
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 1

Sparse Pose Graph Optimization in Cycle Space
Fang Bai , Member, IEEE, Teresa Vidal-Calleja , Member, IEEE, and Giorgio Grisetti , Member, IEEE

Abstract—The state-of-the-art modern pose-graph optimization
(PGO) systems are vertex based. In this context, the number of vari-
ables might be high, albeit the number of cycles in the graph (loop
closures) is relatively low. For sparse problems particularly, the
cycle space has a significantly smaller dimension than the number
of vertices. By exploiting this observation, in this article, we propose
an alternative solution to PGO that directly exploits the cycle space.
We characterize the topology of the graph as a cycle matrix, and
reparameterize the problem using relative poses, which are further
constrained by a cycle basis of the graph. We show that by using a
minimum cycle basis, the cycle-based approach has superior con-
vergence properties against its vertex-based counterpart, in terms
of convergence speed and convergence to the global minimum.
For sparse graphs, our cycle-based approach is also more time
efficient than the vertex-based. As an additional contribution of this
work, we present an effective algorithm to compute the minimum
cycle basis. Albeit known in computer science, we believe that
this algorithm is not familiar to the robotics community. All the
claims are validated by experiments on both standard benchmarks
and simulated datasets. To foster the reproduction of the results,
we provide a complete open-source C++ implementation1 of our
approach.

Index Terms—Minimum cycle basis, pose graph optimization
(PGO), special Euclidean group (SE(3)), simultaneous localization
and mapping (SLAM).

I. INTRODUCTION

POSE graph optimization (PGO) is a fundamental problem,
which arises in various research disciplines, such as simul-

taneous localization and mapping (SLAM) [1]–[5], structure
from motion [6]–[8], calibration of multicamera rig [9], and
sensor network localization [10], [11].

A pose graph is a graph whose vertices encode positions and
orientations of 3-D poses, and whose edges represent spatial con-
straints between the connected vertices. Taking a graph-based
SLAM system as an example, the system processes the raw
measurements to construct local maps. These local maps are

Manuscript received April 29, 2020; accepted December 8, 2020. This work
was supported in part by the University of Technology, Sydney, and in part by
the China Scholarship Council. This article was recommended for publication
by Associate Editor J. M. M. Montiel and Editor F. Chaumette upon evaluation
of the reviewers’ comments. (Corresponding author: Fang Bai.)

Fang Bai and Teresa Vidal-Calleja are with the Centre for Autonomous Sys-
tems (CAS), University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: fang.bai@yahoo.com; teresa.vidalcalleja@uts.edu.au).

Giorgio Grisetti is with the Department of Computer, Control, and Man-
agement Engineering “Antonio Ruberti,” Sapienza University of Rome, Rome
00185, Italy (e-mail: grisetti@dis.uniroma1.it).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TRO.2021.3050328.

Digital Object Identifier 10.1109/TRO.2021.3050328
1Code: https://bitbucket.org/FangBai/cyclebasedpgo

then arranged in a pose graph as vertices. Constraints between
local maps arise from matching nearby local maps or from
proprioceptive measurements coming from odometry or inertial
measurement units.

Typically the constraints are affected by some uncertainty,
which is modeled as a Gaussian (or Langevin) distribution
centered around the equilibrium point of the constraint. For
example, in graph-based SLAM, systematic biases, noise in
the sensors, errors in localization propagate to the estimation
of these constraints. Hence, in real applications, it is impossible
to find a configuration of vertices that simultaneously nulls the
residual error of all constraints. PGO is then the task finding the
configuration of the vertices that is maximally consistent with
the constraints (i.e., edges), via solving a nonlinear least squares
optimization problem.

In real SLAM applications, the number of edges is typically
proportional to the number of vertices. This is a consequence of
the local nature of SLAM, stemming from the limits in the sensor
range. Only local maps that are spatially close can share some
common elements, and thus, the corresponding vertices can be
connected by constraints (i.e., edges). This results in limiting the
number of edges connected to a vertex, and ultimately leads to a
sparsely connected graph. By leveraging on this sparsity, modern
PGO systems [12]–[15] are capable of solving extremely large
problems in a fraction of seconds. We term the method in [12]–
[15] as vertex-based approaches for a reason that will explain
later on.

At its core, the state-of-the-art PGO techniques solve a sparse
linear system to update the estimates of vertices [12]–[15].
This system is typically solved by a sparse Cholesky factor-
ization [16], which is guided by the graph topology presented as
a vertex-edge incidence matrix. In graph theory, the incidence
matrix spans a space called cut space, which is orthogonal
complementary to a space called cycle space. A sparse graph
implies the following two facts: (a) low connectivity between
vertices, which has been reflected in the incidence matrix and
exploited effectively [16]; (b) low dimensionality of cycle space,
which has been largely ignored due to the huge success of sparse
Cholesky factorization with respect to vertices. In this article, we
will show the possibility of designing effective PGO techniques
in the cycle space.

To this end, we reformulate the conventional least squares
optimization with a relative parametrization, i.e., using relative
poses (associated with edges), as variables to be estimated.
This induces the overparameterization of the problem since
the number of edges is higher than that of vertices. This issue
is solved by introducing a collection of inherent constraints
that the value of vertices anchors all the paths between any

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9606-3943
https://orcid.org/0000-0002-5763-9644
https://orcid.org/0000-0002-8038-9989
mailto:fang.bai@yahoo.com
mailto:teresa.vidalcalleja@uts.edu.au
mailto:grisetti@dis.uniroma1.it
https://doi.org/10.1109/TRO.2021.3050328
https://bitbucket.org/FangBai/cyclebasedpgo

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

two vertices to generate the same composed transformation.
Such a set of constraints are topologically characterized by the
graph cycle space, which can be described by a cycle basis.
Finally, our optimization problem is casted as a constrained
least-squares optimization problem, which can be solved in the
sequential quadratic programming (SQP) scheme. We term this
PGO technique as cycle-based approach.

A common issue in the relative parameterization is that it is
not necessarily sparse [17]–[20]. It turns out this issue can be
resolved by using a minimum cycle basis (MCB); however, the
computation of an MCB itself is a hard problem. We exploit
the fact that graphs in PGO (and other similar applications)
are sparse, with positive (integer) weights, to design a tailored
MCB algorithm that can greatly mitigate this issue, in particular
for sparse graphs that are encountered in real SLAM/PGO
applications. It can be shown that relative formulations have
faster convergence compared with the vertex-based ones in
the absolute frame (both in this work and the work in [20]).
Therefore, for sparse graphs, based on the MCB, the cycle-based
approach can attain faster (or comparable at least) computa-
tional time compared with the vertex-based ones, due to the
reduced dimension in the cycle space and the sparsity forced
by the MCB. Aside from the numerical sparsity, the usage
of the MCB can also improve the convergence to the global
minimum.

Concretely, we make following contributions in this article.
1) We propose a cycle-based PGO (CB-PGO) formulation

based on the cycle matrix and SE(3) Lie group, and derive
an SQP algorithm on the manifold to solve it.

2) We give insights that the matrix structure in the Cholesky
factorization is characterized by a cycle matrix: (a) the
matrix to be factorized has exactly the same dimension as
that in the cycle space; (b) the numerical sparsity can be
maximized by an MCB.

3) We propose an effective MCB algorithm that is tailored
for sparse graphs with positive integer weights. We give
theoretical insights such as LexDijkstra, and working
heuristics such as pruning vertices of degree two.

4) We provide principled analyses in terms of observability,
convergence with respect to cycle bases, and convergence
rate for the CB-PGO formulation.

5) We provide extensive experimental results to validate the
advantages of using CB-PGO, in terms of both the com-
putational complexity and robustness.

6) We provide a C++ implementation of the overall algo-
rithm, which is freely available to the community.

The remainder of this article is structured as follows. Section II
reviews the related work. The Lie group and graph preliminaries
are provided in Section III. Section IV recaps the conventional
vertex-based PGO (VB-PGO) formulation. Section V derives
the CB-PGO formulation and the corresponding SQP solver
on the manifold. Section VI is dedicated to calculate an MCB
for sparse graphs with positive integer weights. Analyses on
the observability and convergence are presented in Section VII.
Details of our C++ implementation are provided in Section VIII.
Experimental validations are given in Section IX. Section X
concludes this article.

II. RELATED WORK

PGO, as a maximum likelihood estimation (MLE), was first
described in the seminal paper by Lu et al. [21], where a
nonlinear least squares (NLS) is used to optimize the network
generated by scan-matchings. At the time, although in theory,
techniques like Gauss–Newton [22] were available to solve
the NLS problem, the development of its numerical side was
a bit behind. To address the computational complexity, Frese
et al. [23] proposed a multilevel relaxation method, based on
the Gauss–Seidel relaxation. Olson et al. [24] suggested an in-
cremental pose parameterization, and a PGO solver based on the
stochastic gradient descent method, which had a large basin of
convergence to the global optimum. Grisetti et al. [25] extended
the framework to 3-D, and applied a tree parameterization to
improve the convergence speed.

The rapid advancement in sparse linear algebra techniques
(see Davis [16]) completely changed the landscape. In robotics,
Dellaert et al. [12] are the first to show that MLE can be solved
efficiently by a Gauss–Newton method, using sparse matrix
decompositions. Kaess et al. [26] attributed to the incremental
solver of MLE, using the Givens rotation based QR decompo-
sition, or the Bayes tree [27]. Kummerle et al. [13] designed
a general graph based optimization framework. Ila et al. [14]
exploited the block structure of sparse matrices. Besides matrix
decompositions, the resulting linear system can also be solved
by an iterative method, for example, preconditioned conjugate
gradient [28]–[30]. The convergence property of the Gauss–
Newton based method can be further improved by using the
idea of trust region [22], like Levenberg–Marquardt [31], or
Powell’s-dog-leg [32]. All these MLE techniques can provide
rather efficient PGO solutions.

It is possible to exploit specific structures of PGO to design
more specialized solvers, for example, the divide-and-conquer
methods by Grisetti et al. [33], [34]. The basic idea is to divide
the full PGO into several submaps (i.e., subgraphs), solve each
one of them, and then join the submaps together to obtain an
approximation to the full PGO. Zhao et al. [35], [36] investigated
the special case of joining two submaps, with a clever parameter-
ization, which can be solved by a linear least squares, followed
by a nonlinear transformation. For 2-D cases, Carlone et al. [37]
suggested a linear approximation framework to PGO, by com-
puting first an orientation estimation, and then the position part
using the given orientation. The core was the regularization
of rotation angles [37], which was systematically addressed
in [38] using a quadratic integer programming. The separability
of the orientation and position estimation was further studied by
Khosoussi et al. [39], based on a variable projection approach.

Besides practical algorithms to solve PGO, some theoretical
insights are also drawn. Huang et al. [17] showed empirically
that a point-feature-based SLAM is close to a convex optimiza-
tion problem, and a relative formulation is proposed for the
purpose of reducing the nonlinearity in SLAM. Wang et al. [40]
discussed the number of local minimums for PGO in special
cases. Carlone [41] provided an analysis on the convergence
basin of the global minimum for the Gauss–Newton method.
Several key factors are concluded, for example, orientation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 3

noises, and graph topologies. With the assumption of isometric
additive Gaussian noise, Khosoussi et al. [42] established the
connection between the Fisher information matrix (FIM) of the
estimate and the graph complexity.

Convex optimization is a powerful technique to design glob-
ally optimal solutions to PGO. An early touch on this topic came
from Liu et al. [43], who relaxed planar PGO into a semidefinite
programming (SDP), which was solved by standard convex
optimization tools [44]. It can be observed that the nonconvexity
of PGO comes from the cost function, and manifold constraints.
Carlone et al. [15] showed that the cost function can be chosen
convex by using a Frobenius norm with an isotropic noise
model, [45]–[48]. The manifold constraints can be relaxed by
their convex-hulls, as shown by Rosen et al. [48]. However,
the relaxations in [43] and [48] are not tight enough. Carlone
et al. [45], [47] explored the Lagrangian duality of PGO, leading
to a tight SDP relaxation, which can be verified to be globally
optimal in many cases. Rosen et al. [15], designed a certifiable
PGO solver, exploiting convex relaxations, and a Riemannian
trust-region method. Briales et al. [50] suggested a compact
matrix formulation, with concise and efficient derivations.

Loop-closing constraints and cycles have a rich history in
SLAM literatures. Estrada et al. [51] formulated the loop-closing
problem between local maps as a quadratic optimization prob-
lem with equality constraints. The problem was solved by SQP,
and a connection to iterated extended Kalman filter was drawn.
Russell et al. [52] proposed a distributed network optimiza-
tion method based on the graph cycle space, and proved its
convergence in linear cases. Olson [53] evaluated the pairwise
consistency of two loop-closing edges by joining them with the
odometry sequence as a cycle. Dubbelman et al. [54] employed
interpolations in SE(3) along a cycle to obtain an approximate
solution to pose-chain SLAM. The concept of cycle bases was
used by Carlone et al. in [37], [38], [41]. The loop-closing cycle
in a point-feature-based SLAM was considered by Bai et al. [18],
while both point and line-features are included by Guo et al. [55]
in more specific scenarios. Later, Bai et al. [19] formulated
PGO explicitly as a constrained optimization problem by using
cycles in the graph. The cycle structure in graph optimization
is typically presented as relative formulations [18], [19], which
have been used in the work [17], [20], [24], [25], [56]–[60] as
well.

Although the usage of concepts such as cycle space and cycle
bases abounds in existing literatures, none of these works study
how to design efficient cycle-based optimization algorithms by
exploiting: the dimension reduction of Cholesky factorization
in the cycle space due to graph sparsity, and the possibility
of designing a tailored MCB algorithm that takes advantage of
sparsity and positive integer weights.

