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ABSTRACT

Migraine is a prevalent primary headache dis-
order and is usually considered as benign.
However, structural and functional changes in
the brain of individuals with migraine have
been reported. High frequency of white matter
abnormalities, silent infarct-like lesions, and
volumetric changes in both gray and white
matter in individuals with migraine compared

to controls have been demonstrated. Functional
magnetic resonance imaging (MRI) studies
found altered connectivity in both the interictal
and ictal phase of migraine. MR spectroscopy
and positron emission tomography studies
suggest abnormal energy metabolism and
mitochondrial dysfunction, as well as other
metabolic changes in individuals with
migraine. In this review, we provide a brief
overview of neuroimaging studies that have
helped us to characterize some of these changes
and discuss their limitations, including small
sample sizes and poorly defined control groups.
A better understanding of alterations in the
brains of patients with migraine could help not
only in the diagnosis but may potentially lead
to the optimization of a targeted anti-migraine
therapy.
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Key Summary Points

Migraine is a highly prevalent primary
headache disorder, usually considered as
benign.

However, migraine is associated with an
increased vulnerability to ischemia and
stroke, particularly in women with
migraine with aura and younger than age
45.

Recent neuroimaging studies characterize
structural and functional changes in the
brains of patients with migraine that
include:

- High frequency of white matter
abnormalities,

- Silent infarct-like lesions,

- Volumetric changes in both gray and
white matter,

- Altered functional connectivity in both
the interictal and ictal phase,

- Abnormal energy metabolism,
mitochondrial dysfunction, and
additional metabolic changes in the brain.

A better understanding of alterations in
the brains of patients with migraine could
help not only in the diagnosis but may
potentially help develop a targeted anti-
migraine therapy.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13674793.

INTRODUCTION

Migraine is a highly prevalent primary head-
ache with estimated global 1-year prevalence of
15% of the general population [1–3]. Consid-
ered a chronic neurovascular disorder with epi-
sodic manifestations, migraine has enormous
socioeconomic impact on the individual and
society [3, 4]. The pathophysiology of migraine
is complex and not fully clarified [3, 5]. Cortical
spreading depolarization (CSD) and abnormal
brain stem activity have been shown to be
involved in the pathophysiology of migraine
with aura [3, 6–8]. The pain in migraine most
likely originates in the nociceptive sensory
fibers transmitting signals from intracranial and
extracranial blood vessels, and other cranial
structures such as dura mater, skin, muscles,
and periosteum [3, 9]. Peripheral and central
sensitization of trigeminovascular nociceptive
pathways may develop during migraine attacks
[3, 10, 11]. Alterations of the trigeminovascular
pathways and dysregulation of vasodilator
peptides involved in this network such as cal-
citonin gene-related peptide (CGRP) have been
the subject of recent studies on pathophysiol-
ogy and therapies of this disease [12, 13].
Genetic predisposition and its repercussions on
brain networks are other known elements
underlying the pathophysiology of migraine
that have made it possible to better understand
the underlying functional alterations [14–17].

Migraine is considered a benign disease, but
long-term effects of migraine have been deba-
ted. Recent evidence from neuroimaging studies
including interictal magnetic resonance imag-
ing (MRI) shows that migraine pathology may
extend beyond migraine pain and can be asso-
ciated with structural and functional brain
changes [18–21]. Migraine changes the brain in
ictal and interictal states, resulting in altered
morphology of cerebral, cerebellar, and brain-
stem structures, as well as altered neuronal
networks and function. These findings from
human studies are supported by evidence from
animal studies [22, 23]. For instance, in vivo
multiphoton microscopy demonstrated
increased intraneuronal Ca2? concentrations
[Ca2?]i both at resting state and during CSD in a

Pain Ther

https://doi.org/10.6084/m9.figshare.13674793
https://doi.org/10.6084/m9.figshare.13674793


migraine mouse model carrying human muta-
tions for the rare migraine subtype familial
hemiplegic migraine type 1 (FHM1). This find-
ing was associated with stronger synaptic con-
nections in FHM1 mutants, as evidenced by
larger axonal boutons and a higher percentage
of highly excitable mushroom-type dendritic
spines, when compared to wild-type littermates
[22]. These changes may contribute to the per-
sistently hyperexcitable state in FHM1, and
possibly other types of migraine. In the current
review, we describe findings from neuroimaging
studies on structural and functional changes in
the brain of individuals with migraine.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors

STRUCTURAL CHANGES

There are several types of structural brain
abnormalities that have been reported in indi-
viduals with migraine. Neuroimaging studies
often reveal white matter hyperintensities or
white matter abnormalities (WMAs), silent
infarct-like lesions (ILLs), ischemic lesions
(stroke), as well as volumetric changes in gray
(GM) and white matter (WM) in migraine suf-
ferers [18, 19].

