effects are more related to a late stage of processing 

rather than a strengthening of sensory information (Kelley and Yantis, 2010; Parrott et al., 2010). In 

any case, both stages may exhibit different changes, which only specific investigation may highlight. 

Besides training, other manipulations have been implemented to shed light on the processes that 

govern the AB. Several studies aimed at investigating the top-down modulatory contingencies in the 

AB, evidence that intentional task-related top-down modulations can be rapid and intervene at an 

early stage of processing (Hilkenmeier et al., 2009). These may, in turn, be processed as task 

relevance (Nieuwenstein, 2006), target identity expectations (Meijs et al., 2018), temporal cues 

(Martens and Johnson, 2005, Badcock et al., 2013), and goals (Ferlazzo et al., 2007; 2008). 

Moreover, the impact of top-down mechanisms in this paradigm has been studied through several 

other manipulations, aimed at reducing cognitive control engagement. For instance, evidence has 

produced indicating that the over-investment of attention may favor the raise of the AB (Olivers and 

Nieuwenhuis, 2005; 2006; Arend et al., 2006; Taatgen et al., 2009; Wierda et al., 2010; Lapointe-

Goupil et al., 2011): engaging a more distributed attention through concurrent irrelevant activity was 

paradoxically found to reduce the AB. Similarly, meditation training may be effective in inducing 

changes in the investment of attentional resources and have been linked to several beneficial 
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outcomes in cognition (Raffone and Srinivasan, 2010) and reduce the AB (Slagter et al., 2007; van 

Leeuwen et al., 2009; Colzato et al., 2015). Again, another manipulation that turned out to be effective 

in modulating attentional blink is stress. Conversely to the overinvestment hypothesis and following 

resource depletion theories, acute stress produced a greater AB compared to non-stressed participants 

(Kawahara and Sato, 2012; 2013) that, as explained by the interaction between condition and Lag, 

was an AB specific modulation rather than a general spreading of attention. The effects of stress on 

AB have also been studied using the Emotional Attentional Blink paradigm (EAB) in which, 

regardless of the target valence (positive or negative), T2 detection was instead improved (Schwabe 

and Wolf, 2010; Kan et al., 2019). Again, if stress induces changes in temporal attention by 

modulating early attentional capture or late stage of processing is still unknown. 

Further research aimed at adding evidence of top-down modulations of the AB and at deconstructing 

the two processing stages is necessary.  

 

 

This experimental chapter 

 

 

In this first experimental chapter, a line of research focused on temporal attention will be described. 

Using the Attentional Blink paradigm, it will be described how literature can be read by examining 

the intervention of the dual processes, highlighting that even low-order processes may be influenced 

by top-down mechanisms. In the first study, the role of high order goals, namely task instructions, are 

described in the determination of the attentional blink phenomenon, providing theoretical and 

methodological evidence for the support of a goal-switching account. In the second study, the focus 

is shifted on the lag-1 sparing phenomenon, i.e., the sparing of the attentional blink performance when 

the second target appears immediately after the first one, and specifically over the frequent order 

reversals made by subjects in this condition. When using ordinal stimuli as targets, such as numbers, 

automatic mechanisms may underly the response both in both the coding and the recovery stage of 

target processing, which appear to be flexible if more controlled strategies are required. These results 

parallel research in the SNARC effects, confirming that duality of processes is involved in such 

paradigms and suggests that these effects may not only cover spatial but also temporal dimensions. 

Additionally, they showed that even the processes underlying a very low-level ability, such as the 

temporal discrimination of two briefly presented stimuli, is flexible and not impenetrable by high-

order influences. 
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Manipulation of goals in the Attentional Blink: methodological implications in the goal-

switching hypothesis  

 

 

Abstract 

 

The attentional blink (AB) refers to the impairment in accurately detecting two targets embedded in 

a stream of distractors as a function of the interval between them. While several models of the AB 

exist, little is known about how high-level representations may play a role in determining the AB 

effect. In [Ferlazzo, F., Lucido, S., Di Nocera, F., Fagioli, S., and Sdoia, S. (2007). Switching between 

goals mediates the attentional blink effect. Experimental Psychology, 54, 89–98; Ferlazzo, F., Fagioli, 

S., Sdoia, S., and Di Nocera, F. (2008). Goal-completion processes affect attentional blink. European 

Journal of Cognitive Psychology, 20, 697–710] a goal-switching hypothesis was suggested, 

consisting in an attenuation of the AB when participants can rely upon a single-goal (reporting the 

sum or the pair of targets) instead of a dual-goal (i.e., reporting the two targets separately). Recently, 

in [Lagroix, H. E., Talib, G., Di Lollo, V., and Spalek, T. M. (2018). Questioning the goal-switching 

account of the AB: comment on Ferlazzo et al. (2007). Journal of Cognitive Psychology, 30(1), 122-

128] this account has been criticized due to several methodological issues, such as the scoring method, 

the range of inter-target intervals, and the level of the standard condition. In this work, we replicated 

the studies in object and discussed the points raised in Lagroix et al. ’s work. While these factors may 

affect the direction of effects, differently from Lagroix et al., indications emerged about the existence 

of effects related to goal manipulations. 

 

 

Introduction 

 

Research in experimental psychology has widely shown that human beings are limited in the ability 

of temporally processing information emerging from the outside world. Some of those limits had 

been intensively investigated through Attentional Blink paradigms (AB; Raymond, Shapiro and 

Arnell, 1992). In those paradigms, a rapid serial visual presentation task (RSVP) is presented in foveal 

vision with a presentation rate of about 10 stimuli/s. Participants are asked to identify two target 

stimuli (T1 and T2) while ignoring other stimuli (distractors). The AB effect changes performance as 
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a function of the time interval between the two targets. Specifically, given the correct identification 

of T1, the ability to detect T2 drops when presented 200-500 ms after T1. Longer intervals (lags) 

between T1 and T2 usually result in a progressive recovery of performance. Moreover, the drop in 

performance does not happen if T2 is presented immediately after T1 (Lag-1 sparing effect). 

Several AB paradigms and models exist in literature (Dux and Marois, 2009). One topic in the AB 

literature concerns the role of high-level top-down processes in determining at least part of the AB 

effect (Olivers and Nieuwenhuis, 2005; Hommel et al., 2006; Di Lollo et al., 2005). Relatedly, 

Ferlazzo et al. (2007; 2008) found that when participants are asked to report T1 and T2 in a 

combination rather than separately (i.e., as one rather than a dual goal-task), the AB effect decreases 

significantly. Using digits as targets, the instructions given in their studies were to report the pair or 

the sum of the two digits, instead of the two targets separately. It is known that task-switching can 

exert an effect on AB performance (i.e., when T1 and T2 are qualitatively different) (Sdoia and 

Ferlazzo, 2012; Kawahara, Zuvic, Enns, and Di Lollo, 2003; Visser, Bischof, Di Lollo, 1999), but 

little is known about how these processes might interact with early temporal stimuli processing. Top-

down processes and goal-switching mechanisms may determine post-completion errors (Altmann and 

Trafton, 2002), which could affect AB performance even when T1 and T2 belong to the same 

overlearned category (digits or letters). Investigating the role of such high-level mechanisms may 

represent a step toward an improved theoretical understanding of the AB and its underlying processes. 

Recently, the results of Ferlazzo et al. (2007; 2008) have been questioned by Lagroix et al. (2018). 

Indeed, using a different method of scoring, the authors did not replicate the results. Moreover, they 

pointed out some methodological issues, opening useful questions for the AB research. 

 

Scoring method  

 

The most relevant issue raised by Lagroix et al. (2018) regards the scoring method adopted by 

Ferlazzo et al. (2007; 2008). They argued that the AB conventional scoring method (the proportion 

of T2|T1 correct trials upon the T1 only correct trials) is unreliable if used for a Sum task. Since 

wrong sums could be the consequences of many different errors and there is no possibility to 

determine if wrong sums contain the correct identification of T1 or not, Ferlazzo et al. (2007;2008) 

calculated the accuracy as [correct sums/correct sums + T1 only correct responses]. 

According to Lagroix et al. (2018), this scoring method provides an underestimated AB effect, 

making not comparable the different instruction conditions, an issue already mentioned in Ferlazzo 

et al. (2008), due to the smaller difference between the nominator and the denominator for Sum 

instructions than for Standard one. Thus, Lagroix et al. (2018) suggested the use of an equivalent 
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score for all three conditions, calculated as the proportion between the number of T2|T1 correct 

(T1+T2 correct for the Sum condition) on the total number of trials. In this way, they found no 

differences between the three conditions (Standard, Pair, and Sum). It should be noted that in their 

work, Ferlazzo et al. (2008) used two scoring methods for the Sum condition: a first one based upon 

T1 only correct responses and a more conservative one as the proportion of the correct sums. The 

authors considered the problem of underestimation/overestimation (respectively) of the two scoring 

methods, finding that both led to the same results, i.e., the attenuation of the AB effect in a single-

goal task-set.  

However, coherently with the theoretical accounts of AB, the performance of T2 must be calculated 

upon the performance on T1: attentional blink happens when the identification of T1 is made (Shapiro 

et al., 1994). Thus, the inclusion of the incorrect responses in the proportion could be misleading 

since it does not consider the different difficulties in identifying T1 for the different lag conditions 

and results in an overestimated pattern. 

 

Range of inter-target trials 

 

In agreement with Lagroix et al. (2018), the choice of a correct inter-target lags range is of great 

importance in AB paradigms. To simplify the AB paradigms, AB researchers tend to reduce the 

number of lags, i.e., cutting off the Lag-1 or having just one lag in the AB period and one outside. 

The lag-1 sparing effect, even if many authors suggested its independence from the AB, has been 

investigated in several studies, which described how its presence or absence gives some essential 

indications about the nature of the task used (Visser, Bischof, Di Lollo, 1999). More generally, the 

lack of a standardized paradigm for the range of lags makes comparisons of AB magnitudes between 

studies quite unreliable. For instance, MacLean and Arnell (2012) suggested calculating the AB 

magnitude as the difference between the highest and the lowest lags in terms of accuracy. Several 

studies have been implemented upon this method of calculus, by using only two lags, one in and one 

out the 200-500ms T1-T2 interval (e.g., Vogel and Luck, 2002; Zhang et al., 2008; Dux and Marois, 

2008) in order to measure the AB magnitude. Many critical points must be addressed with regards to 

this method. Firstly, even though each design is implemented upon specific hypotheses, this method 

does not control the trend of performance and design any typical AB curve. Secondly, the severest 

drop of performance does not always fall on the same point, but within an interval. Thus, the lag in 

which the performance should be more impaired cannot be operationalized a priori. Thirdly, it is 

known that different patterns of AB can be exhibited and vary due to individual differences (Maciokas 

and Crognale, 2003; Lahar et al., 2001; Russo et al., 2016).  
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However, methodological choices are made for each experimental design, and many reasons could 

account for them, which are far from the will to explain the AB trend, from the beginning to the 

recovery. In Ferlazzo et al. (2007), there was no intention of investigating changes in performance 

recovery at longer lags. Then those were not included in the task. 

 

Level of the standard condition 

 

Lagroix et al. (2018) reported as an issue the level of the standard conditions of the different 

experiments presented in Ferlazzo et al. (2007), arguing for the unreliability of the AB reduction 

observed in the Pair instruction conditions. As they reported, comparing the Pair condition of the 

Exp.1 (Ferlazzo et al., 2007) with the Standard performance in each of the three experiments reported, 

the AB did not appear attenuated if compared to the performance with Standard instructions in the 

experiments 2 and 3. However, experiments 1, 2, and 3 varied not only for the experimental 

instructions (pair in Exp.1 and Exp.2, Sum in Exp.3), but also for the type of targets/distractors stimuli 

used (digits/letters in Exp.1 and Exp.3, letters/digits in Exp.2), for the lags used (1 to 4 in Exp.1, 1 to 

6 in Exp.2 and Exp.3), for the number of trials (240 in Exp.1 and Exp.2, 360 in Exp.3), and the number 

of targets presented in each stream (2 in Exp.1 and Exp.2, 1 or 2 in Exp.3). All these variations may 

have exerted some effects in each experimental design. Stretching interpretations by making 

comparisons among conditions from different experimental designs can be strongly misleading. 

In addition, it is well known that AB magnitude presents wide individual differences (Martens and 

Wylbe, 2010; Dale et al., 2010; Willems et al., 2013; Willems and Martens, 2016; Colzato et al., 

2007; Dale and Arnell, 2010; Maclean and Arnell, 2010; Martens and Valchev, 2009; Dux and 

Marois, 2008): some individuals show a significant amount of AB effect, many others show a smaller 

amount and many others do not show any AB at all. This variability in the general population can 

affect the experimental samples, producing mean performance patterns depending on the individuals 

that constitute each sample group and partially explaining differences between control conditions. 

 

Other issues 

 

Another point discussed by Lagroix et al. (2018) concerns the experimental design. As Ferlazzo et al. 

(2008) argued, an experiment where the independent variable is operationalized by the instructions, 

avoiding carry-over effects exerted by the first instruction given to the participants, the use of a 

between-subject design, rather than a within-subjects one (Dell’Acqua et al. 2007), is strictly 

recommended. Moreover, participants’ goal representations may vary despite the different 
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instructions: it seems impossible to evaluate the experimental manipulation’s actual effectiveness, at 

least with this task. 

One more aspect must be mentioned. Differently from Ferlazzo et al. (2007), the Lagroix et al. ’s 

(2018) RSVP streams constituted a varying number of items since RSVP ended after one distractor 

following T2. In contrast, in Ferlazzo et al. ’s experiments, these were fixed and were made of 10 

(2007) or 14 (2008) stimuli. Moreover, the different length of RSVPs makes T2 backwardly masked 

by one or more distracters. This fact represents another discordance point between the two 

experiments, probably making also not comparable the different streams in the same experiment. 

Finally, an additional general issue regards the baseline measure. A correct task design should contain 

trials with no T2 to control the participants’ performance in identifying T1 trials only (Raymond et 

al., 1992; Shapiro et al. 1994).  

 

The present experiment 

 

In this experiment, four groups of observers performed an AB task, upon different instructions. 

Participants in the Standard group were told that they had to identify and report separately the two 

digits (T1 and T2) embedded in a series of letters, replicating a typical AB paradigm with two 

different goals. Participants in the Pair group were told they had to report the pair of digits embedded 

in a series of letters, while participants in the Sum and the Sum Extended groups were told they had 

to report the sum of the two digits, but the latter group performed a more extended task, in which 

streams with no T2 were also presented. The different instructions were aimed to manipulate the task 

goal-representation: participants in the Pair group and in both the Sum groups would achieve the task 

goal only after T2 was presented, and the pair/sum of digits was completed. The Sum Extended 

condition aimed to consider the variability of performance in a task where only-T1 trials were 

presented. Furthermore, to control a possible effect of backward masking on the identification of T2, 

fixed streams (18 items, all-masks condition) and streams where only one distractor followed T2 

(one-mask condition) were randomly presented instructions condition. Finally, both the scoring 

methods (Ferlazzo et al., 2007;2008; Lagroix et al., 2018) were used to highlight differences between 

the two and replicate the results of Lagroix et al. Besides the experimental manipulations, visual 

processes and motor responses involved in the RSVP tasks were the same for all the group of 

observers. 

 

 

Methods 
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Participants 

 

Participants were 80 Psychology students (49 females; mean age 24.81 years, s.d. 4.61 years). They 

had a correct or corrected-to-normal vision. The study was approved by the Institutional Review 

Board of the Department of Psychology at the Sapienza University of Rome and conducted in 

accordance with its policies and with the Declaration of Helsinki. All participants provided written 

informed consent. 

 

 

 

Stimuli 

 

The AB task was programmed in E-Prime. All the stimuli were white alphanumeric characters, 

centrally displayed on a black background on a 17-inch computer monitor with a refresh rate of 60Hz. 

The target items were the digits 1 to 9; the distractor items were capital letters (A, B, C, D, E, F, G, 

H, L, M, P, Q, R, S, T, and U).  

 

Procedure 

 

Each trial began with a fixation cross at the center of the screen. Participants started each trial by 

pressing the spacebar. After 500 ms, an RSVP was presented. Each item was displayed for 83 ms 

(yielding a presentation rate of about 12 items/s) and immediately replaced by the following item. On 

any given trial, the distractors and two target digits were selected randomly without replacement from 

the set of letters and digits, respectively. The first target (T1) appeared on half of the number of 

streams in the third position and on the other half in the fourth position. The position of the second 

target (T2) unpredictably varied on each trial. The intervals (lags) between the two targets were: 1 

(83 ms after the presentation of T1), 3 (249 ms), 4 (332 ms), and 9 (747 ms), to get an indication of 

the whole AB span. The different lag streams were randomly presented 80 times each, 40 for each T1 

position. At the end of the streams, participants were asked to report the two digits or the sum of the 

two digits, depending on the group. Participants were told that they could type the two digits in any 

order they wish; they had no time limits and were asked to be as accurate as possible. 

Participants were randomly assigned to one of three instructions group. Standard instructions required 

participants to identify and report the two digits in response to two separate and sequential prompts. 
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“Pair” instructions required participants to report the pair of the two digits in response to a single 

prompt. “Sum” instructions required participants to report the sum of the two digits in response to a 

single prompt. The entire task for these three groups consisted of 320 trials plus 20 practice trials. 

Finally, an additional “Sum extended” instruction group was created. Participants in this group got 

the same instructions of the “Sum” group, but their task comprised 160 additional experimental trials 

(480 total trials), where no T2 was presented. For all the groups, on half of the trials, the RSVP 

consisted of 18 items (all-masks RSVP condition), while on the other half, the RSVP ended after the 

presentation of the first distractor following T2 (one-mask RSVP condition). The trials in the two 

RSVP conditions were the same for each Lag condition, and each group consisted of 20 participants. 

Participants were told to have a little break if they wished, by waiting to press the spacebar to begin 

the new trial.  

 

Statistical analyses 

 

Accuracy was calculated as the standard score for AB, i.e., the proportion of correct T2|T1 responses 

on the T1 correct responses. Swaps were calculated as correct responses. For the “Sum” and the “Sum 

extended” group, we calculated the score as the proportion of the correct sums on the correct sums 

plus the trials in which participants reported only the T1. To compare results with Lagroix et al. ’s 

scoring method, we also calculated accuracy as T2|T1 on the total number of trials. For the Sum 

extended instructions, only two-target trials were included in the analyses. Accuracy scores were then 

analyzed in mixed ANOVAs with Lag (1,3,4,9), RSVP (one-mask and all-masks) as within-subjects 

factors, and Instructions (Standard, Pair, Sum, Sum extended) as between-subject factor. Mauchly 

tests of sphericity were conducted for all ANOVAs. In the case of significant tests (p<0.05), 

Greenhouse-Geisser corrections were applied to the ANOVAs’ results.  

One participant in the Standard condition, two in the Sum condition, and two in the Sum Extended 

condition were excluded due to low performance (less than 20% total accuracy for T2|T1). 

 

 

Results 

 

T1 Accuracy 

 

Proportion of T1 correct responses in the Standard condition were 83.5%, 91%, 87.5%, and 88.5% 

for lags 1, 3, 4, and 9, respectively. Proportion of T1 correct responses in the Pair condition were 
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77%, 88.5%, 86%, and 88% for lags 1, 3, 4, and 9, respectively. The calculation of correct sums plus 

T1 only responses gave lower proportions for the two sums condition. Indeed, T1 responses in the 

Sum condition were 74%, 72%, 74%, and 75.5% and in the Sum extended condition 74.5%, 48%, 

62% and 70% for lags 1,3,4, and 9, respectively. Differences between the Standard and the Pair 

condition in T1 calculus is certainly determined by the different scoring method. However, it seems 

that another difference exists between the two Sum conditions, with the extended ones presenting 

lower percentages in the two Lags inside the AB (Lags 3 and 4). 

 

T2 Accuracy 

 

Even though the calculation proposed in Ferlazzo et al. (2007) is the only calculation comparable to 

the standard one, this would lead to underestimating the T2|T1 score, as the authors and Lagroix et 

al. (2018) argued. Using the standard scoring method, we proceeded to compare the Standard and the 

Pair condition only, since in these two conditions there were no doubts about attributing T1 only 

responses. Afterward, we analyzed the four conditions using the method proposed by Lagroix et al. 

(2018), i.e., the proportion of correct T2|T1 on the total number of trials. 

The mixed ANOVA with lag and RSVP as within-subjects and condition (Standard vs Pair) as 

between-subject factors showed significant main effects of RSVP (F1,37=6.151, p < 0.05, partial ƞ2 = 

0.14) and Lag (F2.05,75.93=117.503, p < 0.0001, partial ƞ2 = 0.76). The greater accuracy explained 

RSVP effect for participants in all-masks streams (mean=68.41, d.s.=2.24, and mean=70.87, d.s.=2.2, 

for one-mask and all-masks RSVP respectively). The typical AB pattern explained the lag effect. 

Instructions’ main effect was not significant (p= 0.07, partial ƞ2 = 0.08), although participants in the 

Standard group were more accurate than those in the Pair group (mean=73.64, d.s. = 3.1, mean=65.63, 

d.s. = 3.02 for the Standard and Pair group, respectively. The interaction between RSVP and Lag was 

also significant (F3,111=3.597, p < 0.05, partial ƞ2 = 0.09), aiming that in all-masks RSVP participants 

AB recovered slightly better than in one-mask RSVP. The interaction between Lag and Instructions 

was also significant (F3,111=2.2762, p < 0.05, partial ƞ2 = 0.07), revealing that participants in the Pair 

instructions had a deeper AB curve (Figure 1). Indeed, Fisher LSD post-hoc tests showed a significant 

difference between instruction conditions in Lag 3 (p = 0.005). No other significant effects in the 

ANOVA were found (p > 0.05). Even though they have not been inserted into the ANOVA, Table 1 

showed accuracies in all four instruction conditions, showing an increased accuracy in Lag 3 and Lag 

4 in the Sum extended condition.  

The second mixed ANOVA was conducted over T2|T1 on the total proportion of trials (Figure 2), 

allowing the comparison among the four instruction conditions.  
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The ANOVA showed a significant main effect of Lag (F2.3,163.55=132.1505, p < 0.0001, partial ƞ2 = 

0.65), and significant interactions between RSVP and Instructions (F3,71=6.1713, p < 0.001, partial 

ƞ2 = 0.21), and between Lag and Instructions (F3,71=3.5772, p < 0.001, partial ƞ2 = 0.13). Fisher LSD 

post-hoc comparisons (table) revealed significant differences between Sum extended and Standard 

instructions in Lag 3 (p=0.048), Lag 4 (p=0.038), and Lag 9 (p=0.001) but no differences in Lag 1 

(p>0.05); significant differences between Pair and Standard instructions in Lag 3 (p=0.017); finally, 

Sum extended was the only instruction condition in which a significant difference between Lag 9 and 

Lag 1 (p<0.0001) was observed. 

 

 

Figure 1. 

 

 

                     

The effect of Instruction manipulation on the Attentional Blink.  

Accuracy is the percentage of correct T2 given correct T1 on the total number of correct T1.  

Error bars denote standard errors. 

 

Figure 2. 
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The effect of Instruction manipulation on the Attentional Blink, when accuracy is calculated as the percentage of correct 

T2|T1 (correct sums for the “Sum” and the “Sum extended” conditions) on the total number of trials. Error bars denote 

standard errors. 

 

 

 

Table 1. T2|T1 / T1 accuracy means and standard errors for Instruction x RSVP condition x Lag. 

 

 

   

 

 

Table 2. T2|T1 / Tot accuracy means and standard errors for Instruction x RSVP condition x Lag. 

 

 

   

Lag 1 Lag 3 Lag 4 Lag 9 Lag 1 Lag 3 Lag 4 Lag 9

Standard 92.49 (2.33) 60.11 (5.22) 59.18 (5.82) 80.24 (3.67) 92.16 (1.99) 60.18 (5.68) 63.73 (5.92) 81.07 (3.95)

Pair 91.06 (2.27) 43.35 (5.08) 48.42 (5.67) 72.47 (3.58) 89.73 (1.94) 47.01 (5.54) 55.41 (5.77) 77.65 (3.85)

Sum 88.36 (2.39) 60.46 (5.36) 65.31 (5.97) 80.4 (3.77) 91.58 (2.05) 60.37 (5.84) 67.09 (6.08) 83.49 (4.06)

Sum ext. 95.96 (2.39) 92.19 (5.36) 73.87 (5.97) 79.33 (3.77) 94.95 (2.05) 72.94 (5.84) 73.83 (6.08) 82.46 (4.06)

ONE MASK RSVP ALL MASK RSVP

Lag 1 Lag 3 Lag 4 Lag 9 Lag 1 Lag 3 Lag 4 Lag 9

Standard 78.03 (4.07) 54.87 (5.2) 52.89 (5.41) 71.58 (4.39) 78.95 (3.51) 57.5 (5.1) 60.53 (5.42) 72.63 (4.78)

Pair 70 (3.97) 39.38 (5.07) 43.25 (5.28) 64.5 (4.28) 72.5 (3.43) 42 (4.97) 49.75 (5.29) 69.38 (4.66)

Sum 67.22 (4.18) 45 (5.34) 49.44 (5.56) 62.36 (4.52) 71.39 (3.61) 46.25 (5.24) 50.69 (5.57) 65.69 (4.91)

Sum ext. 71.81 (4.18) 45.56 (5.34) 44.44 (5.56) 53.61 (4.52) 69.86 (3.61) 40.42 (5.24) 41.25 (5.57) 45.83 (4.91)

ONE MASK RSVP ALL MASK RSVP
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Finally, participants’ in the two sum conditions may differ in their reporting strategy when they did 

not detect T2. Indeed, some participants may have tried to guess the sum, while others may have 

preferred to report T1 only. The two types of strategies may have considerable consequences over the 

scores’ proportions. Participants who preferred to report T1 only will certainly have lower proportions 

when using Ferlazzo et al.’ (2007) scoring method than participants who guessed the sums (because 

these trials will not be part of the denominator). We split participants in the Sum and the Sum 

Extended groups separately by the median of the T1 only reports, i.e., when they correctly reported 

only T1 instead of the sum. Then, we merged the two sum conditions into two new groups, “Sum low 

T1” and “Sum high T1”, to have comparable groups with the Standard and the Pair ones. The mixed 

ANOVA (Group x RSVP x Lag) over the relative scoring method revealed significant main effect of 

Group (F3,71=20.08, p < 0.0001, partial ƞ2 = 0.46), of Lag (F2.173977,154.3524=125.3256, p < 0.0001, 

partial ƞ2 = 0.64), and of the interactions between RSVP x Lag (F2.555501,181.4406=7.0853, p < 0.001, 

partial ƞ2 = 0.09), Group x Lag (F9,213=9.589, p < 0.0001, partial ƞ2 = 0.29) and Group x RSVP x 

Lag (F9,213=4.290, p < 0.0001, partial ƞ2 = 0.15). The Sum low T1 group obtained the expected 

overestimated pattern of the AB, whereas the Sum High T1 group showed a stronger AB than in the 

Standard condition (Figure 3). 

The same ANOVA over the absolute scoring method showed significant main effects of Group 

(F3,71=6.2583, p < 0.001, partial ƞ2 = 0.21) and Lag (F2.341964,166.2794=125.8434, p < 0.0001, partial ƞ2 

= 0.64). and significant RSVP x Group (F3,71=3.2779, p < 0.05, partial ƞ2 = 0.12) and Group x Lag 

(F9,213=2.2769, p < 0.05, partial ƞ2 = 0.09) interactions. In this case the Sum low group exhibited the 

same AB trend as the Standard group, as in Lagroix et al. (2018) and the Sum High T1 group had 

lower performance in all targets than the Standard group (Figure 4). 

 

Figure 3. 
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Figure 4. 

 

The effect of Instruction manipulation on the Attentional Blink when the “Sum” and the “Sum extended” conditions’ 

participants are split into two new groups according to their reporting strategy (“Low T1 only” are assumed to guess the 

sums when they did not detect the two targets while the “High T1 only” had a high proportion of T1 only reported).  

In Figure 3, accuracy is the percentage of correct T2|T1 on correct T1. In Figure 4, accuracy is the percentage of correct 

T2|T1 on total number of trials per condition. Error bars denote standard errors. 

                                      

 

 

Discussion 

 

In this study, we aimed to respond to Lagroix et al. (2018) questions addressed to the Ferlazzo et al. 

’s (2007) paper. In that and in a later paper (Ferlazzo et al., 2008), the authors suggested a goal-

switching hypothesis to explain part of the typical Attentional Blink (AB) pattern (i.e., the drop in 

detecting two subsequent targets when the Lag between them is approximately 200-500 ms). Their 

hypothesis concerned the role of high-level goal switching when participants must separately report 

two targets. They suggested that in standard AB paradigms, participants must accomplish two 

separate goals in each RSVP stream (i.e., reporting the T1, report the T2), and part of the AB curve 

can be explained by high-level switch costs between the two different goal representations. Indeed, 

they observed that varying the task instructions, when participants have just one goal to achieve (i.e., 

report the pair of targets, or their sum in case of digits), the AB is attenuated. Lagroix et al. (2018) 

commented on these results addressing several methodological points that we are going to discuss 

according to the results of the present replication study, in which we tested participants in four 

conditions: Standard, Pair, and Sum instructions, plus an additional Sum condition (Sum extended) 

where T1 only streams were also presented. 
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Accuracy in AB paradigms is typically calculated as the proportion of T2|T1 correct trials over the 

number of T1 correct responses. However, this kind of calculus leads to an underestimation of the 

AB in Sum conditions. Since the AB is an impairment in T2 performance rising from T1 

identification-related processes, as most AB theories suggested (e.g., Shapiro et al., 1994; Chun and 

Potter, 1995; Di Lollo et al., 2005; Wyble and Bowman, 2009), calculating this proportion over the 

total number of trials, as Lagroix et al. (2018) suggested, is mainly wrong with the AB assumptions, 

resulting in overestimated AB. However, Lagroix et al. (2018) showed that the opposite results are 

obtained by using the two methods: no differences exist when the absolute proportion is used.  

In the present study, using the standard scoring method (Figure 1), we found an attenuation of the AB 

in the Sum Extended condition, which is the replication of the Sum condition in Ferlazzo et al. (2007), 

but not in the Sum condition, which was the replication of the Sum condition in Lagroix et al. (2018). 

However, since the Sum and the Sum Extended conditions were equal in terms of the task to be 

accomplished (do the sum) and the number of the two-target trials, we found no indication of a 

reduced AB in the Sum compared to the Standard condition. If the underestimation of the AB is only 

the consequence of the scoring method used, it was expected in the Sum Extended and the Sum 

condition.  

A different picture emerged when using the Lagroix et al. ’s (2018) scoring method (Figure 2). The 

amplitude of the AB curve expanded in the Sum extended condition, with lower accuracy in Lag 3 

and 4 and 9, compared to the Standard condition. Again, this finding was not observed in Lagroix et 

al. (2018). The Sum condition was not significantly different from the Standard one but exhibited an 

AB similar to the Pair one, which presented a significantly reduced accuracy in Lag 3 compared to 

the Standard condition. 

In Sum Instructions conditions, individual differences may emerge in the strategy they use in the task. 

Instantly, when participants failed to notice one or both the targets, they may use at least two different 

strategies: 1) trying to guess the sum or 2) report the only target they have seen. The two kinds of 

strategies provide different results because, in the first situation, the difference between the numerator 

and the denominator in the proportion is undoubtedly smaller than in the second situation. 

Accordingly, in the second subset of analyses, we split the Sum and the Sum Extended samples by 

the median of the T1 only reports (for the two-target trials only in the Sum extended group) and 

merged the subgroups in a Low T1 (guessing participants) and in a High T1 (T1 only preference) 

group. We then analyzed the dataset with both the scoring methods with these new subgroups. With 

the standard method, we replicated the Ferlazzo et al. (2007) findings for the guessing participants 

while the opposite results (a deeper AB) were observed for the High T1 group. Differently, with the 

absolute scoring method, we observed no differences in performance between the Standard and the 
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Sum Low T1 groups and lower performance, irrespective of the Lag, for the Sum High T1 group 

compared to the Standard one. 

Very different results in each of the four combinations have been observed. Indeed, the individual 

strategy used by participant numerically affects the results, but in a way not accountable by the 

Lagroix et al. ’s scoring method. By combining the two different scoring methods, goal manipulations 

seem to influence the amplitude of the AB. However, the direction and the interpretations of these 

effects need more extensive investigations. 

Undoubtedly, choosing enough and reasonable lags in AB paradigms is of paramount importance for 

detecting effects throughout the whole span of AB pattern, consisting of the lag-1 sparing, the drop 

in performance, and the recovery. Lagroix et al. (2018) employed a three lags-design (lag 1, lag 4, 

and lag 9), whereas Ferlazzo et al. (2007) a six-lags design (ranging from Lag 1 to Lag 6). 

Nevertheless, it can be noted that in Ferlazzo et al. ’s, no indication of AB recovery can be drawn. 

However, since only one Lag was used from the Lagroix et al. ’s no precise estimation of performance 

in the AB window can be estimated.  

Due to the scoring issues, we conducted statistical analyses for the standard scoring method over the 

Pair and the Standard instructions separately, finding a deeper AB in the Pair condition. This 

deepening was due to lower accuracy in Lag 3. This result was opposite to the one found in Ferlazzo 

et al. (2007) but also different from the one obtained by Lagroix et al. (2018), which did not find any 

performance variations. Namely, differences may have emerged due to the chosen range of inter-

target trials (the Lag 3 was not assessed in the Lagroix et al. ’s study). Regarding the Ferlazzo et al. 

’s findings of a reduced AB in the Pair condition, longer lags (i.e., increased performance in some 

trials) and a mixture of fixed and variable RSVPs might have played a role in altering expectancy in 

the position of T2. 

 

 

Conclusions 

 

The present study aimed to replicate the questions opened by Lagroix et al. (2018) to Ferlazzo et al. 

(2007). We highlighted that several methodological and strategical dimensions might account for the 

two works’ results, supporting different interpretations of the Attentional Blink's goal-related 

processes. Such findings posit that the direction of effects showed may not be just an artifact only 

created by methodological choices but may represent subtle effects that need to be further clarified. 

Additional research is needed to improve our understanding of high-level mechanisms underlying 
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temporal attention, which must employ precisely replicated experimental procedures to get reliable 

results. 
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The role of number representation in the Attentional Blink order reversals 

 

 

 

Abstract 

 

The psychological research has extensively shown that individuals are limited in their ability to 

temporally process environmental information. The attentional blink is the drop in performance 

observed when individuals must detect two targets in a sequence of distractors as a function of their 

interval. Lag-1 sparing refers to the relative and paradoxical sparing of the performance when the 

second target immediately succeeds the first one. Precedence and integrative approaches have been 

suggested in the explanation of this phenomenon. In four experiments, we demonstrated that features 

of the stimuli relation (the ordinality of numbers, presented as targets) and task-instructions play a 

role in the regularization of lost temporal information. The prior entry account seems not to be 

generalizable in explaining order reversals: integration processes are flexible and depend on both 

encoding and retrieval mechanisms. 

 

Introduction 

 

Identifying the correct temporal order of two or more events has a paramount importance for the 

optimal adaptation of individuals to the environment. However, the human cognitive system is often 

limited in uni- and multi-sensorial temporal segregation (Sternberg and Koll, 1973), an ability 

requiring a complex integration of spatiotemporal information, especially when environmental 

stimuli appear shortly in time one after the other. These limitations have been extensively studied in 

healthy and pathological individuals, investigating constructs currently defined as "Subjective 

Simultaneity", "Just Noticeable Difference", and "Temporal Binding Window" (Wallace and 

Stevenson, 2014; Spence and Parise, 2010). Research in experimental psychology has indicated non-

attentional and attentional responsible mechanisms (Matthews and Meck, 2016), even though no clear 

consensus has been reached about which processes are mostly implicated. Indeed, both characteristics 

of stimuli (bottom-up) and voluntary attention (top-down) may play a pivotal role in guiding the 

perceived succession of two events (Pöppel, 1997; Schneider and Bavelier, 2003). 