III. PRELIMINARIES AND BACKGROUNDS

A. Notations

For any two setsX1 andX2, we denote, respectively,X1 ∩ X2

the intersection, X1 ∪ X2 the union, X1\X2 the difference, and
X1 ⊕X2 = (X1 ∪ X2)\(X1 ∩ X2) the symmetric difference of
these two sets. Let |X | be the cardinality of the set X . We will

TABLE I
LIST OF NOTATIONS ON GRAPH

use Z to denote the set of integers, and R denotes the set of real
numbers. If not explicitly stated, the lower-case in normal font,
the lower-case in bold font, and the upper-case in bold font are
reserved for scalars, vectors, and matrices, respectively. A matrix
of zeros is denoted by O, and an identity matrix is denoted by
I. AT represents the transpose, and A† represents the Moore–
Penrose pseudo inverse of a matrixA. The notation{vi}⊥ stands
for the orthogonal complement to the space spanned by a set of
vectors {vi}. < v1,v2 >= vT

1 v2 is the inner product between
v1 and v2. The squared Mahalanobis distance is denoted by
‖e‖2Σ = eTΣ−1e. The notation [m : n] is used to describe a
sequence of consecutive integers from m to n. We will use “iff”
as a shorthand of “if and only if.” The graph notations used
throughout this article are listed in Table I.

B. Special Euclidean Group

The special Euclidean group, SE(3), is a standard tool to
describe rigid-body transformations [61], [62], which typically
occur in robotics and computer vision community.
SE(3) is a Lie group. A Lie group is a peculiar smooth mani-

fold whose local structure can be described by the so-called Lie
algebra, which is the tangent space at the identity of the group.
Let se(3) be the Lie algebra of SE(3). Both SE(3) and se(3) can
be described by matrices. For each matrix T ∈ SE(3), we can
find an associated matrix X ∈ se(3), and vice versa, by matrix
exponential and matrix logarithm: T = exp(X), X = log(T).

An element X ∈ se(3) can be identified by a “screw matrix,”
taking the form

X =

⎡
⎢⎢⎢⎣

0 −x3 x2 x4

x3 0 −x1 x5

−x2 x1 0 x6

0 0 0 0

⎤
⎥⎥⎥⎦ .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

It is obvious that each screw matrixX can be uniquely identified
by a vectorx = [x1, x2, x3, x4, x5, x6]

T ∈ R6. The relationship
can be expressed as X = x∧, x = X∨ with operation ∧ and ∨.
Therefore, for convenience, we define an encapsulated exponen-
tial and logarithm mapping between T and x directly as

T = Exp(x) = exp(x∧), x = Log(T) = log(T∨).

The adjoint of Lie algebra, ad(x), is related to a binary
operation [·, ·], called Lie bracket, yielding the relation

[X,Y] = XY −YX = (ad(x)y)∧

which holds for any Y ∈ se(3), y = Y∨ ∈ R6. Exponentiating
ad(x), we would get a matrix Ad(T) called the adjoint of Lie
group. The adjoint matrix has a nice property

T ·Exp(y) = Exp (Ad (T)y)T (1)

which can be used to shift the position ofT andExp(·). Another
property of Ad(·) is

Ad(T1)Ad(T1) = Ad(T1T2)

which is used to collect two Ad(·) together.
The Baker–Campbel–Hausdorff formula (BCH) is used to

concatenate two matrix exponentials. The exact BCH formula
is expressed as a series, and a closed form approximation is

Exp (x)Exp (y) ≈
{
Exp

(
J−1l (y)x+ y

)
, if x→ 0

Exp
(
x+ J−1r (x)y

)
, if y→ 0

where Jl(·) and Jr(·) are called the left-hand and right-hand
Jacobian of the exponential coordinate parameterization.

The mappings betweenSE(3) and se(3), the adjoint operation
and the BCH formula are used to linearize PGO, which is the
prerequisite to apply an iterative nonlinear solver.

For SE(3), all the operations Exp(·), Log(·), ad(·), Ad(·),
Jl(·), and Jr(·) are calculated in closed form [61], [62].

C. Graph Theory

Let G be an undirected graph G(V , E), where V is a finite
set, and E is a set of unordered pairs (u, v), with u, v ∈ V . The
elements in V are termed vertices (or nodes), and the elements
in E are termed edges. In what follows, we will denote an edge
from u to v as euv . An edge euv is said to be incident to the
vertices u and v, while u and v are called the endpoints of euv .
The degree of a vertex in G is the number of edges incident to
that vertex. A subgraph ofG stands for a graph with only part of
vertices and edges from G. In particular, we will be interested in
three types of subgraphs, i.e., path, cycle, and tree. Formally,
a graph is said to be connected if there exists a path for any
pair of vertices in the graph. A path is a connected subgraph in
which there are exactly two vertices having degree of one, and
the rest of vertices having degree of two. A cycle is a subgraph
in which every vertex has an even degree. If a cycle is connected
and the degree of each vertex is exactly two, the cycle is called
a simple/elementary cycle, or a circuit. A tree is a connected
subgraph, which contains no cycles (i.e., acyclic subgraph). If a
tree of G contains all vertices in V , it is called a spanning tree

Fig. 1. Toy graph of PGO. For each relative poses Ti,j , the edge eij is
oriented as i � j. When talking about topological information, such as cy-
cles/paths, we can safely operate on the undirected version by ignoring the
edge orientations, and lifting back to oriented edges when the cycles/paths are
computed. In a graph, paths/cycles are a collection of edges, which can be
described by a set or a vector on GF . For example, there are three simple
cycles in this graph. C1 = {e12, e25, e56, e16}, C2 = {e23, e34, e45, e25},
and C3 = {e12, e23, e34, e45, e56, e16}. Cycles can be concatenated by the
symmetric difference of sets: C3 = C1 ⊕ C2. In this graph, C1 and C2 are
two independent cycles forming a cycle basis of the graph. The vectorized
representation on GF , i.e., the cycle basis matrix, is presented in B, where
the blanks are zeros. C3 can be written as a vector C3 = [0, 1, 1, 1, 1, 1, 0, 0, 1].
Based on the arithmetics of GF , we have C3 = C1 + C2, which is in accordance
with the symmetric difference of sets.

of G. We will use P to denote a path, C to denote a cycle, and T
to denote a tree, respectively.

A subgraph, i.e., a path/cycle/tree, can be uniquely identified
by the set of edges it used, which induces an “incidence vector”
whose elements are assigned to either 0 or 1. For instance, a cycle
C can be expressed as an incidence vector [c1, c2, . . . , c|E|], with
ck = 1 (k = 1, 2, . . . , |E|) iff the kth edge is used by the cycle
C, and ck = 0 otherwise (see Fig. 1). The concept of finite field
(or Galois field) is useful to describe this phenomenon. A finite
field is basically a finite set equipped with arithmetic rules. In
particular, we are interested in the finite field of order 2, denoted
as GF = Z2 = {0, 1}, whose elements are 0 and 1 only. The
addition and multiplication on Z2 are defined, respectively, to
be the addition and multiplication on Z modulo 2. Obviously,
incidence vectors (to describe paths/cycles/trees) are vectors on
GF . Moreover, all the cycles inG can be described by a matrix on
GF with each row being a cycle incidence vector. This matrix is
called cycle matrix: B = [bi,j], with bi,j = 1 iff the jth edge is
contained in the ith cycle, and bi,j = 0 otherwise. The rows ofB
span a vector space over the two-element finite field based on the
modulo two arithmetics, which is called cycle space. A basis
to the cycle space is called cycle basis. The cycle space of an
undirected graph is orthogonal complementary to the so-called
cut space. The cut space is not needed to understand this work,
but important to build connections with Gauss–Newton based
optimizers [12]–[14]. Interested readers are referred to [63], [64]
for accessible explanations. For a connected graph, the cycle
space has a dimension ν = |E| − |V|+ 1, and the cut space has
a dimension |V| − 1.

Let x1, x2 be two vectors on GF |E|, and X1, X2 be the corre-
sponding set representations. Then, the vector addition x1 + x2

on GF |E| corresponds to the symmetric difference of sets, i.e.,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 5

X1 ⊕X2. The inner product satisfies: < x1,x2 >= xT
1 x2 = 1

iff |X1 ∩ X2| is odd; < x1,x2 >= xT
1 · x2 = 0 iff |X1 ∩ X2| is

even. In what follows, we will use the vector representation and
set representation interchangeably and describe both with the
same notation, where the difference can be easily told by the
operation used.

IV. TRADITIONAL PGO

The topology of PGO can be visualized as a graph whose
vertices represent poses. An edge is created if there exists a rel-
ative geometric relation between two poses, i.e., relative poses,
which can be produced by a wheel-encoder, scan-matching [21],
[65], [66], epipolar geometry [67], [68], or visual loop-closing
techniques, etc., [69], [70].

Both poses and relative poses are rigid-body transformations,
which can be described by SE(3) Lie group. Denote Ti to be
the ith pose. The relative poses from the ith pose to the jth pose,
denoted by Ti,j , is a rigid-body transformation evaluated in the
local coordinate frame of the ith pose, which mathematically
writes Ti,j = T−1i Tj . For the clarity of notations, we assign
each edge a unique index, and use Tk with subscript in bold to
represent a relative poses.

For each relative pose Tk, there is a noisy measurement T̃k.
The measurement noise is conventionally assumed to be zero-
mean Gaussian in the vector space of SE(3) Lie algebra, which
can be mathematically formalized as

Log(T̃−1k ·Tk) ∼ N (0,Σk).

Note that other noise models are also possible, for example, the
matrix Langevin distributions in [15] and [45].

Let the topology of PGO be described by the graph G(V , E).
Then, PGO aims to obtain a MLE for the set of poses {Ti}i∈V
using the set of measurements of relative poses{T̃k}k∈E ,
via solving a least squares optimization problem

{Ti}i∈V = arg min
∑
k∈E
‖Log(T̃−1k Tk)‖2Σk

. (2)

Remark 1: Note that the relative poses Ti,j are evaluated at
the local frame of the ith pose, so ideally a PGO is described by
a directed graph. However, the edge orientation will not affect
the topological side of a graph, such as paths/cycles we discuss
later on. Therefore, we opt to describe PGO as an undirected
graph G(V , E). The restriction to the undirected graph limits the
graph matrices/vectors to Galois field instead of real numbers.

Besides, the undirected edges can be easily lifted to directed
edges whenever it is desired.

Remark 2: The traditional PGO is unobservable, in the
sense that if {Ti}i∈V is a solution to (2), then ∀T′ ∈ SE(3),
{T′Ti}i∈V is also a solution to (2). This can be easily verified by
the fact that Ti,j = T−1i Tj = (T′Ti)

−1(T′Tj), thus, {Ti}i∈V
and {T′Ti}i∈V yield exactly the same contribution in the cost
function. To ensure a unique solution, a popular practice is to
anchor some poses (usually the first pose) to a fixed value or the
identity of SE(3).

V. CYCLE-BASED PGO

The state-of-the-art PGO techniques [12]–[15], [45] describe
PGO as a factor graph [72], whose topology is represented by
an incidence matrix. The graph is solved by a second-order opti-
mization technique, for example, Gauss–Newton, which results
to solve a sparse linear system whose dimension is decided by
the number of vertices. These approaches solve PGO in the cut
space, and we will term them as VB-PGO. The VB-PGO can be
solved rather efficiently by sparse matrix factorizations [16].

Practical PGO instances are rather sparse. Let us measure the
graph sparsity as a concept called cycle ratio, defined as ν

|E| ,
i.e., the dimension of the cycle space divided by the number of
edges. Empirically, a PGO instance encountered in SLAM has
a cycle ratio well below 20%, which implies ν

|V|−1 < 1/4, i.e.,
the dimension of the cut space is at least four times larger than
that of the cycle space. Let alone SLAM instances with a long
trajectory and a few loop-closures, whose cycle ratio can be less
than 5%, or even 1%.

In this section, we will describe an approach that transforms
PGO from the cut space to the cycle space. The CB-PGO,
denoted as CB-PGO, has a reduced dimension compared with its
vertex-based counterpart, as long as the graph is sparse enough.
While the dimension reduction to the cycle space can undermine
the sparsity of PGO, we propose to maximize the sparsity by a
minimum cycle basis which will be described in Section VI.

The observability and convergence properties of the proposed
CB-PGO are discussed in Section VII.

A. Preliminaries

In what follows, we will use the term toplogical path
and toplogical cycle to represent a path and cycle in a pure
topological graph G. If such a G is associated with geomet-
ric information, namely by associating vertices with poses
and edges with relative poses, respectively, we will term this
graph as a geometric graph. A (topological) path P whose
edges are associated with relative poses will be termed as a
geometric path, denoted by P . Analogously, a (topological)
cycle C with edges associated with relative poses will be termed
as a geometric cycle, denoted by C. If not explicitly stated, the
terms, paths, and cycles, refer to the topological version.

The orientations of edges are irrelevant in this article when
discussing the topology of G, as well as concepts such as cycle
bases and sparsity. However, they are useful in terms of describ-
ing the geometric paths/cycles. The orientation of an edge is
decided by the geometric information, i.e., relative poses it
associated with. For example, given an edge k in G with the
associated relative poses being Ti,j = T−1i Tj , we stipulate the
edge orientation to be from i to j. In other words, i � j is
the forward direction of the edge k, and j � i is the backward
direction.

B. Consistency of PGO

Let Pst be a path from s to t in G. The corresponding
geometric path Pst is defined as

Pst = T
�(1p)
1p T

�(2p)
2p · · ·T�(θp)

θp (3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

where T1p ,T2p , . . . ,Tθp is the sequence of relative poses by
traversing Pst from s to t. In (3), the superscript �(kp) is
assigned to +1 if the traversal uses the edge kp in the forward
direction, and −1 if in the backward direction. The superscript
of a matrix T will be interpreted as the power of the matrix, by
T+1 = T and T−1 = inv(T).

PGO is a consistent formulation with respect to poses and
relative poses. To show this, letTs andTt be two arbitrary poses.
Let P1:st and P2:st be two geometric paths from pose s to t.
Then, the pose Tt calculated from these two paths are exactly
the same, i.e., Tt = TsP1:st = TsP2:st. Obviously, the con-
sistency of the PGO can be also interpreted as the equivalence of
the geometric paths, in the sense that P1:st = P2:st = T−1s Tt.
At last, with a slightly abuse of notation, we can write the
consistency of two geometric paths as P−11:stP2:st = I, which
is a geometric cycle.

