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Abstract. Multiscale procedures are often adopted for the continuum modeling of materials
composed of a specific micro-structure. Generally, in mechanics of materials only two-scales
are linked. In this work the original (fine) micro-scale description, thought as a composite
material made of matrix and fibers/particles/crystals which can interact among them, and a
scale-dependent continuum (coarse) macro-scale are linked via an energy equivalence crite-
rion. In particular the multiscale strategy is proposed for deriving the constitutive relations
of anisotropic composites with periodic microstructure and allows us to reduce the typically
high computational cost of fully microscopic numerical analyses. At the microscopic level the
material is described as a lattice system while at the macroscopic level the continuum is a mi-
cropolar continuum, whose material particles are endowed with orientation besides position.
The derived constitutive relations account for shape, texture and orientation of inclusions as
well as internal scale parameters, which account for size effects even in the elastic regime in
the presence of geometrical and/or load singularities. Applications of this procedure concern
polycrystals, wherein an important descriptor of the underlying microstructure gives the orien-
tation of the crystal lattice of each grain, fiber reinforced composites, as well as masonry-like
materials. In order to investigate the effects of micropolar constants in the presence of material
non central symmetries, some numerical finite element simulations, with elements specifically
formulated for micropolar media, are presented. The performed simulations, which extend sev-
eral parametric analyses earlier performed [1], involve two-dimensional media, in the linear
framework, subjected to compression loads distributed in a small portion of the medium.
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1 INTRODUCTION

The classical Cauchy theory of elasticity is not always suitable when solids with microstruc-
ture are taken into consideration, in particular when the microstructural length scale is com-
patible to the macroscopic one (e.g. [2]). In the presence of material heterogenities, discrete
approaches have been often utilized when periodic micro-structure is present [3, 4, 5, 6]. These
approaches due to their mathematical complexity exploit numerical methods that often involve
high computational effort. An alternative way of modelling complex materials with micro-
structure is to consider generalized continua [7, 8, 9] that, when derived on the basis of ho-
mogenization procedures, provide accurate material description accounting for the size of het-
erogeneities as well as dispersion properties in wave propagation [2].Within this framework,
the micropolar theory, including the constrained case of couple-stress theory, [10, 11, 12], sup-
ported by the experimental work by Lakes and co-workers [13, 14, 15, 16, 17], has been widely
adopted over years and proves effective in several material applications [2, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27].

In the present work the mechanical behavior of panels, described as anisotropic micropo-
lar two-dimensional continua, under loads distributed on a small portion of the boundary is
presented, focusing on classical and micro-polar quantities coupled at the constitutive level.
Different levels of coupling are considered according to the ratio between the correspondent
elastic properties.

The numerical solution is obtained using an in-house finite element implementation with
quadratic interpolation functions for the displacements and linear ones for the micro-rotations.
In this way, strains result of the same order in the numerical solution. Results are given in
graphical form as contour plots of vertical displacements, stresses and relative rotation. This
latter is a strain measure, related to the skew part of the strain, peculiar of the micropolar model,
suitable to well represent the anisotropic material response. [1].

2 ANISOTROPIC THEORY OF MICROPOLAR ELASTICITY

The micropolar continuum is a well-known model equipped by theoretical, numerical and
experimental studies in the literature [10, 11, 12, 15, 16, 17, 18, 19, 20]. This continuum is made
of particles which can displace and rotate at the same time so the kinematics of the continuum is
non-classical. Reducing the description to two-dimensional (2D) media, kinematics is described
by displacements components, u1, u2 (macro-displacements), and rotation, φ3 (micro-rotation).
Hence, each material particle in the 2D frame has 3 degrees of freedom. The local linearized
kinematic compatibility relations take the form

ε11 = u1,1, ε22 = u2,2, ε12 = u1,2 +φ3, ε21 = u2,1−φ3, χ31 = φ3,1, χ32 = φ3,2 (1)

where εij (i, j = 1, 2) indicate the components of the strain tensor, while χ31, χ32 indicate the
only independent components of the curvature tensor. Comma notation has been used here
for the partial derivative with respect to x1 and x2. The term θ = (u2,1 − u1,2)/2 is the local
rigid rotation (macro-rotation). Interaction among particles is described by stresses and micro-
couples as

ti = σijnj, m3 = µ3jnj (2)

where σij and µ3j are the components of the non-symmetric stress and couple-stress tensors,
respectively. Equilibrium equations can be carried out in case body micro-couple forces are
neglected (body forces bi are present)