White Matter Abnormalities

WMAs are usually small punctate hyperintense
lesions localized to the deep, subcortical,
periventricular, and infratentorial structures,
with no associated mass effect [18, 24–27].
WMAs are typically seen on T2 and fluid-at-
tenuated inversion recovery (FLAIR) MR images,
and assumed to be composed of gliosis,
demyelination, and loss of axons, possibly
resulting from microvascular damage [28].
WMAs in migraine have been extensively stud-
ied in clinic-based and population-based stud-
ies, and two meta-analyses of these studies have
been conducted [18, 29–35]. The clinic-based
studies did not include migraine-free control
groups and may therefore not be generalizable
because of selection bias [18]. Association

between WMA and migraine has mainly been
reported in cross-sectional and only in few
longitudinal population-based studies. Individ-
uals with migraine are up to 2–4 times more
likely to have WMAs detected on conventional
MRIs of the brain compared to controls
[18, 30, 31, 34, 36]. Moreover, several studies
indicate that migraine with aura, particularly in
women, is associated with an increased risk of
WMAs [18, 29]. In the systematic review con-
ducted by Bashir et al. [18], the relative fre-
quency of WMAs in individuals with migraine
ranged from 4% to 59%. The risk of WMA in
migraine was shown to be independent of car-
diovascular risk factors in previous studies
[24, 26, 27]. However, it must be noted that the
results of the previous studies are variable,
inconsistent, and at times conflicting, possibly
as a result of methodological differences
[33, 36]. In the Cerebral Abnormalities in
Migraine, an Epidemiological Risk Analysis 1
(CAMERA-1) study, the prevalence of WMAs
was studied in individuals with migraines and
gender-matched controls [26]. The prevalence
of deep WMAs was higher in individuals with
migraine when compared to controls, inde-
pendent of the presence of aura and increased
with attack frequency in women. Additional
analysis [27] of the same population revealed
that hyperintense lesions were found in the
infratentorial structures, cerebellum and brain
stem, in individuals with migraine. ILLs were
associated with supratentorial WMAs but not
with migraine subtype, migraine attack fre-
quency, or cerebellar infarcts. The Epidemiol-
ogy of Vascular Ageing-MRI (EVA-MRI) study
[25] also confirmed the association of migraine
with WMAs. In this study, the association with
deep WMAs was found to be stronger for
migraine with aura than without aura. Inter-
estingly, no association was found between
overall headache status, WMAs, and cognitive
impairment in the EVA-MRI study [25].

CAMERA-2 [24] is a prospective 9-year fol-
low-up study that aimed to assess the associa-
tion between migraine attack frequency and
progression/increase in number and volume of
WMAs in the same study population. This study
showed that women with migraine, migraine
without aura in particular, had a higher
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incidence of deep WMA progression compared
to controls. Notably, progression of WMAs in
individuals with migraine was not associated
with migraine attack frequency, duration,
severity, or anti-migraine treatments. There was
no association between WMA volume and cog-
nitive dysfunction at follow-up. This finding is
in agreement with a prospective study by Rist
et al. [37], which demonstrated no link between
cognitive changes and WMAs in individuals
with migraine. Moreover, no significant associ-
ations of migraine with progression of
infratentorial hyperintensities was reported in
the CAMERA-2 study [24]. Another longitudinal
study [38], which did not have a non-migraine
control group, suggested WMA progression in
individuals with migraine with aura and corre-
lation with headache attack frequency. How-
ever, in a more recent prospective study by
Hamedani et al. [34], it was demonstrated that
there was no difference in WMA progression
between those with and without migraine. The
observed stable associations between migraine
and WMAs in older age suggested that white
matter changes were occurring earlier in life
[34]. The shortcomings of this study were lim-
ited white matter analyses, retrospective head-
ache case definitions, lack of full use of the
International Headache Society (ICDH) diag-
nostic criteria, and exclusion of individuals
with history of severe headache.

