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Abstract: In recent years, hyper-complex deep networks (such as complex-valued and quaternion-valued neural
networks — QVNNs) have received a renewed interest in the literature. They find applications in multiple fields, ranging
from image reconstruction to 3D audio processing. Similar to their real-valued counterparts, quaternion neural
networks require custom regularisation strategies to avoid overfitting. In addition, for many real-world applications and
embedded implementations, there is the need of designing sufficiently compact networks, with few weights and
neurons. However, the problem of regularising and/or sparsifying QVNNs has not been properly addressed in the
literature as of now. In this study, the authors show how to address both problems by designing targeted
regularisation strategies, which can minimise the number of connections and neurons of the network during training.
To this end, they investigate two extensions of ¢; and structured regularisations to the quaternion domain. In the
authors’ experimental evaluation, they show that these tailored strategies significantly outperform classical (real-
valued) regularisation approaches, resulting in small networks especially suitable for low-power and real-time

applications.

1 Introduction

Deep neural networks have achieved remarkable results in a variety of
tasks and applicative scenarios over the last years [1]. Several break-
throughs have been obtained by designing custom neural modules for
exploiting structure in data, such as the spatial organisation of pixels in
an image, temporal or sequential information, and so on. The field of
quaternion deep learning aims at extending these results to problems
for which a hyper-complex representation (as opposed to a real-valued
representation) is more adequate [2, 3] (see also [4] for earlier works
on the field). Among these approaches, the most common is the use of
quaternion values (a straightforward extension of the complex algebra)
for representing input values, weights, and output values of the
network. The resulting quaternion-valued neural networks (QVNNSs)
have been successfully applied to, among others, image classification
[2, 5, 6], image colouring and forensics [7], natural language process-
ing [8], graph embeddings [9], human motion recognition [10], and
3D audio processing [11]. By exploiting the properties of the quater-
nion algebra, QVNNSs can achieve similar or higher accuracy than
their real-valued counterparts, while requiring fewer parameters and
computations. In fact, outside of the deep learning field, the use of
quaternion representations is well established in, e.g. the robotics com-
munity for linear filtering processing [12].

The majority of the literature on QVNNs up to this point
has focused on extending standard deep learning operations,
such as convolution [2], batch normalisation (BN) [7], or weight
initialisation [3], to the quaternion domain. Less attention,
however, has been devoted to properly extending other aspects of
the training process, including accelerated optimisation algorithms
[13] and regularisation strategies. In particular, in many real-world
scenarios (e.g. embedded devices), users need to take into careful
consideration of the complexity and computational costs, by
making the networks as small as possible while maintaining a
good degree of accuracy [14, 15].

In the real-valued case, these constraints have been analysed in
detail, and several strategies have been developed. Most
commonly, compression of neural networks can be achieved while
training by applying several regularisation strategies, such as ¢,,

£, or group sparse norms [16—18], which can target either single
weights or entire neurons. A direct extension of these strategies
to the case of QVNN, as done in the current literature, applies
them independently on the four components of each quaternion
weight. However, in this paper, we argue and show experimentally
later on that this trivial extension results in highly sub-optimal
regularisation procedures, which do not sufficiently exploit
the properties of the quaternion algebra. In fact, the problem of
sparsifying a quaternion is not restricted to neural networks, but it
has received attention from other disciplines, most notably
quaternion extensions of matching pursuit [19], and compressive
sensing [20]. To the best of our knowledge, however, almost no
work has been devoted to the specific problem of targeting
quaternion-valued sparsity in QVNNs, possibly hindering their
application in certain applicative scenarios.

1.1 Contributions of the paper

In this paper, we leverage on prior works on compression of
real-valued networks and quaternion-valued norms to propose two
targeted regularisation strategies for QVNNS, filling an important
gap in the literature.

(1) The first regularisation approach that we propose (Section 1)
extends the use of ¢, regularisation to consider a single quaternion
weight as a unitary component, and it is akin to a structured form
of regularisation in the real-valued case. It allows us to remove
entire quaternion weights simultaneously, instead of each of their
four components independently.