σij,j + bi = 0, µ3j,j − eij3σij = 0 (3)
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Linearly anisotropic stress-strain relations of the micropolar two-dimensional continuum as-
sume the following matrix form

σ11

σ22

σ12

σ21

µ31

µ32


=


A1111 A1122 A1112 A1121 B1131 B1132

A2211 A2222 A2212 A2221 B2231 B2232

A1211 A1222 A1212 A1221 B1231 B1232

A2111 A2122 A2112 A2121 B2131 B2132

B1131 B2231 B1231 B2131 D3131 D3132

B1132 B2232 B1232 B2132 D3231 D3232





ε11

ε22

ε12

ε21

χ31

χ32


(4)

whereAijhk,Bij3k,D3j3k, (i, j, h, k = 1, 2) are the constitutive components that for hyperelastic
materials have the major symmetries.

3 FINITE ELEMENT FORMULATION

The two-dimensional (2D) problem of micropolar continua is solved through a finite element
implementation wherein stress and strain vectors are defined as

{σ} =
{
σ11 σ22 σ12 σ21

}T
, {µ} =

{
µ31 µ32

}T
{ε} =

{
ε11 ε22 ε12 ε21

}T
, {χ} =

{
χ31 χ32

}T (5)

The 2D weak form of the present problem has to be formulated in order to carry out the finite
element implementation. Once displacement vectors are identified as

{u} =
{
u1 u2

}T
, φ = φ3 (6)

where the latter is a scalar quantity because only one rotation is present in 2D frame. The
principle of virtual work reads∫

Ω

(
{σ}{δε}T + {µ}{δχ}T

)
dΩ =

∫
Ω

{b}{δu}TdΩ +

∫
Γ

(
{t}{δu}T +m δφ

)
dΓ (7)

with δ denoting the variation operator, {b} the body force vector, {t} and {m} the traction and
couple-traction vectors applied on the boundary Γ. Note that, the curvature vector {χ} is due
to the first-order partial derivatives of the micro-rotation, thus C0 finite elements are adopted.
Finite element approximation though interpolation functions [Nu] and [Nφ] is given by

{u} = [Nu]{ue}, φ = [Nφ]{φe} (8)

where the apex e indicates nodal parameters of the correspondent vectors. Quadratic interpo-
lation functions for the displacements and linear ones for the rotations. Thus, displacements
are modelled with eight nodes, whereas micro-rotation are related to the four corner nodes.
Interpolation function vectors are given in matrix form as

[Nu] =

[
Nu1 Nu2 . . . Nu8 0 0 . . . 0

0 0 . . . 0 Nu1 Nu2 . . . Nu8

]
, [Nφ] =

[
Nφ1 Nφ2 . . . Nφ4

]
(9)

Thus, the micropolar strains given by Eq. (1) can be written in matrix form as

{ε} = [Du]{u}+ [Dφ] φ, {χ} = [D̂φ] φ (10)
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where the operators [Du] and [Dφ] are defined as

[Du] =


∂1 0
0 ∂2

∂2 0
0 ∂1

 , [Dφ] =


0
0
1
−1

 [D̂φ] =

[
∂1

∂2

]
(11)

where ∂i, for i = 1, 2 represents the partial derivative with respect to x1 or x2. By including the
finite element approximation (9) into the linear strains definitions (10) the following is carried
out

{ε} = [Du][Nu]{ue}+ [Dφ][Nφ]{φe} =
[
[Du][Nu] [Dφ][Nφ]

]{{ue}
{φe}

}
= [Bε]{de}

{χ} = [D̂φ][Nφ]{φe} =
[
[0] [D̂φ][Nφ]

]{{ue}
{φe}

}
= [Bχ]{de}

(12)

where {de} indicates the unknown vector of nodal displacements. The matrices [Bε] and [Bχ]
collect the derivatives of the interpolation functions. Therefore, the constitutive relations (4)
become

{σ} = ([Dεε][Bε] + [Dεχ][Bχ]) {de}, {µ} =
(
[Dεχ]T [Bε] + [Dχχ][Bχ]