The geometric cycles will play a key role in formulating PGO
in cycle space, which in general ensures the consistency of the
PGO. On the other hand, the underlying topological cycles will
decide the sparsity of the proposed PGO formulation.

C. PGO in Cycle Space

Alternatively, we can traverse edges sequentially along a
topological cycle, and consider the associated relative poses,
to obtain a geometric cycle. For example, consider a topological
cycle with length λ. Let the sequential relative poses along the
cycle be T1c ,T2c , . . . ,Tλc , and the corresponding orientations
of the edges be σ(1c), σ(2c), . . . , σ(λc), where σ(kc) takes
value+1 if the traversal uses the edgekc in the forward direction,
and−1 otherwise. Then, the corresponding geometric cycle can
be written as follows:

Clhs = I, with Clhs = T
σ(1c)
1c T

σ(2c)
2c · · ·Tσ(λc)

λc

where T+1 = T and T−1 = inv(T), respectively.
Based on the edge orientations and associated relative poses,

for each topological cycle C, we can generate a corresponding
geometric cycle Clhs = I. To characterize the cycle space of the
graph G, we need ν independent topological cycles, i.e., a cycle
basis of G. Let such a cycle basis be B = {Ci}i=[1:ν], and its
corresponding cycle matrix be B. Then, given the cycle basis
B, we can find ν independent geometric cycles accordingly,
denoted as {Clhs

i = I}i=[1:ν].
Then, let us take all |E| relative poses as new variables

to be estimated, and take ν independent geometric cycles as
constraints in an optimization problem

{Tk}k∈E = arg min
∑

k∈E ‖Log(T̃−1k Tk)‖2Σk

s.t. Clhs
i = I ∀i ∈ [1 : ν].

(4)

This optimization problem has a degree-of-freedom (DOF)
|E| − ν = |V| − 1, which is the same as the DOF of (2). If an
optimal configuration of relative poses is found by solving (4),
the objective value becomes minimum and all paths between
two vertices in the graph become equivalent (guaranteed by the
geometric constraints). Then, a solution to (2) can be calculated
by composing the estimates of relative poses along an arbitrary
path in the graph (for example, along odometry).

In what follows, we will term the PGO formulation in (4)
as CB-PGO, and in contrast, the PGO formulation in (2) as
VB-PGO.

D. Solving CB-PGO on Manifold

A typical iterative optimization algorithm on Manifold is
driven by a sequence of small perturbations until convergence
(to a local optimum). For SE(3), the perturbations are normally
applied in the vector space of its Lie algebra, which can be passed
to the manifold via the exponential mapping. To solve the PGO
formulation in (4), at each iteration t, we would like to find a
perturbation ξk for each relative poses Tk, so that its estimate
can evolve from T̂

(t)
k (estimate at iteration t) to T̂(t+1)

k (estimate
at iteration t+ 1) as

T̂
(t+1)
k = T̂

(t)
k Exp (ξk) , k ∈ E .

To this end, we linearize the PGO formulation in (4) with
respect to the set of perturbations, to a quadratic programming
with equality constraints

min ‖J−1ξ + η‖2Σ s.t. Bξ + b = 0. (5)

Here, J and η are the Jacobian matrix and the residual vector,
respectively, by linearizing the objective function, whose calcu-
lations are provided in Appendix A-A. Analogously, B and b
are the Jacobian matrix, and its corresponding residual vector by
linearizing the geometric cycles. The details on how to derive B
andb can be found in Appendix A-B. Note that the ith block row
and kth block column of B represents the partial derivative of
the ith geometric cycle with respect to the kth edge (i.e., relative
poses), which is nonzero iff the kth edge is contained in the ith
cycle. In other words, the structure of B is captured by the cycle
matrix B.

By letting ξ̄ = Σ−
1
2 (η + J−1ξ), B̄ = BJΣ

1
2 , and b̄ =

BJη − b, the quadratic programming in (5) takes the form of a
minimum norm optimization problem

min ‖ξ̄‖2 s.t. B̄ξ̄ = b̄ (6)

whose solution is ξ̄
opt

= B̄†b̄. Note that since both Σ
1
2 and J

are block-diagonal matrices, B̄ and B would have the same
structure. Finally, the perturbation in ξ can be recovered by
ξopt = J(Σ

1
2 ξ̄

opt − η).
The overall algorithm can be termed as SQP [18], [19], and

[73], since it requires the solving of a sequence of perturbations
via quadratic programming.

Remark 3: The linear system ξ̄
opt

= B̄†b̄ to be solved in
CB-PGO has exactly the same dimension of that in the cycle
space, which is ν = |E| − |V|+ 1, because the Jacobian is char-
acterized by the cycle matrix B. In contrast, an iterative solver
to VB-PGO in (2) solves a linear system with a dimension
of |V| − 1, i.e, the dimension of cut space, since its Jacobian
is characterized by the incidence matrix [37], [39], and [41].
Given the fact that the cut space and cycle space are orthogonal
complementary [63], we conclude from the graph topology per-
spective that the VB-PGO and CB-PGO are counterparts to one
another. Moreover, VB-PGO is a least squares optimization for
an overdeterminant system, while CB-PGO is a minimum norm
optimization for an underdeterminant system. Mathematically,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 7

the least squares optimization and minimum norm optimization
are highly correlated [74], where both solutions are compactly
written as Moore–Penrose pseudo inverse (i.e., left and right
inverse, respectively). This fact further confirms that VB-PGO
in (2) and CB-PGO (4) are two sides of the same coin. How-
ever, while VB-PGO has reached a mature state, the CB-PGO
technique is still rather primitive, because of the hardship of
choosing a proper cycle basis.

E. Choices of Cycle Basis for PGO

For the CB-PGO in (4), the structure of the Jacobian matrices
B and B̄ is completely described by a cycle matrixB. Obviously,
different choices of cycle basesB lead to different cycle matrices
B, which eventually lead to different structures in B and B̄.

Therefore, we discuss here the pros and cons of different
cycle bases for the PGO formulation in (4). We will conclude
the advantage of using a minimum cycle basis (MCB) from
the sparsity perspective. The discussions on the convergence
behavior will be presented in Section VII-B.

1) Fundamental Cycle Basis (FCB): Given an arbitrary
spanning tree of the graph, a cycle can be constructed by one
off-tree edge (i.e., chord), and the path on the tree connecting
the ends of the edge. The set of cycles corresponding to these
ν off-tree edges are independent, called FCB. FCB can be
generated cheaply, while it cannot ensure a sparse Jacobian
matrix in general [19].

2) Minimum Fundamental Cycle Basis (MFCB): A remedy
is to use the MFCB, where the spanning tree is chosen in a
way such that the summation of the lengths of the fundamental
cycles is minimum. An exact solution to MFCB is proven to
be NP-complete [75]. While approximate algorithms can solve
MFCB in polynomial time [75]–[77], constraining cycle basis
to be fundamental may compromise the sparsity.

3) Minimum Overlap Cycle Basis (MOCB): In light of the
fact that the matrix to be factorized has the same structure
as BBT , the sparseness of the matrix decomposition can be
guaranteed by minimizing the number of nonzeros in BBT . We
name a cycle basis that minimizes |BBT |0 as the MOCB, by the
fact that an entry at position (i, j) in |BBT |0 is 0 if and only if
the cycle i and j do not share common edges. However, there is
no clear way on how to compute an MOCB yet.

4) Minimum Length Cycle Basis (MLCB): An MLCB max-
imizes the sparsity of B, by minimizing the overall length
of cycles in the basis, which may in turn resulting a sparse
BBT . Different from MFCB, the cycles are not confined to be
fundamental, thus yielding an easier problem. MLCB is a special
case of the well-known minimum cycle basis (MCB) problem
[64], with edge weights set to 1.

According to the discussion mentioned above, we opt to use
MLCB for the CB-PGO to maximize the sparsity. Since MLCB is
a special case of the general MCB, we focus on how to compute
MCB in the following Section VI.

VI. COMPUTATION OF MINIMUM LENGTH CYCLE BASIS

In this section, we aim at a complete and concise description
of the MCB algorithm used for the CB-PGO. We will follow
a hybrid approach that first construct a superset that contains

Algorithm 1: Minimum Cycle Basis.

Ḡ ← SimplifyGraph (G) � Smooth out vertices of degree
two

APSP← LexDijkstra (Ḡ) � Compute a set of consistent
all-pairs-shortest-paths
H← HortonSet (APSP) � Construct Horton set implicitly
I ← IsometricSet (H) � Construct isometric set
B̄ ← ∅ � Initialize MCB for Ḡ
I ← SortAscendingByWeight (I)
// Independence test by support vectors
while |B̄| �= ν C ← ExtractMinimumWeightCircuit (I)

if C is linearly independent from B̄B̄ ← B̄ ∪ C
end if I ← I\C

end while
B ← ReconstructMCB (B̄) � Reconstruct MCB for G

MCB, and then apply an independence test to extract an MCB.
We will recall the basics of these concepts for completeness,
in particular, the construction of Horton set [78] and isomet-
ric set [79], and the state-of-the-art method for independence
tests [80], while refer interested reader to the review paper [64]
for further reading.

On the present architecture, the computational bottleneck of
MCB algorithms is the all-pairs-shortest-paths (APSP) [81],
[82]. APSP is required to construct the Horton set, and a con-
sistent APSP for the isometric set. Given the fact that graphs
occurred in PGO are sparse graphs with positive integer weights,
we propose the following two ideas that can substantially im-
prove the performance of APSP: 1) smoothing out vertices of
degree two; 2) using LexDijkstra (in Section VI-F) to compute
a consistent APSP that can run in parallel and, thus, is more
advantageous than the sequential method in [83].

The overall procedure of the proposed MCB algorithm is
summarized in Algorithm 1.

A. Superset of MCB: Horton Set

The study of efficient polynomial time minimum cycle basis
algorithms started with Horton’s work [78], which builds the
connection of shortest paths and a cycle in MCB.

Lemma 1 (see [78]): Let C be a cycle in a minimum cycle
basis B. If u and v are two vertices on C.

then C must contain one of the shortest paths from u to v.
Another key insight from Horton [78] is that using shortest

paths, each cycle C ∈ B can be represented as a vertex-edge pair,
called a representation of a cycle. In specific, let x be any
vertex in C (C ∈ B), then we can always find an edge euv such
that C can be expressed as C = C(x, euv) � Pxu + Pxv + euv ,
wherePxu andPxv are shortest paths. Based on this observation,
Horton [78] proposed a superset (called Horton set) of MCB
using all pairs of vertex-edge combinations. Formally, a Horton
set is defined as

H = {C(x, euv) | x ∈ V, euv ∈ E}.
Note that there might be several shortest paths between the

vertices u and v with exactly the same minimum weight, so the
choice of Puv is not unique in general. Horton [78] proved that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

if all edges in the graph have nonnegative weights, H would
definitively contain an MCB no matter what shortest path Puv

is chosen for each pair of vertices u and v.
Remark 4: Typically, H is much larger than B. On the one

hand, there are degenerated cases in H that do not form a simple
cycle, for example, if euv is on Pxu or Pxv , or if Pxu and Pxv

have vertices other thanx in common. However, the degenerated
cases can be easily removed. On the other hand, H is a multiset.
By choosing different vertex-edge pairs on C, we obtain different
representations of C.

B. Superset of MCB: Isometric Circuits

The construction of H requires the computation of APSP. In
Horton’s work [78], APSP is allowed us to be arbitrary, i.e., the
shortest path Puv is selected arbitrarily among all shortest paths
from u to v. By intentionally selecting APSP to be consistent,
we can identify the duplicates in H, and reduce H to a much
smaller set.

Definition 1 (Consistent APSP): For each shortest path Puv

in APSP, let s and t be two arbitrary vertices lying on Puv , then
Pst, the selected shortest path from s to t in APSP, is a subgraph
of Puv .

A consistent APSP can be computed by a lexicographic
method [83], [64] (see Definition 3 and Lemma 4 in Ap-
pendix C). Given a consistent APSP, a cycle C is said to be
isometric if for any two vertices u and v on C, the chosen
shortest path Puv in APSP is contained in C [78], [79]. It can be
further verified that a cycle C is isometric if and only if, for each
vertexx ∈ C, there is a unique edge euv , such thatC = C(x, euv),
with Pxu and Pxv being in the consistent APSP [79]. Last but
not least, the set of all isometric cycles is proved to contain an
MCB [64], [79].

In a Horton set H constructed by a consistent APSP, an
isometric cycle C ∈H would contain exactly |C| representa-
tions, i.e., |C| duplicates in H. Aiming to eliminate redundant
representations, we will use the following Lemma to find all the
equivalent representations in the Horton set.

Lemma 2 (see[79]): Let sx(y) be the first vertex (exceptx) on
the shortest path Pxy . For any cycle C = C(x, euv) ∈H, with
euv /∈ Pxu, euv /∈ Pxv , and sx(u) �= sx(v).

1) if x = u then C = C(v, euv).
2) if x �= u, let x′ = sx(u).

a) if x = sx′(v) then C = C(x,′ euv).
b) if x �= sx′(v), u = sv(x

′) then C = C(v, exx′).
c) if x �= sx′(v), u �= sv(x

′) then C is not isometric.
Proof: The proof can be found in [79]. Note that the cases

euv ∈ Pxu, euv ∈ Pxv , and sx(u) = sx(v) create bridges, thus,
do not form cycles and need to be excluded. An intuitive expla-
nation of isometric cases is presented in Fig. 2.

In Lemma 2 and Fig. 2, x′ is chosen on the path P(xu).
However, we can also chose x′ on the path P(xv), i.e., letting
x′ = sx(v). By doing so, we can find another equivalent repre-
sentation for an isometric circuit C by Lemma 2.