In the context of visual perception and attention, one phenomenon that has been revealed useful to 

investigate human temporal limitations is the Attentional Blink (AB, Raymond et al., 1992). When 
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individuals are asked to detect two target stimuli (e.g., numbers) in a rapid serial visual presentation 

(RSVP) of distractors (e.g., letters), performance is usually impaired when the second target appeared 

about 200-500 ms after the first one. Interestingly, in most conditions, when T2 directly follows T1, 

with an interval of about 100 ms, performance is relatively spared (a phenomenon named Lag-1 

sparing). Lag-1 sparing is dependent on whether T2 requires dimensional or spatial switching (Visser 

et al., 1999), on the presence of pre-T2 distractors (Olivers et al., 2011), and the timing between T1 

and T2 (Bowman and Wyble, 2007). Moreover, Lag-1 sparing is "spreadable" on additional targets 

following T2 if there are no intervening distractors in between (Olivers et al., 2007; Kawahara et al., 

2006; Di Lollo et al., 2005). However, literature is still debating upon whether a distractor between 

the targets is a determinant factor for the occurrence of the AB, a debate that has significant 

consequences for the theorization of the whole AB phenomenon (Chen and Zhou, 2015; Lagroix et 

al., 2012; Brisson et al., 2011; Nieuwenstein et al., 2009). 

The sparing observed at lag-1 usually happens with costs: the performance on T2 is usually better 

than the performance on T1, and, when the two targets have been correctly identified, the right 

perception of their temporal order is lost, and the two targets are often reversed.  

Literature presents two different approaches for the explanations of order errors in visual attention. 

The first one gravitates around the precedence effect (Reeves and Sperling, 1986): a strong attentional 

enhancement on an item strengthens its representation in visual short-term memory, and the stronger 

the representation, the faster it is processed. Regarding the AB, the attentional gate opened by the 

identification of T1 enhances the identification of T2. However, the strength of T2 allows for it to 

win the race for working memory access, prioritizing its entry (Schneider and Bavelier, 2003; Spence 

and Parise, 2010): the more salient the target, the earlier its perception. Then, several studies 

accounted for prior entry in the explanation of reversals in the AB. This view has been supported by 

several studies in which, by strengthening T1 through a pre-cue, a significant decrease in order 

reversals was found (Olivers et al., 2011; Hilkenmeier et al., 2012a; 2012b). According to the Boost 

and Bounce model (Olivers and Meeters, 2008), individuals report the two targets in the order these 

enter in working memory. Differently, in the eSTST model (Wyble and Bowman, 2009), targets need 

to be bound to different WM tokens, a process that requires a consolidation time: here, the strength 

of the items and the competitive race between the targets has a role in determining the consolidation 

sequencing. The eSTST model is an evolution of the STST model (Bowman and Wyble, 2007), which 

has been modified mostly because of the "spreading the sparing" phenomenon (Olivers et al., 2007; 

Kawahara et al., 2006). The most noticeable difference for Lag-1 sparing between the two models is 

that, differently from the eSTST, the STST model allowed for T1 and T2 to be bound to the same 

token, when presented at Lag-1. At this point, the STST model raises the possibility that the two 
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events may result in an integrated representation. Integration has also been widely investigated in the 

literature of Attentional Blink in a perceptual sense (Hommel and Akyurek, 2005; Akyurek et al., 

2008). For instance, the short time interval between the two targets makes them be perceived as 

simultaneous, and, when possible, integrated into a unique percept. Evidence shows that when 

participants combine different features of two targets into one, e.g., integrating the two, the number 

of reversals notably decreases (Akyurek et al., 2012). Integration accounts have been mostly criticized 

because they explained the reversals as a loss of order. However, data frequently reported a 

percentage of swaps that barely reach the 50 % of correctly identified targets, which indicates a 

chance level performance, a level that appears to be logical when participants do not have any idea 

of what target came first. However, as Akyurek et al. (2012) argued, integration, reversals, and correct 

order reports represent only possible temporal order perception outcomes.  

However, a possibility exists that this integration hides a response bias, i.e., integrated responses can 

be more produced when the alternative is to guess about their order. Similar kind of response biases 

have also been studied with temporal order and simultaneity judgments tasks, making important the 

question provided to participants about what they have attended to and what type of judgment they 

must make ("Which target came first?" vs. "The targets were simultaneously presented or not?") 

(Spence and Parise, 2010). 

The effects predicted by precedence and integrative accounts regard consolidation processes. 

However, both consolidation (Chun and Potter, 1995) and retrieval mechanisms (Shapiro et al., 1994) 

have been differently considered responsible for the Attentional Blink phenomenon in AB's first 

theories. The weights of the two processes are still not fully understood, and how the two interact in 

determining the lag-1 sparing phenomenon is not yet been investigated. 

In addition, in each of the two approaches, the stimuli' features can be determinant for their temporal 

discriminability. However, these features are not yet extensively investigated. The precedence and 

the integration approaches, by explaining the reversals according to the prior entry principle in one 

case, and to perceptual integration in the other, do not consider the possibility that items in working 

memory can be temporally represented in a way which is not entirely predicted by stimulus strength 

or its integrative properties.  

Among the plethora of stimuli used in attentional paradigms, numbers are among the most employed, 

and their cognitive organization has been widely investigated. For instance, the representation of 

numbers has been extensively studied in spatial paradigms. These studies allowed to highlight that 

numbers are organized in a mental number line (Spatial-Numerical Association of Response Codes, 

SNARC; Dehaene et al., 1993; Wood et al., 2008). According to this evidence, a left-to-right 

preference in the representation of digits exists, on which the reading habits are a strong determinant 
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(Shaki et al., 2009). Even though this representation seems to rely on automatic processes, it has also 

been shown that it is task-dependent and flexible (Zhang et al., 2020; Moro et al., 2017; Pfister et al., 

2013). This kind of organization has also been found in the pitch height (SMARC effect; Rusconi et 

al., 2006), in quantities in general (Dalmaso and Vicovaro, 2019), and in other ordinal dimensions 

such as time representation (Bonato et al., 2012). Response codes have also been associated with 

spatial-temporal dimensions (Vallesi et al., 2008; 2011). Indeed, these magnitudes are behaviorally, 

cognitively, and neurally linked in the ATOM theory of magnitude (Walsh et al., 2003). Besides the 

association between numbers and space, the association between time and numbers has also been 

documented. Even if not widely investigated, such as spatial representation, the evidence upon the 

numbers' temporal organization highlighted a preference for ascending sequences of digits. For 

instance, in a serial comparison task, faster RTs were found ascending than descending ordered digits 

(Muller and Schwarz, 2008; Kaan et al., 2005). 

Consequently, the evidence on the temporal organization of numbers can help the advancement of 

knowledge about the mechanisms on which the order reversal in the AB relies on.  

In the present study, the incidence of an irrelevant dimension (the order of digits presented in the 

RSVP) on the number of reversals at Lag-1 has been investigated through 4 experiments. All the 

experiments have the aim to investigate if the principle of prior entry in explaining order errors can 

be viewed as a general principle or if other features can be part of the results observed. In experiment 

1a, we investigate if a natural preference for ascending digits in an RSVP paradigm exists, 

hypothesizing that digit order might not affect reversals by assuming a prior entry hypothesis. 

Differently, according to a retrieval/response bias hypothesis, descending digits might be more 

swapped than ascending digits (Figure 1). The same predictions were made for experiment 1b, in 

which we asked participants to report the two targets backwardly respect their presentation order. The 

order of responses, in that case, allows us to monitor a possible forward ordered response preference. 

In experiment 2, we use a within-subjects design to disentangle any possible expectancy effects in 

coding strategies through uncued randomization of forward and backward trials. Finally, in 

experiment 3, we used longer lags in addition to lag-1 to verify that a) the possible effects are 

distinctive for lag-1, and b) these effects are not altered when participants cannot predict the position 

of T2. 

 

Figure 1. 
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Expected results for the two different assumptions. If the prior entry hypothesis is generalizable, then we should observe 

no effects of digits magnitude on reversals. Differently, assuming a response bias retrieval hypothesis, we should observe 

a preference for naturally ordered (ascending) responses, then targets presented in descending order should be more 

frequently swapped in the Forward condition with the opposite true for the Backward condition. 

 

 

Experiment 1a 

 

In experiment 1, we tested the hypothesis that the magnitude of numbers has an impact on the 

temporal order perception of two target digits presented one immediately after another in an RSVP 

among letter distractors. Specifically, we first hypothesize that a natural preference exists for 

ascendingly ordered digits: according to our hypothesis, ascending sequences might be better 

temporally ordered than descending ones.  

 

Method 

 

Participants 

Fifteen university students (females = 10; mean age = 25.4, s.d. = 4.08) from Sapienza University of 

Rome participated in the study. All of them have a normal or corrected-to-normal vision. The study 

was approved by the Institutional Review Board of the Department of Psychology at the Sapienza 

University of Rome and conducted in accordance with its policies and with the Declaration of 

Helsinki. All participants provided written informed consent. 

 

Stimuli 
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Participants performed an RSVP task. Among a sequence of letters, used as distractors, one or two 

target digits might appear. Letters were randomly selected without replacement from a Latin letter 

list (excluding B, G, I, O, S, and Z). Digits were pseudo-randomly selected without replacement from 

a list of Arabic digits from 2 to 9. A totality of 225 trials was presented to participants; in additional 

40 trials, only one digit was presented. Digits and letters were presented for 80 ms each, with no 

interstimulus interval (ITI). Each sequence was made of 25 characters. The first digit (T1) might 

randomly appear between the 5th and the 13th position. The second digit (T2), if present, always 

appeared immediately after T1, with no intervening distractors in between. The second digit might 

be bigger/smaller than the first (ascending/descending trials) in approximately half of the trials. No 

repeated digits were presented in the same trial. Each character was displayed in white on a black 

background, with a 2 cm of width and 2 cm of height. The task was programmed on e-Prime 2.0 and 

launched on a Dell PC. 

 

Procedure 

Participants read and signed the informed consent and seated at approximately 60 cm from the 

monitor, in an illuminated room, and were instructed. Each sequence began with a fixation cross at 

the center of the screen. When the participants pressed the spacebar, the fixation cross disappeared, 

and the RSVP sequence started at the center of the screen after 500 ms. At the end of the sequence, 

the question "What was the first digit?" appeared. After participants made their response on the 

keyboard, the question "What was the second digit?" appeared. After participants made their second 

response, a blank interval of 1000 ms was displayed, and a new fixation cross appeared. Unspeeded 

responses were required to participants. They were explicitly asked to report the digits in the order 

they appeared and guess if they were unsure about their identity. In any case, they had to report two 

digits in each trial. After each response, no feedbacks were provided.  

 

Results 

Mean individual proportions of correct identification of T1 were analyzed in a one-way ANOVA, 

with Digits order as a factor (within-subjects, Descending vs. Ascending). The analysis did not reveal 

any significant effect (F1,14 = 1.493, p = .242). 

Mean individual proportions of correct identification of T2 upon the correct identification of T1 

(T2|T1), regardless of order, were analyzed in the same ANOVA design, showing a small but 

significant decrease of performance when digits were presented in descending order (F1,14 = 12.309, 

p < .01, partial η2 0.47) (Figure 2). 
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The same analysis of T2|T1, but considering only responses made in the correct order, revealed a 

significant decrement for accurate reports of temporal order for targets presented in descending order 

(F1,14 = 28.0182, p < .001, partial η2 0.67). Thus, digits presented in descending order were more 

frequently swapped than ascending digits (Figure 2).  

Finally, a t-test was performed to compare the number of ascending or descending responses made 

by participants in the totality of trials. The t-test revealed a significant difference between ascending 

and descending responses (t(14) = 4.830643, p < .001), showing that participants made more 

ascending than descending overall responses. 

 

 

Experiment 1b 

 

The same predictions made for experiment 1a were also made for experiment 1b. Differently from 

1a, in the 1b, the order of report was reversed (participants had to report the digits backwardly, i.e., 

the last first) to test the hypothesis that task goals may modulate order inversion, as a function of 

Digits order. We hypothesized that, if the order preference depends upon early processes, we must 

find the opposite pattern in experiment 1a. Indeed, descending digits might be preferred in the 

backward report condition. Differently, if this preference acts presumably in a late phase, then the 

pattern might be the same. Indeed, in the present backward version, descending digits must be 

reported in ascending order. 

 

Methods 

 

Participants 

Fifteen university students (females = 7; mean age = 24.86, s.d. = 2.53) from Sapienza University of 

Rome participated in the study. The study was approved by the Institutional Review Board of the 

Department of Psychology at the Sapienza University of Rome and conducted in accordance with its 

policies and with the Declaration of Helsinki. All participants provided written informed consent. 

 

Stimuli 

Stimuli were the same used in experiment 1a. 

 

Procedure 
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The procedure was identical to the one of experiment 1b, except for the order of reports. At the end 

of each sequence, the sentence "Report the second digit" appeared before "Report the first digit". 

Thus, participants were asked to report the digits in the opposite order concerning their presentation 

order. 

 

Results 

One-way ANOVA for T2|T1 regardless for correct order as a function of ascending or descending 

order of digits showed again a little but significant decrease of performance when digits were 

presented in descending order (F1,14 = 5.351, p < .05, partial η2 0.28) (Figure 2). However, the same 

one-way ANOVA for T1 performance did not reveal any difference between conditions (F1,14 = 

2.5438, p = .133). 

The ANOVA for T2|T1 performance, considering only responses made in the correct order, revealed 

a significant decrement for accurate reports of temporal order for targets presented in descending 

order (F1,14 = 82.5678, p < .0001, partial η2 0.85). Thus, digits presented in descending order were 

more frequently swapped than ascending digits (Figure 2). Differently from experiment 1a, in this 

case, accuracy for descending digits means to report an ascending pair, with the opposite valid for 

ascending digits. 

Conversely from the experiment 1a, the t-test between the total number of ascending/descending 

responses revealed a significant difference between ascending and descending responses (t(14)= -

9,10035, p < .0001), showing that participants made more descending than ascending overall 

responses (mean = 24% and mean = 74% for ascending and descending responses, respectively). 

Data from experiments 1a and 1b were also analyzed in a mixed ANOVA with Report Order (Forward 

and Backward) as a between-subjects factor and Digits Order (Ascending and Descending) as a 

within-subjects factor. The ANOVA for the T2|T1 regardless of the correct order revealed a 

significant main effect of Digits Order (F1,28 = 15.55, p < .0001, partial η2 0.36), and no other 

significant effect (p > 0.05). Similarly, the ANOVA on correctly ordered T2|T1 showed a significant 

main effect of Digits Order ((F1,28 = 91.503, p < .0001, partial η2 0.76), and no other significant 

effects (p>0.05), confirming the results obtained in the separate analyses.  

 

Figure 2. 
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Accuracy (correct T2|T1 / correct T1) in the Forward (Exp. 1a) and in the Backward (Exp 1b) instruction conditions for 

Ascending and Descending ordered targets. ID = Identification only (regardless of order). ID + ORDER = Identification 

in the correct order (according to the instructions). Error bars denote standard errors. 

 

 

Experiment 2 

 

The between-subjects design of experiments 1a and 1b might have played a role in determining the 

results obtained: a possible effect of expectancy might have guided performance. Indeed, if the order 

of reports (forward or backward) is the same for the whole experiment, participants know in 

advantage what is the report order required, and thus they might implicitly encode digits in a serial 

order accordingly to the task goal. Experiment 2 was designed to exclude this possibility. We 

hypothesize that if the match between the order of numbers and the order of reports has a role in the 

encoding phase, the pattern of results of experiments 1a and 1b might change or disappear. 

Differently, if the representation of digits and the perception of time act in a later phase, i.e., when 

participants must retrieve and report the two digits perceived, then we expect to find the same pattern 

of the previous experiments. 

 

Methods 

 

Participants 

Fifteen university students (female = 5; mean age = 26.27, s.d. = 4.85) from Sapienza University of 

Rome participated in this study. The study was approved by the Institutional Review Board of the 
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Department of Psychology at the Sapienza University of Rome and conducted in accordance with its 

policies and with the Declaration of Helsinki. All participants provided written informed consent. 

 

Stimuli 

Stimuli were the same used in the previous experiments. A totality of 234 dual-target trials was 

presented to participants, equally divided for each report order condition ("forward" and "backward"). 

Additional 20 single-target trials per Report order condition were administered. 

 

Procedure 

The procedure was identical to the previous experiments, except for the design. In this experiment, 

the two report conditions ("forward" and "backward") are treated as within-subjects. Each participant 

performed the same task with the "forward" and "backward" trials randomly intermixed. The report 

order was not declared or cued before the sequence; thus, participants knew how they had to report 

the digits only after each sequence ended. Indeed, at the end of each sequence, the sentence "Report 

the second digit" appeared half of the trials before "Report the first digit".  

 

Results 

 

A two-way within-subjects ANOVA was performed over T1 performance for all four combinations 

of Report order (backward and forward) and Digits order (ascending and descending). The analysis 

showed no significant differences in the ability to detect T1 (p> 0.05 for all effects). 

The same analysis was performed upon T2|T1 performance, regardless of correct order, showing a 

significant main effect of Digits Order again, with a little increment of performance when targets 

were presented in ascending order (F1,14 = 16.927, p < .01, partial η2 0.55), and no other significant 

effects (p > 0.05) (Figure 3).  

The ANOVA upon T2|T1 performance, considering accurate only the responses given in the correct 

order, showed a significant main effect of Digits Order (F1,14 = 49.0383, p < 0.0001, partial η2 0.78) 

and no other significant effects (p>0.05) again, successfully replicating results in experiments 1 and 

2 (Figure 2). 

As well as in experiments 1a and 1b, ascending responses were more frequent in the Forward trials 

(mean = 55% and mean = 26% for ascending and descending responses, respectively; t(14) = 

5.693385, p < 0.0001) while the opposite was true for Backward trials (mean = 25% and mean = 56 

% for ascending and descending responses, respectively; t(14) = -5.40746, p < 0.0001). 
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Figure 3. 

 

   

Accuracy (correct T2|T1 / correct T1) in the Forward and in the Backward instruction conditions in the Exp. 2 for 

Ascending and Descending ordered targets. ID = Identification only (regardless of order). ID + ORDER = Identification 

in the correct order (according to the instructions). Error bars denote standard errors. 

 

Experiment 3 

 

In the previous experiments, the second target, if present, was always presented immediately after the 

first one (i.e., at lag 1). In experiment 3, we repeated the same procedure with additional lags to reduce 

global task expectations about the T2 position and control if the numerical magnitude effect 

disappeared at longer lags. 

 

Method 

 

Participants 

 

Fifteen students (females = 3; mean age = 26.27, s.d. = 4.22) were enrolled in the Sapienza University 

of Rome. The study was approved by the Institutional Review Board of the Department of 

Psychology at the Sapienza University of Rome and conducted in accordance with its policies and 

with the Declaration of Helsinki. All participants provided written informed consent. 

 

Stimuli 
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The task and the stimuli were the same as the previous experiment. The only difference with 

experiment 2 is the manipulation of lags (i.e., the distance between T1 and T2). Three different lags 

were used: Lag 1, 3, and 9 (80, 240, and 720 ms after T1, respectively). Thirty trials for each 

combination among digits order (ascending and descending), report order (backward and forward), 

and lag (1,3, and 9), plus 28 single-target trials (14 each Report order condition) gave a totality of 

388 randomly presented trials. In the dual-target trials, T1 was equally presented between the 5th and 

the 10th position. In the single-target trials, T1 was equally presented between the 6th and the 19th 

position (i.e., the same positions where T2 might be presented in the dual-target trials). 

 

Procedure 

 

The procedure was identical to the one in experiment 2. 

 

Results 

 

Data were firstly analyzed in a three-way within-subjects ANOVA with Report order (Forward vs. 

Backward), Digits Order (Ascending vs. Descending), and Lag (1,3, and 9) upon t2|t1 performance 

regardless of order. The analysis showed a significant main effect of Lag (F2,28 = 46.769, p < .000001, 

partial η2 0.769618), revealing a typical AB effect for all conditions (Figure 4). No significant effects 

(p > 0.05) were found for Report order and Digits order, nor for the Report Order x Digits order, the 

Report order x Lag, the Digits order x Lag, the Report order x Digits order x Lag interactions. 

Subsequently, t2|t1 in the correct order were analyzed in the same ANOVA design. The analysis 

showed a significant main effect of Digits order (F1,14 = 28.6198, p < .001, partial η2 0.671514), of 

Lag (F2,28 = 45.9618, p < .000001, partial η2 0.766518), and of the Digits order x Lag interaction 

(F2,28 = 9.73, p < .001, partial η2 0.410029). Main effect of Report order and the Report order x Digits 

order, the Report order x Lag, and the Report order x Digits order x Lag interactions were not 

significant (p > .05). Duncan's post-hoc test for the Digits order by Lag interaction showed all 

comparisons but Forward Lag 3 vs. Backward Lag 3 and Forward Lag 9 vs. Backward Lag 9 were 

significant (p < 0.05). Specifically, the performance was better for ascending digits than descending 

ones, at lag-9 compared to lag-1 and lag-3, and at lag-1 for ascending digits compared to descending 

digits at lag-1 (Figure 5). 
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Figure 4. 

  

Lag variations for accuracy (correct T2|T1 / correct T1) regardless of correct order, in the Forward, and the Backward 

instruction conditions in the Exp. 3 for Ascending and Descending ordered targets. Error bars denote standard errors. 

 

 

Figure 5. 

 

   

Lag variations for accuracy (correct T2|T1 / correct T1) in the correct order (according to instructions) in the Forward and 

in the Backward instruction conditions in the Exp. 3 for Ascending and Descending ordered targets. Error bars denote 

standard errors. 

 

A two-way ANOVA with Report order and Lag (1,3, and 9) as factors, upon the percentage of overall 

descending responses, revealed a significant main effect of Report order (F1,14 = 18.727, p < .001, 

partial η2 0.57), and a significant interaction (F2,28 = 7.392, p < .01, partial η2 0.34), and a non-
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significant main effect of Lag (p > .05). Indeed, participants made more descending responses in the 

backward compared to the forward instruction condition. The difference between the two instruction 

conditions was evident when T2 immediately followed T1 (Lag-1) and progressively decreased at 

longer lags. The opposite was obviously true for overall ascending responses (F1,14 = 18.578, p < .001, 

partial η2 0.57 and F2,28 = 7.998, p < .01, partial η2 0.36, for the main effect of Report order and the 

interaction, respectively). 

 

Table 1a. Percentages of overall descending responses. 

 

 

Table 1b. Percentages of overall ascending responses. 

 

 

 

Discussion 

 

The present study aimed to investigate the presence of regularizing mechanisms in the perception of 

the temporal order of targets in the Lag-1 sparing phenomenon of the Attentional Blink. Several 

works explained order reversals at Lag-1 as a precedence phenomenon, e.g., prior entry (Olivers et 

al., 2011), or through an integrative account (Hommel and Akyurek, 2005).  

In the present study, reversals have been studied using numerical targets. Digits are quite often 

employed as stimuli in Attentional Blink paradigms. However, despite the considerable evidence 

regarding number processing's spatial and temporal dimensions, their impact in the AB performance 

has never been investigated. Even though numbers have been studied in this context, other studies 

might focus on different kinds of stimuli categorization. 

The organization of numbers might be a relevant feature in understanding reversals. Thus, we 

hypothesized that if prior entry is a general principle in guiding performance at Lag-1, the magnitude 

of numbers and their order should not be relevant. Differently, the order of digits might have an 

impact in determining the order of their presentation, even though response bias for naturally ordered 

preference can be observed. We investigated these assumptions through 4 experiments, controlling 

Descending 

Responses Single Lag 1 Lag 3 Lag 9

Forward 42.86 (3.12) 38.33 (3.57) 45.78 (2.3) 48.78 (0.7)

Backward 59.05 (2.56) 62.33 (2.77) 56.56 (2.15) 52.89 (1.67)

Ascending 

Responses Single Lag 1 Lag 3 Lag 9

Forward 56.19 (3.03) 60.67 (3.67) 53.67 (2.27) 50.78 (0.67)

Backward 40.48 (2.58) 36.11 (2.65) 42.89 (2.19) 46.56 (1.83)
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for report-order instructions, asking subjects to report the target in the forward (Exp. 1a), and in the 

backward (1b) order; expectancy due to between subject-design of the Exp. 1a and 1b (Exp. 2); use 

of longer lags (Exp. 3). Because of the stimuli used, we were not able to make predictions about 

integration processes. 

A clear effect of digits order was found throughout all the experiments: the digits presented in 

descending order were significantly more reversed than digits presented in ascending order. At first 

glance, that result can be addressed to a response bias. However, this preference in response is 

inverted by the manipulation of task instructions. When asking to report the two digits in backward 

order (i.e., the second first, Exp 1b, 2, and 3), participants seem to prefer to type the two digits in 

descending order. Since the digits presented in descending order must be reported in ascending order 

in the backward condition, this inverted preference gave the same pattern of the forward condition 

trials. Interestingly, it can be hypothesized that participants move along the number line's mental 

representation in the two directions according to task instructions. As evidence shows, the SNARC 

effect is flexible and can be modulated (Zhang et al., 2020; Moro et al., 2017; Pfister et al., 2013). 

However, experiments 1a and 1b, due to their between-subjects design, cannot disentangle the effects 

of expectancy over the RSVP: indeed, it is possible to argue that task instruction may modulate the 

encoding strategy for the current trial. 

When the possibility to expect in advance the report instructions for the current trial was eliminated 

(Experiment 2), the digits order effect found in Experiment 1a and 1b was confirmed, thus revealing 

that in this case, the task instruction does not entirely act at the encoding level. It seems that a 

preference for ascending ordered digits in the encoding phase exist, but that this preference can be 

modulated by task instructions operating at a later stage (e.g., when the digits must be recalled). 

In addition, in Experiment 3, we tested the hypothesis that the reversals pattern did not change when 

employing a standard AB task with more than one lag condition. Accordingly, the better performance 

for ascending ordered digits was found only at Lag-1, with no differences between the digits order 

conditions at Lag-3 and 9. A response-bias interpretation should have assumed that the report-order 

preference might persist in all the lag conditions.  

The results of the present study may have different implications for the theories on Lag-1 sparing 

phenomenon. First, the principle of prior entry in explaining order reversals seems not entirely to fit 

when considering digits as stimuli. The present results suggest that the percentage of reversals 

commonly found can be split into two significantly different percentages when factorizing a task-

irrelevant feature such as the magnitude of digits. If prior entry acts independently of the magnitude 

of numbers, we should have been found no effects for digits order. It is possible to argue that the 

fewer reversals observed for ascending responses may be due to the greater local salience of little 
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numbers than large numbers (even more if they follow a larger number), requiring less time to be 

processed. Further research is required to test this interpretation. 

Differently, even though our paradigm is unable to test the integration account, it looks theoretically 

more helpful in explaining the present results. Losing the order information of stimuli might subtend 

participants' proneness in regularizing them, presumably using the most economical and natural 

strategy. Here, the impossibility to integrate the two targets may have led participants to encode them 

in the most effortless order to recall, which is the ascending one. Under uncertainty, individuals have 

been shown to use low-effort strategies, such as the availability or the representativeness heuristic 

(Tversky and Kahneman, 1974). Intriguingly, heuristics might also act in low-level processes, such 

as temporal order judgments, in the early stages of encoding information. At the retrieval phase, i.e., 

when individuals must produce a behavioral output, the encoded information is modified accordingly 

to task-goals. If the instruction matches the encoded information, then the encoded order of events is 

reproduced; if not, control processes may intervene by reverting the encoded information, favoring 

the inverted sequence. This point adds to evidence about the goal-related changes in AB performance, 

which has been elsewhere reported (Kawahara, 2003; Olivers and Nieuwenhuis, 2006; Akyurek and 

Hommel, 2005; Ferlazzo et al., 2007; 2008).  

In summary, the present results highlighted the importance of investigating the possible different 

roles of encoding and retrieval processes in the Attentional Blink. Regularizing mechanisms may be 

responsible for reversals at Lag-1, guiding the temporal order perception. Task-irrelevant features, 

such as the magnitude of numbers and their ordinality, have been shown modulating the number of 

order reversals. Procedural choices, such as the employment of stimuli, should be primarily 

considered in implementing AB tasks.  
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Chapter 3 

 

The multiple facets of backward inhibition 

 

 

When facing tasks, the large variety of stimuli and contexts encountered by individuals necessitates 

an exceptional ability to respond to them accurately and quickly through the integration of goals and 

external requirements. This integration must subtend the interaction between mechanisms of different 

nature and its analysis might help in shedding new lights on the complex interplay of automatic and 

controlled processes. 

Human beings evolved in a high-demanding world, which often requires them to solve multiple 

problems at once. However, the rapid environmental change often does not allow for an efficient 

switch between goals and costs in accuracy and reaction times are usually observed. Human 

performance in task-switching paradigms has been extensively investigated, showing that individuals 

are faster in responding following a repetition than a switch of tasks. The difference between 

performances on repetition and switch trials is termed “switch cost” and has been traditionally 

ascribed as an indicator of cognitive flexibility. Indeed, the switch cost is known to reflect the 

additional time required by the cognitive system to update its mental task representation to perform 

the new task accurately. Classical theories of task-switching are traditionally divided between a task-

set reconfiguration account and a task-set inertia account. The first one suggested, through 

alternating-runs paradigms and manipulations of the cue-stimulus interval, a task-set reconfiguration 

hypothesis (Rogers and Monsell, 1995), depicting the switch-cost as the product of the more time 

needed by cognitive control to reconfigure the relevant task set before the stimulus classification. On 

switch trials, additional processes must intervene, such as the retrieval of the new task set from long-

term memory to working memory (Arbuthnott and Woodward, 2002). However, evidence has shown 

that even with long preparation interval a residual switch cost is still obtained (Rogers and Monsell, 

1995; Liefooghe et al., 2009). Different concurrent processes might also reflect the slower RT in 

switch compared to repetition trials (Koch and Allport, 2006; Ruthruff et al., 2001), and not all of 

them can be considered high-level processes. 

Conversely, the task-set inertia account (Allport et al., 1994) stated that the mechanisms responsible 

for switch cost rely upon bottom-up proactive interference generated by previous task sets and 

experienced associations between stimulus, response, and task sets (Allport and Wylie, 2000; Waszak 

et al., 2003). Evidence supporting the task-set inertia hypothesis came from studies manipulating the 

proportion of stimuli associated with competing task-sets (Wylie and Allport, 2000) and studies 
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investigating sequential switch-cost asymmetries between less or more dominant tasks (Allport and 

Wylie, 2000). Moreover, results in three-tasks paradigms highlighted that previous task sets might 

continue to interfere with concurrent performance, demonstrating a backward inhibition mechanism, 

which is the focus of this experimental section. 

Currently, a multiple-component model (Mayr and Kliegl, 2003) integrating the task-set 

reconfiguration model, based on top-down updates of task-set representations, and the task-set inertia 

model, relying upon bottom-up proactive mechanisms, is mostly accepted. The multiple-component 

model explains the task-switching process as made up of different phases: task set processing, 

stimulus processing, and response selection/execution. By using 2:1 mapping between cues and tasks, 

research evidenced that earlier stages of task-switching are governed by top-down cue-related 

reconfiguration processes. In contrast, later stages are dependent upon bottom-up mechanisms 

stimulus-triggered, aimed at applying task rules to stimuli and selecting correct responses among the 

available ones. 

 

The N-2 repetition cost 

 

In task-switching, backward inhibition (Mayr and Keele, 2000) is an inhibitory mechanism that 

allows for the suppression of the representation of a just executed task, to facilitate performance in a 

new and different incoming task. This mechanism is thought to guarantee flexibility in a rapidly 

changing environment by inhibiting previous irrelevant task sets. At a behavioral level, this inhibition 

causes a reaction time (RT) cost: when switching back to a recently inhibited task (A – B – A 

sequences), RTs on the third task are slower than when switching back to a less recently inhibited 

task (C – B – A sequences), an effect named “N-2 repetition cost”.  

The relevance of the backward inhibition effect for task-switching and, in general, cognitive control 

research, is due to its specific role in operating at a high-level task set representation. Its functionality 

relies on its ability to counteract perseverative tendencies: the capacity of backward inhibition to 

operate with persisting activation strengths of cue-stimulus-responses associations within task-sets 

renders it a sort of lateral inhibition mechanism, though functioning under endogenous control 

(Hübner et al., 2003). BI deficits have been observed in several clinical conditions, such as obsessive-

compulsive disorder (Wolff et al., 2018), Parkinson disease (Fales et al., 2006), depression (Whitmer 

and Gotlib, 2012; Chen et al., 2016), insomnia (Ballesio et al., 2018), Williams syndrome (Foti et al., 

2015a; 2015b), and in other conditions such as Developmental Topographical Disorientation 

(Palermo et al., 2014), alcohol intoxication (Zink et al., 2019), and prolonged isolation (Van Baarsen 

et al., 2012), and genetic hypotheses have been proposed (Markett et al., 2011). As well as switch 
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cost, N-2 repetition cost is thought to reflect the concurrent deployment of different processes, and 

the mechanisms underlying its nature are still under debate. However, the difference between the 

processes relying upon switch cost and N-2 repetition cost has been suggested (Hartmann, 2019), 

making the BI an exceptional and additional phenomenon in the investigation of dual-processes into 

the inhibitory mechanisms that govern human choices and actions. Indeed, several results pointed out 

that backward inhibition cannot be assumed as a pure controlled process but that it seems to possess 

features reflecting both a bottom-up and a top-down functioning. 

First, it is not clear the critical stage in which backward inhibition occurs even though most research 

aims to shed light on this point. Following Koch et al. (2010), task inhibition is assumed to occur 

when conflicts between task stimuli or responses are detected, suggesting that it is exerted by the 

monitoring of performance interferences made by cognitive control. Evidence has shown that 

backward inhibition may arise at every task processing stage, requiring only a conflict to be detected 

(Houghton et al., 2009). In turn, research has abundantly but not resolutely investigated the 

differential role of cues and tasks in determining the N-2 repetition cost. Regarding cue processing, 

using 2:1 cue-mapping paradigms N-2 repetition costs have been observed both with cue repetition 

and switch, thus providing evidence that the cost associated with task inhibition is presumably 

dependent on task performance (Altmann, 2007; Gade and Koch, 2008). Thus, cue-related task set 

retrieval appears to be differently implicated in BI from task set application processes (Mayr and 

Kliegl, 2003). However, cue-type temporal and spatial characteristics (Druey and Hübner, 2007; 

Grange and Houghton, 2009; Arbuthnott and Woodward, 2002, Arbuthnott, 2005; 2008; 2009) can 

modulate backward inhibition through exerting conflicts even at the level of task cues. Recent works 

argued that cue related processes are essential for N-2 repetition cost to occur. They do so by 

controlling that stimuli/responses associations were univalent (Prosser et al., 2020) or asking 

participants to made responses related to task identity (Regev and Meiran, 2017), evidencing robust 

costs. These results doubt the task-set application view, suggesting a multicomponent account of 

backward inhibition that has nothing to do with task conflicts, a position already promoted by Costa 

and Friedrich (2012). 

Another main topic in task switching research is the preparation time available to subjects to 

reconfigure the mental task-set. It can be manipulated by modulating the time between the cue's 

presentation and the appearance of the imperative stimulus (CSI, Cue-Stimulus Interval). Research 

on standard task-switching paradigm has extensively shown that a prolonged CSI significantly 

reduces switch-cost but not eliminates it, suggesting that switch cost can be partially modulated at a 

top-down reconfiguration level, but other low-processes contribute to the effect. At first glance, the 

same arguments can be used for backward inhibition. However, it has been confirmed by several 
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findings that increasing the CSI does not lead to a reduction of the N-2 repetition cost (Gade and 

Koch, 2008; Bao et al., 2006; Schuch and Koch, 2003; Mayr and Keele, 2000). This result appears in 

high contrast to the opposite effect observed for switch costs advocating that top-down 

reconfiguration processes do not prominently interact with backward inhibition. However, more 

recent findings showed that N-2 repetition cost could be affected by manipulating CSI in N-1 and N-

2 trials or by using more abstract cues (Scheil and Kleinsorge, 2014) revealing that preparatory 

processes in backward inhibition are complex phenomena. A long CSI has also been found to reduce 

N-2 repetition cost in the context of language-switching (Philipp et al., 2007b; Guo et al., 2013a; 

2013b). Differently, the manipulation of RCI (Response-Cue Interval) gave more indicative findings 

on BI's nature. Indeed, several results stated the temporal decay of BI with prolonged RCI associated 

with reduced N-2 repetition costs (Grange and Houghton, 2009; Koch et al., 2004; Mayr and Keele, 

2000). However, as Gade and Koch (2005) reported, this effect is more related to the interval in the 

switch between N-2 and N-1 trial. Koch et al. (2010) suggested that rather than a passive decay of 

inhibition, BI reflects more the trial-by-trial conflicts in task processing. According to the authors, 

when switching between tasks, not only the previous task set is inhibited, but also the other irrelevant 

task-set. In C-B-A sequences, faster performance occurred because the C-set has already been 

inhibited in the transition from N-2 to N-1 trial. Differently, in A-B-A sequences, both B- and C-sets 

must be suppressed at the Nth trial. 