)
{de} (13)

where

[Dεε] =


A1111 A1122 A1112 A1121

A2211 A2222 A2212 A2221

A1211 A1222 A1212 A1221

A2111 A2122 A2112 A2121

 ,

[Dχχ] =

[
D3131 D3132

D3231 D3232

]
, Bεχ =


B1131 B1132

B2231 B2232

B1231 B1232

B2131 B2132


(14)

Finally, the algebraic finite element problem (without body actions) reads∫
Ω

(
[Bε]

T [Dεε][Bε] + [Bε]
T [Dεχ][Bχ] + [Bχ]T [Dεχ]T [Bε]+

[Bχ]T [Dχχ][Bχ]

)
dΩ {de} =

∫
Γ

[
[Nu]

T{t̄}
[Nφ]T{m̄}

]
dΓ

(15)

where the stiffness matrix and force vector are respectively defined as

[K] =

∫
Ω

(
[Bε]

T [Dεε][Bε] + [Bε]
T [Dεχ][Bχ]

+[Bχ]T [Dεχ]T [Bε] + [Bχ]T [Dχχ][Bχ]

)
dΩ

(16)

{f} =

∫
Γ

[
[Nu]

T{t̄}
[Nφ]T{m̄}

]
dΓ (17)

A classical Gauss-Legendre full integration is considered for computing the integral terms ap-
pearing in Eq. (15). The present FE model passes the tests provided in [28] and has been
implemented in MATLAB c© environment.
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4 NUMERICAL APPLICATIONS

This paper aims to investigate the mechanical behavior of 2D Cosserat solids when coupling
effects between classical and micropolar components are present in the constitutive model. The
material constants are determined using an homogenization procedure, considering at the micro-
level anisotropic discrete assemblies, with particular reference to non-centrosymmetric materi-
als. The basic configuration for the submatrix [Dεε] (Eq. 14) is the orthotropic one without
Poisson effect as listed in Table 1 .

A parametric study is presented in order to point out the physical meaning of some elastic
coupling constants between classical and micropolar stresses/strains in the presence of non
central material symmetries.

A1111 3.75 · 1010 Pa D11 1.125 · 106 N
A2222 1.5 · 1010 Pa D22 0.3750 · 106 N
A1212 0.75 · 1010 Pa
A2121 3.00 · 1010 Pa

Table 1: Material properties for all configurations.

Two configurations are taken into account.
Configuration 1 considers the coupling between normal stresses σ11, σ22 and curvatures χ31,

χ32 respectively. At the same time, due to hyperelasticity, coupling is set between micro-couples
µ31, µ32 and normal strains ε11, ε22. The constitutive elastic coefficients responsible of the
coupling are B1131 and B2232. They take values according to the following relations

B1131 = c1
A1111

D3131

= c13.33 · 104, B2232 = c1
A2222

D3232

= c14.00 · 104 (18)

where c1 = 1, 102, 104 and 106. It has been observed by previous studies [1] and also con-
firmed by classical material configurations such as classical isotropic or orthotropic materials
that elastic constants on the main diagonal are generally predominant, with respect to the out-
of-diagonal terms.

Configuration 2 considers the coupling between shear stresses σ12, σ21 and curvatures χ31,
χ32, respectively. At the same time, due to hyperelasticity, coupling is set between micro-
couples µ31, µ32 and shear strains ε12, ε21, respectively. The constitutive elastic coefficients
responsible of the coupling are B1231 and B2132. They take values according to the following
relations

B1132 = c2
A1111

D3232

= c21.00 · 105, B2132 = c2
A2222

D3131

= c21.33 · 104 (19)

where c2 = c1 take the same values as above.
All the other unmentioned coefficients of the matrices in Eq. (14) are considered null.
The geometry of the present problem is a square domain of width L = 4 m, fixed at the bot-

tom edge and subjected to a top load acting on length size a/L = 0.25 (Figure 1a) and pressure
q = 10 MPa. The two configurations illustrated above are considered in the simulations.

Due to the symmetry of the problem only half of the domain is numerically studied and the
correspondent finite element mesh is depicted in Figure 1b.
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a) b)

Figure 1: a) Structural scheme considered in the numerical applications, b) mesh considered in the computations.