The connection of different representations can be visualized
as a directed graph G† = G†(V†, E†), where each vertex in G†
corresponds to a cycle in the Horton set. If a cycle C(x, euv)

Fig. 2. Illustration of Lemma 2. Let us consider the cycle represented by the
vertex x and edge euv , i.e., C = C(x, euv) � P(x, u) + P(x, v) + euv . x′ =
sx(u) is the first vertex on the path P(x, u), i.e., P(x, u) = exx′ + P(x,′ u).
The key to the proof of Lemma 2 is based on the observation that as follows: If
C is isometric, there are the following two possible cases for the shortest path
between the vertex x′ and v: (a) P(x,′ v) = exx′ + P(x, v), (b) P(x,′ v) =
P(x,′ u) + euv . Obviously case (a) implies x = sx′ (v) and C = C(x,′ euv),
while case (b) implies u = sv(x

′) and C = C(v, exx′).

Fig. 3. Visualization of connected components in G†. Each isometric circuit C
in G corresponds to a double-linked directed cycle in G† with |C| vertices. This
example is created using the graph in Fig. 1, while the cycle representations that
do not create links by Lemma 2 are ignored.

is equivalent to a cycle C(y, est) by Lemma 2, then an arc is
formed from the vertex C(x, euv) to the vertex C(y, est) in G†.
It was proved that all representations of an isometric cycle C
exactly correspond to a single connected component in G† [79].
The following theorem will greatly improve the efficiency of
operations on G†, in terms of graph storage and searching.

Theorem 1: All representations of an isometric circuit C in
G† form a double-linked directed cycle with |C| vertices.

Proof: See Appendix B-A. A visualization of connected com-
ponents in G† is given in Fig. 3.

Based on Theorem 1, the storage of G† can be compressed
to a vector with two slots reserved for each vertex. We can
easily access the adjacent vertices of a given vertex by its
index. Besides, a depth-first-search (DFS) [63] on connected
components can be simplified as: starting from an arbitrary
vertex, keep exploring new vertices until coming back to the
start-vertex. This eliminates the use of function recursions or
data structures like a stack.

Finally, we characterize the connected components corre-
sponding to isometric cycles by the abovementioned simplified
DFS. Duplicate representations of an isometric cycle are then
removed by keeping only one representation in the connected
component. All representations of nonisometric cycles are dis-
carded. The construction of isometric cycles from a Horton set
H (constructed by a consistent APSP) can be achieved with an
amortized complexity O(|V||E|) [79].

Remark 5: It should be noted that the set of all isometric
cycles is a superset to an MCB, but not all MCBs. In other

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 9

words, even though APSP is chosen to be consistent, a cycle C
in an arbitrary MCB can be nonisometric [64].

C. Independence Test

To extract an MCB, we sort the set of isometric cycles in
nondescending order of weights, and sequentially extract ν lin-
early independent cycles with the least weights. This procedure
is proved to find an MCB [78]. To test the linear independence,
we take a circuit as a vector on Zm

2 incident on the set of edges,
and then evaluate the linear independence algebraically.

Given a (spanning) tree T , let the
restricted incidence vector of C be C̄ = C\T , i.e., considering
the off-tree edges of T only [84]. It can be shown that the linear
independence of a collection of cycles {Ci}i∈N implies the
linear independence of the corresponding restricted incidence
vectors {C̄i}i∈N , and vice versa (see Theorem 3 in Appendix B
for a proof).

1) Gaussian Elimination Based Approach: Gaussian elimi-
nation is a well-exploited technique in graph theory to check the
linear independence of incidence vectors [78], [85]. The basic
idea is to stack the set of (restricted) incidence vectors as a
matrix, which will be subsequently reduced to the row echelon
form. The incidence vectors are linearly independent if and only
if the row echelon form has full row rank. This approach has a
cubic complexity in the worst case.

2) Support Vector Based Approach: Let {Ci}k−1i=1 be a set of
independent circuits. Given a spanning tree T , let {C̄i}k−1i=1 be
the corresponding restricted incidence vectors whose span is a
space C[1:k−1]. Denote the orthogonal complementary space as
S[k:ν] = C⊥[1:k−1]. Let {S̄i}νj=k be a basis of the space S[k:ν].

The vectors {S̄i}νj=k are called support vectors of {Ci}k−1i=1

[64], [86]. Then, a circuit Ck is linearly independent from the
set of independent circuits {Ci}k−1i=1 , if and only if there exists
an S̄l (k ≤ l ≤ ν), such that 〈C̄k, S̄l〉 = 1 (see Lemma 3 in Ap-
pendix B). If such an S̄l is found, then {Ci}ki=1 = {Ci}k−1i=1 ∪ Ck
are a set of independent circuits. The support vectors of {Ci}ki=1,
i.e., a basis of the space S[k+1:ν] = C⊥[1:k] can be obtained by

updating {S̄i}νj=k,j �=l using S̄l [64], [86]. Let

S̄ ′j =
{
S̄j if 〈C̄k, S̄l〉 = 0

S̄j + S̄l if 〈C̄k, S̄l〉 = 1

then {S̄′j}νj=k,j �=l is a set of support vectors for {Ci}ki=1.
A direct use of support vectors to check independence can

be found in [81]. We invert the process in [81] to accommodate
our description. Given a spanning tree T , we can initialize ν
independent support vectors by ν off-tree edges, where each
support vector contains one off-tree edge [81]. Then, at each
phase, we evaluate the independence of a new circuit C by
support vectors, which will be subsequently updated if C is
evidenced to be independent by a support vector Sl. Iterate this
process until an MCB is found. As in [81], the drawback of this
method is that we might need to check many support vectors in
order to verify 〈C,Sl〉 = 1.

A more sophisticated design is due to Amaldi et al. [80].
The approach is based on the idea that if a circuit C contains

edges that are not used by any selected circuits, then this circuit
is independent from the selected ones. If this is the case, we
can verify the independence of C without using any support
vector. Moreover, the “new” edges in C can be used to construct
new support vectors. Particularly, there is no need to designate
a spanning tree T and initialize a set of independent support
vectors at the beginning of the algorithm. The spanning tree
T is built adaptively by greedily including “new” edges without
creating a cycle to maximize the sparsity of C. Let the new edges
in C\T be CN = {e1, . . . , ek}, then we can identify maximally
k independent support vectors, for example, S0 = {e1} and
Sj = {ej , ej+1} (1 ≤ j ≤ k − 1). Obviously, 〈C,S0〉 = 1 and
〈C,Sk〉 = 0, which means S0 is an implicit support vector that
evidences C, and there is no need to update Sk for C. If C does
not contain any new edge, the algorithm checks the existing
support vectors by Lemma 3 to verify the independence instead.
To speed up the inner product 〈C,S〉, the algorithm maintains
ES to be the edges used by present support vectors, and E◦ to
be those not anymore because of the update of support vectors
(ES ∪ E◦ is the set of off-tree edges). At each stage, the edges in
both T and E◦ can be excluded to increase the sparsity of C.

We will use the algorithm by Amaldi et al. [80] to extract an
MCB from the set of isometric cycles.

D. Smoothing Out Vertices of Degree Two

For PGO, the underlying graph is usually sparse. Furthermore,
we assume that the sparsity of PGO is positively correlated to the
proportion of vertices of degree two in the graph. The sparser the
graph is, the more vertices of degree two we have. The vertices
of degree two have no contribution to the topology of the graph,
thus, can be pruned out for the computation of an MCB. The
pruning of vertices of degree two, along with the edges incident
to them, would greatly reduce the combinatorial complexity of
the Horton set.

Algorithmically, we can perform a DFS from a node whose
degree is not two. During the search, if a vertex of degree two is
detected, we greedily probe along the “degree two chain” until
a vertex whose degree is not two is found. Then, we replace the
“degree two chain” by a new edge (let us name it a “chain edge”)
whose weight is the accumulated weight along the chain (see
Fig. 4). The DFS is recursively called at every unvisited vertex
whose degree is not two. Finally, after computing an MCB on
the reduced graph, the “chain edges” can be replaced back by
the corresponding “degree two chains” to obtain an MCB of the
original graph.

Remark 6 (Ear Decomposition): The vertices of degree two
can also be pruned out using the ear decomposition [87], which
requires the graph to be 2-edge connected. A minimum cycle
basis algorithm exploiting ear decomposition is provided in [82].
The algorithm in [82] exploiting the idea of feedback vertices to
reduce the Horton set, which is encompassed in the concept of
isometric cycles [80]. Nevertheless, the set of isometric cycles
are much smaller than the set of cycles exploiting the idea of
feedback vertices [80]. Actually, an ear decomposition is closely
related to a DFS of the graph [87]. As a result, the task of pruning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ROBOTICS

TABLE II
COMPUTATIONAL TIME OF LEXDIJKSTRA AND MCB ON A QUAD-CORE CPU

Fig. 4. Original graph (unweighted) and the corresponding reduced graph
(weighted) by smoothing out the vertices of degree two. The weight of an edge
in the reduced graph is the number of edges it represents in the original graph.
Both graphs possess the same cycle structure. (a) Original unweighted graph.
(b) Reduced weighted graph.

vertices of degree two can be achieved by DFS explicitly without
computing an ear decomposition as an intermediate step.

E. Self-Loops and Multiple-Edges

Sometimes the graph may contain self-loops or multiple-
edges, which can be created artificially, or as a consequence
of smoothing out vertices of degree two (see Section VI-D and
an example in Fig. 4). The self-loops and multiple-edges can
be easily coped with by describing paths and cycles as a set
of edges (instead of vertices) in the MCB algorithm. It is also
possible to eliminate all self-loops and multiple-edges for the
MCB computation (see [64, Lemmas 3.17 and 3.18]). However,
as shown in the experiments, the computational bottle-neck of
the MCB is APSP, while the cost on the independence test is
negligible. Thus, we retain self-loops and multiple-edges in the
graph, and opt to use edges to describe paths and cycles.

F. LexDijkstra and Parallelism

The bottleneck of the described MCB algorithm is the com-
putation of a consistent APSP (see Table II).

The method described in [83] first compute all-pairs-shortest-
distances (by using any shortest paths algorithm), then a set
of consistent APSP is constructed by choosing the so-called
lexicographic shortest path for each pair of vertices (see Defini-
tion 3 and Lemma 4 in Appendix C), by processing vertex-pairs
according to distances (i.e., weight and length) from the shortest
to the longest. Obviously, a sorting process is required [83],
which can be mitigated by a topological sorting [64]. Besides,
although not shown in amortized complexity, the random access
to shortest path trees is expensive, in particular for a serial
processing (by distances).

The algorithm in [83] is general, applicable for graphs with
negative weights and any APSP algorithm. However, for a sparse
graph with positive weight, Dijkstra [88] is always the preferable
shortest paths algorithm. It can be shown that the lexicographic
shortest path for each vertex-pairs can be selected by slightly
modifying Dijkstra’s update process. The resultant APSP is to
run Dijkstra for each vertex, which can be easily parallelized by
using a multicore CPU. We refer to this consistent APSP method
as LexDijkstra.

Proposition 1 (LexDijkstra): Let G(V , E) be an undirected
graph with weight w(e) > 0,∀e ∈ E . A consistent shortest path
Puv can be obtained for each pair of nodes u, v by modifying
Dijkstra’s update process to choose the lexicographic path in
Definition 3 (provided in Appendix C).

Proof: See Appendix C-A for the proof, and Theorem 4 in
Appendix C that supports this result. �

In terms of the lexicographic comparison defined in Definition
3, cases (1) and (2) are rather cheap. However, case (3) in
the worst case, needs to traverse and compare all the edges

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 11

in P′uv and P′uv , which is rather inefficient. To address this
issue, we propose the following theorem that greatly reduces
the complexity in case (3).

Theorem 2: Let Puv and P′uv be two paths from u to v. In
LexDijkstra, if the algorithm reaches the case (3) of Definition
3, it just suffices that the algorithm traverses back to the nearest
common vertex that shared by Puv and P′uv .

Proof: See Appendix C-B. �
For the construction of isometric circuits, the algorithm re-

quires random access to the shortest path trees. However, this
part can be parallelized without any additional effort.

G. Complexity

The overall computational time of the proposed MCB algo-
rithm is presented in Table II, running on a quad-core CPU.
Table II shows that the time spending on the independence
test is negligible compared with that spending on computing a
consistent APSP and constructing the isometric set. Let Ḡ(V̄ , Ē)
be the reduced graph. Let m = |Ē |, n = |V̄|.

1) Computing a Consistent APSP: Let us compare the
proposed LexDijkstra with the Method in [83]. LexDijkstra:
The Dijkstra algorithm has a sorting bottleneck, which is
usually addressed by a priority queue. In one single Dijkstra
run, for each new edge, the operation on the priority queue has a
complexity O(log n). In the worst case, the lexicographic
comparison between two paths takes O(n) operations.
Therefore, each new edge contributes O(log n+ n) worst
case complexity, which results in O(m(log n+ n)) operations
for one single LexDijkstra run, and O(nm(log n+ n)
operations to compute a consistent APSP using LexDijkstra.
Method in <xref ref-type="bibr" rid="ref83">[83]</xref>:
By the method in [83], the overall operations used to compute
a consistent APSP is O(nm log n+ n2 log n+ nm), where
the term O(nm log n) accounts for operations to compute an
arbitrary APSP based on the Dijkstra algorithm, O(n2 log n)
for sorting paths according to weights and lengths, and O(nm)
for constructing the consistent shortest paths.

By the worst cases complexity, it seems that LexDijkstra
does not offer any benefits compared with the method in [83].
However, this is not the cases in practice (see Table II). The
reason is four folds: First, O(nm) in the method [83] cannot
be eliminated because it requires random access to APSP trees,
which is expensive on modern architectures. Second, the method
in [83] cannot be run in full parallelism since the sorting term
O(n2 log n) and processing term O(nm) are sequential opera-
tions. Third,O(n) is the worst case complexity for lexicographic
comparison, while in practice the operations can be greatly
reduced due to the inherent asymmetry in the graph and by
Theorem 2 as well. Last but not least, LexDijkstra can run in
full parallelism, which can take advantage of multicore CPU
architectures.

2) Constructing the Isometric Set: It takes O(nm) opera-
tions to find a single representation for each isometric cir-
cuit [79]. However, there is a big constant due to the random
access to the APSP trees, which is implemented as a densen× n
matrix. While the running time of this part is not major in Table II

compared with the expenses on the consistent APSP, we believe
this part can be further improved using a sparse storage for APSP
trees, given that most of the elements in the dense matrix are
redundant because of the consistency of shortest paths.