In task-switching paradigms, conflicts may also arise at the stimulus processing level and at the 

response-preparation and -execution phases. According to Koch et al. (2010), the most crucial 

contribution to backward inhibition comes from this late stage of task processing, i.e., when task set 

retrieved from cued are activated through the match with the stimulus and the performance is 

concluded through the response. Through the combination of a task-switching and a Go/NoGo 

paradigm, Schuch and Koch (2003) and Philipp et al. (2007a) highlighted the prominent role of 

response selection and response execution (of the N-1 task) in determining the N-2 repetition cost. 

When the N-1 trial required participants not to respond, N-2 repetition cost disappeared. The same 

results were obtained when the N-1 trial required a double-press (Schuch and Koch, 2003), 

evidencing that task-execution is much more involved. 

Similarly, Gade and Koch (2007) implemented a four-tasks paradigm, three with overlapping 

response-set and one univalent. Accordingly, no N-2 repetition cost was observed when the N-1 task 

was univalent. The valence of response mappings appears to be a fundamental dimension to exert 

interference in task sets and, thus, requiring BI to be triggered. Moreover, N-2 repetition cost was 

found even when participants were engaged in covert responses in trial N-1 in a motor imagery task 

(Scheil et al., 2019). However, interference at the response stage does not take into consideration the 
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role of stimulus-related processing. Sdoia and Ferlazzo (2008) interestingly provided evidence that a 

task only requiring stimulus encoding in N-1 can trigger inhibition. Crucially, in their study, the N-2 

repetition cost was observed only when this task presented overlapping stimuli but not when these 

were univalent, arguing for the prominent role of stimulus-related interference.  

One possibility for clarification is the use of electrophysiological techniques. However, just a few 

studies implemented electrophysiological techniques in the investigation of BI processes. Until now, 

only a few studies investigated backward inhibition processes by using event-related potentials 

(ERP). Sinai et al. (2007) and Zhang et al. (2016) found increased negativity over parietal sites in BI 

trials. Sinai et al. (2007) found increased response-locked negativity over parietal sites, and an earlier 

onset of lateralized readiness potential, suggesting the role of conflict resolution in triggering the BI. 

Moreover, they found a reduced/enhanced N2/P3 cue-locked activity over centroparietal sites.  

Recent evidence (Giller et al., 2019a; 2019b; Wolff et al., 2018; Zink et al., 2019; Zhang et al., 2017) 

reported that mostly at early stages processes involved in suppressing task-irrelevant information at 

the target level (P1/N1 components at inferior-frontal gyrus) are modulated in BI trials.  

Electrophysiological techniques highlighted that parietal (Sinai et al., 2007; Zhang et al., 2016) and 

frontal (Giller et al., 2019a; 2019b; Wolff et al., 2018) regions are concurrently involved in the 

generation of BI effect. Similarly, neuroimaging studies highlighted the involvement of frontal 

regions (Dreher and Berman, 2002; Mayr et al., 2006) but also basal ganglia and premotor areas 

(Whitmer and Banich, 2012) and supplementary motor areas (Zink et al., 2019). Recent results also 

found that continuous theta-burst stimulation on the cerebellum selectively decreased RT on A-B-A 

sequences (Picazio et al., 2020). Up to now, research on brain mechanisms involved in task inhibition 

is still at its first steps. More knowledge on this point is paramount to address the research on cognitive 

control mechanisms underlying sequential task-switching and helps in understanding the central or 

distributed nature of control and executive functions. In the same field, several other intriguing 

answers necessitate more investigation. For instance, it is unclear whether backward inhibition 

represents a domain-general or -specific mechanism, partially reflecting the question on the multiple 

or unitary nature of controlled processes. In a series of studies, Arbuthnott et al. (2002; 2005) 

observed a dissociation between spatial and verbal cues, with spatially featured cues unable to trigger 

BI. However, verbalizing cues were found to increase competition even with spatialized cues 

(Arbuthnott et al., 2005). Arguably, the spatial location of cues may reduce the competition of albeit 

automatically activated response codes, especially when targets are digits, as shown in the SNARC 

effect (Dehaene et al., 1993). The dissociation between a visuospatial and a verbal task-switching 

paradigm was also found in individuals with Williams Syndrome (Foti et al., 2015a; 2015b), 

supporting a domain-specific model of BI. Other evidence comes from language-switching 
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investigations, even though in this field research has produced opposite results and interpretations 

(Babcock and Vallesi, 2015; Branzi et al., 2016; Guo et al., 2013a; 2013b; Philipp and Koch,2009; 

2007b), and in the context of ego-depletion hypothesis, observing that switching-based depletion and 

not choice-based depletion is capable of reducing BI effect as a domain-specific process (Zhang et 

al., 2017). 

Characteristics of controlled processes are their flexibility and sensitivity to contexts and research has 

investigated the modulation of BI relatively to sequence effects. Nevertheless, Philipp and Koch 

(2006) reported that the mere presence of repetitions in the task could reduce the BI-related cost. 

Moreover, as well as standard task-switching performance, N-2 repetition cost is subject to 

asymmetric costs (Arbuthnott, 2008). Schuch and Grange (2015) also observed that it depends on N-

3 trials, in that A-B-A sequences preceded by a B trial are faster than the same sequences preceded 

by a C trial. Also, task dominance has been found to increase N-2 repetition cost (Jost et al., 2017), a 

result in line with the one of Sexton and Cooper (2017), who found slower performance on hard-easy-

hard compared to easy-hard-easy sequences even though their finding was the opposite of the ones 

by Arbuthnott (2008), who found higher cost for easy-hard-easy sequences. Accordingly, Schneider 

(2007) found a reduced BI when manipulating task-goals by inducing participants to chunk sequences 

compared to between chunks.  

Another main topic regarding BI is if, as controlled processed, it is subject to practice effects. In fact, 

research has shown that BI is reduced after extensive practice (Grange and Juvina, 2015; Scheil, 2016; 

Zink et al., 2019) with more substantial effects when participants have weaker cue-target associations 

(Houghton et al., 2009) and showing the same behavior of controlled processes (Schneider and 

Shiffrin, 1977) with variable-constant response mappings (Scheil, 2016). The results observed 

identify the strengthening of task-related memory elements as a critical factor in reducing the impact 

of inhibitory mechanisms, as predicted by computational models (Grange et al., 2013). Nevertheless, 

the role of episodic retrieval in determining BI-related costs have been evidenced (Grange et al., 2017; 

Mayr, 2002). 

While practice effects appear to be quietly demonstrated, supporting the notion of controlled 

processes, research on the development of BI during the lifespan is not conclusive. Whereas Li and 

Dupuis (2008) found no age-related effects on BI between young and old adults, Pettigrew and Martin 

(2016) found a higher cost in older adults and Giller et al. (2019) in adolescents. The very few studies 

do not permit to conclude possible age-related deficits in BI, but a recent metanalysis on several 

inhibition paradigms reported that N-2 repetition cost is not affected by aging (Rey-Mermet and Gade, 

2018). 
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Despite the growing collected evidence on backward inhibition processes, the mechanisms 

underlying are still not precise. What can be assumed is that it is not a unitary phenomenon, but 

different processes are involved, probably evidencing differential roles of top-down and automatic 

processes, and different contribution among different controlled mechanisms. Indeed, literature has 

shown that backward inhibition: do not depend upon preparatory processes, but it is reduced by 

practice and can be modulated by sequence effects; it is modality independent but appears to be 

domain-specific about the materials that constitute task sets; cue- and task-sets related processes are 

differently involved in the triggering of and overcome from BI; frontal areas involved in flexible 

cognitive control are strongly implicated in determining the N-2 repetition cost but also other brain 

areas such as parietal cortices, premotor areas, basal ganglia, and cerebellum, are found to be strictly 

associated; evidence of modulations with aging are inconsistent. This variety of results makes the BI 

a fascinating phenomenon to study, necessarily through a multicomponent account. However, even 

though it represents a robust effect, at an inter-individual level, it looks not reliable (Kowalczyk and 

Grange, 2017) and analysis considering individual differences are being preferred in the investigation 

of multiple aspects of BI mechanisms. 

 

This experimental chapter 

 

The focus in this chapter is on task-switching performance, an excellent example of the interplay 

between automatic and controlled mechanisms. Specifically, the three experiments in this section 

regard the investigation over the processes responsible for the backward inhibition phenomenon or 

the N-2 repetition cost, which is the slow performance in a three-tasks paradigm for the third task of 

the A-B-A sequences compared to the C-B-A ones. At least two phenomena are implicated in this 

kind of inhibition: the triggering of inhibition (which in part overlap the one seen in the standard 

switch-cost) and the overcome from that inhibition. Differently from switch-cost, of which 

participants might be aware, backward inhibition is usually unconscious and might indicate the 

influence of a lateral rather than a central cognitive inhibition mechanism. That point already reflects 

a misalignment existent in backward inhibition: i.e., a controlled process that presents characteristics 

of the System 1 (non-conscious). The studies conducted and reported in this section aimed at further 

highlighting similar misalignments. Indeed, a dual-system account should provide evidence that 

controlled processes (such as task-switching) is simultaneously unitary, domain-general, and 

dependent on late cognitive and electrophysiological mechanisms. The findings obtained report that 

this is not the case.  
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In the first study (Sdoia et al., 2020), subjects were tested in the backward inhibition task in three 

different transcranial direct current stimulation (tDCS) sessions. Results showed that the parietal or 

frontal cortex's stimulation led to a dissociation of effects, suggesting a differential, and probably 

interacting, functional role, relying upon a distributed rather than central network. In the second study, 

to investigate if the backward inhibition acts at a higher-, semantic-level, the standard behavioral task 

was manipulated by changing the format of the target stimulus in the N-1 task, comparing triplets 

with format change and unchanged. N-2 repetition costs was abolished in the format change 

condition, evidencing that task-set inhibition operate at low-, perceptual, stimulus-related levels 

rather than on abstract, high-level material. Finally, in the last study the task-switching paradigm was 

integrated with a Go-NoGo/Stop Signal paradigm, and scalp event-related potential were recorded, 

to investigate at a more fine-grained level the mechanisms underlying backward inhibition. Data has 

shown that backward inhibition does not rely upon only late processes but that differential 

electrophysiological sequential changes for cue- and target-related processes, possibly highlighting a 

dual-pattern of bottom-up/top-down effects. 
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Anodal tDCS over the right parietal but not frontal cortex enhances the ability to overcome 

task set inhibition during task switching 

 

 

Abstract 

 

Switching between tasks requires individuals to inhibit mental representations of the previous task 

demands and to activate representations of the new task demands. The inhibition of the executed task 

remains active for a while so that when the inhibited task set must be re-activated shortly after, the 

need to overcome residual task set inhibition leads to behavioral costs.  

In a sham-controlled balanced-order within-subjects experimental design we investigated whether 

applying right anodal/left cathodal transcranial direct current stimulation (tDCS) over the dorsolateral 

prefrontal or parietal cortex modulated the ability to overcome persistent task inhibition during task 

switching. Results showed that right anodal/left cathodal tDCS over the parietal cortex improves 

performance selectively when switching back to a recently inhibited task that requires previous 

inhibition to be overcome. Right Anodal/left cathodal tDCS over the prefrontal cortex improves 

performance during task switching in general, either when re-engaging in a inhibited task or when 

engaging in a noninhibited task. Results suggest a different contribution of prefrontal and parietal 

regions to task switching, with parietal cortex being selectively involved in overcoming persistent 

task inhibition and prefrontal cortex being more generally involved in the control of task set during 

task switching. 

 

 

Introduction 

 

The ability to flexibly adjust behavior to a changing environment by promoting the processing of 

current goal-relevant information at the expense of the no longer relevant one is a key factor for 

efficient adaptation and survival, particularly when irrelevant information interferes with current 

intention, eliciting conflicting responses. Behavioral adaptation to external changes is supported by 

cognitive control processes, a set of neurocognitive mechanisms that, based on current goals establish 

internal constraints on the way we process external information, defining—for instance—the 

information to attend to at the perceptual level (e.g., the color), at the motor level (left hand 

movement), and the association between potential stimuli and responses (e.g., if red press the left 

button). Thus, cognitive control grants behavioral flexibility by establishing and strategically 
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modifying the task set, that is the transient and arbitrary associations between mental representations 

of stimuli and responses in accordance with current goals (i.e., task set; Monsell, 2003). 

Response adaptation to changing task demands has been often studied in laboratory by means of the 

task switching procedure, wherein participants typically alternate between performing each of two or 

more possible tasks afforded by the same stimulus (see Kiesel et al., 2010 and Vandierendonck et al., 

2010 for reviews). In this procedure, the control settings appropriate for one task become no longer 

relevant when a new task is required, so that cognitive control is necessary for the instantiation of the 

appropriate task set (e.g., defining the new relevant information at perceptual and motor levels). The 

need to reconfigure the internal control settings required to perform a new task is considered a source 

of the so-called switch cost (Rogers and Monsell, 1995; Rubinstein et al., 2001; Sohn and Anderson, 

2001), that is the reaction time (RT) difference that typically results from the slower performance on 

trials where the participant has to switch to a different task (switch trials) compared to trials where 

the participant has to repeat a task (no-switch trials). Interestingly, no-longer-appropriate task sets 

remain active after their instantiation (Allport et al., 1994; Allport and Wylie, 1999; Altmann and 

Gray, 2008; Yeung and Monsell, 2003; Goschke, 2000), interfering proactively with the new task set, 

so that when rapidly shifting from one task to another inhibition could be necessary to counteract this 

persistent activation and to switch efficiently to the new task (see Koch et al., 2010 for a review). 

Importantly, the inhibition of the executed task remains active for a while so that when the inhibited 

task set (e.g., task A) is reactivated shortly after, as in an A–B–A task sequence, it is unlikely that it 

has fully recovered from previous inhibition. The need to overcome this suppressed state leads to a 

behavioral cost, named n-2 task repetition cost, which has been demonstrated by showing that 

switching back to a task that has been executed very recently (e.g., A-B-A task sequences) is harder 

than switching back to task that has been executed a less recently (e.g., C-B-A task sequence; e.g., 

Mayr and Keele, 2000; Arbuthnott and Frank, 2000). 

This form of inhibition (also known as backward inhibition; Mayr and Keele, 2000) has attracted 

interest in cognitive psychology mostly because it seems to target high-level mental representations, 

such as the whole task set, rather than individual perceptual features (e.g., red color; e.g., Tipper, 

2001) or motor responses (e.g., left-hand button press; e.g., Logan, 1994). On these grounds, task 

inhibition has been subject to intense research in cognitive psychology, but its neural mechanisms 

remain unclear. 

Neuroimaging studies consistently suggest that both frontal and parietal regions play a crucial role in 

task switching (e.g., Braver et al., 2003; Crone et al., 2006; Dove et al., 2000; Liston et al., 2006; 

Sohn et al., 2000; Sylvester et al., 2003; Yeung et al., 2006) but the individual contribution of these 

brain regions to task set inhibition has remained largely uninvestigated. Dreher and Berman (2002) 
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reported larger activity in the right lateral prefrontal cortex, as assessed by functional magnetic 

resonance imaging, when switching to a task recently performed compared when switching to a task 

less recently performed (i.e., ABA versus CBA task sequence), and suggested that the right prefrontal 

cortex plays a role in overcoming task inhibition. Consistent with this result, a reduced task inhibition 

was also reported in participants with damage to the right, but not to the left, lateral prefrontal cortex 

(Mayr et al., 2006). However, larger activity during task switching was also reported in other brain 

regions in participants who were good at inhibiting previous task sets, such as the basal ganglia and 

supplementary motor area/premotor area, compared to participants who were less good at inhibiting 

an irrelevant task (Whitmer and Banich, 2012). On the other hand, electrophysiological studies 

consistently reported increased negativity at parietal sites when switching back to a recently executed 

task (Sinai et al., 2007; Zhang et al., 2016) suggesting that the parietal cortex also plays a role in task 

inhibition. Hence, findings from neuroimaging and electrophysiological studies reported modulation 

of brain activity at both frontal and parietal sites related to inhibition of irrelevant task set, and 

converging evidence are still needed to clarify the specific contribution of these regions. 

Insight into the neural mechanisms of task set inhibition can be obtained by actively manipulating the 

neural activity of specific brain regions that are supposed to be involved in task inhibition and 

assessing the impact of this perturbation on behavioral performance (i.e., n-2 task repetition cost). 

One possibility to non-invasively modulate the cortical excitability is offered by transcranial direct 

current stimulation (tDCS; Priori et al., 1998). tDCS allows transient modulation of spontaneous 

neuronal excitability through the delivery of a low constant electric current flow through two 

electrodes applied to the scalp. This electric current flow alters the polarization of the resting 

membrane potential, such that cortical excitability is increased in the region below the anode electrode 

and decreased in the region below the cathode electrode (Nitsche and Paulus, 2000; 2001; 

Wassermann and Grafman, 2005).  

The goal of the present study was to investigate whether applying tDCS at frontal and parietal sites 

modulates the ability to overcome the persistent inhibition during task switching, as assessed by the 

n-2 task repetition cost. Specifically, in a sham-controlled, balanced-order within-subject 

experimental design, right anodal/left cathodal tDCS was applied over prefrontal or parietal scalp 

sites during a task switching procedure. The mean accuracy and reaction times (RTs) were recorded 

to assess performance on trials wherein participants had to switch back to a previously inhibited task 

(ABA switch sequence), wherein they had to switch back to a non-inhibited task (CBA switch 

sequence), and wherein they had to repeat the same task they performed on the previous trial (AA no-

switch sequence). 
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Methods 

 

Participants 

 

20 healthy subjects with a mean age of 26.3 years (s.d. 3.64; 12 women) participated in the study. All 

participants reported normal or corrected-to-normal vision, no history of neurological or psychiatric 

disorders, and no ongoing medication. They all were naïve to the aims of the study. The sample size 

was defined through power analysis, using a medium to large partial eta2 of 0.2 for the higher order 

interaction and a power of 0.90 to increase the chance of replicability. 

The study was approved by the Ethics Committee of the Department of Psychology at the Sapienza 

University and conducted in accordance with its policies. All participants provided written informed 

consent. 

 

Procedure 

 

Task cues were black geometrical frames (a square, a diamond, and a circle) with a size of about 6 

cm by 6 cm, centrally presented on a grey background. Stimuli were digits from 1 to 9, except for the 

digit 5 that was never presented. Each digit was about 2 cm in height and 1cm in width, and was 

centrally presented, superimposed on the task cue. 

Participants performed three different numerical judgment tasks: a magnitude task, requiring 

participants to indicate whether the digit was smaller or larger than five; a parity task, requiring 

participants to indicate whether the digit was an odd or an even number; and a position task, requiring 

participants to indicate whether the digit was centrally or peripherally positioned along the number 

line (3, 4, 6, and 7 were considered central digits; 1, 2, 8, and 9 were considered peripheral ones). The 

magnitude task was cued by the diamond, the parity task by the square, and the position task by the 

circle. 

Participants responded by pressing the A key of a standard QWERTY keyboard to the smaller-than-

5, even, and centrally positioned digits, and with the L key to the larger-than-5, odd, and peripherally 

positioned digits. Participants were tested individually in a dimly lit testing room. The cues and the 

stimuli were centrally presented on a 17-inches computer monitor (refresh rate: 60 Hz) placed 60 cm 

from the participant. The experiment was programmed in E-Prime on a computer running the 

Microsoft Windows XP operating system. 
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Instructions about the tasks, the cue-task associations, and the category-response associations were 

displayed on the screen and verbally detailed to each participant at the beginning of the experiment. 

The experiment consisted of four blocks of 96 trials each. On each trial, the task cue was presented 

first. After 600 ms, the stimulus was presented over the task cue. Participants were required to respond 

to the stimulus as fast as possible, according to the task rules indicated by the task cue. In case of an 

error, an auditory error feedback was provided for additional 50 ms. Error feedback was also provided 

for reaction times slower than 2500 ms. The experiment started with the participant pressing the space 

bar. 

Task sequences were pseudo-randomized with the constraints of having approximately 100 ABA 

switch trials, 100 CBA switch trials, and 100 AA no-switch trials. No-switch trials were included as 

a control condition, as we expected the tDCS to selectively affect performance on switch trials (ABA 

and CBA) and not on no-switch trials, and also to reduce potential expectancy-related effects due to 

having only switch trials. 

 

Transcranial direct current stimulation 

 

In three separated task-switching sessions one week apart, all participants underwent three different 

right anodal/left cathodal stimulation conditions: frontal, parietal, and sham tDCS during the task 

performance (online stimulation). In the frontal stimulation condition the anode was placed over the 

right dorsolateral prefrontal cortex (F4 according to 10–20 EEG International System) whereas the 

cathode electrode was placed over the left dorsolateral prefrontal cortex (F3). In the parietal 

stimulation condition the anode was placed over the right parietal site corresponding to P4 and the 

cathode electrode over P3. In the sham condition, electrodes placement was the same of the frontal 

condition. Session order was randomized across participants. 

During the two active sessions, a direct current of 1.5 mA was induced by two saline-soaked circular 

sponge electrodes (3 cm diameter, density 0.2 mA/cm2) and delivered by a battery-driven constant 

current stimulator (BrainStim E.M.S., srl Bologna, Italy) with a fade in/fade out ramp of 45 s. In the 

sham condition, the stimulation only involved the fade in/fade out phase and 2 seconds of stimulation. 

 

Results 

 

Mean individual reaction times (RTs) and error rates (ERs) were analyzed in a 3 X 2 repeated 

measures ANOVA design using Stimulation (frontal, parietal, and sham) and Sequence (ABA 

and CBA) as independent variables. The first block was considered as practice and excluded 
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from the analyses. Only ABA and CBA task sequences with correct responses on trials n, n– 1, 

and n– 2 were included in the RTs analyses. One participant was excluded from the analyses 

because of poor task accuracy and extremely slow RTs (percent of correct responses was more 

than two standard deviations below the group mean and the RTs average was more than two 

standard deviations above the group mean in the frontal session). Mean RTs and ERs for all 

the conditions are reported in Table 1. 

For RTs data, the ANOVA revealed a significant main effect of the Sequence (F(1, 18) = 12.987, p 

= 0.002, ηp 2 = 0.419), showing slower RTs for sequences ABA (846 ms) compared to CBA (810 

ms), indicating that a significant n − 2 repetition costs occurred. The main effect of the Stimulation 

was not significant (F(2, 36) = 0.576, p = 0.567). Importantly, the Sequence by Stimulation interaction 

turned out to be significant (F(2, 36) = 4.137, p = 0.024, ηp2 = 0.187), indicating that the n-2 repetition 

cost was modulated by the tDCS. Specifically, Duncan post-hoc tests revealed that the RTs were 

significantly shorter during the right anodal/left cathodal tDCS of the prefrontal cortex than during 

the sham stimulation on both the ABA (p = 0.025) and CBA sequences (p = 0.004). This indicated 

that tDCS over the frontal cortex affected the performance on trials where participants switched back 

to an inhibited task set as well as where they switched to a non-inhibited tasks. Furthermore, Duncan 

post-hoc test also showed that the RTs on the CBA sequences during the right anodal/left cathodal 

tDCS of the parietal cortex were not significantly different from those observed during the sham 

stimulation (p = 0.535). Interestingly, the RTs on the ABA sequences during the right anodal/left 

cathodal tDCS of the parietal cortex were significantly shorter than those of the ABA sequence during 

the sham stimulation (p = 0.027). This indicated that tDCS over parietal cortex affected selectively 

the performance on trials where participants switched back to an inhibited task. To further specify 

tDCS modulation of performance we also tested for change in the size of the n-2 task repetition cost 

in a one-way ANOVA according to the stimulation condition (Sham, Frontal a nd Parietal; see Fig 

1). The significant effect of the stimulation condition (F(2,36) = 4.137, p = 0.024) revealed that there 

were no significant differences between the n-2 task repetition cost under the sham and frontal tDCS 

(51 and 62 msec, respectively; p = 0.668 Duncan test). Importantly, the n-2 task repetition cost during 

parietal tDCS (- 7 msec) was significantly different from the n-2 task repetition cost during both sham 

(51 msec) and frontal (62 msec) tDCS (parietal vs sham: p = 0.031; parietal vs frontal: p = 0.015). 

This indicated that the right anodal/left cathodal tDCS of the parietal cortex significantly reduced the 

n-2 task repetition cost. 

We also analyzed the effects of tDCS on the repetition trials in a one-way ANOVA in order to ruled 

out the hypothesis that tDCS affected the performance in an unspecific way, for instance by globally 

reducing or increasing the RTs regardless of the switch or repetition requirements. Results revealed 
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that RTs were the same on sham, frontal and parietal tDCS (F(2, 36) = 0.695, p = 0.505), indicating 

that tDCS had no effects on no-switch trials. 

The ANOVA on mean individual error rates did not reveal any significant main effect or interaction 

(Stimulation: F(2, 36) = 1.372, p = 0.266; Sequence: F(1, 18) = 1.323, p = 0.265; Stimulation X 

Sequence: F(2, 36) = 0.101, p = 0.903), indicating that the accuracy was the same regardless of the 

type of stimulation and the type of task sequence. 

 

 

 

 

 

 

 

 

Discussion 
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In the present study we investigated whether applying right anodal/left cathodal tDCS over the 

dorsolateral prefrontal or parietal cortices improves the ability of overcoming persistent task 

inhibition during task switching. 

Results revealed that right anodal/left cathodal tDCS of the dorsolateral prefrontal cortex did not 

affect the ability of overcoming persistent task inhibition. Indeed, tDCS of the prefrontal cortex 

determined a general improvement when a task switching was required compared to when the same 

task was repeated, but the size of this improvement was the same either when re-engaging an inhibited 

task, and thus the previous inhibition had to be overcome, or when switching to a task that did not 

suffer from previous inhibition. Importantly, right anodal/left cathodal tDCS of the parietal cortex 

improved the performance selectively when re-engaging a previously inhibited task, without affecting 

the performance when switching to a task that did not suffer from previous inhibition, eliminating the 

n-2 task repetition cost completely (Fig 1). 

This suggests that the parietal cortex has a role in overcoming persistent inhibition of a previously 

executed task when re-engaging it. Of importance, neither the frontal nor the parietal tDCS affected 

the performance on the no-switch trials, indicating that the effects of the tDCS over the prefrontal and 

parietal cortices did not determine a general performance modulation, but selectively influenced the 

processes involved in task set switching. The findings that prefrontal stimulation improved the task 

switching ability and that this improvement equally affected the performance when switching to a 

non-inhibited task as well as when re-engaging an inhibited task (without affecting no-switch trials) 

support the idea that the prefrontal cortex has a role in cognitive control processes involved in task 

set switching, and they are consistent with previous imaging and ERPs studies. The role of prefrontal 

cortex in task switching has been largely documented (see Worringer et al., 2019 for a review), and 

neuroimaging studies have shown prefrontal activations across a variety of stimuli and paradigms 

(see Kim et al., 2012 for a meta-analysis). The lateral PFC activity has been frequently interpreted as 

reflecting transient cognitive control operations associated with task switching, such as the 

endogenous task-set reconfiguration (Sohn et al., 2000). Indeed, the prefrontal cortex has been 

suggested to exert top-down control to maintain or to update task representations (Yeung et al., 2006; 

Desimone and Duncan, 1995; Miller and Cohen, 2001). Importantly, the present findings suggest that 

the role of prefrontal cortex is not selectively related to the ability of overcoming persistent task 

inhibition. Although caution is necessary when comparing findings from different techniques, this 

result appears inconsistent with the fMRI result reported by Dreher and Berman (2002), who found 

that the right lateral prefrontal cortex was more activated when switching back to a task recently 

performed compared to a task less recently performed. However, methodological differences exist 
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between the experimental procedure used by Dreher and Berman (2002) and our present procedure 

that may explain the different results. For instance, the experimental procedure used by Dreher and 

Berman (2002) involved the presentation of triplets of tasks that were constructed with the constraints 

of having only three possible task sequences, namely the ABA, CBA and BAA, instead of a 

randomized sequence of tasks. Presenting stimuli in specific triplets allowed to maximize the 

occurrence of task sequences that are relevant for the intended comparisons (e.g., ABA and CBA) 

but it could incidentally induce implicit expectancy about the identity of the upcoming task or about 

the sequence of task presentation. For instance, due to the heuristic of representativeness (Tversky 

and Kahneman, 1974), in a situation where three tasks are possible and the tasks are presented in 

separated triplets of trials, people may judge on each triplet the CBA sequence as more probable than 

the ABA sequence of tasks. This may induce participants to expect the CBA triplets more than the 

ABA triplets or to expect a n-2 task switching (i.e., CBA) more than a n-2 task repetition (i.e., ABA). 

If that were the case, the ABA task sequence would also represent a violation of an implicit 

expectancy and thus, the prefrontal activation reported by Dreher and Berman (2002) could reflect an 

expectancy-related effect. Consistent with this hypothesis, evidence has been recently provided that 

internally generated predictions about the likelihood of a change in task demand are represented in 

dorsolateral prefrontal cortex (Jiang et al., 2018). In the present study, this type of expectancy-related 

effects can be ruled out because, unlike the procedure used by Dreher and Berman (2002), we used a 

cued-task switching procedure where the occurrence of a task cue on each single trial informed 

participants about the identity of the upcoming task before each stimulus presentation and without 

uncertainty; most importantly, each trial was presented one after another and in a randomized order 

of task presentation, so that the effects that incidentally may induce the occurrence of specific 

sequences of tasks can be controlled for. 

Crucially to the goal of the present study, right anodal/left cathodal tDCS of the parietal cortex 

improved the performance only when re-engaging in a task that has been recently inhibited, without 

affecting the performance when switching to a task that did not suffer (or suffered less) of previous 

inhibition. This suggests that the parietal cortex has a specific role in overcoming task set inhibition 

during task switching. Prior findings provide support to this idea. The parietal cortex has been found 

to be consistently activated during task switching (compared to task repetition) in fMRI studies 

(Braver et al., 2003; Crone et al., 2006; Dove et al., 2000; Liston et al., 2006; Sohn et al., 2000; Yeung 

et al., 2006; Le et al., 1998; Rushworth et al., 2001). A common region of the superior parietal lobule 

has been also identified as a source of cognitive control during shifts between perceptual, mnemonic, 

and rule representations, indicating that the parietal lobe plays a domain-independent role in the 

instantiation of a new task set (Esterman et al., 2009). This domain-independent feature is what would 
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be required to a brain structure that is supposed to be involved in inhibitory control and that operates 

at the level of the whole task set representation rather than on individual stimulus or response features. 

The superior parietal cortex was also found to be more active for bivalent than for univalent stimuli 

(Crone et al., 2006), that is when stimuli elicit multiple competing tasks, and the need for inhibition 

is strong, than when stimuli are uniquely associated with a single task and there is no task interference 

and, thus, no need of task inhibition. The domain-independent feature, together with the high neural 

activity for bivalent stimuli strongly suggests the parietal cortex as a potential candidate for hosting 

neural population involved in overcoming persistent task inhibition. 

Converging evidence to the involvement of parietal cortex in task inhibition also comes from 

electrophysiological studies. An increased negativity at parietal sites has been reported when 

switching back to a recently executed task than when switching to a less recent task (Sinai et al., 

2007; Zhang et al., 2016). More generally, the hypothesis that the parietal cortex is involved in 

overcoming task inhibition during task switching fits well with findings showing the involvement of 

parietal cortex in conflict resolution (e.g., Liston et al., 2006). For instance, the neural activity in 

posterior parietal cortex has been shown to vary with a physiologic index of conflict in competing 

processing neural pathways and to predict an enhanced behavioral adjustment (Liston et al., 2006). 

However, cognitive and neural processes that mediate the overcoming of inhibition remain largely 

unclear. Evidence exists that task inhibition can be observed when interference between competing 

task sets occurs at the stimulus processing level (e.g., Arbuthnott and Woodward, 2002; Hübner et 

al., 2003; Sdoia and Ferlazzo, 2008) as well as when it occurs at the response level (e.g., Schuch and 

Koch, 2003; Gade and Koch, 2007). Several studies suggest that posterior parietal cortex is 

anatomically well suited to detect stimulus conflict (e.g., stimuli eliciting multiple tasks), as it 

receives input from the extrastriate visual cortex and sends projections to lateral prefrontal cortex 

(Wise et al., 1997). Previous studies have also emphasized a role for posterior parietal cortex in 

facilitating goal-directed attention to task-relevant aspects of a visual stimulus (Corbetta et al., 2000; 

Corbetta and Shulman, 2002). Thus, overcoming task inhibition could be mediated by biasing 

attention processes toward the current stimulus set, enhancing processing of task-related stimulus 

dimensions. Alternatively, the parietal cortex may support overcoming of inhibition by enhancing 

control over response-related features of the task set, for instance by enhancing representations of 

category-response rules (e.g., Philipp et al., 2013). 

Evidence for involvement of parietal cortex in representations of stimulus-response associations or 

action rules do exist (Philipp et al., 2013; Brass and von Cramon, 2004). However, parietal cortex has 

been also involved in stimulus categorization (e.g., Liston et al., 2006). Since in our present procedure 

the task conflict occurred at both stimulus and response level (i.e., stimuli could elicit all the three 
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possible tasks and the same motor responses were used for all the three possible tasks) it is not 

possible here to disentangle whether the role of parietal cortex in overcoming persistent inhibition is 

related to stimulus processing or to response-selection. Future studies could investigate whether 

frontal and parietal tDCS differently affect stimulus-related and response-related aspects of task 

inhibition. 

One limiting factor of the current study was that on-line changes of neural activity in prefrontal and 

parietal cortex were not directly assessed during tDCS. This leaves open the possibility that tDCS 

also affected neural activity of other cortical regions. 

In summary, our results show that experimentally-induced alterations of neural activity via right 

anodal/left cathodal tDCS of the dorsolateral prefrontal cortex and parietal cortex modulates 

performance during task switching, supporting previous observations about the involvement of both 

parietal and frontal cortex in cognitive control of task set. Importantly, right anodal/left cathodal tDCS 

of the parietal cortex improves performance only when switching back to a recently inhibited task 

and that thus requires previous inhibition to be overcome. 

Right anodal/left cathodal tDCS of the prefrontal cortex improves performance during task switching 

in general, either when re-engaging in a inhibited task or when engaging in a noninhibited task, thus 

without affecting the ability to overcome task inhibition. This suggests a different contribution of 

prefrontal and parietal regions in task switching, with parietal cortex being selectively involved in 

overcoming persistent inhibition and prefrontal cortex being more generally involved in the control 

of task set during task switching. 
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The impact of stimulus format on task inhibition during cued task switching 

  

 

Abstract 

 

Inhibiting mental representations of tasks that are no longer relevant is essential for an optimal 

adaptation of behavior in a rapid-changing environment. However, switching back to recently 

inhibited tasks is more demanding than switching to a less recently inhibited task (i.e., backward 

inhibition). Such mental representations are named task-sets, representing stimuli-response 

associations bound to contextual information. Although backward inhibition is assumed to operate 

on task-sets, it is not currently known if it acts on a conceptual/abstract representation of task-sets’ 

meaning or on low-level objects’ properties. Then, we addressed this question by implementing a 

typical task-switching paradigm with three different tasks, manipulating the stimulus format (Arabic 

or verbal numbers) in the N-1 task without changing its meaning. In two experiments, we found that 

N-2 repetition costs are eliminated if the stimulus format in the N-1 task changed, suggesting that 

backward inhibition occurs when interference is detected between overlapping object properties. 

Furthermore, our results supported the idea that stimulus processing plays a pivotal role in inhibitory 

mechanisms in a cued task-switching environment. 