The pathophysiological mechanisms leading
to the development of WMAs in migraine and
histopathological correlates of WMA are not
fully understood. Ischemic microvascular dis-
turbances with subsequent regional hypoperfu-
sion of the brain [39], brain injury due to
activated metalloproteinases during CSD [40],
microembolism, coagulation activation, and
endothelial dysfunction [41, 42] have been
suggested as possible underlying mechanisms.

Silent Infarct-Like Lesions

Silent ILLs are MRI or computed tomography
(CT) signal abnormalities defined as non-mass
parenchymal defects, having a size of at least
3 mm, while being isointense to cerebrospinal
fluid signal on all sequences [43]. ILLs can be

surrounded by a hyperintense rim on FLAIR and
proton density MR images [18]. Dilated
perivascular spaces may be difficult to differen-
tiate from caveated ILLs. The distinction is
mainly based on the diameter of the defect,
with those greater than 3 mm of diameter most
likely being ILLs [43]. The mechanisms leading
to ILLs are not fully understood but hypoper-
fusion or microemboli may be possible causa-
tive factors [18]. It has also been suggested that
ILLs may be a manifestation of small-vessel
disease related to hypertension [44].

The association between migraine and silent
ILLs has been reported in both clinic-based and
population-based studies [18, 32, 45]. A high
frequency of ILLs in the posterior circulation
distribution areas, mostly in the cerebellum, in
individuals with migraine with aura compared
to those without aura or controls has been
reported in two cross-sectional studies [26, 46].
In one cross-sectional study, Kurth et al. [25]
reported an increased risk of ILLs mostly in deep
gray matter, subcortex and the basal ganglia, in
individuals with migraine with aura. Interest-
ingly, ILLs were not reported to be associated
with supratentorial WMAs [46]. In the Northern
Manhattan Study (NOMAS) [33], migraine was
associated with a twofold likelihood of ILLs
after adjusting for several variables including
body mass index, cardiovascular risk factors,
smoking, and demographics [adjusted odds
ratio (OR) 2.1; 95% confidence interval (CI)
1.0–4.2]. The association was stronger for
migraine without aura, but the results should be
interpreted with caution given the restrictive
definition of aura in the study. In a small-sized
cohort study of 100 women [45] with chronic
migraine with or without aura, posterior circu-
lation ILLs were identified in 6% of the patients
in comparison to no infarct-like lesions in 15
controls with episodic migraine. In contrast to
the aforementioned studies, Geist et al. [36] did
not demonstrate differences in frequency of
ILLs between individuals with migraine with
aura and controls. However, this study has
several methodological limitations including
non-participation, and questionable generaliz-
ability of twin studies.

A prospective study in individuals with
migraine (CAMERA-2) did not demonstrate a
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statistically significant increased risk of pro-
gression of the previously found ILLs [24]. This
negative result has been suggested to be due to
lack of power [18]. Additionally, CAMERA-2
showed no association between cognitive
function and ILLs. In a prospective population
study from Iceland [47], Scher et al. showed that
women with midlife migraine with aura had a
twofold increased risk of late-life cerebellar ILLs
at follow-up 26 years later. ILLs were indepen-
dent of late-life cardiovascular risks and history
of coronary artery disease, transient ischemic
attacks, or stroke.

The causative relationship between migraine
and ILLs is not clear. It is also unknown whether
silent ILLs predispose to the development of
clinical stroke [18, 32]. It has been shown that
individuals with migraine and with ILLs have a
less favorable cardiovascular risk profile than
those without ILLs and a higher prevalence of
clinical stroke [24]. Clinical significance of ILLs
in migraine is not fully clarified but may sup-
port subclinical cerebellar impairment reported
in patients with migraine [48].

