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Abstract. The paper addresses the problem of an observer design for a
nonlinear system for which a linear approach is followed for the control
synthesis. The linear context driven by the control design allows to fo-
cus the observers design in the class of local, i.e. linear, observers. It is
shown that when the control contains an external reference, the solution
obtained working with the linear approximation to get local solutions
produces non consistent results in terms of local regions of convergence
for the system and for the observer. The case of a control law which solves
a LQR problem with tracking is addressed and two different approaches
with respect to the classical one for the observer design are studied. The
results are applied to an epidemic spread control to check the differences
in the performances for the two different approaches.

Keywords: Nonlinear Systems · Linear Observer · Optimal Control ·
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1 Introduction

The problem of the state measure for dynamical systems plays an important
role in control theory since state feedback solutions are often obtained in the
design procedures. When the state of a dynamics is not measurable, the design
of a state observer becomes a necessary step. The history of solutions to this
problem begins with the case of linear dynamics [9] and, less than ten years
later, it is enriched with the first results for nonlinear ones.

Several solutions have been presented in literature for the design of state
observers, many of them, especially in the more recent literature, dealing with
the case of nonlinear dynamics, for which nonlinear solutions have been proposed.

Some of the results are represented by nonlinear solutions which mainly fol-
lows the idea initially proposed in [9] for linear systems: an observer can be
designed starting from a copy of the dynamics with corrective terms added to
get the stabilization of the linear approximation of the observer and of the full
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interconnected system. Examples are [2], [16] and [15], where autonomous dy-
namics are considered. The importance of starting with a local solution is usually
put in evidence separating explicitly the linear component of the system from
the remaining nonlinear terms, to better highlight the local behaviours, [8]. A
further example of a solution based on the possibility of linearising the error
dynamics is represented by [12].

The explicit presence of the input in the nonlinear dynamics may complicate
the approaches, since suitable bounding conditions must be given; a different
solution can be obtained modelling the input as the output of an exosystem
with known structure [14]. The list of references could be very long, till nowa-
days with, for example, [13], where an approximated linearising feedback for the
system dynamics is introduced. When observers are part of a feedback control
schemes for systems with non measurable state, the control design and the ob-
server determinations are two problems that must be solved at the same time. In
the linear case, where the Separation Principle holds, it is possible to design the
state feedback control and the observer separately, since it can be proved that
the addition of an observer in the control scheme does not change the dynamical
characteristics of the controlled system. In the nonlinear case, in general the
Separation Principle does not hold but can be invoked once local liner approxi-
mations are considered, so restricting to local solutions.

This paper addresses the problem introduced in the local observer design
for a nonlinear system when the nominal state feedback introduced changes the
equilibrium point of the controlled system. In this case, an ambiguity arises since
the concept of local for the control and for the observer refers to two different
equilibrium points: the initial one, considered for the linearised control design,
and the new one, the equilibrium for the controlled dynamics and then the actual
working point. The classical approach refers to the computation of local solutions
referring to the open loop equilibrium point; it always works for linear systems,
and works in nonlinear contest when the control does not change such a point.
When the control law contains a tracking term, the equilibrium point changes
and the meaning of local must be discussed. A tracking term always appears
when a LQR problem with tracking term is defined for the control law design.
This is the case addressed in the paper to better define the class of problems
considered. Two possible approaches to the control and the observer design are
reported. The first one aims at working in the new equilibrium point for the
controlled dynamics and the local solution for the observer design are referred
to such a point. The second one tries to introduce the observer design at the
same time as the control one, changing the LQR problem formulation.

Since this paper is an extended version of [7] presented at the ICINCO2019
conference, the first approach is introduced and described in the cited paper,
along with the discussion of some simulation results, and is here shortly recalled.
The extension is represented by the introduction of the second approach which,
after its presentation, discussion and implementation on the same case study
adopted in [7], is compared to the previous one.
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The proposed procedures are applied to a case study, represented by the
control of an epidemic spread of a virus, the one responsible of HIV/AIDS in-
fections, to compare their performances. The model proposed in [3, 4] is adopted
and, following [5], the control problem is formulated in the framework of optimal
control theory introducing a quadratic cost index.

In Section 2, after the general problem definition, the differences between a
linear and nonlinear cases introduced by the tracking term are illustrated. A first
approach to overcome such a problem is presented and discussed in Section 3
while a different solution obtained by changing the problem definition, designing
the controller and the observer together, is discussed in Section 4. The procedure
is then applied to the case study in Section 5 for comparative purpose and some
results of numerical simulations are reported in Section 6 to validate the proposed
solution. Concluding remarks in Section 7 end the paper.