 

 

Introduction 

  

Switching between tasks requires to inhibit mental representations of the previous task demands and 

to activate representations of the new task demands. The inhibition of the executed task remains active 

for a while so that when the inhibited task-set must be re-activated shortly after, the need to overcome 

residual task-set inhibition leads to behavioral costs. In task-switching paradigms, where participants 

must perform three different tasks sequentially, an N-2 task repetition cost can arise. That has been 

demonstrated by showing that switching back to a task that has been executed very recently (e.g., A-

B-A task sequences) is more demanding than switching back to the task that has been executed a less 

recently (e.g., C-B-A task sequence). Interestingly, this form of inhibition (also known as backward 

inhibition; Mayr and Keele, 2000) is assumed to act on high-level mental representations, such as the 

whole task-set, rather than on low-level perceptual features of stimuli (Tipper, 2001) or motor 

responses (Logan, 1994). The peculiarity of backward inhibition has intrigued the psychological 
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scientific community, making the N-2 repetition cost a broad interest phenomenon in cognitive 

control research. 

Recently, the N-2 repetition cost has been subject to investigations aimed at clarifying the causes and 

processes underlying backward inhibition and the necessary conditions for the phenomenon to occur 

or be influenced by. 

For instance, literature has shown that task-set inhibition is modulated by many factors, including the 

preparatory interval in trial N-1, the response-cue interval (RCI), the cue type, and the overlapping of 

stimuli and/or responses. Instantly, transparent cues that provide a clear link to the upcoming task and 

the to-be applied response significantly reduced n−2 task repetition costs (Gade and Koch, 2014). 

Differently, N - 2 task repetition cost has been observed under bivalent stimuli (overlapping stimulus 

sets) and not under univalent stimuli, that is when stimuli univocally afford only one of the possible 

tasks (non-overlapping stimulus sets) (Costa and Friedrich, 2012). Conversely, N-2 repetition cost 

has been found when the same task-set might be instantiated by two different cues, reporting no 

differences between a cue-switch (a-B-A) and a cue-repetition (A-B-A) (Altmann, 2007; Gade and 

Koch, 2008). Moreover, longer CTIs (Cue-Target Interval) lead to stronger inhibition (Scheil and 

Kleinsorge, 2014). Instead, prolonged RCIs produced small costs (Grange and Houghton, 2009; Koch 

et al., 2004; Mayr and Keele, 2000) and large costs when the preceding interval was very short (Gade 

and Koch, 2005), suggesting that strong residual activation of the preceding task triggers strong 

inhibition and that trial-by-trial conflicts are much more responsible for the mechanisms underlying 

backward inhibition than passive temporal decay. Indeed, sequential modulations of trials’ 

dimensions have been largely fruitful in observing modulations of task-set inhibition. Generally, 

manipulations at the stimulus/response level (i.e., when the task-set must be applied) in the N-1 task 

have been shown to reduce or eliminate the N-2 repetition cost. For instance, when participants in the 

N-1 trial were required to not respond (Schuch and Koch, 2003; Philipp et al., 2007), to make an 

unspecific response (e.g., double-press; Schuch and Koch, 2003), to produce a covert response in a 

motor imagery task (Scheil et al., 2019), to perform a univalent task (Gade and Koch, 2007), or to 

solely encode a univalent stimulus (Sdoia and Ferlazzo, 2008), inhibition was not triggered and no 

need to overcome it was present (no difference between A-B-A and C-B-A sequences). 

Then, evidence indicates that a sort of overlapping at the level of the stimuli and/or responses (e.g., 

the different tasks share the stimuli or the responses) or between-task interference due to stimuli 

affording more than one task is necessary for inhibition to be triggered, suggesting that backward 

inhibition occurs in case a conflict is detected (Koch et al., 2010; Houghton et al., 2009). 
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Here, we further investigated the boundaries conditions of stimulus overlapping (or interference) 

under which task inhibition occurs. Specifically, we aimed to investigate the impact of stimulus 

format on the inhibition of competing task-sets during cued task switching. 

The role of stimulus format on task inhibition during task switching has never been investigated, 

though it is informative regarding the underlying nature of the task-set and its cognitive 

representation. For instance, it is informative about the processing level at which task inhibition does 

operate (e.g., semantic) or whether a high- or low- level representation of task stimuli is included in 

the task-set (e.g., semantic or perceptual, respectively).  

Stimulus overlapping might produce interference at many different levels of information processing. 

For instance, overlapping or interference can occur at a high-level stimulus processing, such as the 

semantic level, or a more low-level stimulus processing, such as the perceptual or sensorial level. 

Stimuli that have the same meaning might produce task interference regardless of the sensory input 

or the format they are presented (semantic overlapping). I.e., stimuli can have the same meaning 

despite the difference in the sensorial input (visual vs. auditory) or the format (digit vs. word number) 

they are presented. Differently, stimuli must have the same perceptual code for inhibition to be 

triggered, such as they must have the same format (perceptual overlapping). For instance, 

dissociations for brain areas subtending the processing of verbal and Arabic numeral codes have been 

found (Skagenholt et al., 2018). 

The present study’s goal was to investigate the differential effect of stimulus format on task inhibition 

as assessed as the N-2 task repetition cost. Specifically, we aimed at assessing whether inhibition of 

the previous task-set is triggered during a cued switching of task despite the change of stimulus format 

between the previous and current tasks.  

To this aim, we manipulated the sequence of tasks (ABA vs. CBA) in order to assess the basic N-2 

task repetition cost together with the stimulus format on trial N-1 (digit - D vs. word - W), which 

could be the same or not as the stimulus format of the trial N-2 and N, resulting in a 2 (ABA and 

CBA) X 2 (DDD vs. DWD) experimental design. 

If inhibition of the interfering task-set is triggered regardless of the perceptual code or stimulus format 

(e.g., symbolic or verbal) of the two competing task-sets, then the transition from A to B (AB) should 

trigger the same amount of inhibition than the transition from A to b (Ab). That should result in the 

same amount of N-2 task repetition cost when switching back to the inhibited task regardless of the 

perceptual code of the triggering stimulus (ABA vs. AbA). On the other hand, if the inhibition of the 

interfering task-set is only triggered when the perceptual code is the same on the current and the 

interfering task-set, then the transition from A to b should trigger a less amount of inhibition (or 

trigger no inhibition at all) than the transition from A to B. Conversely, that should result in a reduced 
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or even abolished N-2 task repetition cost when switching back to the inhibited task regardless of the 

perceptual code of the triggering stimulus (ABA vs. AbA). 

Note that regardless of whether the format of the target stimulus was a digit (“3”) or a number word 

(“three”), the stimulus itself remained bivalent as it could afford each of the three possible tasks 

equally, meaning that the stimulus set remained overlapping even if the stimulus format changed. 

  

  

Experiment 1 

  

Methods 

  

Participants 

  

Thirty students (females = 14, mean age = 22.93, s.d. = 3.2) were recruited at the Faculty of 

Psychology of Sapienza University of Rome to participate in the study. All participants had a normal 

or corrected-to-normal vision. They all were naïve to the aims of the study and provided written 

informed consent. The study was approved by the Ethics Committee of the Department of Psychology 

at Sapienza University. 

  

Procedure 

  

Participants performed a cued switching task (similar to ones used in many previous studies). In each 

of the 570 trials, a task cue appeared at the center of the screen. Task cues were black geometrically 

shapes (a square, a diamond, and a circle) with a size of about 6 cm by 6 cm. Stimuli were numbers 

from 1 to 9 (except for the number 5) presented as digits or as their relative Italian words (e.g., “3” 

or “TRE”). After 600 ms from the cue presentation, the stimulus was presented, and the cue 

disappeared. Stimuli had a height of about 2 cm, with a width of about 1 cm for digits, whereas words 

ranged from a width of about 3 cm for the shortest number words (e.g., “SEI”) to a maximum of about 

9 cm for the longest number word (“QUATTRO”). Participants had to respond to the target by 

pressing the key “A” or “L” over a standard QWERTY keyboard according to the current task-cue 

rule with their left or right index finger, respectively. Each of the three possible cues corresponds to 

a rule: the square cued a parity task (press “A” for even, “L” for odd numbers); the diamond cued a 

magnitude task (press “A” for smaller, “L” for numbers greater than 5); the circle cued a position task 
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(press “A” for centrally, “L” for peripherally numbers positioned along the number line; 3,4,6, and 7 

were considered central numbers). 

The cues and the stimuli were black and centrally presented over grey background. The task was 

programmed in E-Prime 2.0 and was ran on a 17-inches computer monitor (refresh rate: 60 Hz) placed 

approximately 60 cm from the participant. 

Instructions about the task were verbally provided and displayed on the screen to each participant 

before the experiment. 

The task consisted of three blocks of 190 trials each. A trial started with the presentation of a task-

cue. After 600 ms, the cue disappeared, and the stimulus was presented over it. Participants were 

required to respond as fast and accurately as possible. If participants made an error or took longer to 

respond (> 2500 ms), auditory error feedback was provided for an additional 50 ms. After the 

participant’s response, the stimulus disappeared, and the next cue was presented with 200 ms of blank 

interval. 

Stimuli in the 25% of trials were presented as number words. We will refer to capital letters for the 

trials with the dominant code (digits in the present experiment) and lowercase letters for the infrequent 

code (number words in the present experiment). Task sequences were randomly intermixed for each 

participant with the constraints of having approximately 65 trials each for ABA, CBA, AbA, and CbA 

switch conditions, and AA repetition trials. Repetition trials were included as a control condition and 

to reduce potential expectancy-related effects due to having only switch trials. In addition, the 

randomization makes it possible to have approximately 40 trials each for ABa, CBa, aBA, and cBA 

switch conditions. Triplets of tasks were not explicit to participants in order to avoid any expectancy 

effects.  

Participants performed 72 practice trials. The practice trials were constructed in this way: 30 digit-

trials (10 for each task, non-intermixed), 30 mixed digits/words trials (75% / 25%) (10 for each task, 

non-intermixed), and 12 trials (4 for each task) wholly intermixed. If necessary, participants repeated 

the practice phase for a maximum of one additional time. 

  

Results 

  

We removed from the analyses three subjects since they presented a very high inverted N-2 repetition 

cost. 

Mean individual reaction times (RTs) and error rates (ERs) were analyzed in a 2 X 2 repeated 

measures ANOVA design using the task sequence (ABA and CBA) and the stimulus format on trial 
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N - 1 (i.e., digit vs. number word, respectively - DDD vs. DWD) as independent variables. Task 

sequences in which an error occurred on trials N, N − 1, or N − 2 were excluded from RTs analyses. 

For RTs data, the ANOVA revealed non-significant main effects of the sequence (p > 0.05). 

Importantly, the sequence by stimulus format interaction was statistically significant (F1, 26=15.3888, 

p < 0.001, partial eta squared = 0.37). Post-hoc test showed that RTs were significantly slower on 

ABA than CBA sequences on digit triplets, revealing an N-2 task repetition cost of 53 msec. Most 

important to the purpose of the present experiment, RTs on ABA sequences were significantly faster 

in the context of a change in stimulus format from Digit to Word from trial N-2 to N-1 (DWD) than 

when stimulus format remained a digit (DDD; 924 vs. 966 vs. msec, respectively; p < 0.01). Also, 

RTs on ABA sequences in the context of a change in stimulus format from trial N-2 to N-1 (DWD) 

did not differ significantly from RTs on CBA sequence when a change in stimulus format occurred 

(p > 0.05) (Figure 1).  

Together these results indicated that when a change in stimulus format occurred in the context of a 

task switching, the inhibition of the abandoned task is not triggered, and switching back to the 

abandoned task after a change of stimulus format (AbA) is easier than when stimulus format remained 

the same (ABA), as indicated by the fact that N-2 task repetition cost was abolished. 

Participants responded significantly faster on digit than word trials (936 vs. 1019 msec, respectively; 

F1, 26=81.1839, p < 0.0001). Note that in the present experiment the 75% of the task stimuli consisted 

of digits (e.g., “7”), and the remaining 25% were number words (e.g., “seven”). 

Mean accuracy was 85.6%. The ANOVA on mean individual error rates did not reveal any significant 

main effect or interaction (p > 0.05) 

Participants responded significantly faster to parity and magnitude tasks (905 and 925 msec) than to 

position task (1043 msec; F2, 52=14.5681, p < 0.0001). RTs were also significantly faster on task 

repetition trials (AA, 750 msec) than both ABA and CBA trials (963 and 946, respectively; F2, 

52=107.1811, p < 0.0001). Subjects were slower in switching from a number to a word trial (1008 

msec) than from a word to a number (943 msec) and from a number to a number (941 msec) 

(F2,52=25.6202, p < 0.0001). 

We also directly tested whether the N-2 task repetition costs observed in the two format conditions 

(change or not) were significantly different from zero: results revealed that when the stimulus format 

did not change, the N-2 task repetition cost was significantly different from zero (t26= 3.84, p<0.001) 

while it did not when the format changed from trial N-2 to N-1 (t 26 = -1.14, p=0.26). 
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Figure 1. Mean reaction times for ABA and CBA trials in each of the two format conditions in Experiment 1. Error 

bars denote standard errors. 

  

  

  

Experiment 2 

  

Intending to control the possibility that eliminating the N-2 repetition cost in the format change 

condition (AbA-CbA) was not dependent upon a worse performance when participants are engaged 

in word trials, in Experiment 2, we replicated Experiment 1 by reverting the proportion of trials. 

  

Methods 

  

Participants 

  

Thirty students (females = 19, mean age = 22.42, s.d. = 3.24) were recruited at the Faculty of 

Psychology of Sapienza University of Rome to participate in the study. All participants had normal 

or corrected-to-normal vision. They all were naïve to the aims of the study and provided written 

informed consent. The study was approved by the Ethics Committee of the Department of Psychology 

at Sapienza University. 

  

Procedure 
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The task and the procedure were identical to the ones in Experiment 1. The only difference is in the 

proportion of trials: in this case, word-trials were 75% of the total trials. Thus, here the dominant code 

is the word and the digit the infrequent one. 

  

Results 

  

Five participants were excluded from the analyses since they presented a very low accuracy (less than 

70%). The pattern RTs for the three different tasks was similar to the pattern observed in Experiment 

1. Participants responded significantly faster to the parity and the magnitude tasks (979 and 1038 

msec) than to the position task (1161 msec; F(2, 48)=17.5217, p<0.0001). RTs were also significantly 

faster on task repetition trials (AA, 869 msec) than on ABA and CBA trials (1061 and 1042, 

respectively; F2,48=56.935, p < 0.0001). 

The mean RTs on word trials did not differ from the mean RTs on digits trials (1053 and 1059, 

respectively (p>0.05). Reaction times when switching between trials was not significantly different 

among the number to word, word to number, and word to word switch trials (p > 0.05). 

Importantly, the 2 (Sequence) X 2 (Format) ANOVA revealed non-significant main effects of the 

sequence F1,24=0.34900, p=0.56 or stimulus format (Current effect: F1,24=1-3828, p=0.25116) but a 

significant sequence by stimulus format interaction (Current effect: F1,24=7.6445, p=0.01, partial eta 

squared = 0.24). Duncan post-hoc test showed that RTs were significantly slower on ABA than CBA 

sequences on the same format trials (1083 and 1033, respectively, p = 0.03), revealing an N-2 task 

repetition cost of 50 msec. Crucially, RTs on the ABA sequences were significantly faster for the 

change format triplets (WDW) than for the same format trials (WWW, 1026 vs. 1083 msec, 

respectively; p = 0.01). Also, on the change format condition, RTs on ABA sequences (WDW) did 

not differ significantly from RTs on CBA sequences regardless a change in stimulus format occurred 

(p = 0.17) or not (p = 0.725979) on CBA triplets (Figure 2).  

We also tested whether the N-2 task repetition costs were significantly different from zero in the two 

format conditions (change or not): results revealed that when the stimulus format did not change, the 

N-2 task repetition cost was significantly different from zero (t24= 2.29, p=0.031142) while it did not 

when the format changed from trial N-2 to N-1 (t24= -1.43, p=0.164752)  

Mean accuracy was 84.1%; The ANOVA on mean individual error rates did not reveal any significant 

main effect or interaction (p > 0.05). 

These results are similar to those from Experiment 1 and indicate that when the stimulus format 

changes from one trial to the next, the competitor task’s inhibition is not triggered. 
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Figure 2. Mean reaction times for ABA and CBA trials in each of the two format conditions in Experiment 2. Error 

bars denote standard errors. 

   

  

  

  

Combined Analysis of Experiments 1 and 2 

  

Results were consistent across the Experiment 1 and 2 in showing that the typical N - 2 task repetition 

cost was abolished when the stimulus format changed during the task transition from trial N - 2 to 

trial N - 1.  

To test potential differences between experiments 1 and 2, we ran a combined ANOVA on mean RTs, 

including Experiment as a factor. The 2 (Experiment) X 2 (Sequence) X 2 (Format) ANOVA revealed 

a significant main effect of the experiment (Current effect: F1, 50=5.034, p=.03, partial eta-squared = 

0.09) due to RTs being significantly faster on Experiment 1 than on Experiment 2. The Sequence X 

Format interaction was also significant (Current effect: F1, 50=20.778, p< 0.0001, partial eta squared 

= 0.29). This interaction was evidenced in both Experiment 1 and 2 and showed that RTs on the ABA 

sequence were significantly slower than RTs on the CBA condition only on the same format condition 

(1022 and 971 msec, respectively, p < 0.001), revealing an N - 2 task repetition cost of 51 msec. 

Conversely, ABA RTs of the change format condition were as fast as those of the CBA sequence of 

the same format condition (p = 0.84) and even faster than CBA RTs of the change format condition 

(p = 0.02). Importantly, the Experiment by Sequence by Format interaction was not statistically 

significant (Current effect: F1, 50=0.003 , p=0.95), indicating that the pattern of results was consistent 

across the experiments (Table 1). 
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Table 1. Mean reaction times in Exp. 1 and 2 for ABA and CBA trials and the mean N-2 repetition 

costs in each format condition. 

 

 

 

 

Discussion 

  

  

The present study addressed the impact of stimulus format on task inhibition during cued task-

switching. Specifically, we investigated if changes in stimulus code (verbal and Arabic numbers) in 

the trial N-1 might reduce or eliminate the N-2 repetition cost, to increase knowledge about the 

processes that govern backward inhibition. Indeed, such manipulation can give indications about the 

possibility that backward inhibition operates at a high-level (e.g., semantically), or low-level specific 

features trigger it. In two experiments, we observed that perceptual changes of stimulus format (i.e., 

at low-level), despite the maintenance of the same meaning (high-level), is enough for the backward 

inhibition not to occur, even if the change was from verbal to Arabic code (Exp. 1) or vice-versa 

(Exp. 2). 

As the literature on backward inhibition has shown (Schuch and Koch, 2003; Philipp et al., 2007; 

Scheil et al., 2019; Gade and Koch, 2007; Sdoia and Ferlazzo, 2008), our results are consistent with 

the evidence that manipulations in the N-1 task at the stimulus level are able to eliminate N-2 

repetition cost compared to conditions in which such changes have not been implemented. However, 

these studies have mostly required participants to perform a qualitatively different task in N-1, such 

as inhibiting the response, producing a double-press or a covert response, performing a univalent task, 

or merely encoding the stimulus. In the present work, there were no changes in tasks, and no different 

goals were cued in experimental conditions: just changing stimulus properties is enough to eliminate 

the N-2 repetition cost. 

More importantly, our results highlighted that task-set inhibition does not operate on general 

representations linked to conceptual meanings of stimuli-response associations. Notwithstanding, 

interference at target dimensions such as stimulus format is necessary for the N-2 repetition cost to 

occur.   

ABA CBA N-2 rep. cost ABA CBA N-2 rep. cost

Same 965.96 (34.4) 913.13 (34.93) 52.83 1082.91 (35.75) 1033.4 (36.3) 49.51

Different 924.66 (37.71) 950.07 (37.98) -25.41 1026.12 (39.19) 1056.84 (39.47) -30.71

Experiment 1 Experiment 2N-1                    

Target Format
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Target stimulus’ dimensions, such as perceptual features, are bound together with cues’ codes, goals, 

and responses, into an object (Kahneman et al., 1992) or event (Hommel, 2004) file. Recent evidence 

(Kowalczyk and Grange, 2020; but also, Mayr, 2002) has suggested that episodic retrieval 

mechanisms of these files are responsible for much of the N-2 repetition cost. Indeed, when the event 

file of the N-2 task matches the one in the N task, the cost is reduced or absent, while the N-2 repetition 

cost is typically observed when there is an episodic mismatch in one or more features between the 

two. Current research has highlighted that cue-, stimulus-, and response-related interference might 

explain behavioral costs in cued task-switching, highlighting the complex interplay between episodic 

interference and inhibitory processes underlying backward inhibition and task-switching in general. 

Therein, in the present study, we manipulated the stimulus format of the N-1 task. Since we left 

randomized the stimulus-response sets in the N-2 and N task (i.e., the N-2 repetition sequences in the 

two Format conditions are balanced between N-2 episodic matches and mismatches), our results do 

not indicate that task-preparation and episodic retrieval played a role in the observed effects. 

Incidentally, results suggest that pure task preparation is not sufficient to trigger task inhibition. 

Otherwise, inhibition costs would have appeared in the format change condition too. Instead, since 

our manipulation regards the N-1 trial, an episodic mismatch occurs in each switch of the sequence 

(from N-2 to N-1, and from N-1 to N trials). Thus, our results might be related to task-set inhibition 

in the first switch (N-2 to N-1), which does not occur or is less robust than in episodic matches. 

Consequently, the overcome from that inhibition in the second switch (N-1 to N) became more 

facilitated due to the weakest inhibition in the previous trial.  

Also, the effects of episodic retrieval of task-set due to the stimulus format can be ruled out because 

the infrequent format did appear on each of the three different tasks with the same frequency and 

AbA (or CbA) represents a theoretical N-2 task repetition occurring for each of the tasks. Moreover, 

the format was not associated with a specific task. Similarly, the cues’ format remained the same 

across trials so that cue-related task-set retrieval processes cannot be a source for the observed effects. 

However, the role of preparatory processes in backward inhibition has produced various findings. 

Recent evidence arguing for the role of cue-related processes in task-switching performance is 

growing (Gade and Steinhauser, 2020), and further research to disentangle preparatory and inhibitory 

processes is required. 

Another possible explanation is that observed effects are exerted by repetition priming mechanisms 

of the precedent task-set. Indeed, since the code in each of the two sequences (AbA and CbA) 

switches from b to A pro-active interference might be less strong, and less inhibition might be 

required than in switch sequences where the stimulus format does not change (ABA and CBA). 

However, if it was the case, we should have been observed a faster performance in switch trials (BA) 
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with a format change (both Arabic to verbal code and vice-versa) than in switch trials with no format 

change (verbal to verbal and Arabic to Arabic format), due to less proactive interference. We found 

only in experiment 1 increased RTs when switching from numbers to words, but not from words to 

numbers, compared to numbers to numbers. Indeed, we were confident in excluding such an 

interpretation. 

The present findings supported the task-set application view (Schuch and Koch, 2003; Los and Burg, 

2010), which argued that the task-set application triggers inhibition and the switching cost (and the 

N-2 repetition cost) is the behavioral outcome of that inhibition. Indeed, when competing 

representations of task-sets in working memory are activated with the target onset, which has been 

recently performed and inhibited, it requires more effort to gain access to working memory. However, 

the paradigm used is not able to punctually disentangle if the present results might be interpreted as 

an effect on the triggering of inhibition (switching to the b task does not inhibit the A task) or to the 

recovery from that inhibition (after a b task is easier to recall the A task set than after a B task). 

Further research on this point is needed.  

According to our results, task-sets competitions do not interfere if stimulus codes change. Task-set 

inhibition seems not to operate at a conceptual, high-level, but are embedded into specific low-level 

objects’ properties. Accordingly, previous studies have found that parietal regions, which are 

traditionally involved in conflict monitoring and detection of stimuli categories and properties 

(Corbetta and Shulman, 2002; Liston et al., 2006), are specifically involved in backward inhibition 

(Sdoia et al., 2020; Zhang et al., 2016; Sinai et al., 2007).  

In a recent model, task-sets lie in a procedural component of Working Memory (Oberauer, 2009). In 

their view, a task-set is a stimulus-response mapping representation specific for a confined set of 

conditions, able to automatically exert a cascade of responses (like a “prepared reflex”; Hommel, 

1998) when in the declarative component of Working Memory (through attention) that specific 

condition is represented. Regarding backward inhibition, it is conceivable that the update of 

procedural WM when switching back to a recently inhibited task (ABA) requires more effort due to 

inhibitory mechanisms that occur on the application of precedent task-sets. However, it is not known 

if these inhibitory mechanisms affect general meaning representations or exact properties of stimulus 

features. Following our results, stimuli targets, and in general objects representations, are embedded 

into task-sets not only by their meaning but by their specific (perceptual) properties. In this context, 

the same-meaning/different-format stimuli seem to be rather embedded into different and not 

interfering task-sets, on which inhibitory processes are not triggered since they are not “competitors” 

for the dominant code. 
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Intriguingly, our results suggest that backward inhibition processes appear to act on verbatim rather 

than on gist mental representations (Reyna et al., 2012). According to the Fuzzy-Trace Theory 

(Brainerd and Reyna, 2001), information can be stored independently but parallelly as a gist (i.e., 

meaning-based intuitive information regardless precise consideration of stimuli) and/or as verbatim 

(i.e., exact, superficial, and symbolic representation of the stimulus) representation. In the cued task-

switching paradigm implemented, individuals might use verbatim and gist representations to perform 

the three tasks. Indeed, participants must recognize meanings of digits/numbers and then compare 

them (e.g., “6” or “six” is greater than “5”). Intriguingly, when the format changes in N-1, individuals 

must use the same gist (e.g., in the magnitude task, “6” requires the same response than “six”, since 

they have the same meaning) but with a different verbatim exact representation (e.g., the number 6 is 

different from the word “six”). Interestingly, since in task sequences successive trials may present the 

same (e.g., “6” and “4”) or different (e.g., “6” and “four”) format, verbatim representations may 

overlap. The same verbatim representation in successive trials (number/number or word/word) may 

produce interference, whereas different representations (number/word or word/number) do not. Then, 

recall (i.e., overcome the inhibition of) the N-2 task-set can be facilitated when such interference has 

not been produced. It is worth noting that specific format facilitation is excluded since we observed 

the same effects reverting, in Exp 2, the control and experimental conditions of the Exp 1 (by 

manipulating the proportion of numeral and verbal format trials). 

In conclusion, our findings highlighted that task-set inhibition in cued-task-switching paradigms does 

not act at a high, conceptual level, but changes in perceptual dimensions, such as the stimulus format, 

are sufficient for inhibition to not occur. These findings supported the view that preparatory processes 

alone are not fully responsible for N-2 repetition cost and that stimulus level processing, in the sense 

of task-set application, plays a pivotal role in task-switching.  
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Cue- and target-related mechanisms interact to overcome backward inhibition: an ERP study. 

 

 

Abstract 

 

Inhibition of task-sets allows for the flexible contextual adaptation of cognitive processes. However, 

performing a task that has recently been inhibited requires stronger effort than switching to a task that 

has been less recently performed. In a cued task-switching paradigm, both cue-related preparatory 

and post-target reconfiguration processes have shown to play a role in both the triggering of and 

overcoming from the backward inhibition effect. In the present work we aimed at advancing evidence 

on the differential roles of cue- and target-related processes by combining a task-switching procedure 

with a Go/NoGo task and recording electrophysiological activity for the analysis of event-related 

potentials. N-2 repetition trials showed a reduction in the cue-locked P2 and a target-locked P3 

enhancement. That dual pattern of effects appears to be dependent on the overcoming from backward 

inhibition, since when the previous task was a NoGo trial the sequence effects in both ERPs and RTs 

were not observed. Our results suggest that the post-target stage is essential for the triggering of 

inhibition and that cue- and target-related mechanisms reflect additive and compensatory task-set 

activation/reconfiguration processes crucial for the overcoming from backward inhibition. 

 

Introduction 

 

Switching between tasks is a complex ability requiring fine cooperation of cognitive mechanisms to 

guarantee a flexible and optimal adaptation of individuals to the environment. Literature has 

extensively shown that inhibitory mechanisms are the foundation of this ability, which may be 

uncovered and studied in multiple-tasks experimental procedures. Indeed, when individuals are asked 

to switch back to a recently performed task (A-B-A sequences), their reaction times are slower than 

when they must switch to a less recently performed one (C-B-A sequences). This difference has been 

named N-2 repetition cost, known as the behavioral index of a backward inhibition mechanism. 

Essentially, the N-2 repetition cost reflects the more effort spent by individuals to overcome an 

inhibition triggered in the switch between the N-2 and N-1 trial. Theoretically, backward inhibition 

indicates a high-level inhibition over task sets, i.e., the internal sets of goals, stimuli dimensions, and 

task-specific stimulus-response associations (Mayr and Keele, 2000; Monsell, 1996). However, 

multicomponent accounts of task-switching (Mayr and Kliegl, 2003) advocated that task-set 

reconfiguration (Rogers and Monsell, 1995), based on top-down updates of task-set representations, 
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and task-set inertia (Wylie and Allport, 2000), relying upon bottom-up proactive mechanisms, may 

interact in producing task-switching performance. A behavioral combined with Event-Related 

Potentials (ERP) research (see Karayanidis and Jamadar, 2014) has shown that not only both 

proactive (cue-related preparatory mechanisms) and reactive (related to post-target interference) 

control processes may account for task-switching costs (switch-repeat trials’ RTs), but also their 

interaction. Additionally, proactive and reactive control processes are not unitary but consist of 

different components that must be disentangled. Since the task-switching paradigm, and its variations, 

allows for the investigation of the cue-, target-, and response-related mechanisms, it represents an 

excellent way to investigate inhibitory processes underlying human cognitive flexibility and task-set 

updating. 

Unlike switch-cost, N-2 repetition cost allows for the investigation of switch-sequence effects (ABA 

vs. CBA trials), allowing testing how proactive and reactive control processes interact, what roles the 

inhibition triggering and overcoming play in this interaction, and at what level (task-set or stimulus 

processing). Backward inhibition has been found to occur in every case cognitive control detects a 

conflict during the task performance, which may occur at every stage of information processing 

(Houghton et al., 2009; Koch et al., 2010). Instantly, temporal and spatial characteristics of cues may 

modulate the BI (e.g., Druey and Hübner, 2007; Grange and Houghton, 2009; Arbuthnott and 

Woodward, 2002) even though research using neither 2:1 mappings, univalent stimulus/response 

associations nor task identity responses did not find evidence for these modulations (Altmann, 2007; 

Gade and Koch, 2008; Regev and Meiran, 2017; Prosser et al., 2020). Similarly, stimulus- and 

response-related manipulations of the N-1 stimulus have shown to eliminate the BI (Schuch and 

Koch, 2003; Philipp et al., 2007; Gade and Koch, 2007; Sdoia and Ferlazzo, 2008; Koch et al., 2010). 

Despite the number of studies, the specific role of each stage is still uncleared. 

Koch et al. (2010) advocated that BI has to do with trial-by-trial conflicts in task-processing, relating 

temporal decay of inhibition and lateral suppression’s mechanisms of task-sets. Indeed, research 

manipulating Response-Cue Interval (RCI) has found that prolonged intervals reduced N-2 repetition 

cost (Grange and Houghton, 2009; Koch et al., 2004; Mayr and Keele, 2000), especially in the switch 

between N-2 and N-1 trials (Gade and Koch , 2005). The trial-by-trial account is strengthened by 

findings obtained in studies manipulating the Cue-Target Interval (CTI; Gade and Koch, 2008; 

Schuch and Koch, 2003; Mayr and Keele, 2000), evidencing that N-2 repetition cost is not reduced 

with more preparation. However, interactive effects are showed when manipulations regarded N-2 

and N-1 trials or the abstractness of cues (Scheil and Kleinsorge, 2014). It is worth noting that for 

task-switching increasing preparatory intervals results, instead, in a substantial reduction of switch 

costs, even though residual switch costs remain presumably related to carry-over interference effects. 
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However, how these mechanisms interact in producing N-2 repetition costs is not still understood. 

One limitation of behavioral studies of backward inhibition is that they rely upon unidimensional 

measures (i.e., reaction times and error rates), often reducing the two prominent conditions of BI 

paradigms (ABA and CBA sequences) into one single measure (the N-2 repetition cost), not allowing 

for a detailed investigation of changes that may happen within trials’ processing stages. Indeed, since 

behavioral data from task-switching paradigms allow for the analysis of the final product of these 

multiple processes, i.e., RT costs, other techniques are necessary for the investigation of specific 

hypotheses. ERP research has provided several intriguing results in task-switching literature due to 

its ability to temporally inspect cognitive processes in a trial-by-trial and a stage-by-stage fashion. 

Most results showed evidence for a larger switch-related P3 for cues and the opposite effect for 

targets, reflecting the more effort spent in task-set updating and the weaker target-rule matching in 

switch compared to repeat trials (Karayanidis and Jamadar, 2014; Han et al., 2018). Other 

components have also been shown to be modulated by task-set shifting, as N2, related to monitoring 

processes, P2, reflecting the perceptual activation of stimuli, and pre-target negativity, accounting for 

preparatory processes (Karayanidis and Jamadar, 2014). 

Unfortunately, only a couple of studies investigated ERPs in backward inhibition. Sinai et al. (2007) 

found increased response-locked negativity over parietal sites and an earlier onset of the lateralized 

readiness potential. Moreover, they found an enhanced P3 cue-locked activity over centroparietal 

sites in ABA compared to CBA sequences. Additionally, the response- and cue- locked effects they 

have found were associated with high- and low- interference sequences, respectively, with behavioral 

data showing significant differences between ABA and CBA trials in high interference condition 

only. The authors have discussed the results suggesting a role of attentional mechanisms in the 

sequential ability to switch from non-dominant to dominant task (low interference) during preparatory 

cue-related processes; differently, in a high interference condition, BI is suggested to occur after 

response selection, when the overcome of inhibition is finalized. 

Instead, Zhang et al. (2016) found that BI trials exhibited a larger post-target N1 at parietal and centro-

parietal sites than control trials, suggesting that more robust attentional allocation is required re-

activate recently inhibited tasks and overcome backward inhibition. However, Zhang et al. did not 

find any effect on the N2 and P3 post-target components. Even though the two ERP studies came to 

the same conclusions, i.e., that BI trials require strong attentional effort, the former found the effect 

at cue-locked ERPs and on later stages (P3) while the latter at stimulus-locked and at an earlier 

component (N1). Moreover, the difference between the paradigms, such as the different sequential 

manipulations and/or, more substantially, the different CTIs (1130 ms and disappearance of the cue 

at target’s presentation in Sinai et al.; 100 ms and no cue disappearance at target’s presentation) may 
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have strongly affected results. In addition, Zhang et al. (2016) implemented a task-switching 

paradigm in which one of the three tasks was univalent (a double-press), comparing ABA and DBA 

sequences, neglecting possible effects of the non-overlapping of responses. Other studies (Giller et 

al., 2019a; 2019b; Wolff et al., 2018; Zink et al., 2019a; 2019b) which used the same task as in Zhang 

et al. (2016), reported that mostly at early stages processes involved in suppressing task-irrelevant 

information at the target level (P1/N1 components at inferior-frontal gyrus) are modulated in BI 

trials. Finally, the possibility that both cue-related top-down mechanisms and target-related bottom-

up processes may coexist and observed depending on the paradigm used.  

In this framework, we hypothesized that the interaction of dissociable cue-related preparatory and 

target-related associative processes, as reflected in ERP components, are needed to exert N-2 

repetition cost. To do so, we used a CTI of 600 ms already used in previous studies (Sdoia et al., 

2020) to give participants a reasonable but not excessive time to shift task-sets and observe any 

variations in event-related potentials. Additionally, we used a fixed RCI interval of 200 ms given 

precedent evidence has shown that the time-course of backward inhibition reaches its peak with about 

200-300 ms time window after the response has provided (Scheil and Kleinsorge, 2014). 

Since N-2 repetition cost is exerted in trial-by-trial modulations of conflict interferences, we 

hypothesized that these components should not be observed when the preceding task-set is not 

inhibited. Following the literature, we expect not to find any behavioral and related 

electrophysiological indication of the occurrence of backward inhibition when N-2 and N-1 tasks do 

not require an overt response. Moreover, our experimental set allows for the visualization of ERPs 

component in Stop trials to have a more precise picture of the consequences of the backward 

inhibition’s resolution even in the absence of an overt response.  

 

 

 

 

Methods 

 

Participants 

 

Twenty-nine Leiden University’s students were enrolled to participate in the study. Participants were 

required to be between 16 and 35 years old, and to not have never received a diagnosis of 

neurological/psychiatric diseases. Two of them were excluded due to technical issues in the EEG 

recording. Three additional participants were successively removed from the analyses due to low 
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accuracy (less than 75%) at the behavioral task. The final sample consisted of 24 participants (age: 

mean = 20.29, s.d. = 2.76; 3 males; 5 left-handed). Participants received SONA credits as 

compensation for their participation. The study was approved by the Psychology Research Ethics 

Committee of the Institute of Psychology at the Leiden University and conducted in accordance with 

its policies and with the Declaration of Helsinki. All participants provided written informed consent. 