Volumetric Changes in Gray and White
Matter

Volumetric changes can be detected by using
voxel-based morphometry (VBM) or diffusion
tensor imaging (DTI). Voxel-based morphome-
try is a computational approach that measures
differences in local concentrations of brain tis-
sue, through a voxel-wise comparison of mul-
tiple brain images with a template. DTI allows
for visualization of the orientation and aniso-
tropy (a measure reflecting fiber density, axonal
diameter, and myelination) of white and gray
matter by measuring the diffusion of water.
Volumetric changes are visualized and descri-
bed as decreased or increased gray matter or
white mater volumes [49–53]. Pathophysiology
of volumetric changes likely involves repeated
episodes of ischemia caused by cerebral blood
flow abnormalities during both the ictal and in
the interictal phases of migraine [18].

There are several studies that used VBM and
DTI to assess volumetric changes in gray and
white matter regions in individuals with

migraine compared to controls. Volume loss
was demonstrated in the bilateral insula, fron-
tal/prefrontal, temporal, parietal, and occipital
cortices, the anterior cingulate cortex (ACC),
basal ganglia, and the cerebellum in patients
with migraine compared to controls
[49, 50, 54–59]. Increased gray matter density in
the periaqueductal gray (PAG) and the dorso-
lateral pons was reported in patients with
migraine with aura [54]. Furthermore, migraine
attack frequency and migraine disease duration
were correlated with gray matter reduction in
individuals with migraine in the frontal, tem-
poral, and parietal lobes, the limbic system, the
ACC, the brainstem, and cerebellum
[49–51, 54, 55, 57, 60]. In one study [50],
patients with chronic migraine had volume loss
in the ACC and in several other areas, compared
to patients with episodic migraine, also sug-
gesting an association between attack frequency
and the degree of gray matter reduction. When
compared to controls, individuals with chronic
migraine were shown to have smaller volumes
of the cerebellum and brainstem [35]. Volu-
metric changes may well indicate brain remod-
eling in migraine. Clinical implications of
volumetric changes are unknown and may
reflect a consequence of frequent migraine
attacks, but additional studies are needed to
confirm this assumption.

FUNCTIONAL CHANGES

Functional MRI (fMRI) is an often-used imaging
method to study neuronal network connectiv-
ity [21]. fMRI utilizes blood oxygen level
dependent (BOLD) recordings of the brain as an
indirect measure of neuronal activity that
reflects changes in regional cerebral blood flow,
volume, and oxygenation. Each voxel in the
obtained image of the brain represents a signal
with a specific frequency. If there is a high
degree of synchronization of signal frequencies
between two different voxels, then these are
functionally connected or even constitute a
functional network. There are two types of fMRI
studies that can be performed: resting state and
task-based [61]. Resting-state fMRI studies
investigate synchronicity of spontaneous
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fluctuations in the BOLD signal as a measure of
neuronal connectivity in the absence of a
specific stimulus, while the subject is lying in
the scanner with eyes closed but not sleeping
[62]. During task-based fMRI, the subject per-
forms a task while being scanned.

Resting-state fMRI studies demonstrate
functional changes in certain areas of the brain
in patients with migraine, including in the
diencephalon and brainstem nuclei during the
interictal and headache phases [20, 63–72].

During the interictal phase, alterations have
been recognized in more than 20 functional
connectivity networks in patients with
migraine compared to those without migraine,
including the default mode network, salience
network, frontoparietal network, executive
network, and sensorimotor network [73]. There
is also increased activation of the visual cortex
[74, 75], primary sensorimotor cortex [76],
superior-anterior middle temporal complex
[77], and perigenual anterior cingulate cortex
[78–80], with an increased connection between
nociceptive areas and the periaqueductal gray.
Interestingly, the extent of abnormalities posi-
tively correlates with markers of migraine
severity such as headache frequency and num-
ber of years with migraine [81]. Some studies
suggest differences in interictal alterations of
resting state functional connectivity between
individuals with migraine with and without
aura, involving the visual cortex as well as
widespread regions involved in visual process-
ing (including the middle frontal areas, the
insula, the anterior cingulate, the superior
parietal lobule, and the cerebellum). Results
indicate that those with aura compared to those
without aura have weaker functional connec-
tivity between the anterior insula and the V3A
in the visual cortex, which was inversely related
to migraine severity [82]. In contrast, Tedeschi
et al. found stronger connectivity within the
visual network centering around the lingual
gyrus, an extrastriate region important for
visual-spatial processing, while Hougaard et al.
did not identify any differences in functional
connectivity between migraineurs and non-mi-
graineurs [83, 84].