2 Problem Definition

Given the nonlinear dynamics

ẋ = f(x) + g(x)u (1)

y = h(x) (2)

with x ∈ <n, u ∈ <m, y ∈ <p, and one equilibrium point xe (f(xe) = 0,
g(xe) 6= 0, h(xe) = 0), define an optimal control problem introducing the cost
function

J =

∫ ∞
0

(
xTQx+ uTRu

)
dt (3)

to be minimised. Despite the nonlinearity of the system, the quadratic form
in (3) suggests that if the dynamics were linear, the problem would be solved
using a classical LQR design, with the additional advantage to obtain a closed
loop state feedback solution. Then, the idea followed in [5] is to linearise the
dynamics in a neighbourhood of one equilibrium point and solve the problem
in a first order approximated way. The linear approximation of (1)–(2) can be
computed, getting

˙̃x = Ax̃+Bu

ỹ = Cx̃ (4)

where, as usual, x̃ = x− xe and

A =
∂f

∂x

∣∣∣∣
x=xe

, B = g(xe), C =
∂h

∂x

∣∣∣∣
x=xe

(5)

In order to have homogeneous expressions in the optimal control problem,
once the local referred state variable x̃ = x− xe is introduced, the cost function
to be minimised must be rewritten as

J =

∫ ∞
0

(
(x̃+ xe)

TQ(x̃+ xe) + uTRu
)
dt (6)
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The problem can be faced as a LQR problem with a reference term. Classical
theory shows that the stationary Riccati equation can be introduced,

KBR−1BTK −KA−ATK −Q = 0 (7)

whose solution K gives the optimal control

u = −R−1BTKx̃−R−1BT
(
KBR−1BT −AT

)−1
Qxe (8)

The form of the feedback control (8) is the same as the one considered in [7],

u = Fx̃+ r (9)

The linear term Fx̃ satisfies the local stability of the controlled system in a
neighbourhood of the equilibrium point. The additional presence of a forcing
constant term r in (9) is present.

In this case, the closed loop dynamics under state measurement becomes

˙̃x = (A+BF )x̃+Br (10)

As performed in [5, 7], the necessity of a state observer is considered. The
procedure followed in [5] used a classical Luenberger linear state observer [9]

˙̃z = (A−GC)z̃ +Bu+Gy (11)

designed on the basis of the linear approximated dynamics (4) for which the
optimal state feedback (8) has been designed. The control law (8) becomes

u = F z̃ + r (12)

The consequent dynamics of the error e = z̃ − x̃, locally in a neighbourhood
of xe, is described by

ė = (A−GC)z̃ +Bu+Gy −Ax̃−Bu =

= (A−GC)z̃ +GCx̃−Ax̃ = (A−GC)e (13)

asymptotically convergent to zero once σ(A−GC) ∈ C−. Then, the asymptotic
condition lim

t→∞
‖z̃ − x̃‖ = 0 holds and it can be rewritten as lim

t→∞
‖z̃ − x̃‖ =

lim
t→∞

‖z̃ + xe − x‖ = 0 showing that if z̃ is the estimate of x̃, then z = z̃ + xe is

the estimate of the original state x.
Remaining in the approximated context, the whole system obtained using

the state reconstructed by the observer in the control law, (12), is described by

˙̃x = Ax̃+BFz̃ +Br

˙̃z = (A−GC)z̃ +BFz̃ +Br +GCx̃ (14)

and, replacing the observer dynamics with the one of the estimation error e =
z̃ − x̃, the full dynamics is given by

˙̃x = (A+BF )x̃+BFe+Br

ė = (A−GC)e (15)
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that is the proof of the Separation Principle.
A weakness of the procedure described above has been put in evidence in [7]

and arises once the solution is applied to the original nonlinear model.
In order to analyse the effects of each contribution in the whole controlled

system, the use of the nominal state feedback (9) is firstly introduced. The
controlled dynamics can be written as

ẋ = f(x) + g(x) (F (x− xe) + r) = Fc(x, r) (16)

Computing the equilibrium points, denoted as xce to put in evidence its origin
from the controlled dynamics, one has

f(xce) + g(xce) (K(xce − xe) + r) = Fc(x
c
e, r) = 0 (17)

It is easy to verify that if r = 0, xce = xe. Otherwise, the new equilibrium point
xce is different from xe.