  

Behavioral task 

 

Participants performed a standard three-tasks switching paradigm. At the beginning of each trial a 

cue (with a size of about 6 cm by 6 cm) was presented, followed by an imperative stimulus after 600 

ms. The stimuli might be digits from 1 to 9 except the number 5. The cues were geometrical shapes 

and were informative of the task participants must accomplish at the presentation of the imperative 

stimulus (the digit). A square cued a parity task (odd or even), a diamond cued a magnitude task 

(smaller or bigger than 5), and a circle cued a centrality task (centrally or peripherally positioned 

along the number line; central digits were 3-4-6-7). Participants had 2500 ms to respond to the 

imperative stimulus pressing with their index fingers on button boxes attached to the two chair arms. 

Left responses were required for odd, smaller than 5, and central digits, right responses for the 

opposite dimensions. If participants made an error or take longer to respond a 50 ms acoustic feedback 

was provided. After the participant’s response, the stimulus disappeared, and the next cue was 

presented after 200 ms of blank interval. Both cues and stimuli were black and centrally presented 

over a grey background. The task was programmed in E-Prime 3.0 and was ran on a 24-inches 

computer monitor (refresh rate: 60 Hz) placed about 60 cm from the participant. 

In approximately 25% of total trials, a NoGo/Stop signal was presented informing participants that 

they must try to inhibit their response. The NoGo/Stop signal was a clear reduction of the cue/digit’s 

width and the font wast turned to italic, and might be presented simultaneously with the cue (i.e., the 

cue is directly presented as a “NoGo Cue”), simultaneously with the stimulus (i.e., the digits is directly 

presented as a “NoGo target”), or after 200 ms the presentation of the digit (i.e., the digits is presented 

as a Go target but turned to a NoGo target after 200ms, a condition we referred as “Stop target”).  

Task sequences were randomly intermixed for each participant with the constraints of having 

comparable amounts of (we will refer to NoGo/Stop trials with lower letters and to Go trials with 

capital letters): ABA, CBA, AbA, and CbA switch sequences; AbA, CbA, ABa and CBa switch 

sequences for each time of NoGo/Stop signal presentation (“NoGo Cue”, “NoGo Target”, and “Stop 

Target”). Triplets of tasks were not explicit to participants, and task repetitions (AA) were allowed 

for about the 5% of trials to reduce possible expectancy effect.  
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Twelve blocks of 96 trials each were administered, providing a totality of 1152 trials. Between each 

block participants were allowed to take a short break, without standing up from the chair. 

 

EEG data acquisition and pre-processing 

 

Electroencephalographic (EEG) activity was measured with active BioSemi electrodes over 32 

positions: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, 

CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, POz, O1, Oz, and O2. Six additional external electrodes 

were positioned over the left and right outer canthus (horizontal ocular activity), above and below the 

right eye (vertical ocular activity), and over the left and right mastoid. Monopolar recordings were 

referenced to the common mode sensor (CMS) and drift was corrected with a driven right leg (DRL) 

electrode (for details see http://www.biosemi.com/faq/cms&drl.htm). EEG activity was recorded 

with a sampling rate of 512 Hz. Offline analyses were performed with Brain Vision Analyzer. Linear 

derivations of electro-oculogram (EOG) signals were calculated for horizontal and vertical ocular 

activity. 

EEG raw data was down-sampled to 256 Hz and re-referenced to the mastoids. Data was filtered 

through a 0.1 Hz (order 4) high-pass, 30 Hz (order 4) low-pass, and a 50 Hz notch filter. Then, a 

target-locked segmentation was applied (± 800 ms), and an Infomax Independent Component 

Analysis was run for ocular correction. Cue- and target-locked segments (from -200 to +800) were 

generated and baseline (-100 to 0) was subtracted. A maximal allowed voltage step of 10 µV/ms and 

a Max-Min difference of 100 µV were set for artifact rejection. Segments were then differentiated 

per condition and averaged.  

 

Residue Iteration Decomposition (RIDE) 

 

The large inter-trial and inter-subject variability in the latency of late ERP components is a paramount 

problem in ERP research. Indeed, traditional average-based methods usually provide strongly blurred 

measures of ERP, especially their late components.  

Residue Iteration Decomposition (RIDE; see Ouyang et al., 2011; 2015; 2016) has been implemented 

to encompass this issue. 

RIDE is a technique aimed at decomposing ERPs waveforms into stimulus-locked (S) and response-

locked (R) clusters, which latencies are locked to stimulus- and response-onsets. 

Importantly, RIDE allows for the extraction of a central cluster (C), nor stimulus- or response-locked, 

which latency is assumed to be highly variable within trials and within subjects, accounting for inter-

http://www.biosemi.com/faq/cms&drl.htm
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trial and inter-subjects differences in ERPs high-order cognitive control components (such as the P3) 

primarily involved in task-set reconfiguration processes. Using stimulus-onset, response times, and 

components latencies, (estimated through iterative cross-correlative processes), RIDE firstly remove 

the S and R and then estimate the C cluster. The decomposition, distinguishing the three clusters, 

gives the opportunity to work on these clusters separately. 

In the present work, the S cluster is estimated between 0 and 500 ms from stimulus-onset, the C 

cluster between 100 and 800 ms from stimulus-onset, and R components between -300/+300 from 

response-onset. Since cues do not require a subsequent response and RIDE gives opportunity to 

choose what clusters, in addition to the S, can be estimated, R components have been calculated only 

in target-locked ERPs except for the NoGo/Stop trials where no response was required. 

RIDE was conducted using the appropriate MATLAB toolbox and following the developers’ manual 

(http://cns.hkbu.edu.hk/RIDE.htm).  

 

ERPs analyses 

 

After visual inspection of individual- and grand-averages and consistently with previous literature on 

ERPs in backward inhibition (Sinai et al., 2007), we chose to focus on the mid-line central position 

(Cz) for statistical analyses except for late components in R clusters and in NoGo/Stop trials that we 

measured at the mid-line frontal site (Fz). 

After RIDE decomposition, cue-locked S cluster revealed an N1 (interval: 70-170 ms) and a P2 (180-

240 ms) components, whereas C cluster showed a P3 (230-320 ms) and a N4 (400-570 ms) 

components. Same components were extracted from S and C clusters in target-locked ERPs (70-130 

ms, 160-260 ms, 250-400 ms, and 450-650 ms for N1, P2, P3, and N4 components, respectively). For 

target-locked ERPs we have also measured a late positivity (LP) component (500-800 ms) in the C 

cluster of NoGo/Stop trials. Instead, target-locked R components showed a late positivity (480-680 

ms). Mean amplitudes for each components’ interval were calculated. 

Furthermore, lateralized-readiness potentials (LRPs) were measured. Response-locked segments 

were generated on the pre-processed EEG data from -800 to +100 ms and baseline (-800 to -600 ms) 

was corrected. LRPs were calculated by averaging the differences between the grand-average 

contralateral to the response and the ipsilateral in C3 and C4. Jackknife resampling was applied for 

the measurement of LRP onsets (Miller et al., 1998; Ulrich and Miller, 2001), determined as the first 

value exceeding the 50% of the most negative peak in each subsample. 

 

Procedure 

http://cns.hkbu.edu.hk/RIDE.htm
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Participants came to the lab and signed the informed consent. They removed earrings, bracelets, and 

any metal accessory. Participants were required to sit comfortably over the chair in front of the screen 

and were prepared for the EEG montage. After the electrode positioning, the task's instructions were 

orally provided and displayed on the screen. Participants were asked to stay as still as possible during 

the performance and informed that they could relax during each block's short breaks. Participants 

underwent thirty practice trials. The experimenter made sure participants understood the instructions 

and, in need, administered other practice trials. After the task performance, participants were properly 

cleaned and debriefed.   

 

Results 

 

Behavioral task 

 

Mean individual reaction times (RTs) and accuracy were analyzed in a 2 X 2 repeated measures 

ANOVA design using Sequence (ABA and CBA) and NoGo Condition (Go, NoGo-1) as independent 

variables. Task sequences in which an error occurred on trials N, N − 1, or N − 2 were excluded from 

RTs analyses. The analysis of accuracy failed to reveal any significant difference (p > 0.05 for all 

effects). Differently, the ANOVA on RTs revealed a significant Condition by Sequence interaction 

(F1,23=4.3325, p = 0.048, partial eta2 = 0.16). Both the main effects of Sequence and Condition were 

non-significant (p > 0.05). Duncan’s post-hoc tests showed a significant difference between ABA and 

CBA trials in the Go Condition (p < 0.01), between ABA in the NoGo-1 and CBA in the Go condition 

(p < 0.01), and between CBA in the NoGO-1 and CBA in the Go condition (p < 0.01), but no 

statistically significant difference between ABA and CBA in the NoGo-1 condition (p>0.05) (Figure 

1). 
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Figure 1. Mean RTs for ABA and CBA task sequences in Go/NoGo conditions. Error bars denote standard errors. 
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Mean individual RTs and accuracy for the NoGo-1 condition were also analyzed in a 3x2 repeated 

measures ANOVA design, using NoGo Timing (CueNoGo, TargetNoGo, TargetStop), and Sequence 

(ABA, CBA) as independent variables. The ANOVA on accuracy revealed no significant difference 

(p>0.05 for all effects), whereas the ANOVA on RTs only revealed a significant main effect of NoGo 

Timing (F2,46=4.9737, p = 0.01, partial eta squared = 0.18). Specifically, participants responded 

significantly slower in the TargetStop (mean= 847.70, s.d. = 36.94) and in the TargetNoGo (mean = 

851.76 s.d. = 36.51) conditions than the CueNogo (mean = 808.39 s.d. = 30.84) condition when the 

NoGo trial was the N-1, as revealed by Duncan’s Post-Hoc tests (p < 0.01 and p = 0.01, respectively).  

Finally, mean individual accuracy for NoGo/Stop trials was analyzed in a 3 x 2 repeated measures 

ANOVA design, using NoGo Timing (CueNoGo, TargetNoGo, TargetStop) and Sequence (ABA, 

CBA) as independent variables. The ANOVA showed a significant main effect of NoGo Timing (F 

2,46=37.07, p < 0.0001) due to a lower accuracy observed when participants are engaged in a Target 

Stop trial (mean = 0.83 s.d. = 0.02) compared to the optimal performance in TargetNoGo and in 

CueNoGo conditions (mean=0.97 s.d. = 0.01 and mean = 0.99 s.d. = 0.003, respectively). The 

ANOVA showed neither a significant main effect of Sequence nor for the interaction (p > 0.05). 

 

 

ERPs 
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As behavioral data, mean amplitudes at site Cz were analyzed in 2x2 repeated measures ANOVA 

designs. Go/NoGo condition (Go, NoGo-1) and Sequence (ABA, CBA) were treated as independent 

variables. 

 

Cue-locked ERPs 

 

The cue-locked S and C cluster, and the reconstructed ERPs after RIDE are displayed in Figure 2. 

For the S cluster of cue-locked ERPs, the ANOVA on the N1 component revealed a significant main 

effect of Condition (F 1,23 = 6.38314, p = 0.01, partial eta squared = 0.22) due to a reduced negativity 

in the NoGo-1 condition (mean = -1.997 μV, s.e. = 0.39 μV) compared Go (mean = -2.774 μV, s.e. = 

0.51 μV) condition. Main effect of Sequence and the interaction were both non-significant (p > 0.05). 

Differently, the ANOVA on the P2 component revealed again a significant main effect of Condition 

(F1,23 = 11.26303, p < 0.01, partial eta squared = 0.33) and a significant interaction of Condition x 

Sequence (F1,23 = 9.07377, p < 0.01, partial eta squared = 0.28), while the main effect of Sequence 

was not significant (p = 0.06). The main effect of Condition was due to an increased positivity in the 

NoGo-1 condition (mean = 0.411 μV, s.e. = 0.37 μV) compared to the Go (mean = -0.736 μV, s.e. = 

0.34 μV) condition. Duncan’s post-hoc tests on the interaction showed a significant difference (P < 

0.001) in all but for the ABA vs. CBA in the NoGo-1 condition comparison (Figure 3 and 4).  

To investigate why the NoGo-1 condition exhibited no P2-related Sequence effects, we further 

analyze P2 mean amplitudes in a 3x2 repeated measures ANOVA design, using NoGo Timing 

(CueNoGo, TargetNoGo, TargetStop), and Sequence (ABA, CBA) as independent variables. We 

observed a significant main effect NoGo Timing (F2,46 = 22.65577, p < 0.0001, partial eta squared = 

0.49), showing a progressive reduction in amplitude from the CueNoGo to the TargetStop conditions 

(mean = 1.03 s.d. = 0.41, mean = 0.57 s.d. = 0.53, and mean = -0.93 s.d. = 0.43 for CueNoGo, 

TargetNoGo, and TargetStop conditions, respectively). No other significant effects were showed (p 

> 0.05) 
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Figure 2. Cue-locked reconstructed ERP, S cluster, and C cluster waveforms at Cz. 

 

 

 

 

Figure 3. Mean amplitudes for P2 in cue-locked S cluster ERP. Error bars denote standard errors. 
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Figure 4. Topography evolution of ABA-CBA difference waves for cue-locked P2 in S cluster (range -1.5/1.5 

microVolts) in the Go (above) and NoGo-1 (below) conditions. 

 

 

 

 

As regards the C cluster, the ANOVAs on the P3 and the N4 components did not reveal any significant 

effect (p > 0.05 for all effects).  

 

 

Target-locked ERPs 

 

The cue-locked S and C cluster, and the reconstructed ERPs after RIDE are displayed in Figure 5. 

For the S cluster of target-locked ERPs neither N1 nor P2 components revealed significant differences 

in the ANOVAs (p>0.05). 

Conversely, for the C cluster, the P3 component revealed no significant main effects (p > 0.05) but a 

significant Condition by Sequence interaction (F1,23 = 4.67913, p = 0.04, partial eta squared = 0.17). 

Specifically, P3 in ABA trials was more pronounced than in CBA trials in the Go condition only 

(Duncan’s post-hoc tests: p = 0.05) (Figure 6 and 7).  

Finally, the N4 component revealed a significant main effect of Sequence (F1,23 = 4.709272, p = 0.04, 

partial eta squared = 0.17) evidencing a stronger negativity for ABA compared to CBA trials (mean 

= 0.12 s.d. = 0.43 and mean = 0.99 s.d. = 0.43 for ABA and CBA trials, respectively). No significant 

main effect of Condition nor the interaction were significant (p > 0.05). 

As in cue-locked ERPs, we have further analyzed the peculiarity of NoGo Timing sub-conditions in 

a repeated-measures ANOVA 3x2 design, using NoGo Timing (CueNoGo, TargetNoGo, 

TargetStop), and Sequence (ABA, CBA) as independent variables. No significant effects were 

showed for both P3 and N4 were observed (p > 0.05). 
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Figure 5. Target-locked reconstructed ERP, S cluster, and C cluster at Cz. 

 

  

 

 

Figure 6. P3 Mean amplitudes in the C cluster of target-locked ERP. Error bars denote standard errors. 
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Figure 7. Topography evolution of ABA-CBA difference waves for target-locked P3 in C cluster (range -1.5/1.5 

microVolts) in the Go (above) and NoGo-1 (below) conditions. 

 

 

 

 

 

 

For target-locked C cluster we have also analyzed at Fz a late positivity (LP) component in 

NoGo/Stop trials in a 3x2 repeated measure ANOVA design, using NoGo Timing (CueNoGo, 

TargetNoGo, TargetStop) and Sequence (ABA,CBA) as independent variables. At Fz, participants 

exhibited (Figure 8) a stronger late positivity in CBA than ABA trials (main effect of Sequence: F1,23= 

4.31201, p = 0.049, partial eta squared = 0.16) and a progressively increased positivity from 

CueNoGo to TargetStop conditions (main effect of Condition: F2,46 = 59.06937, p < 0.0001, partial 

eta squared = 0.72). However, the Condition by Sequence interaction was not significant (p > 0.05). 

The reconstructed ERPs, the S, and the C cluster for NoGo/Stop trials are displayed in Figure 9. The 

stronger positivity observed when participants must inhibit the response when the signal was provided 

after the target’s appearance might represent an increased effort spent in inhibiting that response, as 

also manifested in the reduced accuracy in the behavioral task. In addition, even not significant, 

behavioral data report a slight decrease in accuracy for CBA trials compared to ABA stop trials. Even 

if speculative, the reduced positivity observed in ABA sequences might represent the less strong effort 

in inhibiting that response, since an inhibition on that task has already been triggered, compared to 

the CBA trials. 

 



 

115 
 

Figure 8. LP mean amplitudes in target-locked C cluster ERPs in a NoGo/Stop trial. Error bars denote standard errors. 

 

 

 

 

Figure 9. Target-locked reconstructed ERP, S cluster, and C cluster for NoGo/Stop Trials at Fz. 

 

 

Regarding the R cluster, the mean amplitudes of the LP component at Fz were analyzed in a repeated-

measures ANOVA design, using Go/NoGo Condition (Go, NoGo-1) and Sequence (ABA, CBA) as 

independent variables. The analysis failed to find any significant effect (p > 0.05).  

 

 

Lateralized Readiness Potentials (LRPs) 
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LRPs Onsets (Figure 10 and 11) were analyzed in a repeated-measures ANOVA design, with 

GoNoGo condition (Go, NoGo-1) and Sequence (ABA, CBA) as independent variables. Fs were 

corrected according to Ulrich and Miller (2001) (Equation 1), and p values were then recalculated. 

The analysis revealed a non-significant main effect of Condition, a non-significant Condition by 

Sequence interaction (pcorr > 0.05), and a quasi-significant main effect of Sequence (pcorr = 0.069). 

However, the difference between ABA and CBA trials in the Go condition, was larger than the same 

difference in the NoGo-1 condition (Figure 11). Note that since LRPs were response-locked and 

starting from 0 (the stimulus onset), a reduced onset means a delayed response. 

 

Fcorr =
F

ሺn − 1ሻ2
                          ሺ1ሻ   

 

Figure 10. LRPs for the different GoNoGo conditions (left: Go; right: NoGo-1). Continuous lines represent ABA trials, 

dashed lines CBA trials. Grey squares depict the differences in onsets between ABA and CBA trials. 

 

 

Figure 11. Mean difference (ms) between ABA and CBA trials’ LRPs onsets in Jackknifed subsamples at C3/C4. Error 

bars denote standard errors, corrected as in Miller et al. (1998). 
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Our finding is consistent with the one obtained by Sinai et al. (2007) for LRP onsets. The absolute 

differences between ABA and CBA trials in LRP onsets (26.36 ms, calculated on Jackknifed 

subsamples) and in RTs (35.74 ms) are similar and represent the delayed preparatory processes 

occurring in N-2 repetition trials. However, we did not find a significant interaction between 

condition and sequence for LRP onsets even though in NoGo-1 the difference was smaller than in Go 

trials. Presumably, a larger sample size and a greater statistical power would have highlighted such 

interaction. 

 

 

Discussion 

 

Research on the N-2 repetition cost in cued task-switching has extensively shown that several 

processes underlying backward inhibition exist. For instance, literature presents various findings 

aimed at disentangling the differential role of preparatory, cue-related mechanisms, and task-set 

application-, stimulus- and response-related phenomena. To do so, authors have efficaciously 

manipulated tasks’ variables such as the Response-Cue and the Cue-Target intervals (e.g., Gade and 

Koch, 2008; Bao et al., 2006; Schuch and Koch, 2003; Mayr and Keele, 2000, Scheil and Kleinsorge, 

2014; Grange and Houghton, 2009; Koch et al., 2004), several features of cue and target stimuli 

(Altmann, 2007; Gade and Koch, 2008; Gade and Koch, 2014; Druey and Hübner, 2007; Grange and 

Houghton, 2009; Arbuthnott and Woodward, 2002, Arbuthnott, 2005), the stimulus-response 

mappings (Prosser et al., 2020; Regev and Meiran, 2017; Gade and Koch, 2007), or the response 

requirements (Scheil et al., 2019; Sdoia and Ferlazzo; 2008; Schuch and Koch, 2003; Philipp et al., 
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2007). Such manipulations have efficiently shown that inhibitory processes that govern the ability to 

switch between tasks cannot be solely ascribed to, for example, preparatory or applicative processes 

alone but that a mixture of psychological mechanisms are involved. Intriguingly, that mixture of 

mechanisms regards both high- and low-level processes (Ruthruff et al., 2001; Tieges et al., 2007).  

In the present study, we aimed investigating the role of particular processing stages (preparation, 

stimulus processing) combining behavioral and electrophysiological (event-related potentials) 

measures. To inspect if differences in ERP components between ABA and CBA are peculiarly related 

to backward inhibition processes and not to purely sequential effects, we used a standard three-task-

switching paradigm, combined with a Go/NoGo task, as already used in Schuch and Koch (2003) and 

Philipp et al. (2007). Following their results, we hypothesized that, when in the N-1 trial no response 

must be provided, the N-2 repetition cost is abolished. In addition, manipulating the timing of the 

NoGo, we expected different results if participants are asked to stop preparatory or post-target 

reconfiguration processes. 

Consistently with the literature (Schuch and Koch, 2003; Philipp et al., 2007), our results showed that 

the N-2 repetition cost was eliminated when the N-1 trial was a NoGo task. Also, the N-2 repetition 

cost was not observed in the NoGo-1 condition either if the NoGo signal was provided at the 

presentation of the cue, of the Target, or 200 ms after the Target. By previous interpretations of the 

N-2 repetition cost (Koch et al., 2010), our results support the view that stimulus-processing and 

response preparation/execution stages play a major role in the triggering of BI. Indeed, if preparation 

processes alone were enough for the occurrence of the task-set inhibition, we should have observed 

the typical slowing of RTs in ABA trials when the NoGo signal in the N-1 task was given in 

concomitance with or after the target’s appearance. However, since the task-set might require more 

than 200 ms to be reconfigured after the target presentation, our findings cannot precisely disentangle 

target- and response-related roles. 

ERP investigations on backward inhibition are few and implemented different versions of the 

standard behavioral paradigm. For instance, Sinai et al. (2007) have compared episodic and semantic 

switching, while others (Zhang et al., 2016; 2019; Giller et al., 2019; 2020; Wolff et al., 2018; Zink 

et al., 2019) have used a double-press (univalent) as a third task and a very short CSI (100 ms).  

In the present study, ERP results have prominently shown two patterns of effects, consistent with the 

view that backward inhibition is a dual-process involving both cue- and target-related processes. 

Instantly, most important findings in our work showed that sequence effects (ABA vs. CBA trials) 

are modulated by a decreased central positivity for ABA trials for cue-locked waveforms after about 

200 ms the cue-onset, and an increased central positivity for target-locked ERPs after about 300 ms 

the target-onset, reflecting changes in P2- and P3-like components, respectively. Implementing the 



 

119 
 

RIDE technique (Ouyang et al., 2011), we were able to show that those changes occurred respectively 

at the early, stimulus-related and at the later central clusters. 

In task-switching studies, an early switch-related cue-locked fronto-central positivity is reliably 

observed, peaking approximately at 200 ms after cue-onset, which has been suggested to be involved 

in the rapid detection of changes in the upcoming task (e.g., Finke et al., 2012; Karayanidis and 

Jamadar, 2014; De Baene and Brass, 2014).  

In our findings, the N-2 repetition-related reduction of P2 might be explained as the fewer resources 

required by the task-rule to be activated. Indeed, ABA cues might require less strong activation than 

CBA cues, since their representation is still active in working memory. During CBA trials, the N task 

has been less recently performed than the ABA task; then, it entails a stronger attentional 

enhancement for its retrieval. At first glance, this may seem a simple recency effect. Indeed, several 

authors have attributed to switch-costs memory interference processes from the precedent task-sets 

(Wylie and Allport, 2000): if a task has not been recently performed, its goal requires a more robust 

enhancement to be re-activated relative to a recently performed one. However, we are confident in 

excluding such interpretation due to the absence of this sequence effect in NoGo-1 trials. Since ABA 

and CBA sequences did not change in the NoGo-1 condition, we should have expected a similar 

pattern of results for the NoGo-1 condition. Instead, results provide evidence that inhibitory processes 

may affect this early but flexible component: the task-set inhibition triggered at the N-1 task on the 

N-2 task weakened the activation of the task-set during this stage. Intriguingly, research has 

evidenced that the P2, besides underlying stimulus evaluation, also represents a task-relevant rather 

than a general “change detector” (Finke et al., 2012; Gajewski et al., 2008). Our ERPs results did not 

replicate findings from Sinai et al. (2007), which found a reduced/enhanced N2/P3 for backward 

inhibition compared to control waveforms. However, several points should be addressed. First, Sinai 

et al. employed a very long CSI (1130 ms), which may have reduced the need for subjects to prepare 

for the upcoming task rapidly. Secondly, the authors have employed semantic/episodic conditions, 

analyzing alternating triplets of tasks (e.g., semantic-episodic-semantic) in experimental and control 

sequences. Third, since we use the RIDE technique to decompose stimulus-related, central, and 

response-related clusters, it is possible that individual variability might have played a role in hiding 

the effects we found.  

At the opposite, we observed an increased target-locked P3 for ABA trials compared to CBA trials. 

Again, this sequence effect was not observed in the NoGo-1 condition. This N-2 repetition-related 

positivity presumably underly task-set reconfiguration processes that occur during stimulus 

processing. Following traditional accounts of the P3 (Donchin and Coles, 1988), enhancement can be 

interpreted as the more effortful updating processes required in ABA trials, i.e., when the inhibition 
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triggered over the task-set must be overcome. Indeed, it is plausible that switching back to an inhibited 

task requires a stronger effort than switching back to a non-inhibited task. Frequency accounts (e.g., 

oddball) of the P3 enhancement are discarded since the number of ABA, and CBA trials were 

balanced, and the number of task repetitions was kept at a minimum. Similarly to the P2 effect 

arguments, we discarded pure retrieval interpretations (because the effects were not observed for 

NoGo-1 trials) and an implicit expectancy of sequences. Indeed, since P3 has been largely related to 

novelty and surprise effects (Friedman et al., 2001), CBA might be implicitly more expected than 

ABA sequences due to cognitive biases (i.e., the representativeness heuristic; Tversky and 

Kahneman, 1974). However, if no inhibitory processes were present, we should have observed the 

same pattern in the NoGo-1 condition. In addition, novelty and task-switching P3 have been shown 

to share common networks (Barcelò et al., 2006). While Sinai et al. (2007) did not measure target-

locked ERPs, we have already argued that the difference in the paradigms employed in other ERP 

studies of backward inhibition (Zhang et al., 2016; 2017; Giller et al., 2019; 2020; Zink et al., 2019; 

Wolff et al., 2018) make the results not fully comparable. However, these studies found mixed and 

controversial results. 

A combined interpretation of the present findings regards the possibility that the more substantial 

post-target effort in updating the task-set (i.e., the enhanced P3) is a compensatory process generated 

by the weaker attentional engagement during task-set activation in ABA compared to CBA trials (i.e., 

the reduced P2). This evidence may speak in support of a sort of threshold model for the overcome 

from backward inhibition. Task-set inhibition can be triggered at the post-target stage, whereas 

overcoming from that inhibition does reflect cue-related activation and target-related reconfiguration 

processes, operating at different levels on the representation of task-sets.  

Furthermore, we observed other interesting non-interactive effects between Go/NoGo conditions and 

sequence. Instantly, we found stronger cue-locked N1/P2 components when the previous trial was a 

NoGo than it was a Go task. These effects were prominent when the NoGo signal was provided 

simultaneously to the cue. Indeed, in that condition, we assume that the task has not been processed 

at all, and the decrement/increment in N1/P2 components might reflect the detection of changes in 

perceptual cue-related properties and task-set activations occurring in the switch from a NoGo to a 

Go task. In fact, when the NoGo signal was presented later (e.g., simultaneously to the target or after 

the target), the cue was of the same category (Go), and the task-set was activated. 

We also observed a main effect of sequence for the target-locked N4, with increased negativity for 

ABA compared to CBA trials. The N4 waveform has been traditionally linked to semantic processing 

violations and meaning processing (Kutas and Federmeier, 2014; Vachon and Jolicoeur, 2011). 

However, other findings (Hoen and Dominey, 2000; Niedeggen et al., 1999; Barrett and Rugg, 1990) 
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have suggested that the N4 responds to the detection of a rule/sequence violations on a more general 

level, involving also nonverbal stimuli. A subcomponent of the N4 is the centro-parietal N450, which 

is typically found in the Stroop task (e.g., Szűcs and Soltész, 2012; West and Alain, 2000). More 

precisely, N450 is characterized as a negativity in the incongruent-congruent difference potentials 

and represent a marker of stimulus-related conflict detection/resolution processes. Interestingly, our 

findings do suggest that even in the absence of a response in the N-1 task, sequences and conflicts 

might still be processed after task-set reconfiguration. Speculatively, overcoming from inhibition may 

require the combination of reconfiguration (P3) and conflict resolution (N4) mechanisms. However, 

that result requires further investigations. 

In summary, our results speak against a pure retrieval account and support a dual-processes 

interpretation of task-set inhibition. According to the task-set application view of the N-2 repetition 

cost, our findings showed that target processing is essential for the backward inhibition. Both 

behavioral and electrophysiological data support this. Instantly, when the previous task is a NoGo, 

we observed no N-2 repetition cost and no differences in either cue- or target-related ERP 

components. These differences in standard Go runs were prominently reflected in cue- and target-

related ERP components, possibly reflecting an additive and compensatory role of task-set 

activation/reconfiguration processes. 
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CHAPTER 4 

 

Beyond outcomes and probabilities: 

stress and decision-making in controlled and complex environments 

 

 

Decision-making has been one of the research fields most influenced by dual-process theories. 

Particularly, DPTs represented an attractive solution to the problem of finding the source of errors in 

human choices and judgments.  

Making good choices is often of paramount importance for survival and, generally, for well-being. 

However, the right choices (if they exist) are often not immediately available to individuals. Decision-

making processes are quite hard to operationalize. Indeed, they are strictly dependent upon a large 

number of features and dimensions belonging to both the environmental context and the individual 

state, on which rigorous experimental control is not always simple to put. Outcomes, probabilities, 

structures, number of alternatives, time available, but also intentions, goals, motivations, emotions, 

and feelings are just some of the factors that play a pivotal role in determining the strategy used by 

individuals to express preferences, learning from feedback, and use previous experience.  

Decision-making theories roots cover broad aspects of human knowledge, from psychology and 

neuroscience to social sciences and economics. Many attempts to formalize human decision-making 

have been made, especially in the flourishing behavioral economics context.  

Until Simon's bounded rationality (1955), the Von Neumann and Morgenstern's expected utility 

theory (1953) was the primary view in the field, suggesting human rationality. With the rational 

limitations highlighted by Simon (1955), the literature on decision-making has moved toward the 

discovery of biases and heuristics in human rationality and choices. With their Prospect Theory 

(1979), Kahneman and Tversky, revolutionized the idea of human beings as rational individuals, 

evidencing with a formal description that errors in decision-making strategies are systematic rather 

than casual. The limited computational resources move individuals toward the massive use of 

effortless cognitive shortcuts. The adaptivity of these fast and frugal strategies has been widely 

suggested, promoting the mind's view as an adaptive toolbox (Gigerenzer and Todd, 1999).  

Intuitive and rational strategies here partially reflect the automatic-controlled view of cognitive 

processes. Indeed, as described in previous sections, even in the case of decision-making, the 

separated dichotomy is theoretically attractive but not powerfully demonstrated. Individuals are 

undoubtedly capable of making high-speed choices, but also to operate very hard cost-benefit 
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analyses. What are the conditions in which one strategy is preferred over the other? If two different 

systems, networks, or information processing modes exist, what differentiates the two?  

 

 

 

Stressing the control: does control failures necessarily prompt habitual behavior? 

 

Even if it is still not fully clarified how, stress is known to profoundly affect cognition and behavior.  

Since the Selye's discoveries, the stress response has been considered as a non-specific physiological 

response to any kind of stressor (Selye, 1974). Successively, a specificity account has reached more 

consensus: different stressors activate different responses of the same physiological mechanism 

(Pacak and Palkovitz, 2001). For instance, Herman and Culliman (1997) differentiate between 

systemic and processive stressors. Systemic stressors are those generated by an immediate threat of 

physiological nature: these are, for example, a sudden lack of oxygen or an exaggerated temperature 

drop or rise; instead, processive stressors require high-order processing of stimuli. Processive and 

systemic stressors rely upon different neural responses and produce different outputs (Pacak and 

Palkovitz, 2001). 

This dual nature of stressors partially reflects the duality of physiological responses exerted by a 

stressor in the organism, measured by rising levels of catecholamines (such as epinephrine, 

norepinephrine, and dopamine) and glucocorticoids (such as cortisol). The formers are 

sympathomimetic hormones, mainly released by the adrenal medulla and the synaptic terminations 

of both sympathetic and central nervous systems. They give rise to a rapid physiological response, 

aimed at increasing arousal for an immediate fight-flight response to a stressor, by inhibiting all the 

processes not necessary in that situation, such as visceral and digestive activity. Glucocorticoids, 

instead, are hormones released by adrenal glands as a product of the activation of the top-down 

hypothalamus-pituitary-adrenal (HPA) axis, a circuit in which are involved structures related to 

emotional and salient stimuli processing, such as the amygdala and the hippocampus. The hormonal 

response is a slower than the sympathetic one, with a peak 15-20 minutes after the stressor, and a 

recovery (without stressor repetitions) about 60 minutes later. Chronic stress is supposed to 

dysregulate the HPA activity, exerting long-lasting negative consequences for many physiological 

systems, such as the immune and the reproductive systems. 

Behavioral stress responses are known to rely upon the connectivity between the amygdala and the 

prefrontal cortex, specifically the medial prefrontal cortex (mPFC), through the transmission of 

serotonin and GABA (Andolina et al., 2013). Specifically, the mPFC modulates the amygdala 



 

128 
 

responses to environmental salient and emotional stimuli, which has led some authors to 

conceptualize a default stress response normally inhibited by prefrontal activity (Brosschot et al., 

2016). Stress and perceived unsafety may disrupt the normal function of PFC and thus impair the 

amygdala's inhibitory regulation pathway. 

The effects of stress on performance can be described in a cognitive-energetical model, which 

suggests that task performance can be partially saved thanks to high-consuming compensatory 

processes at the cost of latent decrements in other aspects of the cognitive system (Hockey, 1997; 

Mandrick et al., 2016). In general, these decrements have been broadly described as a narrowing of 

attention (Chajut and Algom, 2003; Baddeley, 1972), limitation of working memory resources 

(Shields et al., 2016; Arnsten, 2009; Schoofs et al., 2008; 2009; 2013), and behavior adjustment to 

more habitual and low-effortful strategies (Schwabe and Wolf, 2011; 2013). Traditionally, the 

resource depletion hypothesis is the principal interpretation for adverse effects of stress on cognitive 

performance and prefrontal functions, supported by several confirmatory neuroscientific findings 

(Liston et al., 2009; Qin et al., 2009; Bogdanov and Schwabe, 2016). 

Coherently, stressful events have been found to change neurobiological mechanisms shifting the 

allocation of resources from the executive to a salience network, a change supported by the sharp 

increase in dopamine levels (Hermans et al., 2014), and to impair reward-related activity in PFC 

(Ossewaarde et al., 2011). These effects reflect an imbalance between the functioning of the two 

cognitive systems in a dual processes account (Stanovich and West, 2000; Evans, 2008): stress is 

known to shift cognition from top-down control to bottom-up automatic processing mode (Vogel et 

al., 2016; Möschl et al., 2017), hypothesizing an impairment in explicit memory and an improvement 

in implicit memory (Sandi, 2013), a hypothesis also supported by several neuroimaging studies 

(Arnsten, 2009; Gold et al., 2015). This duality of effects is also explicated in preserved automatic 

functioning, with habit formation processes improved. Skilled individuals suffer less than non-skilled 

ones the effects of stress on performance, a result consistent in the view of automatization of 

processes: novice operators or emergency/novel situations rely upon the use of controlled processing, 

which can be profoundly disrupted by stress (Hancock, 1986). However, several results pointed to 

the beneficial effects of stress on cognitive performance, such as in inhibitory mechanisms (Plessow 

et al., 2011; 2012; 2017), according to the view of narrowed attention against a simplified resource 

depletion hypothesis and promoting the view of a shift within rather than a shift away from control 

strategies. 