During the headache phase, there is evidence
for altered connectivity involving the salience

network, the somatosensory network, the
default mode network, the pons, and the tha-
lamus [21]. There is increased activity within
brainstem nuclei, the cerebellum, putamen,
temporal lobes, prefrontal cortex, precentral
and postcentral gyrus, cingulate, thalamus, and
insula [68–72]. Coppola et al. [85] utilized
whole-brain independent component analysis
during naturally occurring (not medication-in-
duced) migraine attacks and showed decreased
functional connectivity between the executive
and dorsoventral attention network, when
compared to healthy controls, which correlated
with attack frequency. In addition, the authors
found evidence for functional decoupling of the
thalamocortical control network. Again, weaker
executive network connectivity related to
higher monthly headache frequency was noted
in patients with migraine. In a follow-up study,
using the same study population, the authors
found stronger connectivity between the med-
ial prefrontal cortex and the posterior cingulate
cortex, as well as stronger connectivity between
the medial prefrontal cortex and the insula,
suggestive of altered emotional processing of
pain [86]. In chronic migraine, there is evidence
for reduced connectivity of the default mode
network with the executive control network,
and increased connectivity with the dorsal
attention system, with the latter showing
decreased connectivity with the executive con-
trol network. These findings correlate with
headache severity [87]. Another study showed
decreased overall functional connectivity of the
three major intrinsic brain networks (default
mode, salience, central executive networks) in
women with chronic migraine [88].

In summary, fMRI studies show altered con-
nectivity in both interictal and ictal migraine,
which could help improve our understanding of
underlying disease mechanisms. However,
findings are equivocal and partially contradict-
ing, while so far no reproducible biomarkers of
migraine could be identified. Differences in
imaging protocols as well as the fact that
migraine is a heterogeneous disorder with dif-
ferent disease duration, attack frequency, co-
morbidity, effect of treatment, presence or
absence of aura might have caused variations in
results between studies.
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METABOLIC CHANGES

MRS Studies

Magnetic resonance spectroscopy (MRS) is a
non-invasive imaging method, which provides
in vivo molecular information related to the
metabolism and function of brain structures
[89, 90]. For example, phosphorus (31P)-MRS
can measure concentrations of chemicals con-
taining phosphorus nuclei that include inor-
ganic phosphate, phosphocreatine (PCr),
creatine, adenosine diphosphate (ADP), and
adenosine triphosphate (ATP). Hydrogen (1H)-
MRS measures signals from proton nuclei in
water and allows us to measure PCr, creatine,
choline, N-acetylaspartate (NAA), myo-inositol,
glutamate, GABA, aspartate, and lactate.

Overall, MRS studies suggest that there is
abnormal energy metabolism and mitochon-
drial dysfunction in patients with migraine,
which may decrease the threshold for initiating
migraine attacks [89, 91]. Decreased PCr and
increased inorganic phosphate, or decreased
PCr/inorganic phosphate ratio, were reported in
several cortical areas including the occipital
cortex in patients with migraine with and
without aura both during attacks and in the
interictal state, when using 31P-MRS [92–95]. In
addition, decreased phosphorylation potential,
an index of available free energy in the cell, was
shown in patients with and without aura,
indicating less freely available energy
[92, 95–97]. Another important finding was
decreased magnesium in cortical areas in indi-
viduals with migraine with and without aura,
which also suggests mitochondrial dysfunction
and decreased availability of energy in neurons
[92, 93, 98–100].

The 1H-MRS studies demonstrate changes in
the levels of glutamate, a neurotransmitter
possibly involved in cortical hyperexcitability.
Increased glutamate levels interictally were
detected in the visual and anterior paracingu-
late cortex, and in the visual cortex during
visual stimulation in migraine with aura
[101–103]. These findings, together with reports
of decreased interictal GABA levels in the
occipital lobe of patients with migraine with

and without aura, suggest a predominance of
excitatory over inhibitory connections in
migraineurs [101, 104]. Decreased NAA levels
indicating neuronal loss were found in the
occipital cortex and thalamus in subjects with
migraine without aura [105–107]. Limitations of
MRS studies have been previously described
[89, 108]. These include identification
and quantification of metabolites. Results from
MRS studies in migraine revealed the use of
different methodologies, mainly performed in
the interictal state. Therefore, the results of
these studies may not be comparable, with only
few study findings being reproducible.