(ii) The second strategy that we propose is instead defined at the level
of a single quaternion neuron, extending ideas from [21] to a
quaternion domain, thus allowing to remove entire units from the
network at once. We consider real-valued regularisation to be
applied to quaternion extensions of BN, in which every neuron is
scaled by a single real-valued coefficient and is eventually
removed by the optimisation process. Thus, we achieve better
stability (thanks to the use of BN) and sparsity at the same time.
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In our experimental evaluation, we show that these two proposed
strategies significantly outperform the naive application of classical
regularisation strategies on two standard image recognition
benchmarks. The resulting QVNNSs are thus smaller (both in terms
of neurons and weights) and require a markedly smaller
computational footprint when running in inference mode, with up
to 5x reductions in the number of connections and 3x speedups in
the inference time.

1.2 Organisation of the paper

Section 2 recalls quaternion-algebra and QVNNs. Section 3
describes our two proposed regularisation strategies. We provide
an experimental evaluation in Section 4, concluding in Section 5.

1.3 Notation

In the remaining of this paper, the use of a subscript {i, J» k} always
refers to the respective imaginary component of the corresponding
quaternion number, as explained in Section 1. x* is the conjugate
of x. We use bold letters, e.g. x, for vectors, and uppercase bold
letters, e.g. X, for matrices. For indexing, we use a superscript / to
refer to the Ith layer in a network, while we use bracket notation to
refer to an element inside a set (e.g. x(n) is the nth input element
of the training set).

2 Preliminaries

2.1 Quaternion algebra

A quaternion-valued number x € H can be represented by a tuple of
four real-valued numbers (x,, x;, x;, x;) € R* as [22]

x =x, +ix; +jx; + ko, 1)

where the three imaginary units i, 2/', k sgtisfy the fundamental axiom

of quaternion algebra 2= j =k"=ijk=—-1. Given two

quaternions x and y, we can define their sum as

2= (0 +y,) +ily+y) 0 ) H ket r). @)

and similarly for multiplication by a real number. More
importantly, the (Hamilton) product between the two quaternions
is given by

x®y=(w4—nw—&n—xuﬂ
+iGwa+xwr+xJk+xwﬁ
3)
+j@Jf<m@+%r+wa
+ k(x,yk +xy; — Xy + xky,,).

Note that the product is not commutative, setting apart quaternion
algebra from its complex- and real-valued restrictions.

2.2 Quaternion-valued neural networks

QVNNs are flexible models for transforming quaternion-valued
vector inputs x € H? to the desired target value p, which in the
majority of cases are real-valued (e.g. a probability distribution
over a certain number of classes). A standard, fully-connected
layer of a QVNN is given by

g™y =a(Weh +b), )
where ' is the input to the layer, W is a quaternion-valued matrix of

adaptable coefficients with components (W,, W, W, W,) (and
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similarly for b), ® performs matrix—vector multiplication
according to the Hamilton product in (3), and o(-) is a proper
element-wise non-linearity. Similarly to the complex-valued
case [23], choosing an activation function is more challenging
than for real-valued NNs, and most works adopt a split-
wise approach where a real-valued function o, is applied
component-wise

o(s) = 0',,(3,.) + iO‘,.(Si) +jo, (sj) + ko;,(sk) s )

where s is a generic activation value. Customarily, the input
to the first layer is set to h' = x, while the output of the last
layer is the desired tarLget K" =y. If the target is real-valued,
one can transform A~ to a real-valued vector by taking
the absolute value element-wise, and eventually apply one or more
real-valued layers afterwards. In addition, (4) can be easily
extended to consider convolutive layers [2] and recurrent
formulations [3].

2.3 Optimisation of QVNNs

Now consider a generic QVNN f(x) obtained by composing an
arbitrary number of layers in the form of (4) or its extensions. We
receive a dataset of N examples {x(n), p(n)} and we train the
network by optimising

n=1’

N

1
J(O) = 31y, fx(n)) + A - (6), (6)

n=1

where 6 is the set of all (quaternion-valued) parameters of the
network, / is a loss function (e.g. mean-squared error,
cross-entropy loss), and r is a regularisation function weighted by
a scalar A > 0. Because the loss function in (6) is non-analytic,
one has to resort to the generalised QR-calculus to define proper
gradients for optimisation [13]. Luckily, these gradients coincide
with the partial derivatives of (6) with respect to all the real-valued
components of the quaternions, apart from a scale factor. For this
reason, it is possible to optimise (6) using standard tools from
stochastic optimisation popular in the deep learning literature, such
as Adam or momentum-based optimisers.