Several factors influence how individuals act under stressful situations: in their COPE model, Cohen 

et al. (2016) described a circular relationship between work content, cognition, and action. Work 

content is constituted of goals and task demands: goals are assumed to be organized in a hierarchical 
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manner, where the fit between high-level goals and sub-goals is essential for optimal engagement in 

the task. Task instructions have been found to influence performance. For instance, Plessow et al. 

(2017) found that a repeated reminder of the requested performance strategy mitigates the adverse 

effects of psychosocial stress on cognitive control. Finally, performance scheduling after stress 

experience could exert different effects. For instance, in a risky decision-making task, the delay 

between the stressor and the task was found to induce risk aversion 5 or 18 minutes after stressors 

and risk-taking 28 minutes after (Pabst et al., 2013). Also, short delays were found to impair working 

memory and enhance inhibition while longer delays cause the opposite pattern, suggesting a double-

time effect of rapid non-genomic effects and cortisol secretion's slow genomic effects (Shields et al., 

2015). The COPE model also comprises endogenous intervening factors. Individual emotional state 

and coping strategies (Folkman and Lazarus, 1984) have been largely shown to affect physiological 

stress response and task performance (Ben-Zur, 1999; Janson and Rohleder, 2017). 

Additionally, several studies have described that the cognitive appraisal of a stressful event as a 

challenge or a threat influences motivation and self-efficacy, which can predict better or worse 

performance (Trotman et al., 2018). Finally, stress is known to increase physiological arousal, which 

has been extensively related to cognitive performance. As Keren and Schul (2009) argued, the 

continuum of arousal does not fit well with a continuous or dichotomous theorization of affect in 

DPT. Indeed, it is often assumed that processes relying upon System 1 are "hot" while processes 

relying upon System 2 are "cold". Nevertheless, what does "cold" mean in the arousal continuum? 

The lowest or the mid-point? Alternatively, as Keren and Schul discussed, is an interpretation 

implying affect to be a peculiar characteristic of System 1 reasonable? However, emotional valence 

has shown to have differential effects on cognitive control, showing that pleasure and not arousal 

vary the level of conflict adaptation in a flanker task (van Steenbergen et al., 2010; 2011).  

Evidence shows that the exposure to stress can disrupt the modulatory role of control over habitual 

behavior. Although low-order processes seem to remain intact, if not improved, high order cognition 

is profoundly impaired. However, this impairment seems to be dependent upon factors such as type 

of stressor, timing, affect states, goals, and coping strategies. Additionally, stress has found to affect 

in a different way cognitive functions that are suggested to rely upon overlapping brain structures, 

such as working memory, inhibition, and decision-making. Moreover, different paradigms for each 

cognitive assessment have revealed controversial results.  

The non-unitary nature of stress effects on cognitive control again suggests that the general binary 

view of the controlled and automatic process is not exhaustive in explaining the several interactive 

phenomena. Stress manipulations are useful techniques in the investigation of these interactions, 

aiding in the advances of knowledge of the functioning of the human cognitive system. 
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Decision-making and stress 

  

Assuming the dual nature of the cognitive mechanisms underlying decision-making processes (Dolan 

and Dayan, 2013; Tversky and Kahneman, 1983; Reyna, 2004; Evans, 2008), in line with research 

on reasoning and judgment, stress-related effects are well known to impair analytical in favor of 

habitual strategies of choice.  

The "shift", as it is frequently called, reflects two different primary behavioral outcomes in decision-

making functioning: at one side, the working memory overload, suggesting the decrement in control 

processes, and the augmented saliency of environmental stimuli, revealing an increased tendency to 

process information in a bottom-up fashion. Accordingly, literature has shown that stress: affects 

flexible decision-making, making individuals less sensitive to outcome devaluation (Schwabe and 

Wolf, 2011), increasing the tendency, exacerbated by trait impulsivity, to perseverate choices (Raio 

et al., 2020), reducing model-based learning, with working memory capacity and processing speed 

having a protective role (Otto et al., 2013; Friedel et al.; 2017), and altering reward-related 

dimensions, such as valuation, learning, and risk-taking (Porcelli and Delgado, 2017). At the same 

time, stress is known to alter feedback sensitivity, blunting reward prediction error (Zhang et al., 

2020), and supposedly reducing the use of negative feedbacks (Petzold et al., 2010), facilitating 

model-free reinforcement learning after adverse outcomes (Park et al., 2017). Numerous findings 

have also reported higher risk-taking after stress exposure, even though with sex differences 

(Lighthall et al., 2009; 2012) and increased disadvantageous choices in both risk and uncertainty 

conditions (Porcelli and Delgado, 2009; Preston et al., 2007; van de Bos et al., 2009). The task's 

reward contingencies have a prominent role in determining the presence of the effect: situations in 

which a risk-prone behavior leads to disadvantageous outcomes are more affected by stress than when 

the same behavior does not lead to better performance (Starcke and Brand, 2016). 

Moreover, according to Starcke and Brand, the worst performance is observed in uncertainty 

compared to risk conditions. The degree of ambiguity has a pivotal role in decision contexts. It 

generally indicates how much probabilities and outcomes associated with the available alternatives 

are explicit to decision-makers, ranging from complete ignorance to absolute certainty of outcomes, 

through uncertainty (probabilities of outcomes are not known) and risk (probabilities are known, but 

outcomes are still not sure). Decision-making assumptions have been made upon several different 

experimental paradigms, ranging in the continuum of ambiguity. It is assumed that, in normal 

conditions, decision-making under risk is mostly supported by rational processes and executive 

functioning (Brand et al., 2006) aimed at maximizing expected reward whereas decision-making 
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under uncertainty by intuitive strategies and implicit learning, relying upon gut feelings and history 

of reward experiences (Bechara et al., 1997). This consideration leaves open the question whether the 

same behavioral outcome (e.g., more disadvantageous choices) reflects the same or different 

underlying processes when situations presented to individuals are dimensionally distinguished. 

However, research has frequently neglected the differential role of paradigms and conditions, and a 

systematic study of decision-making components, with or without stress, is lacking. 

Stress-related effects on decision making follow the more general contribution of stress on cognitive 

performance, stating that under stress individuals tend to act in a less-demanding way, promoting 

non-consuming processing. However, it is worth noting that all the phenomena observed regard two 

very distinctive systems, and little is known about how they interact or how the shift from one to the 

other system seems to happen. Instead, the famous metaphor of the continuum is strictly related to 

the current availability of resources, with less the resources, the less consuming processes must be 

used. When the fuel of a car is running low, it is necessary to switch off all electronic devices 

connected to the car battery, saving more fuel as possible to reach the nearest petrol station. Then, if 

the GPS cannot work, the driver must use its previous knowledge and follow already known routes, 

if these are available.  

In the same way, under overload, the cognitive system temporarily cut off unnecessary processes to 

reach the goal and start following already known patterns and avoiding effortful analyses, according 

to the degree of available resources. This explanation is simple, easy, and clear. However, it does not 

seem to answer questions such as why individuals frequently use cognitive shortcuts even when there 

is no energetic reason to use them, how the degree of the contribution of the two processes can be 

measured, or at which point the switch happened. 

A promising line of research aimed at simultaneously assessing the contribution of dual processes to 

decision-making comes from reinforcement learning. Reinforcement learning aims to formalize 

cognitive mechanisms in the interaction between an agent and the environment through 

computational models. This suggests that an agent constantly updates its value representation of 

choices according to the feedback collected and implements decisional models to explore the world. 

In this context, Daw and colleagues (2011) have developed a two-step task which is supposed to 

evaluate two different learning strategies: a model-free, reward-sensitive, and inflexible versus a 

model-based, structure-sensitive, and flexible strategy. The parametrization of the computational 

model of this task assumes that a weighting parameter is responsible for the degree of model-

free/model-based contribution to behavior encountered in subjects, hypothesizing that a hybrid model 

is the best fit for the human participant in normal conditions. This approach, coupled with the use of 

many standard decision-making paradigms, appears to be a good solution for the increase of 
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knowledge about the multiplicity of stress-related effects on cognition. A dual control view of 

learning and decision-making has been suggested in RL's field of RL also uses neuroimaging 

techniques, providing evidence for competition between prefrontal and dorsolateral striatal networks 

(Daw et al., 2005). 

Unfortunately, most current knowledge relies upon studies investigating the effects of laboratory-

induced acute stress. Apart from the clinical population, as individuals with Post-Traumatic Stress 

Disorder, and individuals with early stress exposure, such as victims of infant violence, not part of 

the present work, very few studies investigated the impact of everyday stress and chronic stress 

exposure on cognition and, to a greater extent, on decision-making. Despite the complexity of chronic 

stress and its complicated controlled investigation, results similar to those obtained through acute 

stress manipulations have been shown. Indeed, it has been found that decision-making shifts toward 

more habitual strategies (Soares et al., 2012; Lenow et al., 2017), unbalancing the activation of 

underlying networks from the associative to the sensorimotor circuits and atrophying medial 

prefrontal cortex and putamen (Soares et al., 2012). Cortisol levels seem to be an important predictor 

of this effect. Insensitivity to losses and increased reward dependence were suggested in individuals 

with lower cortisol basal levels (van Honk et al., 2003) providing additional evidence for the 

determining role of cortisol amount rather than the stress manipulation per se in other contexts (Otto 

et al., 2013; Starcke et al., 2011): individual variability in stress reactions matters. 

In conclusion, although the results obtained indicate that decision-making can be strongly affected 

by stress, a general framework in the context of known dual-process theories is hard to draw. 

Experimental studies aimed at integrating findings are needed, eventually positing the concerting, 

rather than complementary, roles of low and high-order processes. 

  

  

 

This experimental chapter 

 

Overall, data in this last section regard decision-making, which is at the top of the cognitive functions 

here investigated in terms of complexity. Indeed, decision-making requires individuals to make 

inferences and calculations integrating a lot of factors, such as alternatives, probabilities, outcomes, 

task structure, and own's affective state. According to the decisional environment, and the degree of 

uncertainty presented to subjects, decision-making processes can be determined by bottom-up, 

intuitive, or top-down, analytical strategies. It will be shown that affective states and environmental 

conditions, but also individual differences and tasks type may determine the prevalence of one or the 
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other strategy. In the first study, decision-making research in the laboratory is described. In the 

experiment will be shown how different decision-making processes are differentially affected by an 

acute stress induction procedure. Decision-making is assessed through three paradigms, and the data 

showed that they are not equally affected by stress and that individual differences in impulsivity have 

a substantial role in determining the strategy used by individuals after the manipulation. In a second 

study the differential impact on different decision-making and controlled processes have been shown 

during a prolonged stressful condition, due to the social isolation caused by the COVID-19 pandemic 

lockdown in Italy. In both studies, a complementary or a continuum account of the relation between 

the two systems is not fully supported. 
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Psychosocial acute stress affects model-free/model-based learning strategies in human decision-

making: individual risk propensity matters. 

 

 

Abstract 

 

Human decision-making is widely sensitive to stress exposure. Literature has extensively shown that 

stress may strongly affect decision-making, prompting individuals to inflexibly rely upon habitual 

strategies. However, research has mostly focused on single paradigms, neglecting the 

multidimensional construct of cognitive processes underlying decision-making. 

In this experiment, we investigated decision-making through three paradigms: the Markov Decision 

Task (MDT), the Balloon Analogue Risk Task (BART), and a Wheel of Fortune Task (WFT), aimed 

at detecting simultaneously different components of decisional processes. Through a within-subject 

controlled design, we administered a stress induction procedure through a variant of the Trier Social 

Stress Test, verifying its efficacy through autonomic (HRV) and biological (salivary cortisol) 

measures. The results showed that the shift from a model-based to a model-free reinforcement 

learning strategy in the MDT was exacerbated by risk-seeking propensity: individuals with higher 

scores at BART were more prone to increase the use of model-free learning. Intriguingly, learning of 

task-contingencies, as measured by decision time cost as a function of task transitions, was found to 

be less coupled with model-based behavior under stress. Finally, performance at the WFT interacted 

with daily subjective stress in producing choice behavior changes, with no apparent relations with the 

other two paradigms. The results obtained present a promising picture for the study of decision-

making under stress exposure. 

 

 

Introduction 

 

There is ample and growing consensus about the existence of two qualitatively different information 

processing strategies in the human mind and brain. This evidence has been demonstrated over a broad 

set of cognitive functions, among which decision-making represents one of the most productive fields. 

Dual-process theories currently use and misuse the terms System 1 and System 2 to differentiate 

between the two (Melnikoff and Bargh, 2018; Pennycook et al., 2018): the first one concerns habitual, 

associative, fast, and effortless strategies, whereas the second one, at the contrary, is rational, 

analytical, slow, and effortful. Evidence has shown that two different mechanisms exist, tapping 
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different strategical and learning dimensions of decision-making (Brand et al., 2008; 2005). However, 

decision-making is a multi-component process, where both systems, or strategies, may interact in 

producing behavior, according to the nature of the decisional problem: in an uncertain environment 

(where there is no explicit information about options' outcomes and probabilities) decision-making 

strongly rests on intuitive strategies (i.e., System 1) while the opposite being true under risk.  

A recent account for duality in decision-making models (Daw et al., 2011; 2018) has differentiated 

between two computational learning strategies. Under uncertainty, the performance in a sequential 

choice task can be mediated by the different contributions of a model-free (where choice behavior is 

dependent upon previous trial's outcomes observed) and a model-based (where outcomes are 

integrated into the representation of the task's probabilistic structure) component. Indeed, humans 

have shown to use hybrid strategies, suggesting that both may influence behavior, through the activity 

of different brain networks, in which areas such as the ventral striatum and the prefrontal cortex are 

involved (Daw et al., 2005; 2011).  

Investigating the peculiar role of decision-making components is essential in the understanding of 

how these dimensions are interrelated. One manipulation which can induce changes in the weight of 

the two ways of information processing is acute stress, which is known to shift this balance toward 

habitual and less effortful responses (Schwabe and Wolf, 2011; 2013). Indeed, stress is known to 

modify the amygdala-prefrontal brain network, resulting in the reduced supply of high-order 

prefrontal processes (e.g., Andolina et al., 2013). This temporary impairment induced by acute stress 

has been widely demonstrated in decision-making literature, even though the variety of paradigms 

and the lack of systematic multi-component studies undermined a unified knowledge of stress's 

effects over the whole decisional process. For instance, it has been shown that in paradigms where 

increased risk-taking means increased disadvantageous choices, the effects of stress is more 

substantial than in other decisional contexts (Starcke and Brand, 2016). Moreover, decision-making 

dimensions, as measured by different paradigms, have shown to be uncorrelated (Bishara et al., 2009) 

and to produce dissociations among several conditions (Deisenhammer et al., 2018; Sun et al., 2020; 

Zhang et al., 2017; 2015; Adjeroud et al., 2017; Trotzke et al., 2015; Kim et al., 2015; Gorini et al., 

2014; Goudriaan et al., 2010; Starcke et al., 2009), as well as overlapping brain areas despite divergent 

behavioral performance have been demonstrated (Pletzer and Ortner, 2016) 

Furthermore, decision-making abilities and the effects of stress on it may vary as a function of 

individual differences, even though the literature on this point is controversial. For instance, 

personality characteristics have provided mixed evidence for decision-making performance in 

standard paradigms (Buelow and Cayton, 2020; Brunell and Buelow, 2017; Brand and Altstötter-

Gleich, 2008), but these have not been tested under stress exposure. Instead, other individual 
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functional variables provided promising results. Indeed, literature has shown that individuals with 

high working memory capacity are more protected from the aversive effects of stress, showing less 

or no reduction in model-based strategies (Otto et al., 2013). Recent work has found that individuals 

presenting high trait impulsivity have shown to be more perseverative in their choices than low trait 

impulsivity participants and speed up their decision times irrespective of reward (Raio et al., 2020). 

Coherently, a previous study using the same two-stage task, has found an increment of model-free 

learning in high-impulsivity individuals, showing reduced prefrontal model-based signatures 

(Deserno et al., 2015). However, impulsivity is a multidimensional construct, since interrelations 

between impulsivity, risk-taking, and decision under ambiguity have been observed (Giustiniani et 

al., 2019). It is indeed possible that other forms of impulsivity may interact differently with decision-

making and stress effects. Moreover, while the use of questionnaires as a measure of impulsivity 

helps in clarifying individual or personality differences in choice behavior and stress reactions, it does 

not shed new light on how different decision paradigms are interrelated. Also, the use of different 

stress manipulations (generally distinguished in processive or systemic) may exert peculiar effects on 

cognitive performance.  

In this picture, this study aimed at more systematically investigate how decision-making components 

(under uncertainty, under risk) can adjust themselves to the unbalance of the two strategies, 

considering individual risk-propensity as a possible intermediate factor.  

Three decision-making paradigms have been used: the two-stage decision task (Daw et al., 2011) 

aimed at quantifying model-free and model-based contributions in an uncertain environment; the 

Balloon Analogue Risk Task (Lejuez et al., 2002), aimed at evaluating individual risk-propensity; the 

Wheel of Fortune Task (Camille et al., 2001), aimed at investigating the emotional role of regret 

under risk.  

 

 

Methods 

 

Participants 

                                                                                                                 

The sample size was defined through an a-priori power analysis conducted with MorePower, showing 

that 34 participants were sufficient to reach 0,9 power to increase the chances of replicability with a 

large effect size (0.25) in a repeated measures design. 

Thirty-eight students from courses different from Psychology were enrolled in the study. Of these, 2 

participants were excluded due to their drop out after the first session. Four additional participants 
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were excluded because of contraceptives' or medications' use or because they refused to ultimately 

carry out the stress induction procedure. Data from 32 participants (14 females, age: mean= 22.81, 

sd=3.18) were finally included in the analyses. All participants were not aware of the hypotheses of 

the experiment. The study was approved by the Institutional Review Board of the Department of 

Psychology at the Sapienza University of Rome and conducted in accordance with its policies and 

with the Declaration of Helsinki. All participants provided written informed consent. 

 

Stress induction procedure 

 

The stress induction was done through a variant of the TSST, in which the speech was not performed 

but only anticipated (Starcke et al., 2008). Participants were told they had to prepare a 5-minutes 

speech, without papers and pencil, about their personality related to their academic choice, to motivate 

the fact that they are the right persons for what they chose to study. They were told that after the tasks, 

they would give the speech in front of a committee, composed of a psychologist and a professor. 

Additionally, they were told that the speech would be recorded through a camera to analyze their 

verbal and non-verbal behavior further. The committee would pose questions and highlight possible 

discrepancies between participants' verbal and non-verbal behavior, and personality tests would be 

administered. Participants were asked to fill a fake consent form for videotaping, and an off-camera 

was mounted in the room. Participants were then left 5 minutes thinking about their speech, and then 

a 5-minutes arithmetic task was performed aloud in front of the experimenter. The arithmetic task 

consisted of the progressive subtraction of 13 starting from 1022. Any wrong response was explicitly 

signalled by the experimenter, who asked the participant to start again from 1022. In the control 

condition, participants were left resting after the explanation of the procedure, and the arithmetic task 

consisted of the progressive summation of 15, starting from 0, without any explicit feedback. The 

complete procedure, in both sessions, lasted for 15 minutes. 

 

Heart Rate Variability 

 

Heart rate variability was recorded throughout the entire duration of each experimental session 

through a Polar chest belt. As a measure of HRV, pNN50 was calculated, i.e., the percentage of 

absolute differences in successive normal sinus interval (NN) values > 50 ms, known as a measure of 

parasympathetic activity (Mietus et al., 2002). 

 

Salivary cortisol 
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Saliva samples were collected in each experimental session in three time-points: after 5 minutes 

resting (t0), immediately after the stress/control procedure (t1), and immediately after the completion 

of the last decision task (t2). Saliva samples were collected through standard Salivette® (Sarstedt), 

collection swabs centrifuged at 1000 rpm for 15 minutes, and then stored at -80°C into Eppendorf 

tubes. Cortisol concentrations were determined through immuno-enzymatic kits (ELISA, DiaMetra), 

with within assay variability of ≤ 10% and a between assay variability ≤ of 8.3%. Microplates were 

read at 450 mm filter. Duplicate assays were conducted for each sample interval, and the average of 

the two was used for analyses. Cortisol concentrations were log-transformed and interpolated against 

the standard-curve, calculated for each plate.  

The areas under the curve respect to the ground (AUCg, equation 1) and respect to the increase 

(AUCi, equation 2) were calculated for each session to have measures of total cortisol production and 

changes in time, respectively. Due to the difference in t2 between participants, the areas were 

parametrized for each session as follows: 

 

 

ሺ1ሻ    𝐴𝑈𝐶𝑔 =

((
𝑠0 + 𝑠1

2 ) ∗ ሺ𝑡1ሻ) + ((
𝑠1 + 𝑠2

2 ) ∗ ሺ𝑡2 − 𝑡1ሻ)

𝑡2
  

 

 

 

ሺ2ሻ    𝐴𝑈𝐶𝑖 =

((
𝑠0 + 𝑠1

2 ) ∗ ሺ𝑡1ሻ) + ((
𝑠1 + 𝑠2

2 ) ∗ ሺ𝑡2 − 𝑡1ሻ) − (𝑠0 ∗ ሺ𝑡2ሻ)

𝑡2
 

 

 

 

 

where s0, s1, and s2 were log-cortisol concentrations expressed in nMol/l at three time-points in each 

session and for each participant. t0, t1, and t2 are the time expressed in minutes of each sample for 

each time-point relative to t0 (which was kept at 0). 

Also, participants were equally divided by the median of the peak-baseline measure in the stress 

condition into responders and non-responders. 
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Two-stage decision task 

 

The two-stage decision task or Markov decision task (Daw et al., 2011) consists of two decision 

stages on each trial (see Figure 1a for the task scheme). The first decision stage involves two choice 

options associated with different transition probabilities (common, rare) to two second-stage states, 

each consisting of a specific pair of options. Indeed, each option in the first stage is commonly (70%) 

and rarely (30%) associated with each of the two second-stage states. Each of the four second-stage 

options is linked to a specific probability to get or not get a reward (1 Euro image), according to a 

randomly assigned Gaussian random walk, which varies independently throughout the task with s.d. 

0.025 and reflecting boundaries 0.25 and 0.75 (Figure 1b). 

In this task, participants must constantly update reward predictions at the second stage (model-free 

decision making) and use this information prospectively to make goal-directed (model-based) 

decisions at the first decision stage on the next trial. 

In the task, stay-switch behavior is defined as the probability to repeat a choice on the first stage as a 

function of the transition (common or rare) and the outcome (reward, no reward) on the previous 

trial.  

Participants underwent instructions and training (firstly differentiated for both stages, then together) 

with different symbols, colors, and reward probabilities. The experimental task consisted of 201 trials 

without breaks. The first 20 trials were considered as practice and were removed from analyses. 

Participants used the "f" and "j" keys on the keyboard to choose between the left and right options. 

The position of the choices was not fixed as they varied randomly in each trial. 

Scores are calculated as differences measures for model-free behavior [(common reward + rare 

reward) − (common no reward + rare no reward)] and model-based behavior [(common rewarded + 

rare unrewarded) − (rare rewarded + common unrewarded)].  
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Figure 1. 

a)                                                                                b) 

 

Figure 1. a) Inner structure of the two-stage decision-task. Thick and thin lines represent common (70%) and rare 

(30%) transitions, respectively. b) Independent Gaussian random walks randomly associated to the four 2-stage 

options (trials and reward probabilities on the x and the y axes, respectively). 

 

Balloon Analogue Risk Task 

 

In the Balloon Analogue Risk Task (BART; Lejuez, 2002), participants must inflate a balloon on the 

screen using the spacebar as much as they want to increase their score of 0.05 at each pump. As they 

wish, they can capitalize on the score obtained at each balloon by pressing "enter" on the keyboard. 

Participants were told that the balloon might explode at any time since the first pump, make them 

lose the points they were collecting for that balloon without affecting already capitalized points and 

that its size may cover the entire screen. The maximum number of pumps allowed were 128 for each 

balloon, and the explosion probability linearly increased from 1/128 at the first pump. After a single 

practice balloon, 30 balloons were presented in the task. Scores were calculated as mean pumps 

adjusted for non-exploded trials. Additionally, the median of the BART score obtained in the control 

condition was used to differentiate between low and high risk-propensity participants. 

 

Wheel of Fortune Task 

 

In the Wheel of Fortune Task (Camille et al., 2004), participants were asked to choose in each of the 

64 trials composing the task between two wheels. The two wheels explicitly presented outcomes and 

their related probabilities (table 1), aiming at evaluating decision-making under risk. Each wheel's 

outcome probabilities were kept constant at -50/+50% (safe option) and -25/+75% (risky option). 
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Participants clicked on the "OK" button under each wheel to choose it. After they clicked, the wheel-

needle started rotating, and participants were required to click again on the "OK" button to stop it. In 

half of the trials, both the outcomes (chosen, unchosen) were displayed (complete feedback), whereas, 

in the other half, only the outcome of the chosen wheel was presented (partial feedback). All the 

outcomes were predetermined to have a similar number of losses and wins. Participants might observe 

outcomes as long as they wish and then click again on a button to go further, allowing for calculating 

the time spent in analyzing the outcomes. Then, participants were asked to rate on a -50/+50 Visual 

Analogue Scale their happiness at that moment. Finally, they clicked on the button again, and a new 

trial started.  

Scores were calculated as the number of risky choices made. Decision (time between the beginning 

of each trial and the choice of the wheel) and feedback (time between the presentation of the outcomes 

and the click to go further) times were also recorded, as well as the happiness ratings for losses and 

wins. 

 

Questionnaires 

 

Participants were required to fill two questionnaires at the end of the two sessions. These were Italian 

versions of the Coping Strategies Inventory (Tobin et al., 1989) and the Daily Hassles Stress Scale 

(Kohn and Macdonald, 1992), in order to control for habitual coping strategies used by subjects and 

subjective stress levels in the month before the experiment. 

 

Procedure 

 

The study implemented a within-subjects design. Participants performed two experimental sessions 

(control and stress) approximately one week apart. They were asked not to eat, drink coffee, tea, or 

other stimulants, assume drugs or any other substance, smoke, wash teeth, and use make-up cosmetics 

at least two hours before the scheduled experimental session. All sessions were scheduled between 

1:30 and 5:30 PM to control for circadian rises and falls of cortisol levels. Also, the sessions' time 

was approximately the same in the two sessions of each participant, and the two sessions' order was 

counterbalanced within participants. 

Participants came to the lab and signed the first informed consent. This informed consent lacked 

correct information about the study's real objectives to keep participants naïve about the hypotheses 

of the study. Indeed, the experiment was presented as a general investigation of decision-making 

abilities and self-evaluation processes. Then, participants were asked to switch off their phones, wore 
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the HR belt (Polar) and were asked to rest for five minutes and fill a short anonymized demographic 

questionnaire (providing information about sex, age, use of contraceptives, drugs, stimulants, 

smoking and alcohol attitudes), during which baseline HR was registered. After these 5 minutes, the 

first saliva sample was collected (t0), the stress/control procedure was implemented, and the second 

saliva sample was collected (t1). Participants were told that at the end of the two sessions, they would 

receive a book voucher. The value of the voucher would vary according to their performance at the 

three decision tasks. Then, participants performed the three decision tasks in counterbalanced 

randomized order, and the last saliva sample was collected (t2). Participants in the first session were 

then dismissed, whereas participants in the second session were asked to fill the two questionnaires, 

the real informed consent, and were debriefed before leaving the laboratory. All participants received 

the same 10 euros book voucher for their participation. 

 

 

Results 

 

Physiological response to stress 

 

The pNN50 was taken as an index of Heart Rate Variability (Mietus et al., 2002). A first one-way 

ANOVA was conducted with condition (control and stress) as repeated measures factor. The results 

reported a non-significant decrease of pNN50 in the stress condition (mean=0.48, sd= 0.03) than in 

the control condition (mean=0.53, sd=0.03), even though it tended to significance (F1,31=3.6887, 

p=0.064, partial eta2=0.11). In a separate two-ways ANOVA, with condition as repeated measures 

and risk-propensity group as between-subjects factor, the main effect of condition became significant 

(F1,30=4.5218, p< 0.05, partial eta2=0.13), while all other effects were non-significant (p>0.05) 

(Figure 2). 

Planned comparisons for the mean pNN50 for each 5 minutes time-point have shown that conditions 

significantly differ at the 4th time-point, i.e., between 10 and 15 minutes after the beginning of the 

stress procedure (t(6)= 2.49, p<0.05). 

To assess total cortisol levels and change with time, AUCg and AUCi were calculated. For the AUCg, 

an ANOVA was run with condition as a repeated measure factor and sex as a between-subjects factor. 

The analysis did not show significant differences (p>0.05 for all effects), even though participants 

showed higher cortisol production during the stress condition (mean= 0.94, sd= 0.06 and mean 1.02, 

sd=0.08, for control and stress condition respectively, p for the main effect of condition = 0.08) 

(Figure 3a). 
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The same analyses were run using AUCi as a dependent variable. A non-significant effect of 

condition was observed in the first one-way ANOVA, and the same was true in a second two-way 

ANOVA with condition and gender as factors, and in all the ANOVAs with self-report scores as 

continuous predictors (p >0.05 for all effects). Due to the interindividual variability of hormonal 

response, the same analyses were repeated by considering responders and non-responders as a 

between-subjects factor. For the AUCg, no significant differences were again highlighted (p> 0.05 

for all effects). Conversely, for the AUCi, the ANOVA reported a significant main effect of response 

(F1,30=11.69089, p < 0.01, partial eta2= 0.28) and no main effect of condition (p > 0.05). The 

interaction was also significant (F1,30=7.76675, p < 0.01, partial eta2= 0.2), explained by the 

increased AUCi in responders compared to non-responders in the Stress but not in the Control 

condition (Figure 3b). 

High interindividual variability for physiological data has presumably played a role in all the analyses. 

A larger sample size might have possibly produced significant effects due to the increase of statistical 

power. 

 

Figure 2. pNN-50 index for Heart Rate Variability in the Control and Stress conditions. Vertical bars denote standard 

errors. 
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Figure 3. a) Area under the curve with respect to the ground of cortisol production in the Control and Stress conditions. 

b) Area under the curve with respect to increase of cortisol production in the Control and Stress conditions. Vertical bars 

denote standard errors. 

a)                                                             b) 

 

 

 

Balloon Analogue Risk Task 

 

Mean adjusted pumps were analyzed in a two-way ANOVA with condition (control and stress) as 

within- and gender as between-subjects factors, since previous research has shown gender differences 

in response to stress (Lighthall et al., 2009). Results showed a significant effect of the interaction 

(F1,30=4,8720, p < 0.05, partial eta2= 0.14) and non-significant main effects of condition and gender 

(p > 0.05). Duncan's post-hoc contrasts reveal ed that the interaction effect was due to a significantly 

higher score in the stress than in the control condition (p <0.05) in females (mean= 47.79, sd=4.66 

and mean= 55.52, sd=5.15 for the control and stress condition, respectively), while no difference was 

observed in males (mean= 55.62, sd=4.11 and mean= 52.2, sd=4.54 for the control and stress 

condition, respectively) (Figure 4). That is an opposite result compared to literature (Lighthall et al., 

2009; Deuter et al., 2017; Kluen et al., 2017), which showed that rather stress increases differences 

between females and males, with males being more risk seekers than females under stress. However, 

existing studies have implemented between-subject designs and might have been unable to explain 

individual pre-existent differences that have been observed in this case. 
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Figure 4. Mean adjusted number of pumps in Control and Stress conditions for men and womens. Vertical bars denote 

standard errors. 

 

 

Two-stage decision task 

 

A first ANOVA was run on stay probabilities in the first stage with condition (control and stress) and 

learning strategy (model-free and model-based) as repeated measures factors and risk-propensity 

group as between-subjects factor (low and high). The ANOVA showed a significant effect of the 

third-order interaction (F1,30=4.20911, p < 0.05, partial eta2= 0.12) and no significant differences 

for all the other effects (p > 0.05). Duncan's post-hoc tests revealed a significant difference in model-

free indices in the stress condition between low and high-risk seekers, with the latter presenting a 

higher score (p < 0.05), while the increment in the model-free index in high-risk seekers between 

control and stress condition tended to significance (p = 0.07) (Figure 5).  

To additionally test the effects of stress and risk propensity over the probability of repeating the first 

stage action as a function of previous reward and transition state at a population level, logistic 

generalized mixed models were implemented with all within-subjects factors as random coefficients, 

using the lme4 package for R (Bates et al., 2014). The model confirmed the significant reward by 

condition by risk-propensity group interaction (β (SE) = 0.24 (0.1), p < 0.05) and showed a significant 

reward by transition by risk-propensity group interaction (β (SE) = 0.16 (0.07), p < 0.05). Wald test 

revealed a significant main effect of reward (p< 0.0001), of reward by transition (p<0.0001), reward 

by risk-propensity group (p<0.05), reward by transition by risk-propensity group (p< 0.05), and 
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reward by condition by risk-propensity group (p<0.05) interactions, confirming the role of individual 

risk-seeking levels in eliciting the effects of stress over model-free learning (Figure 6). 

Due to the results of previous studies, RTs at both stages have been analyzed in separate ANOVAs. 

An ANOVA was then run over decision times in the first stage, with condition, choice (stay vs. 

switch) as within-subjects factors, and risk propensity group as between subjects. The analysis 

revealed only a significant main effect of condition (F1,30=4.7179, p < 0.05, partial eta2= 0.13), 

because stress participants were slower than in control condition (mean= 569,21, s.d.=32,2 and mean= 

620,37, s.d.= 30,82, for control and stress condition respectively), irrespectively of type of choice and 

risk propensity (p > 0.05 for all other effects). The same analyses were run over stage 2 decision 

times, with the same factors, except for the stay-switch choice was substituted by transition type 

(common vs. rare). As expected, the analysis revealed a significant main effect of transition 

(F1,30=56.0220, p < 0.0001, partial eta2= 0.65), with rare trials slower than common trials, and again 

a significant main effect of condition (F1,30=5.9801, p < 0.05, partial eta2= 0.16), with the same 

direction as the first stage decision time. No other significant differences were found (p> 0.05 for all 

the other effects). Since previous literature showed a correlation between Model-Based indices and 

the transition effect in RTs, an analysis of covariance was run over 2nd stage RTs with model-based 

indices at control and stress condition. The two main effects of condition and transition were 

preserved (F1,26=10.0952, p < 0.01, partial eta2= 0.28 and F1,26=29.6714, p < 0.0001, partial eta2= 

0.53, respectively), and the model-based index in control condition interacted significantly with 

condition (F1,26=8.7572, p < 0.01, partial eta2= 0.25) and with condition x transition (F1,26=7.8706, 

p < 0.01, partial eta2= 0.23). No other interactions were observed (p>0.05). Then, to further clarify 

the relation between learning strategies and the 2nd stage decision-cost, Pearson's correlations were 

calculated. In the control condition, the decision-cost was significantly positively correlated with MB 

index (r= 0.6465, p< 0.001) but not with the MF index (r = 2.449, p> 0.05). Instead, in the stress 

condition both indices were significantly positively correlated with the decision cost (r = 0.4565, p 

<0.01, and r=0.4389, p <0.05 for MB and MF respectively) (Figure 7a and b). 
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Figure 5. Probabilities to repeat the same first stage choices: indices of model-free and model-based behavior. Model-

free = [rewarded common + rewarded rare] - [unreward common - unrewarded rare]. Model-based = [rewarded common 

+ unrewarded rare] – [rewarded rare + unrewarded common]. Vertical bars denote standard errors. 