VII. DISCUSSIONS

A. Observability

We propose to define the observability in the MLE as follows.
Definition 2 (Observability of MLE [89]): Let Md be a

manifold of dimension d. A noise-free system Z = F(X) :
Md1

1 �Md2
2 , is locally observable at X0 ∈Md1

1 if there is
a neighborhood of X0, denoted by UX0

, such that

∀X ∈ UX0
, X �= X0, we have F(X) �= F(X0).

By Definition 2, it is easy to verify that VB-PGO in (2) is
unobservable. Because given a solution X0 � {Ti}i∈V and any
neighborhood UX0

around X0, by the fact that a Lie group
is a continuous group, we can always find a shifted solution
X � {T′Ti}i∈V ,X ∈ UX0

, which yields exactly the same mea-
surements (see Remark 2).

This result coincides with the FIM-based observability tool
(see Remark 7).

Now, we extend Definition 2 to estimation problems with
constraints, i.e., a noise-free sytem Z = F(X) :Md1

1 �Md2
2

with constraints G(X) = I :Md1
1 �Md3

3 . If the constraint
forms a submanifold Md4

4 embedded on Md1
1 , then we can

reduce the constrained MLE to an unconstrained MLE, and
verify the observability by Definition 2. The basic tool is the
so-called submersion theorem (see [90, Proposition 3.3.3]): If
G is smooth, and I is a regular value of G (i.e., the rank of G is
d3 for each point in Y ∈Md1

1 satisfying G(Y) = I), then

M4 = {X |X ∈Md1
1 , G(X) = I, rank(G) = d3}

admits a differential structure, and Md4
4 is an embedded sub-

manifold of Md1
1 , with dimension d4 = d1 − d3. If a set of

constraints is “redundant,” we can verify a submanifold by the
subimmersion theorem (see [90, Proposition 3.3.4]).

Finally let us examine the case of CB-PGO. Let Md1
1 be

SE(3)m. The ν constraints clearly satisfy the submersion theo-
rem, thus, the constraints admit a submanifoldMd4

4 embedded
inMd1

1 . The noise-free system, i.e., the measurement function of
relative poses Z = F(X) = X, with X � {Tk}k∈E , is bijective
onMd1

1 , thus, its restriction toMd4
4 is also bijective. Therefore,

taking CB-PGO as an MLE onMd4
4 , we verify CB-PGO to be

observable by Definition 2.
Remark 7: In estimation theory, a common practice is to

define the observability of an estimation problem as the invert-
ibility of the FIM [91], (also see [92], [93] for applications in
robotics). While FIM being a statistical tool, which is related to a
specific noise model (like Gaussian), the deterministic definition
of observability for MLE in Definition 2 has been shown to be
equivalent to FIM-based observability if the probability density
function has a continuous derivative [89].

Remark 8: The covariance matrix (whose inversion is FIM) of
CB-PGO can be computed in closed form (see [19], [94], [95]).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON ROBOTICS

Fig. 5. Robustness of vertex-based approaches and cycle-based approaches on 100 run Monte Carlo simulation. The curves of the chordal bootstrapped methods,
i.e., VB-Chord, CB-MCB-Chord, and CB-FCB-Chord, coincide with one other.

Fig. 6. Convergence of different methods on benchmark datasets. Noet that for INTEL_P, the initial objective values with and without the chordal initialization
are 6 281 560 and 6 700 310, respectively, which are close but not the same. Aside from the MCB, the memory usage of VB and CB is comparable. For example, in
INTEL_P, the graph storage takes 1.13 MB, while the matrix to be factorized accounts for 8.11 MB; These numbers in CB are 1.34 MB and 8.04 MB, respectively.
For MITb, there are 92 nonzero blocks in the Cholesky part of CB-MCB, whereas 2462 for VB. For INTEL_P, CB-MCB accounts for 2234 nonzero blocks, and
VB 4194. The numbers for KITTI are 5015 and 13 831, respectively. For dense graphs such as Sphere2500, there are 12 244 nonzero blocks in the Cholesky part
of CB-MCB, while the number for VB is 12 398.

However, this covariance matrix is always rank deficient because
of the overparameterization in (4), namely |E| > ν. This does
not mean CB-PGO is unobservable. To apply FIM-based tool
correctly, we have to obtain FIM forMd4

4 in its Euclidean space
via an atlas [90], instead of using FIM onMd1

1 . Nevertheless, we
can verify the observability by Definition 2, without explicitly
assigning the atlas.

B. Jacobian Matrix Design: MCB and Invariance

In CB-PGO, the entry in the Jacobian matrix [(8) in Appendix
XI-B] takes the form of σ(kc)Ad(P(α(σ(kc)))), with P(·)
being a geometric path inside the cycle. Let the corresponding
topological path be P(·). Ideally, we want P(·) to be as short as
possible, so that less errors will be accumulated in P(·), and the
Jacobian can more accurately capture the local structure at the
linearization point. By using an MCB, the average length ofP(·)

is minimized along with the overall length of cycles. Therefore,
CB-PGO based on an MCB can be expected to perform better
than that based on cycle bases like an FCB. This is true as will
be experimentally validated in Figs. 5 and 6.

In CB-PGO, we can minimize the linearization errors inside
the Jacobian matrix by using an MCB instead of an FCB. The
idea of having a Jacobian matrix less relevant to linearization
errors has been exploited in the context of Lie group estimation
with “invariance” [96]–[100] as well. In brief, invariance works
by choosing a special Lie group parameterization (i.e., group
affine [96]) that the Jacobian matrix obtained via linearization
at a certain point is merely related to some “error-states” rather
than the linearization point directly. As a result the left/right-
hand Jacobian in the BCH formula with respect to the error-
states is eliminated. This technique can significantly improve the
convergence of the estimation problem, especially when facing
large noise scenarios.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 13

C. Convergence Rate

Regarding constrained optimization, one of the major con-
cerns is its convergence rate. However, given that CB-PGO in (4)
is essentially an equality constrained least squares optimization
problem, techniques like SQP can attain quadratic/superlinear
convergence [73]. Here, we briefly review some work in this line
to confirm the claim. Experimental validations are provided in
Fig. 6.

For equality constrained least squares optimization, it has
been shown in [101] that a quadratic convergence rate can
be obtained by applying the Newton’s method (an iterative
method to solve a nonlinear equation [102]) to calculate a
critical point of the corresponding Lagrangian function. This
extends the quadratic convergence of the Newton’s method used
in unconstrained optimization to constrained cases by SQP.
Methods based on approximate Lagrangian Hessians can attain
superlinear convergence [103]–[105].

In the context of least squares, the Gauss–Newton method
yields quadratic convergence if the residual error at the mini-
mum is zero [22]. The same conclusion stands in the case of
equality constrained least squares, which was proved in [106].
This convergence result implies that SQP by linearizing the cost
function and constraints [like in (5)] can have basically similar
convergence as the Gauss–Newton method.

These justifications are mostly true if the algorithm works
around a minimum. In practice, if the noise level in relative
poses is reasonable, CB-PGO initialized by the measurements
of relative poses is close to the ground-truth. Therefore, CB-
PGO can have a better convergence (compared with VB-PGO
initialized by odometry) because the working point is closer to
a minimum and the Hessian matrix is more accurate.

VIII. IMPLEMENTATION DETAILS

The most well-known open-source implementation of an
MCB comes from Dimitrios Michail [81], based on the library
of efficient data types and algorithms (LEDA) graph library.
However, the code is not maintained anymore for recent LEDA
versions, or Ubuntu systems. The other competitive implemen-
tations, for example, [80], [82], are not available in open-source.
In contrast, our implementation is freely available to the research
community, and can be easily used in other MCB related prob-
lems.

We implement the MCB algorithm described in Section VI
from scratch with C++ Standard Library and C++ Standard
Template Library (STL) only. For Dijkstra, we use the priority-
queue implementation of STL. We use a dense square matrix
with backward pointers to parent vertices to describe the APSP
trees. For set operations on support vectors and cycles, sorted
sparse vectors are used instead of binary search trees, which is
faster by our experiments. OpenMP is used to parallelize CPU
computations on multiple cores.

Both CB-PGO and VB-PGO are implemented on an open-
source graph optimization library, i.e., SLAM++ [14], which
provides the basic operations on block matrices and Cholesky
factorization. In SLAM++, we use the default block Cholesky
based linear solver, and the approximate minimum degree

ordering algorithm (AMD) [107] to reduce the fill-in. Both
CB-PGO and VB-PGO use the same Lie group implementation,
to avoid the impact of latent numerical round-off errors.

For a fair comparison, we implement chordal initializa-
tion [108], [109] as an alternative initialization technique, using
Block Cholesky factorization. Instead of initializing the rota-
tional part of poses only [109], we re-estimate the translational
part as well. This will give an accurate initial objective value for
the chordal-based methods. An initialization of relative poses
is obtained by recalculating relative poses with pose estimates,
which can be used to initialize CB-PGO.

Noting that for a batch algorithm, we only need to run MCB
and AMD once, which will be followed by several iterations of
linearization, Cholesky factorization, and state updates.

IX. EXPERIMENTAL RESULTS

In this article, the experiments are carried out by a laptop
equipped with a quad-core CPU, Intel(R) Core(TM) i5-5300 U
CPU @ 2.30 GHz × 4, running on Ubuntu 16.04 LTS.

We will use four real datasets and four simulated datasets as
standard benchmarks. INTEL_P, Intel and MITb are obtained
by processing the raw measurements from wheel odometry and
laser range finder [38]. Raw data are available at [110]. KITTI
is a pose graph generated by the proSLAM framework [5] from
the vision benchmark dataset [111]. The four simulated datasets
and their creators are as follows: Manhattan [24], City10k [26],
Sphere2500 [26], and Torus10000 [26].

We will use the cycle ratio of a graph, defined as ν/|E|, to
benchmark the graph sparsity. In graph simulations, we regard
the local minimum computed by using the ground-truth ini-
tialization as the global minimum. Let the objective value at
the global minimum be f�. For any computed solution, if its
objective value f satisfies |f/f� − 1| < 0.01, the solution is
counted as a success. The number of successes divided by the
number of Monte Carlo runs is defined as the success rate.
For CB-PGO, at each iteration, we first calculate a pose
configuration through odometry using the current estimate of
relative-poses. Then, we substitute the pose configuration to
the cost function of VB-PGO, and use the obtained cost as the
objective value of CB-PGO.

In this section, the VB-PGO initialized by odometry is de-
noted as VB, while CB-PGO initialized by the measurements
of relative poses is denoted as CB. We distinguish CB-PGO
techniques based on the MCB and FCB by denoting them as
CB-MCB, CB-PGO using FCB (CB-FCB), respectively. Be-
sides the “natural” initialization for VB-PGO and CB-PGO, we
use chordal initialization to bootstrap the rotational part [109].
To evaluate the objective value after chordal initialization, we
recompute the optimal translational estimate after the rotational
initialization. The chordal bootstrapped VB, and CB variants
are termed as VB-Chord, CB-MCB-Chord and CB-FCB-Chord,
respectively.

The maximal iterations are set to 50, and we stop the algorithm
if the perturbation (i.e., state updates) has a norm less than 0.001.
For CB-PGO, we also ensure the constraint residual norm to be
less than 0.001.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON ROBOTICS

TABLE III
COMPUTATIONAL TIME OF CHORDAL INITIALIZATION, MCB, AND CHOLESKY FACTORIZATION ON BENCHMARK DATASETS

A. MCB

The timing statistics of the proposed MCB is reported in
Table II. The proposed MCB algorithm consists of the following
three major parts: consistent-APSP, isometric set construction
(see Section VI-B), and independence test (see Section VI-C).
The construction of Horton set (see Section VI-A) requires
an APSP, while its reduction to the isometric set requires a
consistent-APSP. In Table II, Dijkstra is used to compute an
APSP. The consistent-APSP can be computed via the method
in [83], or by LexDijkstra (proposed). All the timings regard-
ing these two consistent-APSP algorithms are presented. To
benchmark the overall effectiveness of the proposed MCB, we
compare with the state-of-the-art open-source implementation
in [81]. In Table II, the symbol “-” in the “parallel” row means
that the corresponding computation cannot be parallelized.

In Table II, the proposed MCB algorithm is at least as fast
as the state-of-the-art in [81]. Actually, the proposed MCB is
much faster for sparse graphs (due to the pruning of degree-two
vertices), and slightly faster for most dense graphs, except for
the Sphere dataset. This is due to the high symmetry of the
graph, which results to many lexicographical comparisons. The
implementation in [81] fails at the KITTI dataset, because it
cannot handle parallel edges. In addition, Table II clearly shows
the advantage of using the proposed LexDijkstra to compute a
consistent-APSP, since it avoids the sequel bottleneck in [83]. In
the worst case, LexDijkstra accounts for 1.5 times the timing of
the pure Dijkstra (APSP), which we believe is already close to
the lower borderline. Note that this timing will double without
Theorem 2.

In Table II, the computation is parallelized by a quad-core
CPU; however, these timings can be more advantageous if the
CPU has more cores (like an eight-core CPU or more).

B. Standard PGO Benchmarks

1) Statistics of Each Part: We report the computational time
for Cholesky factorization, MCB, and Chordal initialization in
Table III. The timings for linearization, state updates, and system
matrix constructions are ignored, because these operations are
rather cheap compared with the Cholesky part. An exception is
CB-FCB: The system matrix allocation in this case can be rather
expensive by indexing nonzero elements in Jacobian. In case of
Manhattan, it takes almost 1 min to construct the system matrix,

and fails in case of City10 k and Torus10 k. The size and sparsity
of the benchmarks are included as well.

Regarding Cholesky factorization, CB-MCB and VB have a
comparable performance, while CB-MCB is (2–3 times) faster
on sparse graphs. The Cholesky part of CB-FCB takes around
two magnitudes of time compared with that of CB-MCB/VB,
except for the MITb dataset (which has a rather small ν = 20,
thus, it actually does not matter whether the system matrix is
sparse or not). The timing statistics of the Cholesky part indicate
that CB-FCB is not a viable approach (two magnitudes slower
than VB in almost any cases).