While most components described up to now have received
considerable attention in the literature, the design of a correct
regularisation term 7(-) in (6) has been mostly ignored, and it is
the focus of the next section.

3 Targeted regularisation for QVNNs

In the real-valued case, a classical choice for the regulariser r(-) in
(6) is the £, norm. Whenever sparsity is desired, it can be replaced
with the ¢, norm, or a proper group version is acting at a
neuron-level [16, 17]. In most implementations of QVNNSs, these
regularisers are applied element-wise on the four components of
each quaternion weight. For example, ¢, regularisation in this form
can be written as

r(0) = 3 (| 1+ b+ ). ™

weo

We argue that, because of the decoupling across the four
components, this operation results in far less regularisation and
sparsity than one could expect. This is inconvenient both from the
generalisation point of view, and from an implementation
perspective, where smaller, more compact networks are desired. In
this section, we present two targeted regularisation strategies,
acting on each quaternion as a unitary component, resulting in a
more principled form of regularisation for QVNNs.
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3.1 ¢, regularisation for quaternion weights

Given any weight w € H of the QVNN (i.e. a single element of 6
from (6)), the first method we explore is to regularise its norm as

1 1
r(w)zé\/w§+w,2+wf+wﬁZQVW*@WV’ ®)

where O is the number of weights in the network (allowing
to split the influence of (8) on each weight with respect to the
loss function (6)), and w* is the conjugate of w, i.e.
w* =w, —iw, — jw; — kw, (combining the definition of a
conjugate with (3), and removing all terms except the first line,
shows the second equality in (8)).

This method can be seen as the natural extension of £; norm
minimisation on a quaternionic signal [20]. It is also equivalent to
a structured form of sparsity [17], where we group all the
components of the quaternion w together. As a result, minimising
(8) will tend to bring the entire quaternion weight to 0, instead of
each component independently (similar to how structured sparsity
in a real-valued network brings all the incoming or outgoing
weights of the network towards zero together [17]).

3.2 Sparse regularisation with quaternion BN

The method described in Section 1 is effective for removing single
quaternion weights, but in many real-world scenarios, we also
require a principled way to remove entire neurons during the
training process [17]. To this end, we investigate a hyper-complex
extension of the technique originally proposed in [21]. The basic

Table 1 Average results on MNIST and CIFAR-10 with several

weight-level regularisation strategies

Dataset Measure No 12 4, Ra Rar

Reg.

MNIST test accuracy, % 98.95 96.69 93.46 96.81 96.29
component 1.71 54.68 34.08 68.40 75.08
sparsity, %
quaternion 0.0 40.01 2345 5382 69.42
sparsity, %

CIFAR-10 test accuracy, % 7130 7258 73.43 72.03 73.20
component 0.77 8.58 4424 59.29 3591
sparsity, %
quaternion 0.0 477 4261 5873 31.89
sparsity, %

With the bold fonts, we highlight the (average) quaternion sparsity.

100

idea is to compose each layer in (4) with a BN layer [24], and
then perform sparse regularisation on the parameters of the BN
layer, indirectly removing the original neurons in the network. We
briefly recall that BN, originally introduced in [24], allows each
neuron to adapt the mean and variance of its activation values,
with the general effect of stabilising training and possibly
simplifying optimisation.