 

 

Figure 6. Coefficient plot for generalized mixed models, separately for Control and Stress conditions.  
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Figure 7. Pearson’s correlations between model-free/model-based indices with the second stage RT-cost (RTs after 

rare – after common transitions) in the Control (a) and in the Stress (b) conditions. 

a)                                                                         b) 

 

 

 

Wheel of Fortune Task 

 

The number of risky choices was firstly analyzed in a two-way ANOVA with condition (control and 

stress) and feedback (complete and partial) as repeated measures factors. The analysis failed to show 

any significant differences (p > 0.05 for all effects), even in a second ANOVA where gender was 

considered a between-subject factor. Then, the scores at the Daily Hassles Stress Scale were inserted 

as continuous predictors in a separate analysis, to test if individual differences in daily experienced 

stress may play a role. With the DHS score, the interaction between condition and feedback turned 

out to be significant (F1,30= 8.40807, p < 0.01, partial eta2= 0.22), together with the interaction 

between condition, feedback, and the DHS (F1,30= 10.12793, p < 0.01, partial eta2= 0.25). All the 

main effects were non-significant except for a quasi-significance reached by the main effect of the 

DHS score (p=0.054), with more daily stressed participants were more risk-prone, regardless of the 

experimental conditions. Reduced risky choices in the partial feedback in stressed participants 

compared to the other three conditions explained the effect of the second-order interaction as tested 

by Duncan's post-hoc tests (Stress Partial vs. Control Complete, p < 0.05, Stress Partial vs. Stress 

Complete p < 0.05, Stress Partial vs. Control Partial p=0.057) (Figure 8).  

Then, to test if the engagement in the evaluation of outcomes in the complete and partial feedback 

conditions was altered by stress, a repeated-measures ANOVA was conducted over feedback times 
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with condition (control and stress) and feedback (complete and partial) as within-subjects factors. 

The analysis revealed a main effect of feedback (F1,31= 23.9019, p < 0.0001, partial eta2= 0.43), 

indicating that participants spent more time inspecting outcomes in the complete feedback (mean = 

1833.75 ms, sd= 92.08ms) than in the partial feedback condition (mean= 1627.48 ms, sd=87.09 ms). 

The analysis also revealed no other significant effects (p>0.05 for all others). We repeated the same 

analysis controlling for the DHS score in the analysis of choices in an analysis of covariance. The 

interaction between condition and feedback turned out to be significant (F1,31=8.94358, p<0.01, 

partial eta2=0.23), as well as the third-order interaction (F1,31=7.51988, p<0.05, partial eta2=0.2). 

Duncan's post-hoc test revealed that participants spent less time inspecting outcomes in the Stress 

Partial condition compared to all the other three (p < 0.05 for all the contrasts except for the "Control 

Complete" vs. "Stress Complete" one, p = 0.08). The same ANOVA, with or without the DHS scores 

continuous predictor, or Risk-Propensity factor, over decision-times did not reveal any difference 

between conditions (p>0.05 for all effects). 

Finally, emotional ratings were analyzed in a three-ways ANOVA with condition (control vs. stress), 

outcome (loss vs. win), and feedback (complete vs. partial) within-subjects factors. The analysis 

showed significant differences in all the three main effects (F1,31=4.9591, p<0.05, partial eta2=0.14; 

F1,31=114.4044, p<0.0001, partial eta2=0.79; F1,31=4.3930, p<0.05, partial eta2=0.12, for 

condition, outcome, and feedback main effects respectively), showing that participants rated more 

negatively the outcomes in the stress compared to control condition, after losses compared to wins, 

and in partial compared to complete trials. No other significant effects were found (p>0.05). 

Controlling for DHS score eliminated all significant differences (p>0.05) except for the outcome main 

effect (F1,31=7.869674, p<0.01, partial eta2=0.2). Instead, adding Risk Propensity group as a 

between-subjects factor, a significant condition x group was found (F1,29=4.719151, p<0.05, partial 

eta2=0.14), since participants in the low risk-propensity group evaluated more negatively outcomes 

in the stress condition compared to the control condition (Duncan's post-hoc, p<0.01) (Figure 9). In 

contrast, high risk-propensity group did not show any difference (p>0.05), and a significant outcome 

x group interaction (F1,29=5.183142, p<0.05, partial eta2=0.15), since more negative evaluations 

were made by high compared to the low risk-propensity group in the domain of losses (p<0.05) but 

not in the domain of wins (p>0.05). 
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Figure 8. Number of risky choices in Control and Stress conditions for Complete and Partial Feedback trials, using the 

DHS score as a covariate. Vertical bars denote standard errors.  

 

 

 

Figure 9. Mean emotional ratings in the Control and Stress conditions for low and high risk-seekers. Vertical bars 

denote standard errors. 

 

 

Discussion 

 

The literature on decision-making has extensively shown that individuals tend to modify their 

decisional strategies to deal with the threatening situation under stress exposure. However, despite 

the broad number of results, conclusions about the precise mechanisms underlying this shift are still 

not clear. Among the possible causes of this vagueness, there are: the large variety of decisional 

paradigms existent, the different stress manipulations, and the lack of systematic studies considering 

together these dimensions and the interrelations of decision-making constructs. Moreover, individual 
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differences in decision-making strategies and response to stress may represent an important additional 

factor in determining the direction of the effects, which may play a pivotal role in exerting 

dissociations between variables and dimensions. 

With this in mind, we hypothesized that acute stress induction might differently affect the connections 

among decision-making components, between and within paradigms. To do so, we used two "hybrid" 

decision-making paradigms, able to theoretically detect the influence of habitual/emotional and 

rational/analytical strategies in two different decisional environments, i.e., uncertain and risky 

conditions. Indeed, the Two-Stage Decision Task (Daw et al., 2011) can show model-free and model-

based learning contribution in sequential decision-making, while the Wheel of Fortune Task (Camille 

et al., 2004) requires individuals to use counterfactual emotions in a risky environment. Furthermore, 

since literature has shown that decision-making is sensitive to impulsivity, we used a well-known 

decision-making paradigm, the Balloon Analogue Risk Task (Lejuez et al., 2002), to control wheter 

risk propensity is able to modulate the connections between decision dimensions and stress effects. 

Firstly, the results have shown that acute stress prompts habitual behavior through the selective 

increase in model-free learning strategy in the two-step decision task, but only in high risk-propensity 

participants, as measured by the BART score in the control condition. We observed no 

complementary reductions in model-based learning, indicating that presumably, the relation between 

the two strategies does not take the form of a continuum. The studies that investigated the effects of 

acute stress on this task reported unclear findings: a model-based reduction has been shown only in 

Otto et al. (2013), where the reduction was linked to cortisol increase rather than to the experimental 

condition. Differently to us, Otto et al. implemented a between-subject design, where the role of 

individual differences in hormonal levels, in response to stress, and task performance might have 

played a role. Radenbach et al. (2015), found a reduction in model-based behavior under acute stress 

for more chronically stressed participants, while Park et al. (2017) found that stress enhanced model-

free learning but using a different task design, implementing a reversal-learning task with fixed 

probabilities, where linking rewards to choices is quite more effortless. Furthermore, Otto et al. 

(2013) have used a systemic stressor (the Cold Pressor Test), and possible differential effects between 

stressor types might be present.  

Following recent evidence (Raio et al., 2020), trait impulsivity has been found to account for stress-

related effects in the two-step task's performance. Raio et al. found that stress-related effects in 

impulsive individuals account for choice perseveration and time to make decisions, without 

consequences on the balance between model-free and model-based. As the authors argued, 

impulsivity is a vast construct consisting of several dimensions. Here we evidenced for the first time 

that risk-propensity, as measured by the BART, can have an impact in determining stress-related 
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changes in model-free behavior, extending their results, and making a step toward the knowledge of 

the relation between impulsivity and decision-making. Trait impulsivity and risk-propensity have 

been shown to produce different behaviors and are suggested to account for performance in decision-

making tasks differently (Upton et al., 2011). However, we did not measure trait impulsivity since it 

was not part of our hypothesis, but future research should highlight possible dissociations between 

constructs. 

Interestingly, literature provided evidence about an RT indicator of model-based learning in the two-

step task (Shahar et al., 2019; Deserno et al., 2015; Decker et al., 2016). In the 2nd stage, participants 

might encounter a common or a rare transition, and the difference of decision times between the two 

has been found to correlate with the model-based index. As expected, we found the same correlation 

in the control condition, while model-free was not linked to this indicator. Intriguingly, we found that 

in the stress condition, the correlations obtained between the RT indicator and the two indices were 

both significant but were not different one each other: the correlation with the MB was reduced while 

the one with MF was increased. Conversely, from the results on choice behavior, in this case, the 

relation between the two strategies seems to follow a continuum model. The RT difference between 

rare and common transition trials can be ascribed as a cost, quite similar to the costs usually observed 

in task-switching paradigms. This cost has traditionally been used as a measure of cognitive 

flexibility, describing high-order processing's functioning, where smaller costs are an indicator of 

highly flexible individuals. In this context, a link between the rare-common cost and the model-based 

index, which subtend the construction of internal models of task contingencies, appears to be 

theoretically sustainable. It might be that in normal conditions, these two dimensions are somehow 

"coupled". During stress, since it is widely known that it impairs the functioning of high-order, 

controlled processing in the frontal areas, this coupling is weakened, and habitual MF learning 

prompts out taking his complementary part of this relation. Finally, due to compensatory strategies, 

choice behavior in this task might be preserved, or more precise indicators must be developed. 

Undoubtedly, further research on this point is needed. 

Secondly, in the risk task, the Wheel of Fortune, we found no effects over choice behavior or 

individual risk-propensity interaction. However, we found that the Daily Hassles Stress Scale's pre-

existent stress levels generally increased risky choices. Furthermore, controlling for DHS score, acute 

stress was found to reduce risky choices, but only in partial feedback trials (i.e., when participants 

anticipately know that they will experience only the chosen wheel's outcome). The literature presents 

controversial findings of the direction of stress-related changes in risk-taking (Starcke and Brand, 

2016). As Starcke and Brand argued (2016), factors inherent to the particular paradigms' condition 

play a pivotal role in the risk-taking changes' directionality. According to the regret theory, complete 
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feedback trials might lead participants to generate counterfactuals and anticipated experience of regret 

or elation. The generation of counterfactual emotions require individuals to use top-down processes 

and deal with a larger amount of information than in partial feedback trials, which are assumed to 

generate disappointment-like emotions. Since participants in these trials do not have the chance to 

compare their choice to a counterfactual, during stress a "cognitive closure" mechanism might be 

instantiated as a need to eliminate the ambiguity and select the safest option. Coherently, the analysis 

of the feedback times (i.e., the time between the presentation of the outcomes and the click to go 

further) clearly indicated that a cognitive closure account might be consistent: obviously, participant 

spent less time in analysing outcomes in the partial feedback trials compared to complete feedback 

trials, but this reduction was more considerable in the stress condition. Differently, no effects were 

found for decision times (i.e., the time between the two wheels' presentation and the participants' 

choice). Thus, even in this case, stress effects are associated with feedback-related processes. 

In conclusion, acute stress appears to disentangle feedback-learning processes from high-order 

representations in an uncertain sequential environment. In more risk-prone individuals, this effect 

appears to be more considerable, to the extent which stress may prompt otherwise hidden differences 

or compensatory effects might obscure explicit choice performance. That is explicated in augmented 

model-free learning behavior. One possible responsible mechanism might be represented by a 

reduced emotional stress reactivity (Smits et al., 2020) to environmental feedbacks and outcomes 

under stress. Relatedly but conversely, feedback-learning processes seem to change performance in 

a risky paradigm, where choice behavior turned out to be affected by acute stress according to an 

adjusted ability to anticipate and experience choice outcomes. 

The obtained results open different and intriguing questions in the systematic investigation of the 

whole decision-making process and its relations to stress. Future research should: a) link these results 

to the performance of other standard paradigms, such as the Iowa Gambling Task, the Game of Dice 

Task, and the Delay Discounting Task, aimed at providing evidence about the interrelations between 

decision-making components and paradigms; b) propose new and better performance indicators; c) 

differentiate the stress effects through the use of processive and systemic procedures; d) provide 

evidence about the mediating role of individual factors. 

 

 

Conclusions 

 

In this within-subjects balanced design, a processive acute stress induction has been effective in 

producing differential choice-behavior changes depending on the decisional environment presented 
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to participants and individual factors such as risk-propensity and daily subjectively experienced 

stress. Instantly, participants who presented high risk-propensity levels showed increased Model-Free 

learning strategy when stressed in the Two-Step Task, and no stress-related modulations of emotional 

ratings in a risky environment (in the Wheel of Fortune Task) compared to low risk-propensity 

individuals. Model-based modulation determined by stress was found in the "coupling" between 

choice and RT indicators, evidencing that learning from task contingencies shifted toward a model-

free learning strategy. Differently, in a risky environment, a decrease in disadvantageous choices and 

in time spent observing outcomes is observed when participants have less feedback information to 

process, possibly related to a need for early cognitive closure. Future research must go further into 

these points, to systematically investigate the connections between and within decision-making 

components, by implementing transversal research by different paradigms and experimental methods. 

 

 

References 

 

Adjeroud, N., Besnard, J., Verny, C., Prundean, A., Scherer, C., Gohier, B., ... and Allain, P. (2017). 

Dissociation between decision-making under risk and decision-making under ambiguity in 

premanifest and manifest Huntington's disease. Neuropsychologia, 103, 87-95. 

Andolina, D., Maran, D., Valzania, A., Conversi, D., and Puglisi-Allegra, S. (2013). 

Prefrontal/amygdalar system determines stress coping behavior through 5-HT/GABA connection. 

Neuropsychopharmacology, 38(10), 2057-2067.  

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-effects models using 

lme4. arXiv preprint arXiv:1406.5823. 

Bishara, A. J., Pleskac, T. J., Fridberg, D. J., Yechiam, E., Lucas, J., Busemeyer, J. R., ... and Stout, 

J. C. (2009). Similar processes despite divergent behavior in two commonly used measures of 

risky decision making. Journal of Behavioral Decision Making, 22(4), 435-454. 

Brand, M., and Altstötter-Gleich, C. (2008). Personality and decision-making in laboratory gambling 

tasks–Evidence for a relationship between deciding advantageously under risk conditions and 

perfectionism. Personality and Individual Differences, 45(3), 226-231. 

Brand, M., Heinze, K., Labudda, K., and Markowitsch, H. J. (2008). The role of strategies in deciding 

advantageously in ambiguous and risky situations. Cognitive processing, 9(3), 159-173. 

Brand, M., Recknor, E. C., Grabenhorst, F., and Bechara, A. (2007). Decisions under ambiguity and 

decisions under risk: correlations with executive functions and comparisons of two different 



 

155 
 

gambling tasks with implicit and explicit rules. Journal of clinical and experimental 

neuropsychology, 29(1), 86-99. 

Brunell, A. B., and Buelow, M. T. (2017). Narcissism and performance on behavioral decision‐

making tasks. Journal of Behavioral Decision Making, 30(1), 3-14. 

Buelow, M. T., and Cayton, C. (2020). Relationships between the big five personality characteristics 

and performance on behavioral decision making tasks. Personality and Individual Differences, 

160, 109931. 

Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J. R., and Sirigu, A. (2004). The 

involvement of the orbitofrontal cortex in the experience of regret. Science, 304(5674), 1167-1170. 

Daw, N. D. (2018). Are we of two minds?. Nature neuroscience, 21(11), 1497-1499. 

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011). Model-based 

influences on humans' choices and striatal prediction errors. Neuron, 69(6), 1204-1215. 

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and 

dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12), 1704-1711. 

Decker, J. H., Otto, A. R., Daw, N. D., and Hartley, C. A. (2016). From creatures of habit to goal-

directed learners: Tracking the developmental emergence of model-based reinforcement learning. 

Psychological science, 27(6), 848-858. 

Deisenhammer, E. A., Schmid, S. K., Kemmler, G., Moser, B., and Delazer, M. (2018). Decision 

making under risk and under ambiguity in depressed suicide attempters, depressed non-attempters 

and healthy controls. Journal of affective disorders, 226, 261-266. 

Deserno, L., Huys, Q. J., Boehme, R., Buchert, R., Heinze, H. J., Grace, A. A., ... and Schlagenhauf, 

F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based 

control during sequential decision making. Proceedings of the National Academy of Sciences, 

112(5), 1595-1600. 

Deuter, C. E., Wingenfeld, K., Schultebraucks, K., Hellmann-Regen, J., Piber, D., and Otte, C. 

(2017). Effects of mineralocorticoid-receptor stimulation on risk taking behavior in young healthy 

men and women. Psychoneuroendocrinology, 75, 132-140. 

Giustiniani, J., Joucla, C., Bennabi, D., Nicolier, M., Chabin, T., Masse, C., ... and Gabriel, D. (2019). 

Behavioral and electrophysiological arguments in favor of a relationship between impulsivity, 

risk-taking, and success on the iowa gambling task. Brain sciences, 9(10), 248. 

Gorini, A., Lucchiari, C., Russell-Edu, W., and Pravettoni, G. (2014). Modulation of risky choices in 

recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. 

Frontiers in human neuroscience, 8, 661. 



 

156 
 

Goudriaan, A. E., Lapauw, B., Ruige, J., Feyen, E., Kaufman, J. M., Brand, M., and Vingerhoets, G. 

(2010). The influence of high-normal testosterone levels on risk-taking in healthy males in a 1-

week letrozole administration study. Psychoneuroendocrinology, 35(9), 1416-1421. 

Kluen, L. M., Agorastos, A., Wiedemann, K., and Schwabe, L. (2017). Cortisol boosts risky decision-

making behavior in men but not in women. Psychoneuroendocrinology, 84, 181-189. 

Kohn, P. M., and Macdonald, J. E. (1992). The Survey of Recent Life Experiences: A decontaminated 

hassles scale for adults. Journal of behavioral medicine, 15(2), 221-236. 

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., ... and Brown, 

R. A. (2002). Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task 

(BART). Journal of Experimental Psychology: Applied, 8(2), 75. 

Lighthall, N. R., Mather, M., and Gorlick, M. A. (2009). Acute stress increases sex differences in risk 

seeking in the balloon analogue risk task. PLoS One, 4(7), e6002. 

Melnikoff, D. E., and Bargh, J. A. (2018). The mythical number two. Trends in cognitive sciences, 

22(4), 280-293. 

Mietus, J. E., Peng, C. K., Henry, I., Goldsmith, R. L., and Goldberger, A. L. (2002). The pNNx files: 

re-examining a widely used heart rate variability measure. Heart, 88(4), 378-380. 

Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., and Daw, N. D. (2013). Working-memory capacity 

protects model-based learning from stress. Proceedings of the National Academy of Sciences, 

110(52), 20941-20946. 

Park, H., Lee, D., and Chey, J. (2017). Stress enhances model-free reinforcement learning only after 

negative outcome. PLoS One, 12(7), e0180588. 

Pennycook, G., De Neys, W., Evans, J. S. B., Stanovich, K. E., and Thompson, V. A. (2018). The 

mythical dual-process typology. Trends in Cognitive Sciences, 22(8), 667-668. 

Pletzer, B., and Ortner, T. M. (2016). Neuroimaging supports behavioral personality assessment: 

Overlapping activations during reflective and impulsive risk taking. Biological psychology, 119, 

46-53. 

Radenbach, C., Reiter, A. M., Engert, V., Sjoerds, Z., Villringer, A., Heinze, H. J., ... and 

Schlagenhauf, F. (2015). The interaction of acute and chronic stress impairs model-based 

behavioral control. Psychoneuroendocrinology, 53, 268-280. 

Raio, C. M., Konova, A. B., and Otto, A. R. (2020). Trait impulsivity and acute stress interact to 

influence choice and decision speed during multi-stage decision-making. Scientific Reports, 10(1), 

1-12. 

Schwabe, L., and Wolf, O. T. (2011). Stress-induced modulation of instrumental behavior: from goal-

directed to habitual control of action. Behavioural brain research, 219(2), 321-328. 



 

157 
 

Schwabe, L., and Wolf, O. T. (2013). Stress and multiple memory systems: from ‘thinking’to ‘doing’. 

Trends in cognitive sciences, 17(2), 60-68. 

Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., and Dolan, R. J. (2019). 

Improving the reliability of model-based decision-making estimates in the two-stage decision task 

with reaction-times and drift-diffusion modeling. PLoS computational biology, 15(2), e1006803. 

Smits, F. M., Schutter, D. J., van Honk, J., and Geuze, E. (2020). Does non-invasive brain stimulation 

modulate emotional stress reactivity? Social cognitive and affective neuroscience, 15(1), 23-51. 

Starcke, K., and Brand, M. (2016). Effects of stress on decisions under uncertainty: A meta-analysis. 

Psychological bulletin, 142(9), 909. 

Starcke, K., Tuschen-Caffier, B., Markowitsch, H. J., and Brand, M. (2009). Skin conductance 

responses during decisions in ambiguous and risky situations in obsessive-compulsive disorder. 

Cognitive neuropsychiatry, 14(3), 199-216. 

Starcke, K., Wolf, O. T., Markowitsch, H. J., and Brand, M. (2008). Anticipatory stress influences 

decision making under explicit risk conditions. Behavioral neuroscience, 122(6), 1352. 

Sun, T., Xie, T., Wang, J., Zhang, L., Tian, Y., Wang, K., ... and Wang, H. (2020). Decision-Making 

Under Ambiguity or Risk in Individuals With Alzheimer’s Disease and Mild Cognitive 

Impairment. Frontiers in Psychiatry, 11, 218. 

Tobin, D. L., Holroyd, K. A., Reynolds, R. V., and Wigal, J. K. (1989). The hierarchical factor 

structure of the Coping Strategies Inventory. Cognitive therapy and research, 13(4), 343-361. 

Trotzke, P., Starcke, K., Pedersen, A., Müller, A., and Brand, M. (2015). Impaired decision making 

under ambiguity but not under risk in individuals with pathological buying–behavioral and 

psychophysiological evidence. Psychiatry research, 229(1-2), 551-558. 

Zhang, L., Wang, X., Zhu, Y., Li, H., Zhu, C., Yu, F., and Wang, K. (2017). Selective impairment of 

decision making under ambiguity in alexithymia. BMC psychiatry, 17(1), 1-8. 

  



 

158 
 

Decision-making under uncertainty and risk-propensity changes during COVID-19 pandemic 

lockdown in Italy: a longitudinal study. 

 

 

Abstract 

 

During the COVID-19 acute pandemic phase, many national governments claimed strict lockdowns, 

imposing billions of individuals to stay confined at home. Factors such as the social isolation, fear of 

contagion, worries for the loved ones, and the economic slump acted as prolonged stressor over 

individuals. Here, we present the findings of the cognitive part of a longitudinal study remotely 

conducted during and after the lockdown in Italy. Results from behavioral tasks have shown: a) a 

decrease in decision-making under uncertainty (Iowa Gambling Task) throughout the lockdown with 

a recovery in the follow-up; b) low risk-seeking (Balloon Analogue Risk Task) levels that increased 

as the lockdown continued, with a partial reduction in the follow-up; c) an acute decrease of cognitive 

control efficiency in task-switching in the first-time point measured. Under uncertainty, individuals 

are required to optimally connect with their gut feelings to guide behavior. Negative affect, generated 

by the social isolation and all the pandemic-related harmful issues, may reduce this ability modifying 

individuals’ behavioral strategies. Short- and medium-term interpretations of the COVID-19 stressful 

experience are provided. Results from behavioral science during emergencies may be highly helpful 

to understand and prevent people’s potentially dangerous conduct. 

 

Introduction 

 

The outbreak and spreading of the Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) 

have had a tremendous worldwide impact on societies, getting governments in the position to make 

impressive decisions, especially about economics and healthcare.  

Many national governments have implemented many extraordinary measures to counteract the 

diffusion of the COVID-19 and relieve the pressure on intensive care units. During the acute 

pandemic phase, millions of individuals were limited in their movements, with the closure of many 

national and regional borders. Considerably, in several countries, national or territorial lockdown was 

imposed. 

Italy has been among the first nations to undergo a national lockdown since it has been the first 

Western country dealing with the COVID-19 pandemic. The first COVID-19 cases were reported at 

the end of February in Northern Italy, where little territorial lockdowns have been implemented. On 

March 9th, the government proclaimed the “Io resto a casa” (I stay at home) decree, imposing a 
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forced quarantine for the entire country. Schools, universities, and almost the totality of the economic 

activities were closed, with only a minor part of individuals continued to go out for work, while smart 

working became a standard for both workers and students. Social and physical distancing was also 

imposed, prohibiting individuals from gathering. The lockdown was prolonged until May 4th. 

The pandemic profoundly impacted individuals’ mental health (Czeisler et al., 2020). Instantly, rates 

of suicides (e.g., Sher, 2020), sleep disturbances (e.g., Marelli et al., 2020; Blume et al., 2020), eating 

disorders (e.g., Fernàndez-Aranda et al., 2020), anxiety and depressive symptoms (e.g., Tang et al. 

2020; Huang and Zhao, 2020), alcohol and substance abuse (e.g., Kar et al., 2020), and auto- and 

hetero-directed violence (e.g., WHO, 2020) increased in the population, to the point that some authors 

have outlined a COVID Stress Syndrome (Taylor et al., 2020). Central features of the COVID Stress 

Syndrome are the fear of the dangerousness of COVID-19, the worry about socioeconomic costs of 

COVID-19, xenophobic fears that foreigners are spreaders, traumatic stress symptoms, compulsive 

checking, reassurance-seeking, avoidance, panic buying, and coping difficulties during self-isolation. 

The adverse outcomes on mental health can be mostly ascribed to the economic slump, with many 

persons who lost their jobs, the death or sickness of loved ones, the fear of contagion, and the social 

isolation due to lockdown and social distancing politics. The pandemic lockdown period might have 

represented a prolonged stress condition, of which related acute and carry-over psychological effects 

are not already known. 

Psychological research on COVID-19 flourished in the last months. As far as we know, the totality 

of studies implemented one-shot or longitudinal designs assessing mental outcomes through online 

surveys and self-report questionnaires. Already published research is showing interesting phenomena 

about psychological adaptation to the pandemic-related situation. For instance, studies have shown 

that the detrimental impact COVID-19 on mental health can be mitigated by psychological flexibility 

(Pakenham et al., 2020), i.e., the ability to adjust behavioral responses according to the environmental 

demands, possibly disposing individuals to adaptive coping strategies (Dawson and Golijani-

Moghaddam, 2020). As plausible, during the emergency-related twisting of individuals’ lives, 

adapting to the new and unpredictable changing situation is essential for good health. Besides, 

individuals during the pandemics must deal with massive but unclear and ambiguous information 

provided by media, preventing themselves from an invisible enemy whose developments are 

unknown. Instantly, intolerance to uncertainty was found to significatively account for depression 

and anxiety outcomes (del Valle et al., 2020). Intolerance to uncertainty can produce unhealthful 

behavioral outcomes, aimed at reducing the feeling of uncertainty. Indeed, individuals with a high 

need for cognitive closure were found to be engaged in more stockpiling food behavior during the 

COVID crisis (Brizi and Biraglia, 2020). In uncertain conditions, i.e., when risks are not explicit, 
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people must rely upon previous experience and gut feelings to move in the environment and make 

decisions. According to the somatic marker hypothesis (Damasio et al., 1996; Bechara et al., 2000), 

the ability to learn from an uncertain environment is implicit and unconscious and is strictly 

compromised when the ability to recognize emotions is somehow impaired. During the pandemics, 

individuals with high trait emotional intelligence showed reduced negative emotions (Moròn and 

Biolik-Moròn, 2020).  

Since other research has shown that changes can be observed in cognitive performance during the 

permanence in isolated and confined environments (see Kanas and Manzey, 2008; Lipnicki and 

Gunga, 2009; Strangman et al., 2014), our goal was to investigate how cognitive functions can adapt 

to this exceptional situation, possibly highlighting providing precious behavioral evidence useful for 

policymakers and prevention programs during pandemics (Van Bavel et al., 2020). 

Up to now, to our knowledge, this is the first longitudinal study assessing cognitive functions through 

the repeated administration of behavioral tasks during the COVID-19 spreading. 

Specifically, we investigated changes in decision-making and high-order executive functions, using 

standard decision and task-switching paradigms throughout and after Italy’s pandemic lockdown. 

The importance of making fast and optimal decisions is essential during an emergency crisis. Indeed, 

good decision-making ability is essential to maintain citizen social responsibilities (such as using 

individual protection devices, keeping social and physical distancing, practicing regular personal 

hygiene, staying home during the lockdown), and to prevent harmful individual outcomes. Similarly, 

the consequence for bad decisions made by medical professionals or policymakers can be fatal both 

in short- and in the long-term. Since the pandemic development and the risks for being infected are 

not known (for instance, due to a large number of infectious asymptomatic individuals), being able 

to make decisions under uncertainty and having optimal capacities of cognitive flexibility is of 

paramount importance. Assessing risk-propensity levels is also crucial to predict possible violations 

of dispositions, making it possible to structure good and efficacious policies, and prevent or treat bad 

mental health outcomes during a prolonged emergency state. Indeed, knowledge on decision-making 

and cognition in general, changes during the current pandemic is essential in helping to understand 

how to manage threats across different social communities, improve the scientific and political 

communication, and align individual and collective interests (Van Bavel et al., 2020; Lunn et al., 

2020; Betsch, 2020). The cognitive processes underlying decision-making, learning, and flexibility 

also reflect individuals’ ability to select and use only the information necessary to interpret reality. 

The ability to correctly evaluate risks and moderate one’s behavior is recurrent during the emergency 

and previous pandemics (Soper, 1919). 
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Much evidence exists on the effects of stress on cognitive and decision-making processes, though 

most of the studies do not focus on isolation and confinement conditions. In general, literature reports 

that under stress, people exhibited limitations of working memory resources (e.g., Shields et al., 2016; 

Arnsten, 2009; Schoofs et al., 2008), narrowing of attention to central information neglecting 

peripheral cues (e.g., Chajut and Algom, 2003; Baddeley, 1972), and tend to use more habitual, 

simple, and low-effortful behavioral strategies at the expenses of controlled and flexible ones (e.g., 

Schwabe and Wolf, 2011; 2013; Payne et al., 1988). Most of the studies investigating decision-

making under stress have focused on its acute effects, generally evidencing increased risky decision-

making (see Starcke and Brand, 2012). However, literature presents mixed results, possibly due to 

the different complexity of tasks, individual differences, and intensity and nature of stressors (e.g., 

Morgado et al., 2015; Porcelli and Delgado, 2009; Lighthall et al., 2009; van der Bos et al., 2009; 

Otto et al., 2013; Bourne and Yaroush, 2003; Lupien et al., 2009). Unfortunately, only a few studies 

investigated decision-making under chronic stress conditions, reporting both increased/decreased 

risky behavior associated with increased levels/administration of cortisol (i.e., the hormonal marker 

of the stress response) (van Honk et al., 2003; Kandasamy et al., 2014) and biased decision-making 

toward habitual and automatic strategies (Soares et al., 2012; Lenow et al., 2017; Baradell and Klein, 

1993). Similarly, stress has been shown to induce task-switching performance changes, even though 

findings are controversial (Plessow et al., 2012; Tona et al., 2020; Deuter et al., 2019). Social isolation 

and feelings of loneliness have been shown to reduce cognitive control processes’ efficiency (Van 

Baarsen et al., 2012) and overall cognitive performance (Cacioppo and Hawkley, 2009).  

In the present work, we present the cognitive decision-making part of a longitudinal study on the 

psychological impact of the COVID-related lockdown in Italy. Data presented here are indeed part 

of a broader study, also evaluating sleep and other subjective indices. Through three different 

behavioral tasks administered online, we sought to investigate decision-making under uncertainty, 

risk-propensity, and cognitive flexibility.  

 

 

Method 

 

We started this longitudinal online study on March 28, 2020, enrolling participants through social 

media and university networks. We initially planned to have one time-point every week. However, 

since the Italian lockdown was prolonged, after three weeks, we asked participants to not respond in 

the successive one and to respond the week after. Since some participants made their first responses 

in the second week of the study, we maintained the same sequence of weekly intervals (1 – 1 – 1 – 
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2). Then, globally, our study covered from the end of March until mid-May. After six months since 

the begin of the lockdown, we contacted participants to respond again to have a follow-up measure. 

The number of total respondents for the cognitive part of the e-COVID study for each time-point, 

together with the study’s timeline and the relevant events for the COVID-19 pandemic lockdown in 

Italy, are depicted in Figure 1. 

Since we implemented a longitudinal within-subject design, we reduced sample size by excluding all 

the respondents that did not complete all the five time-points. Due to the small number of respondents 

who completed the study starting from the second or the third week since the beginning of the study, 

we used only data from respondents who completed the study and the tasks starting from the first 

week. Thus, we had three time-points during the lockdown (March 29 to April 19), one as the last-

week of lockdown (April 26 to May 3), and one follow-up (September). If the same participant 

responded more than once at the same time-point, only the first response was considered.  

The study was approved by the Institutional Review Board of the Department of Psychology at the 

Sapienza University of Rome and conducted in accordance with its policies and with the Declaration 

of Helsinki. All participants provided written informed consent. 

 

 

Figure 1. 

 

Above, the timeline of the study period. The grey area represents the lockdown period, from 09/03 to 04/05. Each circle 

represents a week. Circle labelled referred to the study time-points. Empty circles represent the time-points of the group 

considered in the present study (respondents who started at the beginning of the study). The major government’s 
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dispositions are reported under the timeline. Below, the total number of respondents in each of the considered time-points. 

The remaining time-points had low or very low number of respondents (50 in Week 7, 20 in Week 9, and 13 in Week 

10). 

 

 

 

 

Cognitive tasks 

 

The three cognitive tasks we administered were implemented on the Inquisit platform 

(www.millisecond.com), modifying the parameters of existing scripts. All the scripts were 

Copyrighted © Millisecond Software. Participants were told to perform the tasks using their laptops. 

 

 

Iowa Gambling Task 

 

The Iowa Gambling Task (IGT; Bechara et al., 1994) is a behavioral task aimed at assessing decision-

making under uncertainty. In this task, respondents must choose a card from one of four decks through 

their mouse in each trial. After they chose, each card provides feedbacks about the euros obtained, 

the euros lost, and the net gain. Unknown to participants, the four decks differ for the frequency and 

magnitude of losses. In two decks (A and C), losses are more frequent but smaller than in the other 

two decks (B and D). However, A and B are high-paying decks, presenting a higher magnitude of 

losses and equivalent overall net loss throughout the task. The opposite is true for the low-paying 

decks (C and D), which present a lower magnitude of losses, and they also are equivalent in the long 

run. Thus, decks A and B are categorized as “disadvantageous”, whereas decks C and D as 

“advantageous” decks.  

Literature showed that healthy participants usually learn throughout the task what are the two 

advantageous decks and prefer to choose between them in the last blocks. 

Following the Bechara’s standard paradigm (1994), gains were always equal to 100 euros for decks 

A and B and 50 euros for decks C and D. Losses were selected randomly without replacement from 

values in Table 1. To control for learning effects throughout the study period, we randomly 

manipulated the decks’ order into four possible combinations and decks’ reward by multiplying gains 

and losses (Table 1) by a factor of 1, 2, or 3, across subjects. 
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Table 1.  

 

Magnitude of losses in the Iowa Gambling Task across 10 trials for each of the four decks. 

 

 

The task consisted of 100 trials not explicitly divided into 5 blocks. Participants started with 2000 

virtual euros and are told to win as much as possible. 

The standard IGT score was calculated as the number of advantageous minus the number of 

disadvantageous choices in each of the five blocks of trials. We also calculated the number of switches 

(i.e., when participants switch from one deck to another in successive trials) and latencies (i.e., the 

time between presenting a new trial and the subsequent choice). 

Participants with 1 or less than 1 standard deviation of choice proportions among decks were excluded 

to control for casual performances. We excluded performances with 2 or less than 2 switches in the 

entire task to control for excessively perseverative participants. Latencies exceeding 2 standard 

deviations below/above the individual mean at each time-point were considered outliers and excluded 

from the analyses. 

 

Balloon Analogue Risk Task 

 

The Balloon Analogue Risk Task (BART; Lejuez et al., 2002) is an uncertainty-based decision-

making task aimed at assessing risk-propensity. In this task, respondents are presented with one of 30 

balloons in each trial. For each balloon, respondents must decide to inflate the balloon as much as 

they want, and temporarily gain money for each pump or permanently collect their winnings and skip 

to the next balloon. The payoff for each pump was set to 0.05 points. Participants are told that the 

balloon may explode after any pump, making them lose the potential winnings for that balloon. The 

maximum number of possible pumps for each balloon is 127, then the probability that a balloon might 

explode after the first pump is 1/128. This probability increases after each pump. Participants are 

unaware of the maximum number of pumps or the explosion probabilities. They do know that a 

balloon might explode after the first pump or that a balloon might fill up the entire screen without 

exploding. Participants are told that their goal is to earn as much as possible. 