This change implies that, at steady state, the system is in the equilibrium
point xce.

The introduction of an observer to estimate the state for a feedback imple-
mentation must preserve this asymptotic behaviour, as it happens in the linear
case, and the equilibrium point must remain xce.

The fulfilment of this condition can be verified analysing the whole system
obtained introducing the estimated state given by the observer for the state
feedback (8) in the compact form (12) applied to system (1).

On the basis of the relationships between the local state x̃ and its estimate
z̃, as well as between the original state x and its estimate z, the control law (9)
can be expressed, in the original coordinates, as

u = Fz − Fxe + r (18)

and the observer dynamics (11) can assume the form

ż = (A−GC)(z− xe) +Bu+Gy = (A−GC)z− (A−GC)xe +Bu+Gy (19)

The full interconnected dynamics is then described by

ẋ = f(x) + g(x)Fz − g(x)Fxe + g(x)r

ż = (A−GC +BF )z − (A+BF )xe +GCx+Br

(20)

In order to check the effectiveness of the controlled system (20), as a first
step the error dynamics like (13) can be computed to verify its convergence to
zero.

ė = (A−GC +BF − g(x)F )e

+(A+BF − g(x)F )x− f(x)

−(A+BF − g(x)F )xe + (B − g(x))r

(21)
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Approximating (21) in a neighbourhood of x = xe, recalling (5), one gets

ė = (A−GC)e (22)

the same as in (15) as expected. That is, locally around xe, the estimation
error goes to zero. The problem is that, for the full dynamics (20), xe is not an
equilibrium point. In fact, to compute the equilibrium points the system

f(x) + g(x)Fz − g(x)Fxe + g(x)r = 0

(A−GC +BF )z − (A+BF )xe +GCx+Br = 0

(23)

must be solved. It is easy to verify that substituting x = xe, as well as z = xe
since the estimation error goes to zero, in (23), the condition

Br = 0 (24)

is obtained, clearly impossible. This means that it is no more guaranteed that
the dynamics evolves in a neighbourhood of xe.

On the other hand, not even x = xce, and then z = xce, are equilibrium con-
ditions for the two subsystems because, by substitution in (23), the expressions

−g(xce)Fxe = 0

(A+BF )(xce − xe) +Br = 0 (25)

are obtained, once again impossible.
It is possible to conclude that this approach cannot work properly because

i. the insertion of the observer dynamics interferes with the characteristics of
the controlled system, changing the equilibrium point; ii. the observer does not
work as expected, since the manifold in which the local convergence is assured
does not coincide with a neighbourhood of the new equilibrium point.

In [7], an improvement in the procedure recalled above has been introduced,
remaining in the locally linearised approximated context but trying to avoid the
undesired effects i. and ii. previously mentioned. Such a new procedure is shorty
recalled in next Section 3.

3 The Improved Design Procedure

The idea for the solution proposed in [7] is based on the possibility of designing a
state observer in such a way that the equilibrium point of the controlled system is
the same both when the state is supposed to be measured and when its estimate
provided by the observer is used.

Starting from the system (1)–(2), suppose it has been defined a linear state
feedback control with a regulation term of the form (9), expressed in the original
coordinates,

u = Fx+ r (26)
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The controlled dynamics is described by

ẋ = f(x) + g(x)Fx+ g(x)r = Φ(x, r) (27)

with output (2). Using the same notation previously adopted, be xce the equilib-
rium point for the controlled system (27), Φ(xce, r) = 0.

The design technique is again based on a linear observer and on local con-
vergence of the estimation error, but preserving the convergence of the system
to xce.

To this aim, the linear approximation of (27) in a neighbourhood of xce is
computed as

˙̄x = Acx̄ (28)

where Ac = ∂Φ(x,r)
∂x

∣∣∣
x=xc

e

and x̄ = x− xce. Now, a linear observer is designed on

the basis of the closed loop system, i.e. an observer for the state of (27). The
structure is the same as in (11), so that it has the form

˙̄z = (Ac −GCc)z̄ +Gy (29)

where y = Ccx̄ and Cc = ∂h(x)
∂x

∣∣∣
x=xc

e

are defined as in the previous case for a dif-

ferent equilibrium point. Conditions under which the estimation error converges
asymptotically to zero for the so defined problem are trivial, being σ(Ac−GCc) ∈
C−.