For implementing the BN model in the quaternion domain, we
build on [7] after we consider a single output in (4), i.e. the
quaternion-valued output of a single neuron in the network.
During training, we observe a mini-batch of B inputs
x(1), ..., x(B) (a subset of the full dataset) and corresponding
outputs of the neuron A(1), ..., h(B) (we do not use an index for
the neuron for notational simplicity). We can compute the mean
and variance of the mini-batch as

1 B
fr = E; [h,(n) + ihy(n) + jh,(n) + ki ()], ©)
6t = li(h(n) — 1) ® (h(n) — )" (10)
B 28 r)

n=1

These values are computed dynamically during training, while they
are set to a fixed (pre-computed) value during inference. The output
of the BN layer is defined as [7]

o
() = (M>7+B,

6 +e

(In

where ¢ is a small value added to ensure stability, while y € R and
B € H are trainable parameters initialised at 1 and 0, respectively.
Key for our proposal, the y parameter in (11) is real-valued,
allowing us to apply standard real-valued regularisation. In
particular, similar to [21], we apply (real-valued) £, regularisation
on the vys, since pushing a single vy to zero effectively allows us to
remove the entire neuron in the QVNN. Thus, denoting with I the
set of all y parameters in the network, we regularise them as

1
() = ﬁz I, (12)

yerl

where |I'| is the cardinality of the set I'.

100
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Fig. 1 Evolution of the sparsity (both at the quaternion level and at the level of individual components) for the different strategies under consideration for the

first 20 epochs. See the text for a description of the acronyms

a Weight sparsity
b Quaternion-level sparsity
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Table 2 Average training time (in seconds) for the different approaches

Dataset No Reg. I £, Ro Ror
MNIST 179.35 183.17 185.43 184.22 186.22
CIFAR-10 924.77 1146.89 1160.48 1151.50 1168.37

3.3 Mixed regularisation strategies

The strategies described in the previous sections are not exclusive,
and we can explore several mixed strategies with different
regularisation weights. In our experimental section, we consider
combining the two strategies, as long as one of the two strategies
are combined with a classical ¢, regularisation to be applied
independently on each component.

4 Experimental results

4.1 Experimental setup

We evaluate our proposal on two quaternion-valued image
recognition benchmarks taken from [2]. Firstly, we use the
standard MNIST dataset by converting every image pixel to a
quaternion with 0 imaginary components, i.e. we encode one
grey-valued pixel g as x=g+i0+;0+ k0. Secondly, we
consider the more challenging CIFAR-10 dataset by converting its
RGB representation to the three imaginary components of a pure

100

quaternion with O the real part, i.e. we encode a single pixel with
RGB values (r, g, b) to x = 0+ ir +jg + kb.

Similar to previous literature, for MNIST, we use a quaternion
convolutional network with two convolutive layers having 16 and
32 filters, respectively, interleaved by (quaternion-valued)
max-pooling operations. After the second convolutive layer we
apply a dropout operation for regularisation and a final quaternion
fully connected layer for obtaining the class probabilities. For
CIFAR-10, we increase this to five convolutive layers having,
respectively, 32, 64, 128, 256, and 512 filters. In this case, we also
apply dropout every two convolutive layers. Overall, the MNIST
network has ~ 10k parameters, while the CIFAR-10 network has
=~ 500k parameters.

All networks use ReLU applied component-wise as in (5). After
the last layer, we take the absolute values of each output to obtain
a real-valued score (equivalent to the classical logit value in a
real-valued network), and we apply a softmax activation function
to convert these to probabilities. The networks are trained to
minimise the average cost with a cross-entropy loss function using
the Adam optimisation algorithm.

All experiments are implemented in the PyTorch framework
extending the QVNN library from [3] [https:/github.com/Orkis-
Research/Pytorch-Quaternion-Neural-Networks.]. For replicability,
we release our demo files on a separate repository online
[https:/github.com/Riccardo-Vecchi/Pytorch-Quaternion-Neural-
Networks.]. All hyper-parameters are fine-tuned independently
for each network and dataset using the corresponding validation
data. Importantly, this means that all regularisation coefficients
are optimised separately for every method.