In Table III, the timing of the MCB and Cholesky parts is
comparable for sparse graphs, i.e., the four real dataset, MITb,
INTEL_P, KITTI, Intel. Given that we only need to run MCB
once, followed by multiple Cholesky iterations, CB-MCB can
take advantage in this case, in particular for the MITb, INTEL_P
and KITTI datasets. For dense (simulated) graphs, such as
Sphere, Manhattan, City10 k, and Torus10 k, since the MCB
part is too expensive compared with the Cholesky part, it is not
a good choice to use CB-MCB (or CB-MCB-Chord) if timing
is a critical consideration.

The chordal initialization accounts for roughly 2–3 iterations
of the Cholesky time. This is understandable since it solves a
linear system of k times larger (with k = 2 for 2-D; and k = 3
for 3-D). We will use chordal initialization to boost all the meth-
ods (termed VB-Chord, CB-MCB-Chord, CB-FCB-Chord) to
examine the robustness.

2) Convergence and Complexity: In Fig. 6, we visualize the
convergence of VB, VB-Chord, CB-MCB, CB-MCB-Chord,
CB-FCB, and CB-FCB-Chord, against their computational time.
The time point of the MCB and Chordal initialization is marked
out for a clear visualization.

The MTIb dataset shows a case where VB and CB-FCB
converge to a local minimum, where CB-MCB converges to
the global minimum. The chordal bootstrapped approaches, VB-
Chord and CB-FCB-Chord, can converge to the global minimum
as well, while taking a longer time. In this case, CB-MCB is
both the fastest and robustest approach. The fast convergence
of CB-MCB is further validated by a sparse graph, INTEL_P
(17.3% sparsity), where it significantly outperforms VB, and
VB-Chord. The results for FCB, FCB-Chord are not shown
for INTEL_P as the timings are too large to be plotted on the
same scale. Similar results are witnessed on the KITTI dataset,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 15

Fig. 7. Computational time of VB (VB-PGO initialized by odometry), VB-Chord (VB-PGO initialized by the Chordal initialization technique), CB-MCB
(CB-PGO based on the MCB, initialized by the measurements of relative poses), and CB-MCB-Chord (CB-PGO based on the MCB, initialized by the Chordal
initialization technique) on 100 run Monte Carlo simulation. The mean is plotted with color, and the standard deviation is added to the bar-plot as the white margin.
The number above each bar is the used iterations. The maximal iteration is set to 50.

while the convergence is much faster given that the dataset is
less noisy. For dense graphs, CB-MCB is not advantageous in
terms of the computational time, since the MCB part is dominant
over the Cholesky part as shown in Table III. However, even in
these cases, CB-MCB is still useful because it yields a faster
convergence. For instance on the Sphere2500 dataset, if we
increase the noise level to 0.1 rads in the rotation part, the
convergence of VB degenerates dramatically, and CB-MCB can
outperform VB because of the faster convergence. Nonetheless,
the VB-Chord can significantly improve the convergence of VB,
thus yielding a smaller timing.

C. Monte Carlo Simulation

1) Global Minimum: To examine the robustness of CB-PGO,
in terms of converging to the global minimum, we provide a
Monte Carlo simulation on the simulated dataset Manhattan (2-
D), and Sphere2500 (3-D).

We recreate the dataset from its ground-truth with additive
noise in the exponential coordinate, with 0.1m standard de-
viation on the translational part, and 0.01, 0.05, 0.10, 0.15,
0.20 rads, respectively, on the rotational part.

For each case, we generate 100 noisy graphs, and report in
Fig. 5, the success rate of VB, VB-Chord, CB-MCB, CB-MCB-
Chord, CB-FCB, and CB-FCB-Chord, when solving these
graphs. From Fig. 5, we conclude that CB-FCB is basically
worse than VB, while CB-MCB is much more robust than
VB (initialized by odometry) and CB-FCB. Unsurprisingly, the
chordal bootstrapped approaches, i.e., VB-Chord, CB-MCB-
Chord, and CB-FCB-Chord show the best robustness. However,
a pure CB-MCB (initialized by relative measurements), is almost
as robust as the chordal bootstrapped approaches.

2) Computational Time: To better understand the computa-
tional complexity of VB, VB-Chord, CB-MCB, and CB-MCB-
Chord on sparse graphs, we perform a Monte Carlo simulation,
with respect to different cycle ratios and different number of
poses. Cases for CB-FCB, CB-FCB-Chord are ignored because
the FCB-based approaches do not scale well with respect to
graph topologies (see Table III).

We first simulate a giant dense graph using the g2o simula-
tor [13] (g2o_simulator3d). Then, the graph is tailored, respec-
tively, to 1000, 4000, 10 000, and 30 000 poses, and pruned to
different sparsity, i.e., 1%, 5%, 10%, 15%, 20%, and 25%. The
process randomly generates 100 graphs for each pose number
and cycle ratio combination.

The running time statistics of VB, VB-Chord, CB-MCB,
and CB-MCB-Chord for each simulated scenario is recorded
in Fig. 7, where the mean is plotted with color, and the standard
deviation is added to the bar-plot as the white margin. The
used iterations are also included above each bar. Note that the
maximal iteration is set to 50.

In Fig. 7, CB-MCB is obviously more advantageous than
VB for all the tested scenarios with a maximal cycle ratio at
around 15%, as well as VB-Chord at round 10%. When the
graph becomes denser, with the cycle ratio exceeding 20%, the
timings of CB-MCB and CB-MCB-Chord grow with respect
to the number of poses as their MCB parts start to dominate
the complexity. However, even in these cases, the timings of
CB-MCB and CB-MCB-Chord are still comparable to that of
VB and VB-Chord, without a dramatical deterioration. The
VB-Chord can improve the convergence of VB with a slight
tradeoff on the computational cost. The same applies to CB-
MCB and CB-MCB-Chord, while the improvement is less obvi-
ous. Considering CB-MCB is almost as robust as chordal-based

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON ROBOTICS

approaches, as shown in Fig. 5, it seems that CB-MCB-Chord
does not offer much compared to CB-MCB.

In case of huge graphs, such as 30 000 poses, the numerical
stability of VB degenerates dramatically, as can be clearly seen
by the iterations consumed. In contrast, the CB-MCB shows a
much better numerically stability and convergence property in
this scenario, while the bootstrapped approach VB-Chord can
significantly improve the convergence of VB. It is worth noting
that CB-MCB and CB-MCB-Chord can fail when allocating
the memory for shortest path trees (a dense matrix of O(n2)
memory) if the reduced graph still has too many vertices. Such
a case is shown at 25% sparsity, with 30 000 poses.

X. CONCLUSION

To summarize, we propose CB-PGO, a robust and efficient
PGO technique that works in the cycle space of the graph.
We characterize the graph sparsity by an MCB, which reduces
the numerical complexity and enhances the convergence to the
global minimum. We design a tailored MCB algorithm for
sparse, positive-integer weighted graphs, which can be used for
other cycle-based applications as well. The claims on the con-
vergence and computational complexity are validated with ex-
periments. We provide an open-source C++ implementation that
is freely available to the community to benefit future research in
this direction. The future work includes the following: extending
the cycle-based approach to other sparse graph instances; ex-
ploiting sparse representations for the consistent APSP storage;
developing incremental algorithms for cycle-based approaches;
exploring the possibility of using Frobenius norm based cost
function and convex relaxations.

APPENDIX A
LINEARIZATION OF CB-PGO

In section, we provide the computational details in terms of
how to linearize the CB-PGO formulation in (4).

A. Linearization of Cost Function

Denote the error of each edge k at its estimate T̂k to be ηk =
Log(T̃−1k · T̂k). The linearization of the cost function is trivial
using the approximate BCH formula∑

k∈E
‖Log(T̃−1k Tk)‖2Σk

←
∑
k∈E
‖Log

(
T̃−1k T̂kExp (ξk)

)
‖2Σk

=
∑
k∈E
‖Log (Exp(ηk)Exp(ξk)) ‖2Σk

≈
∑
k∈E
‖Log

(
Exp

(
ηk + J−1r (ηk)ξk

))
‖2Σk

=
∑
k∈E
‖ηk + J−1r (ηk)ξk‖2Σk

= ‖η + J−1ξ‖2Σ

where η = stack{ηk}k∈E , ξ = stack{ξk}k∈E , J =
blkdiag{Jr(ηk)}k∈E , and Σ = blkdiag{Σk}k∈E .

B. Linearization of Geometric Cycles

Let us take the metric cycle Clhs = I as an example. Re-
call that Clhs = T

σ(1c)
1c T

σ(2c)
2c · · ·Tσ(λc)

λc , where T1c , . . .Tλc

are the sequential relative poses obtain by a traversal.
σ(1c), . . . σ(λc) are the relative edge orientations with respect
to the traversal, assigned to +1 if the traversal uses the edge in
the forward direction, and −1 otherwise.

The constraint Clhs = I can be written as Log(Clhs) = 0. In
the vector space of se(3), the first-order Taylor expansion takes
the form

λc∑
kc=1c

∂Log(Clhs)

∂ξTkc

ξkc + Log(Clhs) = 0.

At a set of given estimates T̂kc(kc = 1c · · · λc), let us define
the error of the geometric cycle to be β = Log(Clhs). For any
hc ∈ [1c,λc], with a bit abuse of notation, we split the geometric
cycle into two geometric paths P(hc), P̄(hc)

P(hc) = T̂
σ(1c)
1c · · · T̂σ(hc)

hc

P̄(hc) = T̂
σ((h+1)c)

(h+1)c
· · · T̂σ(λc)

λc .

Let P(0c) = I be a special case. The equality below is trivial

P(hc)P̄(hc) = Exp(β). (7)

Now lets add a perturbation ξkc to the edge kc inside Clhs via
the exponential mapping

Clhs ← T̂
σ(1c)
1c · · ·

(
T̂kc ·Exp(ξkc)

)σ(kc)

· · · T̂σ(λc)
λc .

Let the perturbed Clhs at kc be Clhs|kc , which can be compactly
written as

Clhs|kc = P(α(σ(kc)))Exp (σ(kc)ξkc) P̄(α(σ(kc)))

where α(σ(kc)) is a scalar function with respect to σ(kc)

α(σ(kc)) =

{
kc if σ(kc) = +1

(k− 1)c if σ(kc) = −1.

Applying (1) and considering (7), Clhs|kc can be written as
the multiplication of two matrix exponentials, which can be
concatenated by the approximate BCH formula, as

Clhs|kc = Exp (σ(kc)Ad(P(α(σ(kc))))ξkc)Exp (β)

≈ Exp
(
σ(kc)J−1l (β)Ad(P(α(σ(kc))))ξkc + β

)
.

At last, the partial derivative could be calculated as follows:

∂Log(Clhs)

∂ξTkc

=
∂Log(Clhs|kc)

∂ξTkc

= σ(kc)J−1l (β)Ad (P(α(σ(kc)))) .

It can be seen that J−1l (β) occurs for each derivative
∂Log(Clhs|kc)/∂ξkc , so the final linearized cycle writes

λc∑
kc=1c

σ(kc)Ad (P(α(σ(kc)))) ξkc + Jl(β)β = 0. (8)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 17

Without loss of generality, let us assume Clhs = I is the ith
geometric cycle. Then, the ith block row and kcth block column
of B writes Bi,kc = σ(kc)Ad(P(α(σ(kc)))). The ith block
row of b writes bi = Jl(β)β.

For a set of cycles in a cycle basis, we linearize each one of
them and assemble the results in the form of Bξ + b = 0.

APPENDIX B
THEOREMS AND PROOFS ON GRAPH THEORY

This section contains proofs of several key conclusions that
have been used in the proposed MCB. Section B-A is the proof
for Theorem 1 that is used for the construction of an isometric
set. Theorem 3 is used for the restriction of cycle/support vectors.
Lemma 3 is used in independence tests.

A. Proof of Theorem 1

Proof: It has been proved in [79] that all representations of
an isometric cycle C exactly correspond to a single connected
component in G†. We extend this result in what follows.

There are three possible switches in Lemma 2, i.e., case (1),
case (2).(a) and case (2).(b). First, we observe that the switch in
each case is mutual: If C can be switched to C′, then C′ can be
switched to C by the same principle. For case (1), it is straight-
forward by the fact that Puv = Pvu, so C(v, euv) = C(u, euv).
In case (2).(a), we need to prove C(x, euv) = C(x,′ euv). Start-
ing from C(x,′ euv), x is the first vertex on the shortest path
from x′ to v, i.e., x = sx′(v). It can be verified that x′ =
sx(u), so according to Lemma 2.2.(a), C(x,′ euv) = C(x, euv).
In Lemma 2.(2).(b), we prove C(x, euv) = C(v, exx′). Starting
from C(v, exx′), u is the first vertex on the shortest path from
v to x′, i.e., u = sv(x

′). It can be verified that v �= su(x) and
x′ = sx(u), so by Lemma 2.(2).(b),C(v, exx′) = C(x, euv). This
implies that in G†, the arcs (i.e., directed edges) are mutual: If
there is an arc from C to C′, then there is an arc from C′ to C as
well.

Second, for an isometric circuit C(x, est), we can generate
exactly two switches because in Lemma 2, the vertex u can be
chosen as either s or t, and v as either t or s accordingly. This
implies that if a vertex in G† is a representation of an isometric
circuit, it must have an out-degree dout = 2.

Now assume we replace the two arcs mutually connecting
C and C′ in G† by an undirected edge. Considering the fact
that all representations of an isometric circuit lie in the same
connected component of G† [79], we conclude: By replacing
mutual arc pairs in G† as undirected edges, all representations
of an isometric circuit constitute a connected subgraph whose
vertices have degree of 2, which is a simple cycle. Therefore,
the directed version is a double-linked directed cycle in G†.

An isometric circuit has |C| representations, so the directed
cycle has |C| vertices.