The so obtained observer is used in the full closed loop system to provide a
state estimation for the state feedback (26). Clearly, since z̄ is the estimation of
x̄, that is lim

t→∞
‖x̄−z̄‖ = 0, z = z̄+xce is the estimation of x; in fact lim

t→∞
‖x̄−z̄‖ =

lim
t→∞

‖(x− xce)− (z − xce)‖ = lim
t→∞

‖x− z‖ = 0

In order to study the effect of such a control scheme, the full closed loop
dynamics has to be written. One has

ẋ = f(x) + g(x)Fz + g(x)r = Φ(x, r) + g(x)F (z − x)

ż = (Ac −GCc)z −Acxce +GCcx (30)

If the dynamics of the error e = z − x is computed, the expression

ė = (Ac −GCc)(e+ x)−Acxce +GCcx− Φ(x, r)− g(x)Fe =

= (Ac −GC − g(x)F )e+Ac(x− xce)− Φ(x, r)

(31)

is obtained. Its approximation in a neighbourhood of x = xce, for which

Φ(x, r) = Ac(x− xce), Bc = g(xce) (32)

yields to

ė = (Ac −GCc −BcF )e (33)
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which converges, if the pair (Ac−BcF,Cc) is detectable, once matrix G is com-
puted to have σ(Ac −BcF −GCc) ∈ C−.

At the same time, once the equilibrium points of (30) are computed, it is easy
to verify, by straightforward substitution, that x = xce and z = xce are solutions.
In fact

Φ(xce, r) + g(xce)F (xce − xce) = 0

(Ac −GCc)xce − (Ac −GCc)xce = 0

Rewriting (30) in the new coordinates (x, e)

ẋ = Φ(x, r) + g(x)Fe

ė = (Ac −GC − g(x)F )e+Ac(x− xce)− Φ(x, r)

(34)

and computing its linear approximation in a neighbourhood of x = xce as

ẋ = Acx+BcKe−Acxce
ė = (Ac −GC −BcK)e

(35)

the dynamical matrix

ATOT =

(
Ac BcF
0 (Ac −BcF )−GCc

)
(36)

is obtained. It shows that, even if the Separation Principle does not hold strictly,
the design and the application of the linear observer after the synthesis of the
state feedback control does not affect the controlled dynamics which keeps, in
its linear approximation, the dynamical matrix Ac. This procedure is applied in
Section 5 and the results of numerical simulations are reported in Section 6.

4 A Different Problem Formulation

The approach described above is a possible solution to the problem of designing
a linear observer after that a state feedback with a drift term has been computed
for a nonlinear dynamics, like the ones that are obtained solving a LQR problem
with a reference term.

A different formulation can be adopted for the same problem, aiming at
maintaining the validity of the Separation Principle and, at the same time, at
taking into account the presence of the observer in the full controlled closed
loop dynamics. Then, in view of the use of a linear observer for the solution
of the LQR problem for a nonlinear system, the full dynamics composed by
the connection between the nonlinear dynamics and the linear observer can be
considered in the design problem; the feedback control law can be requested
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to be a feedback from the observer state only, and the estimation error can be
considered as a further term in the cost function.

Under these hypothesis, the optimal control problem can be formulated as
follows. Given a nonlinear dynamics of the form

ẋ = f(x) + g(x)u

ż = Lz +Mu+Ny (37)

with y = h(x), f(xe) = 0, g(xe) 6= and h(xe) = 0, find the control u which
minimises the cost function

J =

∫ ∞
0

(
xTQx+ uTRu+ (z − x)TP (z − x)

)
dt (38)

with P positive definite matrix. During the design procedure, choose properly
the matrices L, M and N .

Following the same consideration as in Section 2, if a linear approximation
of the dynamics is considered, the problem can be solved in the framework of
the LQR theory. Assuming the same approximation as in (4) for the first part
of the dynamics and thanks to the predefined linear structure for the observer
dynamics, (37) can be approximated, in a neighbourhood of (xe, xe), as

˙̃x = Ax̃+Bu

˙̃z = Lz̃ +Mu+NCx̃ (39)

or, in a more compact form,
ξ̇ = Âξ + B̂u (40)

where

ξ =

(
x̃
z̃

)
, Â =

(
A 0
NC L

)
, B̂ =

(
B
M

)
(41)

Under these positions, also the cost function (38) can be rewritten in the compact
form