100
80 80
£ 60 2 60
B z
L 40 g 404
o =
=0 5]
= 5
= E}
20 < 20
1 (BN) . RQ QBN +RQL 1(BN) RQ OBN-I—RQL
01 QBN + Rg 0 QBN +Ro
0 10 20 30 40 50 0 10 20 30 40 50
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100
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é 60 1 § [V
= =
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Fig. 2 Evolution of sparsity and accuracy for the CIFAR-10 dataset, zoomed on the first epochs. See the text for a description of the different acronyms

a Weight sparsity

b Quaternion-level sparsity
¢ Neuron sparsity

d Accuracy
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4.2 Results for the quaternion-level sparsity

We start by evaluating the quaternion-level regularisation strategy
described in Section 3.1, denoted as Ry in the experiments. We
compared classical ¢, and ¢, regularisations, which are applied
independently on every component. In addition, we evaluate a
mixed regularisation strategy combining our proposed R, method
with an additional ¢, regularisation on the components, denoted as
Ry, which is similar to the sparse group sparse technique in [17].
For this case, we consider a single, shared regularisation factor to
be optimised to make comparisons fair.

Results, averaged over 5 different repetitions of the experiments,
are presented in Table 1. We see that applying a regularisation has
only a marginal effect on accuracy in the MNIST test accuracy,
while it improves the accuracy in the more challenging CIFAR-10
case, possibly counter-acting any overfitting effect. In terms of
sparsification effects, we show both the component sparsity (i.e.
ratio of zero-valued quaternion components) and quaternion
sparsity (i.e. ratio of quaternions where all components have
been set to 0). We can see that the proposed R, strategy results
in significantly sparser architectures in both cases, with
corresponding gains when considering computational power and
inference speed. The mixed strategy R, performs very well on
MNIST and poorer on CIFAR-10, possibly because we are using
only a single shared regularisation factor. For a clearer
visualisation, in Fig. 1 we show the corresponding sparsity levels
during training (for the first 20 epochs of training).

In addition, in Table 2 we report the average training time on
different experiments. As expected, adding a regularisation term
adds only a small overhead in terms of computational time, while
we see no statistical difference between different approaches,
further validating the use of a targeted strategy.

4.3 Results for the neuron-level sparsity

Next, we evaluate the inclusion of the neuron-level sparsity strategy
described in Section 3.2. We consider the R, strategy from the
previous section, and compare a network where we add BN layers
after every convolutive layer, penalising the 7y coefficients with an
£, strategy. For fairness, we also compared two additional
baselines, where we add the BN layers, but regularise only with
the R, or Ry, strategies. For space constraints, we only consider
the CIFAR-10 dataset, which was the most challenging in the
previous section.

The averaged results are presented in Fig. 2. We see that, when
considering only quaternion-sparsity, the proposed neuron-level
strategy (denoted as L;(BN)) is marginally superior to the proposed
Ry, applied on the network having BN layers. However, when
evaluating the level of structure in this sparsity, we see that the pro-
posed neuron-level technique in Fig. 2¢ vastly outperforms all other
strategies, leading to a network having < 17% of neurons than the
original one, as long as having < 15k remaining parameters. As a
result, the final network has a memory footprint of only 1/5 of the
original one, with an inference time speedup of ~3x. From
Fig. 2d, we also see that this is achieved with no loss in terms of
test accuracy of the final networks and, similarly to Table 1, with
no significant increase in computational training time.

5 Conclusions

The field of quaternion neural networks explores the extensions of
deep learning to handle quaternion-valued data processing. This
has shown to be especially promising in the image domain and
similar fields with highly structured data that lend itself to
representation in a hyper-complex domain. While several models
and training algorithms have been already extended to this new
challenging domain, less attention has been provided to the tasks
of regularising and compressing the networks, which is essential in
time-critical and embedded applications.

In this paper, we proposed two regularisation techniques that are
specific to quaternion-valued networks. In the first case, we apply
some results from quaternion compressive sensing, regularising each
quaternion weight with an ¢,-level norm. In the second case, we
consider the problem of removing entire neurons from the network,
by regularising appropriately inserted batch normalisation layers.
Our experimental results on two image classification benchmarks
show that these two techniques vastly outperform standard
regularisation methods when they are applied to quaternion
networks, allowing to obtain networks that are extremely smaller
(and cheaper to implement) with no loss in testing accuracy at
inference time and in computational cost at training time.

For future work, we plan on extending these results to other
applications of quaternion-based deep networks (e.g. text
processing), as long as evaluating the benefits of sparsifying the
networks on custom hardware.
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