Theorem 3: Let T be any tree (not necessarily a spanning
tree) in G(V , E). Define C̄ ∈ Zν

2 to be the incidence vector of C
restricted to the set of off-tree edges in E\T , i.e.,

C = [C̄, C̃], where C̄ ∈ E\T , C̃ ∈ T .

Then, for a collection of cycles {Ci = [C̄i, C̃i]}i∈N , we have
rank({Ci}i∈N) = rank({C̄i}i∈N).

Proof: Note that rank({C̄i}i∈N) ≤ rank({Ci}i∈N). Then,
we verify the inequality shall never be reached. Otherwise, there
exist at least a sequence of λi(i ∈ K), such that

∑
i∈K λiC̄i =

0 and
∑

i∈K λiC̃i �= 0. As a result, C′ =
∑

i∈K λiCi becomes
a tree, containing edges only in T , which is impossible. (By
composing cycles, the change of the degree for a vertex is even,
which implies that each vertex in C′ has an even degree, thus, C′
cannot be a tree.) �

Lemma 3: Let {S̄i}νj=k be the support vectors of a collection

of independent circuits {Ci}k−1i=1 .
Then, a circuit Ck is linearly independent from {Ci}k−1i=1 , if and

only if there exists an S̄l (k ≤ l ≤ ν) such that 〈C̄k, S̄l〉 = 1.
Proof: Sufficiency: This is well-known in [64], [84], [86].

Assume Ck is dependent. Then, there is a nontrivial lin-
ear combination C̄k =

∑k−1
i=1 λiC̄i. As a result, 〈C̄k, S̄j〉 =∑k−1

i=1 λi〈C̄i, S̄j〉 = 0 holds for all k ≤ j ≤ ν, which contradicts
the existence of S̄l. Necessity: Assume 〈C̄k, S̄j〉 = 0 for all
k ≤ j ≤ ν. Then, the orthogonality 〈C̄i, S̄j〉 = 0 would hold
for all 1 ≤ i ≤ k, k ≤ j ≤ ν. Since Ck is independent from
{Ci}k−1i=1 , then{Ci}ki=1 are a set of independent circuits. By Theo-
rem 3, the restricted circuits {C̄i}ki=1 are also independent. Then,
{C̄i}ki=1 ∪ {S̄j}νj=k are ν + 1 linearly independent vectors for a
space of dimension ν, which cannot be true.

APPENDIX C
LEXICOGRAPHIC DIJKSTRA (LEXDIJKSTRA)

In this section, we provide the proofs related to LexDijkstra.
To begin with, lexicographic paths are defined in Definition 3.
Lemma 4 builds the connection between lexicographic paths
and consistent paths. Theorem 4 is a supportive conclusion to
derive LexDijkstra. The correctness of LexDijkstra is proved in
Section C-A. Last but not least, Section C-B is the proof for a key
result that can greatly improve the effectiveness of lexicographic
comparisons.

Definition 3 (Lexicographic Paths [83]): Consider undi-
rected graph G(V , E) with edge weight vector w. Each edge
in E is assigned with a unique index, and a path P is described
as a collection of edges. Then, for every pair of nodes u, v ∈ V ,
there exists a uniqueu − v pathPuv that satisfies exactly one of
the following three conditions with respect to any other u − v
path P′uv:

1) w(Puv) < w(P′uv);
2) w(Puv) = w(P′uv) and |Puv| < |P′uv|;
3) w(Puv) = w(P′uv), |Puv| = |P′uv|, and

min_index(Puv\P′uv) < min_index(P′uv\Puv).
Lemma 4 (see[83]): If all paths in an APSP are lexicographic

paths, then the APSP is a consistent APSP.
Proof: The proof is not given in [83], thus, we provide one

for completeness.
Let s and t be two vertices on the lexicographic shortest path

Puv . Suppose the lexicographic shortest path from s to t, denoted
by Pst, is not on Puv . Let P∗st be the subgraph on Puv joining s
and t, i.e., Puv = Pus + P∗st + Ptv . Let us further define a path
P′uv = Pus + Pst + Ptv .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON ROBOTICS

Obviously, w(P∗st) = w(Pst) and |P∗st| = |Pst| (which im-
plies w(Puv) = w(P′uv) and |Puv| = |P′uv|), otherwise either
Puv or Pst is not a lexicographic shortest path by the case (1)
or case (2) of Definition 3.

For the case (3) of Definition 3, we observe that

min_index(Puv\P′uv) = min_index(P∗st\Pst) (9)

min_index(P′uv\Puv) = min_index(Pst\P∗st). (10)

Since Pst is the lexicographic shortest path, we have

min_index(Pst\P∗st) < min_index(P∗st\Pst). (11)

By (9)–(11), we have min_index(P′uv\Puv) <
min_index(Puv\P′uv). Therefore, by Definition 3.(3), Puv is
not a lexicographic shortest path since P′uv is lexicographically
shorter than Puv , which contradicts the assumption. �

Theorem 4: LetG be an undirected graph with weightw(e) >
0,∀e ∈ E . A single-source shortest path tree grown at v can be
computed using Dijkstra’s algorithm [88]. Let Puv be a shortest
path fromu tov. Then, for Dijkstra’s algorithm, ifw(Puv) comes
to be the minimum weight available amongst that of all vertices
whose shortest path has not been decided yet (such that u is the
next vertex to be expanded), all possible paths from u to v with
weight w(Puv) have been traversed.

Proof: Let an arbitrary shortest path from u to v with the min-
imum weight w(P′uv) = w(Puv) be described by a vertex-edge
alternating sequence P′uv = {u − eus − s, . . . , v}. Then,
there exists a path Psv = P′uv\eus from s to v with weight
w(Psv) < w(Puv) because w(eus) > 0. When w(Puv) comes
as the minimum weight amongst that of all vertices whose
shortest path has not been decided yet, Psv must have been
considered, and a shortest path from s to v must have been
found with weight at most w(Psv). Then, at the expansion stage
of node s, the edge eus has been traversed, so has been the path
P′uv = Psv ∪ eus. �

A. Proof of Proposition 1

Proof: By Theorem 4, all shortest paths from u to v with
exactly the same minimum weight, which is the case (2) and
(3) in Definition 3, will be traversed by Dijkstra’s algorithm
before the final path Puv is decided. Thus, it would be sufficient
to perform a “lexicographic comparison” in Dijkstra’s update
process according to Definition 3 whenever a new path from u
to v is found. By Lemma 4, the APSP comprising lexicographic
paths constructed by Definition 3 is consistent. Therefore, Puv

constructed by Definition 3 is a consistent path in a consistent
APSP. �

B. Proof of Theorem 2

Proof: Let Puv and P′uv be two paths from u to v.
Let x be an arbitrary common vertex shared by Puv and P′uv .
Then,Puv andP′uv can be divided by x into the following two

parts: Puv = Pux + Pxv , and P′uv = P′ux + P′xv . Without loss
of generality, let us assume the shortest path tree of LexDijkstra
rooted at v. Then, by the time comparing paths between u
and v, the lexicographic shortest path between x and v must

have been found, and is unique, i.e., P′xv = Pxv. As a result,
in case (3) of Definition 3, we have: Puv\P′uv = Pux\P′ux,
andP′uv\Puv = P′ux\Pux. Therefore, it suffices to compare the
paths (i.e., indices of edges) between u and x. Since x is chosen
arbitrary, we compare to the nearest shared vertex. �

REFERENCES

[1] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and
M. Csorba, “A solution to the simultaneous localization and map build-
ing (SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3,
pp. 229–241, Jun. 2001.

[2] C. Cadena et al., “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[4] R. Mur-Artal and J. D. Tards, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[5] D. Schlegel, M. Colosi, and G. Grisetti, “PROSLAM: Graph SLAM from
a programmer’s perspective,” in Proc. IEEE Int. Conf. Robot. Autom.,
2018, pp. 1–9.

[6] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” Int. J.
Comput. Vis., vol. 103, no. 3, pp. 267–305, 2013.

[7] F. Arrigoni, B. Rossi, and A. Fusiello, “Spectral synchronization of
multiple views in SE(3),” SIAM J. Imag. Sci., vol. 9, no. 4, pp. 1963–1990,
2016.

[8] R. Tron, X. Zhou, and K. Daniilidis, “A survey on rotation optimization
in structure from motion,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2016, pp. 77–85.

[9] S. Esquivel, F. Woelk, and R. Koch, “Calibration of a multi-camera rig
from non-overlapping views,” in Proc. Joint Pattern Recognit. Symp.,
2007, pp. 82–91.

[10] J. Wang, R. K. Ghosh, and S. K. Das, “A survey on sensor localization,”
J. Control Theory Appl., vol. 8, no. 1, pp. 2–11, 2010.

[11] J. R. Peters, D. Borra, B. Paden, and F. Bullo, “Sensor network localiza-
tion on the group of three-dimensional displacements,” SIAM J. Control
Optim., vol. 53, no. 6, pp. 3534–3561, 2015.

[12] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1203, 2006.

[13] R. Kmmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o:
A general framework for graph optimization,” in Proc. IEEE Int. Conf.
Robot. Autom., 2011, pp. 3607–3613.

[14] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM 1-A highly efficient
and temporally scalable incremental SLAM framework,” Int. J. Robot.
Res., vol. 36, no. 2, pp. 210–230, 2017.

[15] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “SE-Sync:
A certifiably correct algorithm for synchronization over the special
Euclidean group,” Int. J. Robot. Res., vol. 38, no. 2/3, pp. 95–125, 2019.

[16] T. A. Davis, Direct Methods for Sparse Linear Systems, vol. 2. Philadel-
phia, PA, USA: Siam, 2006.

[17] S. Huang, Y. Lai, U. Frese, and G. Dissanayake, “How far is SLAM
from a linear least squares problem?” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2010, pp. 3011–3016.

[18] F. Bai, S. Huang, T. Vidal-Calleja, and Q. Zhang, “Incremental SQP
method for constrained optimization formulation in SLAM,” in Proc.
IEEE 14th Int. Conf. Control, Autom., Robot. Vis., 2016, pp. 1–6.

[19] F. Bai, T. Vidal-Calleja, and S. Huang, “Robust incremental SLAM under
constrained optimization formulation,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 1207–1214, Apr. 2018.

[20] J. Jackson, K. Brink, B. Forsgren, D. Wheeler, and T. McLain, “Direct
relative edge optimization, a. robust alternative for pose graph optimiza-
tion,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1932–1939, Apr. 2019.

[21] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Auton. Robots, vol. 4, no. 4, pp. 333–349, 1997.

[22] K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-Linear Least
Squares Problems, 1999. [Online]. Available: http://www2.imm.dtu.dk/
pubdb/edoc/imm3215.pdf

http://www2.imm.dtu.dk/pubdb/edoc/imm3215.pdf

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: SPARSE POSE GRAPH OPTIMIZATION IN CYCLE SPACE 19

[23] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localization and mapping,” IEEE Trans. Robot., vol. 21,
no. 2, pp. 196–207, Apr. 2005.

[24] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in Proc. IEEE Int. Conf. Robot.
Autom., 2006, pp. 2262–2269.

[25] G. Grisetti, C. Stachniss, and W. Burgard, “Nonlinear constraint network
optimization for efficient map learning,” IEEE Trans. Intell. Transp. Syst.,
vol. 10, no. 3, pp. 428–439, Sep. 2009.

[26] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-
ing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
Dec. 2008.

[27] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” Int.
J. Robot. Res., vol. 31, no. 2, pp. 216–235, 2012.

[28] K. Konolige, “Large-scale map-making,” in Proc. AAAI, 2004, pp. 457–
463.

[29] M. Montemerlo and S. Thrun, “Large-scale robotic 3-d mapping of urban
structures,” in Proc. Exp. Robot. IX, 2006, pp. 141–150.

[30] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe, “Subgraph-
preconditioned conjugate gradients for large scale SLAM,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 2566–2571.

[31] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[32] D. M. Rosen, M. Kaess, and J. J. Leonard, “RISE: An incremental trust-
region method for robust online sparse least-squares estimation,” IEEE
Trans. Robot., vol. 30, no. 5, pp. 1091–1108, Oct. 2014.

[33] G. Grisetti, R. Kmmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2D and 3D mapping,”
in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 273–278.

[34] G. Grisetti, R. Kmmerle, and K. Ni, “Robust optimization of factor graphs
by using condensed measurements,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2012, pp. 581–588.

[35] L. Zhao, S. Huang, and G. Dissanayake, “Linear SLAM: A linear solution
to the feature-based and pose graph SLAM based on submap joining,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 24–30.

[36] L. Zhao, S. Huang, and G. Dissanayake, “Linear SLAM: Linearis-
ing the slam problems using submap joining,” Automatica, vol. 100,
pp. 231–246, 2019.

[37] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast and
accurate approximation for planar pose graph optimization,” Int. J. Robot.
Res., vol. 33, no. 7, pp. 965–987, 2014.

[38] L. Carlone and A. Censi, “From angular manifolds to the integer lattice:
Guaranteed orientation estimation with application to pose graph opti-
mization,” IEEE Trans. Robot., vol. 30, no. 2, pp. 475–492, Apr. 2014.

[39] K. Khosoussi, S. Huang, and G. Dissanayake, “A sparse separable SLAM
back-end,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1536–1549, Dec. 2016.

[40] H. Wang, G. Hu, S. Huang, and G. Dissanayake, “On the structure of
nonlinearities in pose graph SLAM,” in Proc. Robot.: Sci. Syst., 2013,
pp. 425–432.

[41] L. Carlone, “A convergence analysis for pose graph optimization via
Gauss-Newton methods,” in Proc. IEEE Int. Conf. Robot. Autom., 2013,
pp. 965–972.

[42] K. Khosoussi, M. Giamou, G. S. Sukhatme, S. Huang, G. Dissanayake,
and J. P. How, “Reliable graph topologies for SLAM,” in Proc. Int. J.
Robot. Res., vol. 38, no. 2–3, pp. 260–298, 2019.

[43] M. Liu, S. Huang, G. Dissanayake, and H. Wang, “A convex optimization
based approach for pose SLAM problems,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2012, pp. 1898–1903.