Deck A 0 0 0 0 0 150 200 250 300 350

Deck B 0 0 0 0 0 0 0 0 0 1250

Deck C 0 0 0 0 0 50 50 50 50 50

Deck D 0 0 0 0 0 0 0 0 0 250
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The adjusted average number of pumps was calculated as the mean number of pumps in unexploded 

balloons. The number of explosions and the time between pumps (except for the time before the first 

pump and between the last pump and the collect choice) were also calculated. The time between 

pumps exceeding 2 standard deviations below/above the individual mean at each time-point were 

considered outliers and excluded from the analyses. 

 

Category Switch Task 

 

In the Category Switch Task (Friedman et al., 2008; Mayr and Kliegl, 2003), participants are 

presented with a word in each trial, and they must respond as fast and accurately as possible according 

to one of two categorization rules. The “living” task is cued by a heart and requires participants to 

categorize words as living or non-living objects; the “size” task is cued by an arrow-cross and requires 

participants to categorize words on their size (bigger or smaller) relative to a basketball. Half of the 

trials are switch trials, and half are repetitions. Congruent and incongruent (same/different response 

required by the tasks) switch and repetition trials are equally balanced. Participants are required to 

respond on their keyboard using left and index fingers on ‘E’ and ‘I’ keys. Responses were randomly 

assigned to keys.  

The entire task consisted of a practice and an experimental phase. The practice phase was made up 

of 32 separately unmixed trials for the “living/size” task, presented in random order. An additional 

16 mixed trials were presented. If participants’ accuracy was lower than 80%, additional practice 

trials were presented. The experimental phase consisted of 64 trials. RTs less than 100 ms were not 

possible. The intertrial interval was set at 500 ms for correct responses and 1500 ms for errors, while 

there was no cue-target interval. 

RTs in the experimental phase were calculated for repetition and switch trials. We measured the 

switch-cost as the mean RT on switch trials minus the mean RT on repetition trials. Also, we 

calculated N-2 repetition cost (i.e., the persistent interference of previous task sets in current 

performance) see Mayr and Keele, 2000) by separately calculating RTs for ABA (e.g., “living” – 

“size” – “living”) and BBA (e.g., “size” – “size” – “living”) trials. RTs smaller/larger than 2 standard 

deviations below/above the individual mean at each time-point were considered outliers and excluded 

from the analyses. 

  

 

Procedure 
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In the whole study, besides cognitive tasks, also sleep indices and questionnaires were administered. 

In each experimental day, participants entered the research website and launched the Inquisit link for 

cognitive tasks. The order of the tasks was fixed. The BART was the first task to complete, then the 

IOWA Gambling task, the Category Switch task, and finally, the Psychomotor Vigilance Task (which 

findings will be reported elsewhere). Informed consent was provided at the first experimental session 

through Qualtrics. Participants entered the tasks using a personal code. If they wish, they could 

provide their e-mail address to remind them of the successive time-points. Only the research team 

had access to e-mail addresses and other personal data. 

 

Results 

 

Iowa Gambling Task 

 

After the correction of the IGT’s database, data from 107 respondents (females = 71; mean age = 

36.71, s.d. = 16.43) were analyzed.  

Mauchly sphericity tests were conducted in each ANOVA. When significant, ps were adjusted 

according to Greenhouse-Geisser correction. 

A first 5x5 repeated measures ANOVA on the IGT score was conducted using Week (Week 4, 5, 6, 

Last Week, and Follow Up) and Block (1 to 5) as independent variables. The ANOVA revealed 

significant main effects of Week and Block (F4,424=2.393764, p < 0.05, partial eta squared = 0.02 

and F4,424=8.121497, p < 0.0001, partial eta squared = 0.07, for Week and Block effects, 

respectively) and no effect of the interaction (p> 0.05). However, since we observed differences in 

the trends throughout the blocks in each time-point (Figure 2a), we conducted separate ANOVA 

(Bonferroni corrected alpha = 0.01) and trend analyses for each session. 

The ANOVA in the first time-point did not show a significant effect of block (p>0.05). Polynomial 

comparisons showed a significant linear component (F1,106=6.098288, p = 0.01, partial eta squared 

= 0.05) and no significant quadratic or cubic components (p>0.05). The second time-point it showed 

a non-significant effect of block (G-G adjusted p>0.05) following a cubic trend (F1,106=4.240791, 

p=0.04, partial eta squared = 0.04). The third time-point did not show a significant effect of block nor 

significant linear, quadratic, or cubic components (G-G adjusted p>0.05). Also, the fourth time-point 

did not show a significant effect of block (F4,424=2.638131, G-G adjusted p=0.04, partial eta squared 

= 0.02), but revealed a significant linear trend (F1,106=5.908443, p=0.01, partial eta squared = 0.05). 

Differently, performance on the follow-up showed a significant effect of block (F4,424=4.385032, 

p< 0.01, partial eta squared = 0.04), following a linear (F1,106=10.84087, G-G adjusted p<0.01, 
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partial eta squared = 0.09) and a quadratic trend (F1,106=4.308984, p=0.04, partial eta squared = 

0.04). 

Latencies (decision times between the presentation of the new trial and the choice of a deck) were 

analyzed in a 5x5 repeated measures ANOVA, using Week and Block as factors. The ANOVA 

revealed both significant main effects (F4,424=16.8030, G-G adjusted p< 0.0001, partial eta squared 

= 0.14 and F4,424=56.0459, G-G adjusted p< 0.0001, partial eta squared = 0.35  for the main effects 

of Week and Block, respectively). In addition, also the interaction was significant (F16,1696=7.2042, 

G-G adjusted p< 0.0001, partial eta squared = 0.06). Instantly, Duncan’s post-hoc showed that 

respondents spent more time in analyzing option before choosing in the first week compared to all 

the others (p< 0.0001) and less time in the fourth week compared to the first three (p <0.05), in the 

first (p<0.0001) and in the second (p<0.05) block compared to all the others, and in the first block in 

the first week compared to the first blocks of the other time-points (p < 0.0001). Then, respondents 

showed to learn at each time-point and throughout the blocks how to perform the task (Figure 2b). 

The proportion of switches were also analyzed in a 5x5 repeated measures ANOVA, using Week and 

Block as factors. The analysis showed significant main effects of Week and Block factors 

(F4,424=13.7899, G-G adjusted p< 0.0001, partial eta squared = 0.11 and F4,424=47.9521, G-G 

adjusted p< 0.0001, partial eta squared = 0.31 for Week and Block, respectively) and no significant 

interaction (p>0.05). Duncan’s post-hoc tests of the main effects showed that the respondents in the 

first and in the second week switch significantly more than in the other time-points (p< 0.05) and 

more/less in the first/last block compared to all the others (p < 0.01). We performed this analysis due 

to findings obtained by Lipnicki et al., (2009) in a confined environment. However, differently from 

Lipnicki et al., we did not find any significant variations in switch strategies between blocks except 

an expected decrease of switches from the first to the last block of the task (Figure 2c). 
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Figure 2. 

a) 

 

b)                                                                                                                     c) 

 

Performance in the IGT in each block of the task at each study time-point. a) Mean IGT score (advantageous – 

disadvantageous choices). b) Mean latencies (time to make decisions). c) Mean proportion of switches among decks. Bars 

denote standard errors. 

 

 

Balloon Analogue Risk Task 
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For the BART, data from 124 respondents (females = 77; mean age = 36.71, s.d. 16.47) were 

analyzed. Mauchly sphericity tests were conducted in each ANOVA. When significant, ps were 

adjusted according to Greenhouse-Geisser correction. 

The total number of explosions was analyzed in a one-way ANOVA, using Week as a within-subject 

factor. The ANOVA revealed a significant effect of Week (F4,492=9.24872, G-G adjusted p< 0.0001, 

partial eta squared = 0.07). As shown by Duncan’s post-hoc tests, the number of total explosions 

significantly increased (p< 0.05) throughout the study, reaching its peak at Week 6 and 8 (non-

different, p > 0.05), and then bouncing back to a lower level at follow-up. 

The same ANOVA was conducted for adjusted average pumps, showing a significant effect of Week 

Week (F4,492=13.6702, G-G adjusted p< 0.0001, partial eta squared = 0.1). The adjusted number of 

pumps significantly increased after the first time point for all the successive sessions (p < 0.001) and 

decreases significantly from Week 6 and Last Week at Follow-Up (p< 0.05), as shown by Duncan’s 

post-hoc tests. Explosions and adjusted number of pumps then followed the same pattern (Figure 3a 

and 3b). 

Also, the time between pumps was analyzed in the same ANOVA design. Although outliers at 

individual levels were removed, we still observed aberrant values at the group levels. Participants 

presenting more than 10000 ms mean values were removed. Finally, data from 111 participants were 

analyzed. Again, the analysis showed a significant effect of Week (F4,440=30.9478, G-G adjusted 

p< 0.0001, partial eta squared = 0.22), explained by a significant reduction between Last Week and 

all the other time-points and between the Follow-Up and all the other time-points (p< 0.0001). Time 

between pumps, differently from the other BART indices, followed a trend similar to the one observed 

in latencies and RTs in the IGT and in the CST (Figure 3c). 

 

Figure 3. 

a)                                                                                                       b) 
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c) 

 

Performance in the BART score at each time-point of the study. a) Mean total explosions. b) Mean adjusted average 

pumps (number of pumps for unexploded balloons). c) Mean time between pumps (for all but the first pump and the time 

between the last pump and the collect choice). Bars denote standard errors. 

 

 

Category Switch Task 

 

Data from 128 respondents (females = 84, mean age = 36.34, s.d. = 16.5) were used for the analysis 

of the Category Switch Task. Mauchly sphericity tests were conducted in each ANOVA. When 

significant, ps were adjusted according to Greenhouse-Geisser correction. Participants in all time-

points had an optimal level of performance, as can be seen by the mean accuracy for each time-point 

(90%, 90.2%, 92.9%, 92.9%, and 90.2% for Week 4, Week 5, Week 6, Last Week, and Follow Up, 

respectively). 

The ANOVA on RTs revealed significant main effects of Week (F4,508=40.508, G-G adjusted p< 

0.0001, partial eta squared = 0.24) and Transition (F1,127=286.340, G-G adjusted p< 0.0001, partial 

eta squared = 0.69), and a significant interaction  (F4,508=16.760, G-G adjusted p< 0.0001, partial 

eta squared = 0.11). The significant effect of week was explained by the reduced RTs throughout the 

study, whereas the significant effect of transition showed that switch cost was observed in all time-

points (mean RTs for repetition trials: 1019.362 ms, s.d. 20.56 ms; mean RTs for switch trials: 1308.9 

ms, s.d. 31.57 ms). Mean RTs for repetition- and switch-trials at each time-point are reported in Table 

1. 

 In order to inspect the changes in switch-cost, we planned a second ANOVA on the switch cost 

difference, using Week as a within-subjects factor. The analysis clearly showed a significant effect 

of Week (F4,508=16.7598, G-G adjusted p< 0.0001, partial eta squared = 0.11). Duncan’s post-hoc 
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test on the principal effect showed that the switch-cost in the first time-point was significantly 

different from all the others (p<0.0001 for all comparisons). No other significant differences were 

observed. 

The same ANOVA was run to inspect the effect of time-points on the N-2 repetition cost. The 

ANOVA showed significant main effects of Week (F4,508=40.788, G-G adjusted p< 0.0001, partial 

eta squared = 0.24) and of Transition (F1,127=52.038, G-G adjusted p< 0.0001, partial eta squared = 

0.29).  The effect of Week was explained by the reduction of RTs throughout the task, whereas the 

effect of Transition showed that the N-2 repetition cost was present in each time-point (mean RT for 

BBA trials: 1275.14 ms, s.d. = 30.98 ms; mean RT for ABA trials: 1348.1 ms s.d., 34 ms). A 

significant interaction was also observed (F4,508=5.787, G-G adjusted p< 0.001, partial eta squared 

= 0.04). Mean RTs for BBA- and ABA-trials at each time-point are reported in Table 2. Even in this 

case, we analyzed in a one-way ANOVA the N-2 repetition cost, using Week as a within-subjects 

factor, showing the same significant comparisons already observed in the switch cost analysis 

(F4,508=5.78654, G-G adjusted p< 0.001, partial eta squared = 0.04, p<=0.01 for the differences 

between the first time-point and all the others, p > 0.05 for all other comparisons). 

 

Table 2. 

 

 

Table 3. 

 

Mean RTs (s.d.) of repetition- and switch-trials (Table 1) and BBA- and ABA-trials (Table 2) at each time-point of the 

study. 

 

Week 4 Week 5 Week 6 Last Week Follow-Up

Repetitions 1197.18 (35.07) 1048.06 (34.82) 976.3 (21.12) 941.78 (21.14) 933.49 (20.18)

Switch 1628.54 (60.22) 1315.68 (40.77) 1228.82 (32.91) 1199.68 (33.85) 1171.95 (30.02)

Week 4 Week 5 Week 6 Last Week Follow-Up

BBA 1564.91 (58.37) 1276.03 (41.55) 1200.98 (33.11) 1178.09 (33.63) 1155.72 (29.14)

ABA 1700.66 (64.61) 1353.96 (41.92) 1258.11 (34.28) 1224.53 (35.11) 1193.26 (33.66)
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Figure 4. 

 

Mean switch cost (continuous line) and N-2 repetition cost (dashed line) at each time-point of the study. Bars denote 

standard errors. 

 

Discussion 

 

Dealing with psychological distress due to the COVID-19 pandemic lockdown can be very hard for 

individuals. Social confinement has been and continues being a common condition in worldwide 

nations, especially for those more stricken with the diffusion of COVID-19. Italy has been among the 

first countries afflicted by the pandemic, and it was the first Western country imposing a strict 

lockdown all over the national territory. Due to the severity of dispositions taken by the Italian 

government, millions of people were confined at home for almost 2 months with no possibility of 

visiting parents or loved ones. The psychological outcomes of the lockdown’s exceptional condition 

have been studied both in Italy and in other countries. However, most of these studies mostly 

employed subjective measures and surveys, reporting changes in several general indices such as 

mood, sleep, and unhealthy behaviors, attempting to relate harmful consequences to more specific 

dimensions such as coping strategies, tolerance to uncertainty, need for cognitive closure, flexibility, 

and emotional intelligence. 

In the present study, we planned to conduct a longitudinal research to monitor cognitive, subjective, 

and sleep indices throughout the whole period of the Italian lockdown. The e-COVID study started 

at the end of March and ended at mid-May, with a follow-up measure obtained in September. To give 

credit to the richness and variety of indices, subjective and sleep findings were elsewhere reported, 

while the present work focuses only on the cognitive performance data. As far as we know, the present 
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work is currently the first longitudinal study investigating cognitive processes adaptation during the 

pandemic lockdown using behavioral tasks. Instantly, we measured changes in decision-making 

under uncertainty (Iowa Gambling Task, IGT), risk-propensity (Balloon Analogue Risk Task, 

BART), and cognitive flexibility (Category Switch Task, CST) in 5 time-points ranging from the 

fourth to the sixth week of lockdown, the last week of lockdown (the eighth week after the lockdown 

imposition), and a follow-up in September (six months after the begin of the lockdown). We 

hypothesized that decisional processes and high-order functioning. Risk-propensity, learning and 

choosing under uncertainty, and rapidly adapt to environmental demands have been paramount 

abilities during the pandemic lockdown, possibly explaining adverse psychological outcomes, 

failures in the adaptation to the situation, and the production of risky and unhealthy behaviors. We 

also hypothesized a differential impact for low-level, automatic (IGT) and high-level, controlled 

(CST) processes. 

Our findings globally showed short- and medium-term changes in cognitive performance. 

Instantly, we found that the IGT performance was worst during the three central lockdown time-

points than in the last week, especially in the follow-up measure. The reduction in performance was 

observed in the lack of expected decisional trends during the task blocks, with no optimal implicit 

learning of the task structure, resulting in less advantageous choices. Indeed, whereas performance 

appeared to increase throughout the task in all time-points, significant effects of block were observed 

only in the last two time-points. Moreover, only in the follow-up, we observed a quadratic trend, 

which is expected in a standard performance from the firsts to the last blocks, i.e., when participants 

unconsciously learn the advantageous decks and avoid bad decks. A practice effect interpretation is 

excluded since participants should not have optimally performed the task in the first measures 

accordingly to the standard performance (Bechara et al., 1994). For instance, the IGT net score in the 

first time-point was proximal to zero, despite a slight increase throughout the blocks, providing no 

clear learning evidence. 

We have also found an increased risk-seeking in the BART throughout the lockdown period, peaking 

at Week 6 and 8, with a partial reduction in the follow-up. This finding can be accounted for by two 

explanations. First, it can be conceived as an increased risk-seeking related to lockdown. That result 

can be interpreted as the progressive urge for individuals to take risks to escape the isolation, which 

progressed as the time in lockdown was prolonged, explaining the partial reduction observed in the 

follow-up. Indeed, it is plausible to argue that individuals used more risk-avoidant behaviors during 

the acute phases of the COVID-19 pandemic. After individuals spent several weeks in lockdown, 

they observed reductions of personal risks for contagion because they were confined at home. 

Together with the fact that home confinement can be a monotonous and boring condition, they might 
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have felt a progressive, increased impulse to risk. That is in line with the elsewhere observed 

augmentation of risky-related behaviors (e.g., Czeisler et al., 2020; Sher, 2020; Kar et al., 2020). 

Moreover, it is worth noting that the end of the lockdown period was not known to Italian citizens 

when it was imposed. Indeed, several decrees have succeeded in prolonging the lockdown period (the 

last one was on April 10th, proclaiming lockdown until May 3rd). Then, the mismatch between the 

expectations of a short lockdown period and the updates of national dispositions might have increased 

the urgency to be impatient of future better outcomes preferring less delayed rewards (i.e., risk-

seeking). Not being under lockdown, together with the increase of infection observed in September, 

might have reduced this urgency in the follow-up. Secondly, since a risky behavior in the BART can 

instead be advantageous, it is possible to argue that the task’s repeated administrations might have 

allowed respondents to understand that risking was more profitable than saving. Indeed, evidence 

exists that repeated administration of the BART led to increased scores as the study progressed 

(MacLean et al., 2018). However, the MacLean study observed the performance over 7-days. 

Moreover, we did not find any increase between the third and the fourth time-point and do find a 

decrease in the follow-up. Also, compared with the previous literature data, the adjusted average of 

pumps observed by respondents in this study was much lower. Furthermore, we observed the same 

trend for the number of explosions. In the first time-point, that represents a very low risk-seeking 

behavior, providing support for the contagion-related risk-reduction interpretation. 

Finally, we found a steep decrease in the switch and N-2 repetition cost in the CST between the first 

and the other time-points. Studies implementing repeated administration of task-switching paradigms 

have provided evidence for practice effects due to training, observing reduced switch, and N-2 

repetition costs (e.g., Meiran, 1996; Scheil, 2016), even though literature lacks systematic 

longitudinal data. Then, in this case, we cannot completely rule out this interpretation. However, the 

reductions observed were significant, only comparing the first with all the other time-points. If we 

were exploring only switch-costs, we would have been interpreted this finding as an increase in 

performance due to a strengthened association of stimulus-response mappings since the switch cost 

measures switch and repetition trials. Still, we also measured N-2 repetition cost, which is given by 

two qualitatively different switch trials (ABA and BBA, in this case), and we found an effect like the 

switch-cost. We can then argue against the interpretation that the higher costs observed at the first-

time points are entirely due to a switch-related greater difficulty than repetitions. Furthermore, we 

observed similar and optimal total accuracies among all the time-points. Importantly, we still 

observed residual switch and N-2 repetition costs in the last sessions. 

Hence, according to our findings, we suggest a dual pattern of pandemic lockdown effects. The first 

one is explicated in a medium-term trend observed in decisional processes. The described changes in 
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decision-making under uncertainty and risk-seeking might reflect processes related to reduced 

emotion-based learning and the persisting isolation faced by individuals during the pandemic 

lockdown. Unfortunately, the literature lacks studies useful for comparisons. However, studies 

reporting the effects of stress exposure over decision-making abilities generally reported a shift 

toward the use of habitual strategies (Schwabe and Wolf, 2011; Friedel et al. 2017), an increase in 

the rate of disadvantageous and risky choices (Porcelli and Delgado, 2009; Preston et al., 2007; van 

de Bos et al., 2009; Lighthall et al. 2009; 2012; but see Starcke and Brand, 2016), and an alteration 

of sensitivity to feedbacks (Porcelli and Delgado, 2017), especially for losses (Petzold et al., 2010; 

Park et al., 2017). Decision-making under uncertainty in the IGT has been largely shown to be 

impaired by stress administration (e.g., Preston et al., 2007; Simonovic et al., 2018; van den Bos et 

al., 2009; Starcke et al., 2017). Theoretically, the Somatic Marker Hypothesis, on which the IGT was 

traditionally based (Damasio et al., 1994), relies upon intuitive and associative strategies. Stress has 

been shown to impair the connections between the prefrontal cortex (which is known to be involved 

in high-level cognitive functioning, such as working memory) and the amygdala (e.g., Andolina et 

al., 2013). Recent evidence has questioned the IGT’s intuitive account, suggesting that a dual-process 

framework, implicating the intermixing between automatic and controlled processes, is better suitable 

in explaining performance in such a task (Brevers et al., 2013). Accordingly, the SMH suggested that 

during the decisional process, immediate and delayed prospects of the available options are driven by 

subcortical and cortical mechanisms, respectively, possibly exerting conflicts between the several 

somatic responses produced (Reimann and Bechara, 2010). Thus, dissociations between such 

“impulsive” and “reflective” networks can be observed when considering short- and long-term effects 

of stress and negative affect on decision processes. 

Relatedly, the second one is instead exacerbated as a short-term effect of the stressful situation, 

eventually reflecting the “shock” experienced by individuals in the first week after the massive 

outbreak of COVID-19 and the awareness that the lockdown period and the spreading of the 

contagion would be slower and prolonged as expected. As a processive stressor (Hermann and 

Culliman, 1997; Pacak and Palkovitz, 2001), the COVID situation does not necessarily present an 

immediate threat to the organism, but it can be recognized, interpreted, and anticipated as a possible 

threat by higher-order cognitive processes. Cognitive flexibility is acutely affected by stress (Plessow 

et al., 2012). However, cognitive-energetical stress models suggested that high-consuming, 

compensatory processes may intervene to spare performance at the cost of latent decrements (Hockey, 

1986). This model seems to fit our data. As the stressful experience progressed, these compensatory 

processes stabilized cognitive flexibility to an acceptable level.  
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Executive functions have been distinguished in cool (necessary for the flexible and strategical 

organization of behavior, and the maintenance of goals and information in working memory) and hot 

(related to self-monitoring, emotion regulation, and inhibition of impulsive conducts), with 

dissociable underlying neural networks (Brevers et al., 2013). It can be argued that during acute stress 

exposure, the effects may not or maybe slightly distinguished. In contrast, when the stress and adverse 

condition is prolonged, the intervening compensatory processes might make visible the changes in 

low-level cognitive functioning, which is much more related to the emotional information that 

supports the production of behaviors and it is slower to readapt. 

Evidence from behavioral science, even in an exceptional and weakly controlled condition, might be 

precious in understanding individuals’ conduct during the contagion and in other similar emergency 

crises, providing useful information for the prevention and implementation of effective 

countermeasures (Van Bavel et al., 2020). In that sense, our work provides significant findings 

regarding the possible mechanisms involved in risky, counter-productive behaviors during an 

emergency, which might be highly dangerous for individuals and social communities. 

 

 

 

Limitations 

 

Three major limitations of the present study can be highlighted. First, due to the unexpected rise of 

infections and the imposing of a lockdown, we could not collect a pre-lockdown baseline measure, 

which would have been very useful in interpreting the lockdown-related effects, controlling for 

practice effects, and making possible pre-post lockdown comparisons. Moreover, the follow-up 

measure is undoubtedly a baseline from the lockdown condition, but it did not occur during a normal 

situation. Indeed, in September, COVID-19 infections in Italy were rising again, and preventive 

measures (such as physical distancing, prohibited gathering of people, mandatory use of individual 

protective devices) were still imposed. Fear of contagion, smart-working, and light social isolation 

was maybe still affecting individuals’ lives. Second, the design of the study was planned weekly due 

to the constant update of preventive measures. Third, since it was an online study, we had no complete 

control over respondents. Furthermore, we observed large numbers of dropouts or non-consistent 

following of weekly administration.  
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Conclusions  

 

We investigated in this longitudinal within-subjects study decision-making and cognitive flexibility 

performance through online behavioral tasks during the COVID-19 pandemic lockdown in Italy. 

Our findings report that individuals during the lockdown were affected by changes in decision-

making under uncertainty and risk-seeking, making individuals less able to learn from feedbacks 

when information about options is unexplicit. Accordingly, negative emotions and information 

overload might have reduced the ability to use experience in behavior guidance. Individuals might 

have been coerced to use less habitual strategies and rely upon risk-avoidant behaviors. The 

prolongation of the isolation period might have increased the urge to take risks and engage in 

unhealthy and impulsive conduct. These effects have been shown to have time-dependent lockdown-

related changes. Parallelly, a short-term effect of the first weeks after the COVID-19 outbreak is 

discussed in terms of a decreased ability to flexibly switch cognitive representations according to the 

changing of task-demands, evidencing acute changes in top-down, controlled, cognitive processes. 

The COVID-19 pandemic and the related countermeasures imposed to fight its diffusion may 

represent exceptional threats for individuals’ health, promoting dysfunctional behavior changes.  
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General Discussion and Conclusions 

 

 

The present work aimed to investigate dual-process theories of cognition in distinct cognitive 

functions operating at different levels of complexity. Here, complexity is referred to as the number 

and variety of cognitive mechanisms assuming to interact in producing a behavioral performance. 

The studies presented here belong to three research lines, examining the interplay between automatic 

and controlled processes in temporal attention, cognitive flexibility, and decision-making. 

Advocates and critics of dual-process theories are still debating about the nature of the two processes 

and their interaction, the scientific terminology to be used, and the methodology to employ to 

disentangle their role in behavior efficaciously (Melnikoff and Bargh, 2018a; 2018b; Pennycook et 

al., 2018). Most of that theoretical framework issues regard the systemic or functional nature of the 

two processes, the alignment of their characteristics, and the continuous or dichotomous relation 

between them (e.g., Kruglanski and Gigerenzer, 2011; Keren and Schul, 2009). These still unsolved 

problems moved several authors to doubt the real utility and the explanatory effectiveness of dual-

process theories (Gigerenzer, 2011). As can be seen in literature (Evans, 2009), the result is the rise 

of a large number of dual-process theories, each one addressing specific cognitive and behavioral 

phenomena with weak or no apparent relations to the others. Despite these challenges, some authors 

are still working toward the generalization of the theory to the whole cognitive functioning (Evans 

and Stanovic, 2013; Pennycook et al., 2018). While that goal is far-reaching, the “whatever-it-takes” 

conceptualization of two separate systems might represent an obstacle toward the ambitious 

description of a dual-process mind. 

Questions regarding dual-process theories are rooted in the difficulties intrinsic in the definitions of 

automaticity and cognitive control. On the one hand, automatic processes have been described in 

many different ways, but the core concept of automaticity has not yet been addressed (e.g., Fiedler 

and Hutter, 2014). What is it that makes an automatic process automatic? On the other hand, cognitive 

control supremacy in cognitive research is encountering similar defining crises, with much recent 

evidence undermining its traditional unitary, central, and domain-general features (e.g., Engel et al., 

2007). However, while research in cognitive science is providing exceptional and contradictory 

findings, the cliffs of tradition seem hard to be climbed over. If dual-process theories benefit the 

clarification of the puzzling conceptions in automaticity and cognitive control literature is not known, 

but, indeed, reasoning in a dual-way can be highly helpful for several reasons. First, it allows for the 

possible qualitative and quantitative identification or categorization of a hypothesized phenomenon 

as a non-alternative one. Relatedly, it also allows for the verification that if a process does not present 
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the features of a modality (e.g., controlled), it cannot be necessarily ascribed to the other one (e.g., 

automatic). Secondly, it permits the decomposition of known and unknown mechanisms into several 

peculiar phenomena. For instance, do executive functions make part of the same conceptual entity 

(Miyake et al., 2000; Verbruggen et al., 2014)? Thirdly, it may consent to make inferences about the 

interrelations among cognitive processes sharing the same features but traditionally or structurally 

belonging to other fields.  

With that in mind, the findings obtained in the studies presented in this work move critiques to the 

view that automatic and controlled processes are two separate systems at a function-level of 

exploration. Instantly, I showed that the two processes or strategies or modalities are not necessarily 

balanced in decision-making, with stress (acute or prolonged) causing a non-complementary shift 

between the two. Indeed, in a first study, an acute stress induction procedure has been shown to induce 

differential changes in decision-making, in interaction with individual risk-propensity levels, in the 

way of a shift toward the use of more habitual and less flexible strategies, possibly related to an 

impairment in the ability to process feedback. Similarly, in a second study, a prolonged stressful 

experience (the isolation due to the COVID-19 pandemic lockdown) has been found to prolongedly 

reduce the ability to learn from feedbacks in uncertain conditions. That effect was found without an 

apparent complementary reduction in model-based strategies and controlled processes. As regards 

the COVID study, instead, the efficiency of controlled processes showed a short-term decrease. 

I have also highlighted that what we conceived as cognitive control in task-switching performance is 

not necessarily central, unitary, operating at high-levels, and domain-general, but consists of a 

mixture of subtended qualitatively different mechanisms. Instantly, in a tDCS study, the anodal 

stimulation differentially affected cognitive control processes, by generally improving the ability to 

switch between tasks (frontal stimulation) and specifically improve the ability to overcome the 

inhibition of previous task sets (parietal stimulation). A second study shown that task-set inhibition 

does not operate at an abstract semantic level, but it is triggered by stimulus changes at a lower, 

perceptual level. Indeed, manipulating the stimulus format was enough for backward inhibition to not 

occur. Finally, in the last study of the section, the mechanisms involved in backward inhibition have 

been investigated by recording event-related potentials. The results obtained shed new lights over the 

differential roles of cue- and target- related processes, where task-set retrieval and reconfiguration 

have been disentangled, both accounting for the N-2 repetition cost (the behavioral outcome of 

backward inhibition). 

Furthermore, in mechanisms that regulate the access to consciousness of two rapidly presented 

stimuli, even in the early processes involved in temporal discrimination and judgment, traces of the 

influence of high-level goals and flexibility can be observed. More specifically, the first study of the 
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section showed that goals and instructions might modulate the attentional blink performance. Asking 

individuals to reduce the goals otherwise required to perform a Rapid Serial Visual Presentation task 

modulates the ability to detect the targets embedded in the distractors’ stream. Moreover, in the 

second attention study, findings showed that the ability to judge the correct order of two rapidly and 

subsequently presented stimuli (at Lag 1 sparing phenomenon of the attentional blink) is flexible and 

strategic, rather than inescapably dependent upon bottom-up saliency mechanisms. Ascending 

ordered digits were less frequently swapped than descending ones, but participants showed to flexibly 

adapt their reporting preference according to instructions given. 

Overall, the presented data account for the non-alignment of System 1- and System 2-like processes. 

Indeed, the relations both within and between the two systems characteristics (e.g., automatic, 

unconscious, and associative, and controlled, conscious, and analytical for System 1 and System 2, 

respectively) appear to be less peculiar and compartmental than most of the dual-process theories 

(implicitly and explicitly) assume. Differently, it seems that bottom-up and top-down dimensions are 

strongly interdependent in producing behavior, at whatever level of complexity one is observing. That 

has a consequence for the terminology used (as Systems Theory postulates, a system is defined as a 

set of interrelated and interdependent parts), the interpretations of specific phenomena (e.g., if a 

process is controlled is not necessarily analytical), and the overall cognitive functioning (e.g., if the 

behavior is habitual is not necessarily less flexible).  

The dichotomization of mental processes has, due to kind of associative heuristics, led to a match of 

each of the two features of a dichotomy with each feature of other dichotomies (e.g., if a behavior 

can be [habitual OR voluntary] AND [fast OR slow], it has not necessarily to be [habitual AND fast] 

OR [voluntary AND slow]). In many theoretical positions, it seems that other folkloristic 

dichotomies, such as good/bad, have been absorbed in this associative process, spreading the idea 

that System 1 is error-prone while System 2-behavior leads to good outcomes (Melnikoff and Bargh, 

2018a).  

Since evidence-based policies aimed at reducing errors and disadvantageous conducts are becoming 

significant in operative contexts and financial settings, that dichotomization has led interventions to 

be primarily focused on boosting deliberative and rational procedures (World Bank Group, 2015; 

Balogh et al., 2015). However, the literature indicates that errors are not peculiarly related to Type 1 

processes (e.g., Kruglansky and Gigerenzer, 2011). Similarly, some current techniques are based on 

the mechanisms that govern individuals’ automatic processes by promoting specific interventions in 

the environment. Behavioral economists and choice architectures populate control rooms today. Their 

advice is becoming more and more central in the public policies supposed to modify individuals’ 

disadvantageous behavior and have an impact on socially relevant issues (e.g., nudging, Thaler and 
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Sunstein, 2003). However, such techniques observed only modest and fickle results (and presented 

ethical issues, too). 

Automatic and controlled processes might not be complementary: the efforts made in boosting Type 

2 strategies alone do not necessarily lead to a reduction of biases. At the same time, nudging 

individuals do not make people more aware of the consequences of their behavior. The picture is 

more intricated and certainly need more investigation.  

Future perspectives in applied contexts should integrate results in cognitive and behavioral 

psychology. For instance, findings in the framework of the Fuzzy Trace Theory (FTT; Blalock and 

Reyna, 2016) have shown that biases arise due to an incomplete or inaccurate formation of intuitive 

and nonconscious gist representations of facts. Indeed, how information is presented dramatically 

matters in the correct understanding of data. For instance, during the COVID-19 pandemic, the 

scientific communication has been predominant in every kind of media and, thus, in the assumption 

of safe/risky conducts in citizens (Van Bavel et al., 2020). Even more so, since stress has been shown 

to have a differential impact of different decision-making strategies, rather than overloading citizens 

with tons of not-sufficiently-explained data, interventions should have been focused on simplifying 

their ability to choose and judge in uncertain contexts. As well as civil people, this is true for 

individuals living and working in operative contexts, who should also be trained in using their 

intuition or creativity in new and ever-changing contexts.  

However, without new evidence on the automatic-controlled relation, all the techniques based on 

DPTs can be currently considered atheoretical. To overcome the issues in dual-process theories, 

systematic research aimed at investigating the specific contributions of automatic and controlled 

processes in each cognitive function (e.g., decision-making, cognitive inhibition, attention) are 

required. Such systematic studies should consider the differential mechanisms assessed by the several 

tasks commonly used to investigate cognitive processes. For instance, in decision-making literature, 

many paradigms have been developed and are often interchangeably employed in the evaluation of 

choice behavior. However, the differences among them (e.g., uncertainty and risky conditions, 

advantageous or disadvantageous nature of risk-propensity) make the results not directly comparable. 

Indeed, what does a risky behavior mean in different contexts? Are we sure that we can infer that 

such results should predict a less advantageous behavior?  

While it is useful to study systematic relations between paradigms, it is indeed true that correlational 

approaches might have low efficacy in confidently highlight such relations. Differently, the 

combination of systematic studies and effective manipulations known or supposed to induce effects 

over the contribution of controlled or automatic processes (e.g., stress) might be more powerful in 

evidencing such dissociable changes. Besides the interrelations between processes and paradigms, 
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the implementation and use of paradigms able to contemporarily show the roles played by the two 

modalities should be a good practice to reach that goal. Indeed, most behavioral tasks use uni-

dimensional dependent variables (e.g., reaction times, error rate, number of risky choices) that are not 

appropriate when investigating multi-dimensional effects. Furthermore, the use of delta-like indices 

(e.g., switch-costs or other difference scores) might additionally confound the interpretations, since 

they hide potentially theory-relevant dissociations inside datasets. 

In conclusion, besides the specific contribution provided by each experiment presented in this work 

in its related theoretical field, the findings obtained speak against a compartmentalized distinction of 

automatic and controlled processes, suggesting that cognitive functioning’s conceptual systemic 

distinction is fuzzy. Indeed, such a rigid dual-system theory does not necessarily fit when 

investigating at a processes-level. Rather than stretching phenomena to the theory, the specific 

cognitive functions should be systematically investigated concerning each other, studying the 

differential effects on dual processes produced by specific conditions. Decomposition and 

reductionist approaches posit as possible fruitful methodologies in addressing whether dual-process 

theories of cognition should be maintained and advanced, and in providing reasonable directions to 

dual-process research.  
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