The aim is to show the capability of the micropolar model to retain memory of the original
composite behavior under the action of a load applied on a limited portion of the boundary of
the body, as well as to numerically investigate the related mechanism of strain/stress diffusion
according to the constitutive relations considered. Simulations underline the coupling effect
of classical and micro-polar stresses/strain in the presence of non-centrosymmetric material
symmetries under concentrated pressures.

Figures 2-4 represent the contour lines of the vertical displacement, u2, the vertical stress,
σ22, and relative rotation, 1

2
(u1,2 − u2,1) − φ, for Configuration 1 in which the coupling occurs

between normal stresses and the correspondent micro-couples and between curvatures and nor-
mal strains. Figures are placed so that the coupling effect, c1 increases from left to right. So the
first figure has c1 = 1 and the last on the right side has c1 = 106.

As expected by increasing c1 the micropolar effect increases. In fact, the vertical displace-
ment decreases evidently and there is a strong vertical stress redistribution which deviates from
the vertical pattern shown for low values of c1. Note that relative rotation changes sign from a
positive value for c1 = 1 to a negative one c1 = 106 in the area below the applied load.

Figures 5-7 show the results obtained for Configuration 2, which considers the coupling
between shear stresses and curvatures and at the same time between micro-couples and shear
strains.

The same variation in terms of c2 = c1 is considered here. Vertical displacement u2 is more
distributed by increasing the micropolar effect through c2; the displacement field within the
solid changes strongly its patterns and the vertical displacement tends to be linearly uniform
with along the wall height. Similar behavior occurs for the vertical stress σ22 which tends to
be uniform (since the vertical displacement is becoming linear) in almost all the wall expect
in the area close to the applied pressure where a strong relative rotation is measured and this
demonstrate the high micro-polarity coupling effect of this medium. Once again relative rota-
tion changes its sign by increasing c2.

The first three sub-plots in all given figures (Figures 2-7) seems to be very similar while
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the fourth shows a relevant change because the coupling terms in all numerical simulations are
defined as a function of c1 and c2 (where c1 = c2) which multiply the ratio between Aiiii and
Dii. It is observed that, due to the chosen values of the coefficients Aijkl and Dij such coupling
terms become relevant only for large values of c1.

Figure 2: Configuration 1. B1131 = c1
A1111

D3131
, B2232 = c1

A2222

D3232
, c1 = 1, 102, 104 and 106 increases from left to

right. Vertical displacement field u2.

Figure 3: Configuration 1. B1131 = c1
A1111

D3131
, B2232 = c1

A2222

D3232
, c1 = 1, 102, 104 and 106 increases from left to

right. Vertical stress field σ22.

5 CONCLUSIONS

This work addresses a numerical finite element solution of an anisotropic, non-centrosymmetric,
micropolar panel subjected to a force acting on a small portion at the top of the given domain.
Two coupling effects are discussed. The first regards the effect between normal stresses σ11,
σ22 and curvatures and χ31, χ32 and, due to hyperelasticity, micro-couples µ31, µ32 and, normal
strains ε11, ε22. The second one is between shear stresses σ12, σ21 and curvatures χ31, χ32 and,
due to hyperelasticity, micro-couples µ31, µ32 and shear strains ε12, ε21.
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Figure 4: Configuration 1. B1131 = c1
A1111

D3131
, B2232 = c1

A2222

D3232
, c1 = 1, 102, 104 and 106 increases from left to

right. Relative rotation field 1
2 (u1,2 − u2,1)− φ.

Figure 5: Configuration 2. B1132 = c2
A1111

D3232
, B2132 = c2

A2222

D3131
. Vertical displacement field u2.

Figure 6: Configuration 2. B1132 = c2
A1111

D3232
, B2132 = c2

A2222

D3131
. Vertical stress field σ22.
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Figure 7: Configuration 2. B1132 = c2
A1111

D3232
, B2132 = c2

A2222

D3131
. Relative rotation field 1

2 (u1,2 − u2,1)− φ

Emphasis has been given to the strain measure of the relative rotation θ − ω which is a
peculiar character of micro-polar models [2, 25]. Numerical simulations proved that coupling
coefficients strongly change the behavior of orthotropic micro-polar solids.
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