PET Studies

A brain positron emission tomography (PET)
scan is an imaging test which uses radiotracers
that emit positrons, which then undergo
radioactive decay and collide with electrons to
produce two photons [109]. PET scan can detect
these photons and produce an image of spatial
density, showing tracer uptake/binding
changes.

Using the 5-HT1B receptor-specific radioli-
gand [11C]AZ10419369, Deen et al. [110]
demonstrated lower 5-HT1B binding in patients
with migraine in pain-processing regions of the
brain, including the anterior cingulate cortex,
sensorimotor cortex, the insula, and amygdala,
suggestive of a decreased density of the 5-HT1B

receptor in patients with migraine.
A recent study [111] using integrated PET/

MRI brain scans with [11C]PBR18, a radioligand
that binds to the 18 kDa translocator protein
(TSPO), demonstrated that patients with
migraine interictally and at least 2 weeks fol-
lowing the headache attack had elevated stan-
dardized uptake value ratio (SUVR) in their
visual cortex as well as the thalamus, primary/
secondary somatosensory, and insular cortices.
These findings suggest glial activation in sub-
jects with migraine with aura and neuroim-
mune activation/neuroinflammation in brain
regions involved in migraine pathophysiology
including generation of CSD as well as noci-
ception [112]. Interestingly, strong persistent
extra-axial inflammatory signal was found in
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the meninges and calvarial bone overlying the
occipital lobe in patients with migraine during
and after visual auras, implicating newly dis-
covered bridging vessels that facilitate bidirec-
tional crosstalk between brain and skull marrow
[113]. Inflammatory cells in the calvarium may
serve as a local repository and as a potential
candidate to trigger subsequent attacks, possibly
promoting migraine chronification.

PET studies have also made it possible to
study different metabolic activities in the vari-
ous phases of migraine. During the aura, for
example, decreased perfusion of the parietal
and temporal lobes has been observed
[114, 115]. During the migraine attack instead,
PET studies identified greater blood flow in the
brainstem nuclei and cerebellum [68, 71, 116],
and decreased metabolism of the thalamus,
orbitofrontal cortex, anterior cingulate cortex,
and ventral striatum [117]. In addition, it was
demonstrated that the degree of neuroinflam-
mation correlated with the frequency of
migraine attacks [111]. Limitations of this study
were the small sample size and lack of kinetic
modeling with radiometabolite-corrected arte-
rial input function for better quantification of
TSPO binding.

PERSPECTIVES AND CONCLUSIONS

There is increasing evidence for migraine as a
potential risk factor for structural and func-
tional changes in the brain. Individuals with
migraine seem to have more WMAs, ILLs, and
volumetric changes in both gray and white
matter when compared to controls. Epidemio-
logical studies suggest an association between
migraine and stroke. Moreover, fMRI studies
have shown that individuals with migraine may
have atypical neuronal networks and function.
However, the majority of the conducted studies
have flaws and methodological limitations.
These include small sample sizes, often not
whole-brain but selective brain region analyses,
variation in methods of data collection, differ-
ences in timing of data collection with respect
to migraine attack, and no account of the use of
acute or preventive treatments. In addition,
there is a shortage of replication studies.

Identifying areas involved in the pathophysiol-
ogy of migraine in functional imaging methods
has proven to be difficult, and the same is true
for defining diagnostic standards regarding
brain functional alterations in migraine [21].
Furthermore, more studies are needed to
understand whether these functional abnor-
malities are part of the causes of migraines and/
or if they are rather the consequences of repe-
ated attacks. As a result of the cross-sectional
nature of the vast majority of studies, we are
still unable to ascertain whether the structural
and functional changes in the brain of the
individual with migraine are secondary to
migraine. To answer this question, prospective
studies are warranted. Longitudinal studies are
also needed to evaluate how a change in clinical
phenotype of headache such as transformation
of episodic to chronic migraine can affect brain
imaging findings. A better understanding of
changes in structure and function of brain in
individuals with migraine could help not only
in the diagnosis but also in the therapeutic
choice [64]. It has been suggested that the
evaluation of changes in functional studies
could potentially guide the optimization of
therapy.
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