[44] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[45] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert, “Planar pose
graph optimization: Duality, optimal solutions, and verification,” IEEE
Trans. Robot., vol. 32, no. 3, pp. 545–565, Jun. 2016.

[46] L. Carlone and F. Dellaert, “Duality-based verification techniques for 2 d
SLAM,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 4589–4596.

[47] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert,
“Lagrangian duality in 3 d SLAM: Verification techniques and optimal
solutions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015,
pp. 125–132.

[48] D. M. Rosen, C. DuHadway, and J. J. Leonard, “A convex relaxation
for approximate global optimization in simultaneous localization and
mapping,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 5822–5829.

[49] J. Briales and J. Gonzalez-Jimenez, “Cartan-Sync: Fast and global SE(d)-
synchronization,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2127–2134,
Oct. 2017.

[50] C. Estrada, J. Neira, and J. D. Tards, “Hierarchical SLAM: Real-time
accurate mapping of large environments,” IEEE Trans. Robot., vol. 21,
no. 4, pp. 588–596, Aug. 2005.

[51] W. J. Russell, D. J. Klein, and J. P. Hespanha, “Optimal estimation on
the graph cycle space,” IEEE Trans. Signal Process., vol. 59, no. 6,
pp. 2834–2846, Jun. 2011.

[52] E. B. Olson, “Robust and efficient robotic mapping,” Ph.D. dissertation,
Dept. Elect. Eng. Comput. Sci., Massachusetts Institute of Technology,
Cambridge, MA, USA, 2008.

[53] G. Dubbelman and B. Browning, “COP-SLAM: Closed-form online
pose-chain optimization for visual SLAM,” IEEE Trans. Robot., vol. 31,
no. 5, pp. 1194–1213, Oct. 2015.

[54] C. X. Guo et al., “Large-scale cooperative 3 d visual-inertial mapping
in a manhattan world,” in Proc. IEEE Int. Conf. Robot. Autom., 2016,
pp. 1071–1078.

[55] Z. Wang, S. Huang, and G. Dissanayake, “Decoupling localization and
mapping in SLAM using compact relative maps,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2005, pp. 3336–3341.

[56] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent,” in Robotics: Science and Systems, vol. 3. Cambridge,
MA, USA: MIT Press, 2007, pp. 65–72.

[57] D. Sibley, C. Mei, I. D. Reid, and P. Newman, “Adaptive relative bundle
adjustment,” in Proc. Robot.: Sci. Syst., Seattle, USA, vol. 32, Jun. 2009,
doi: 10.15607/RSS.2009.V.023.

[58] S. Anderson, K. MacTavish, and T. D. Barfoot, “Relative continuous-time
SLAM,” Int. J. Robot. Res., vol. 34, no. 12, pp. 1453–1479, 2015.

[59] F.-A. Moreno, J.-L. Blanco, and J. Gonzalez-Jimenez, “A constant-time
SLAM back-end in the continuum between global mapping and submap-
ping: Application to visual stereo SLAM,” Int. J. Robot. Res., vol. 35,
no. 9, pp. 1036–1056, 2016.

[60] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups,
Volume 2:Analytic Methods and Modern Applications,vol. 2. Berlin,
Germany: Springer, 2011.

[61] T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.: Cam-
bridge Univ. Press, 2017.

[62] S. S. Ray, Graph Theory With Algorithms and Its Applications: In Applied
Science and Technology, Berlin, Germany: Springer, 2012.

[63] T. Kavitha et al., “Cycle bases in graphs characterization, algo-
rithms, complexity, and applications,” Comput. Sci. Rev., vol. 3, no. 4,
pp. 199–243, 2009.

[64] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
Proc. SPIE, vol. 1611, pp. 586–607, 1992.

[65] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Proc. Robot.:
Sci. Syst., 2009, vol. 2, no. 4, p. 435.

[66] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge, U.K.: Cambridge Univ. Press, 2003.

[67] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robot. Autom. Mag., vol. 18, no. 4, pp. 80–92, Dec. 2011.

[68] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and
mapping in the space of appearance,” Int. J. Robot. Res., vol. 27, no. 6,
pp. 647–665, 2008.

[69] S. Lowry et al., “Visual place recognition: A survey,” IEEE Trans. Robot.,
vol. 32, no. 1, pp. 1–19, Feb. 2016.

[70] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “A certi-
fiably correct algorithm for synchronization over the special Euclidean
group,” in Proc. 12th Int. Workshop Algorithmic Foundations Robot.,
2016.

[71] F. Dellaert et al., “Factor graphs for robot perception,” Found. Trends
Robot., vol. 6, no. 1/2, pp. 1–139, 2017.

[72] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1–51, 1995.

[73] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 71.
Philadelphia, PA, USA: SIAM, 2000.

[74] N. Deo, G. Prabhu, and M. S. Krishnamoorthy, “Algorithms for gener-
ating fundamental cycles in a graph,” ACM Trans. Math. Softw., vol. 8,
no. 1, pp. 26–42, 1982.

[75] E. Amaldi, L. Liberti, F. Maffioli, and N. Maculan, “Edge-swapping
algorithms for the minimum fundamental cycle basis problem,” Math.
Methods Oper. Res., vol. 69, no. 2, pp. 205–233, 2009.

[76] G. Galbiati, R. Rizzi, and E. Amaldi, “On the approximability of the
minimum strictly fundamental cycle basis problem,” Discr. Appl. Math.,
vol. 159, no. 4, pp. 187–200, 2011.

[77] J. D. Horton, “A polynomial-time algorithm to find the shortest cycle
basis of a graph,” SIAM J. Comput., vol. 16, no. 2, pp. 358–366, 1987.

https://dx.doi.org/10.15607/RSS.2009.V.023

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON ROBOTICS

[78] E. Amaldi, C. Iuliano, T. Jurkiewicz, K. Mehlhorn, and R. Rizzi, “Break-
ing the Õ(m2n) barrier for minimum cycle bases,” in Proc. Eur. Symp.
Algorithms., 2009, pp. 301–312.

[79] E. Amaldi, C. Iuliano, and R. Rizzi, “Efficient deterministic algorithms
for finding a minimum cycle basis in undirected graphs,” in Proc. Int.
Conf. Integer Program. Combinatorial Optim., 2010, pp. 397–410.

[80] K. Mehlhorn and D. Michail, “Implementing minimum cycle basis
algorithms,” J. Exp. Algorithmics, vol. 11, pp. 2–5, 2007.

[81] D. Dutta, M. Chaitanya, K. Kothapalli, and D. Bera, “Applications of
ear decomposition to efficient heterogeneous algorithms for shortest
path/cycle problems,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops, 2017, pp. 864–873.

[82] D. Hartvigsen and R. Mardon, “The all-pairs min cut problem and the
minimum cycle basis problem on planar graphs,” SIAM J. Discr. Math.,
vol. 7, no. 3, pp. 403–418, 1994.

[83] J. de Pina, “Applications of shortest path methods,” Ph.D. Thesis, Univer-
siteit van Amsterdam, Amsterdam, The Netherlands, Dec. 19, 1995. [On-
line]. Available: https://dare.uva.nl/search?identifier=93573ea1-c3ea-
4321-a479-294c74b7f0bb

[84] A. Golynski and J. D. Horton, “A polynomial time algorithm to find the
minimum cycle basis of a regular matroid,” in Scandinavian Workshop
on Algorithm Theory. Berlin, Germany: Springer, 2002, pp. 200–209.

[85] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch, “An Õ(m2n)
algorithm for minimum cycle basis of graphs,” Algorithmica, vol. 52,
no. 3, pp. 333–349, 2008.

[86] V. Ramachandran, “Parallel open ear decomposition with applications to
graph biconnectivity and triconnectivity,” University of Texas at Austin,
Austin, TX, USA, Tech. Rep. TX 78712, 1992.

[87] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[88] C. Jauffret, “Observability and fisher information matrix in nonlin-
ear regression,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 2,
pp. 756–759, Apr. 2007.

[89] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds, Princeton, NJ, USA: Princeton Univ. Press, 2009.

[90] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Appli-
cations to Tracking and Navigation: Theory Algorithms and Software,
Hoboken, NJ, USA: Wiley, 2004.

[91] J. Andrade-Cetto and A. Sanfeliu, “The effects of partial observability
when building fully correlated maps,” IEEE Trans. Robot., vol. 21, no. 4,
pp. 771–777, Aug. 2005.

[92] Z. Wang and G. Dissanayake, “Observability analysis of SLAM using
Fisher information matrix,” in Proc. 10th Int. Conf. Control, Autom.,
Robot. Vis., 2008, pp. 1242–1247.

[93] J. D. Gorman and A. O. Hero, “Lower bounds on parametric estimators
with constraints,” in Proc. 4th Annu. ASSP Workshop Spectr. Estimation
Model., 1988, pp. 223–228.

[94] T. L. Marzetta, “A simple derivation of the constrained multiple param-
eter Cramer-Rao bound,” IEEE Trans. Signal Process., vol. 41, no. 6,
pp. 2247–2249, Jun. 1993.

[95] A. Barrau and S. Bonnabel, “Linear Observation Systems on Groups (I),”
Feb. 2018. [Online]. Available: https://hal-mines-paristech.archives-
ouvertes.fr/hal-01671724

[96] A. Barrau and S. Bonnabel, “Invariant kalman filtering,” Annu. Rev.
Control, Robot., Auton. Syst., vol. 1, pp. 237–257, 2018.

[97] T. Zhang, K. Wu, J. Song, S. Huang, and G. Dissanayake, “Convergence
and consistency analysis for a 3-d Invariant-EKF SLAM,” IEEE Robot.
Autom. Lett., vol. 2, no. 2, pp. 733–740, Apr. 2017.

[98] P. Chauchat, A. Barrau, and S. Bonnabel, “Invariant smoothing on lie
groups,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 1703–
1710.

[99] R. A. Tapia, “Quasi-Newton methods for equality constrained opti-
mization: Equivalence of existing methods and a new implementation,”
in Nonlinear Programming 3. New York, NY, USA: Elsevier, 1978,
pp. 125–164.

[100] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, vol. 30. Philadelphia, PA, USA: Siam,
1970.

[101] P. T. Boggs, J. W. Tolle, and P. Wang, “On the local convergence of
quasi-Newton methods for constrained optimization,” SIAM J. Control
Optim., vol. 20, no. 2, pp. 161–171, 1982.

[102] R. Fontecilla, T. Steihaug, and R. A. Tapia, “A convergence theory for
a class of quasi-Newton methods for constrained optimization,” SIAM J.
Numer. Anal., vol. 24, no. 5, pp. 1133–1151, 1987.

[103] T. F. Coleman, “On characterizations of superlinear convergence for
constrained optimization,” Lectures Appl. Math., vol. 26, pp. 113–133,
1990.

[104] H. Schwetlick, “Gauss-Newton-like methods for nonlinear least squares
with equality constraints-local convergence and applications,” Statist.: J.
Theor. Appl. Statist., vol. 16, no. 2, pp. 167–178, 1985.

[105] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an
approximate minimum degree ordering algorithm,” ACM Trans. Math.
Softw., ACM New York, NY, USA, vol. 30, no. 3, pp. 381–388, 2004.

[106] D. Martinec and T. Pajdla, “Robust rotation and translation estimation
in multiview reconstruction,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2007, pp. 1–8.

[107] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization tech-
niques for 3 d SLAM: A survey on rotation estimation and its use in
pose graph optimization,” in Proc. IEEE Int. Conf. Robot. Autom., 2015,
pp. 4597–4604.

[108] Pre-2014 Robotics 2D-Laser Datasets. [Online]. Available: http://www.
ipb.uni-bonn.de/datasets/

[109] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2012, pp. 3354–3361.

Fang Bai (Member, IEEE) was born in Ningxia
Province, China, in 1988. He received the B.Sc.
degree in computer science and technology from
Nankai University, Tianjin, China, in 2010, and the
Ph.D. degree in robotics from the University of Tech-
nology Sydney, Ultimo, NSW, Australia, in 2020.

His Ph.D. thesis studied theoretical aspects in graph
optimization, resulting a cycle based approach, and a
closed form equation to predicting the optimal values
in least squares optimization. His research interests
include both mathematical abstractions and practical

applications in robotics.

Teresa Vidal-Calleja (Member, IEEE) received the
B.Sc. degree in mechanical engineering from the Na-
tional Autonomous University of Mexico (UNAM),
Mexico City, Mexico, in 2000, the M.Sc. degree in
electrical engineering from CINVESTAV-IPN, Mex-
ico City, Mexico, in 2002, and the Ph.D. degree
in automatic control, computer vision and robotics
from the Polytechnic University of Catalonia (UPC),
Barcelona, Spain, in 2007.

She was a Postdoctoral Research Fellow with the
LAAS-CNRS, Toulouse, France, and the Australian

Centre for Field Robotics, University of Sydney, Sydney, NSW, Australia. In
2012, she joined the Centre for Autonomous Systems, University of Technology
Sydney (UTS), Ultimo NSW, Australia, where he is currently an Associate
Professor. Her research interests are in robotic probabilistic perception.

Giorgio Grisetti (Member, IEEE) received the Ph.D.
degree in computer engineering from the Sapienza
University of Rome, Rome, Italy, in 2006.

He is currently an Associate Professor with the
Sapienza University of Rome. He conducted the Post-
doctoral Research with the Autonomous Intelligent
Systems Lab, University of Freiburg, Breisgau, Ger-
many, from 2006 to 2010. His research interests lie
in SLAM, state estimation and navigation for mobile
robots. He is author of more than 100 peer reviewed
papers in journals and conferences, and he is known

for his contribution to open-source packages addressing SLAM related problems
such as GMapping, g2o, normal iterative closest point (NICP), Hog-Man,
hamming distance embedding binary search tree (HBST), and Pro-SLAM.

https://dare.uva.nl/search{?}identifier$=$93573ea1-c3ea-4321-a479-294c74b7f0bb
https://hal-mines-paristech.archives-ouvertes.fr/hal-01671724
http://www.ipb.uni-bonn.de/datasets/