J =

∫ ∞
0

(
(ξ − d)T Q̂(ξ − d) + uTRu

)
dt (42)

with

Q̂ =

(
Q+ P −P
−P P

)
, d = −

(
xe
xe

)
(43)

It is easy to verify that the matrix Q̂ is positive definite. The Riccati equation

K̂B̂R−1B̂T K̂ − K̂Â− ÂT K̂ − Q̂ = 0 (44)

can be solved, obtaining the positive definite symmetric matrix K̂. Following the
partition induced by the structure of the matrices involved, the matrix K̂ can
be written as

K̂ =

(
K11 K12

K12 K22

)
(45)
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with K11, K12 and K22 symmetric positive definite. The block structure of the
matrices involved in (44) may help to simplify the computations. Then, (44) can
be written as (

K11 K12

K12 K22

)(
B
M

)
R−1

(
BT MT

)(K11 K12

K12 K22

)

−
(
K11 K12

K12 K22

)(
A 0
NC L

)
−
(
AT CTNT

0 LT

)(
K11 K12

K12 K22

)
−
(
Q+ P −P
−P P

)
= 0 (46)

Once the solution of the Riccati equation has been computed, the optimal
control, due to the presence of the tracking term, assumes the state feedback
form (as in (8))

u = −R−1B̂T K̂ξ +R−1B̂T
(
K̂B̂R−1B̂T − ÂT

)−1

Q̂d = F̂ ξ + r̂ (47)

The first term is the optimal stabilising state feedback while the second one is
the forcing term for the reference tracking. Focusing on the gain matrix F̂ , its
structure can be put in evidence writing the matrices with their block partition.
One has

F̂ = −R−1B̂T K̂ = −R−1
(
BT MT

)(K11 K12

K12 K22

)
= −R−1

(
BTK11 +MTK12 BTK12 +MTK22

)
(48)

The full system (39), under the feedback control, becomes

˙̃x = (A−BR−1(BTK11 +MTK12))x̃−BR−1(BTK12 +MTK22)z̃ +Br̂

˙̃z = (L−MR−1(BTK12 +MTK22))z̃

+(NC −MR−1(BTK11 +MTK12))x̃+Mr̂

(49)

Multiplying the dynamical matrix of (49) by

(
I 0
−I I

)
on the left and by(

I 0
−I I

)−1

=

(
I 0
I I

)
on the right, one gets the equivalent matrix

(
I 0
−I I

) ( A−BR−1(BTK11+MTK12) −BR−1(BTK12+MTK22)

NC−MR−1(BTK11+MTK12) L−MR−1(BTK12+MTK22)

)
( I 0
I I ) =

(
A−BR−1(BT (K11+K12)+MT (K12+K22)) −BR−1(BTK12+MTK22)

L+NC−A−(M−B)R−1(BT (K11+K12)+MT (K12+K22)) L−(M−B)R−1(BTK12+MTK22)

)
(50)

On the basis of these expressions, two different hypothesis can be formulated
in order to have the feedback control depending on the observer state only.
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4.1 First Hypothesis

According to the classical observer based control schemes, it can be introduced
the constraint that the control law is a feedback from the estimated state z̃ only;
this means that in (48) it must be verified that

BTK11 +MTK12 = 0 (51)

It is interesting to notice that this position makes the observer dynamics indepen-
dent from the not measurable state x̃, since the term NCx̃ = Ny is measurable.

Under condition (51), the control law is

u = −BR−1(BTK12 +MTK22)z̃ +Br̂ (52)

where the forcing term r̂, written putting in evidences the block decomposition
of the matrices involved, assumes the expression

r̂ = −R−1
(
BT MT

)
×(

−AT −CTNT

(K12B +K22M)R−1BT (K12B +K22M)R−1MT − LT
)−1(

Qxe
0

)
(53)

In (53), it should be verified, as it will be done later, that the matrix(
−AT −CTNT

(K12B +K22M)R−1BT (K12B +K22M)R−1MT − LT
)

(54)

is still full rank, after the design procedure, even with the introduction of the
constraint (51). If (51) holds, Riccati equation (46) is rewritten as(

0 0
0 (K12B +K22M)R−1(BTK12 +MTK22)

)
−
(
K11A+K12NC K12L
K12A+K22NC K22L

)

−
(
ATK11 + CTNTK12 ATK12 + CTNTK22

LTK12 LTK22

)
−
(
Q+ P −P
−P P

)
= 0 (55)

From (55), four equations can be obtained

−(K11A+K12NC)− (ATK11 + CTNTK12)− (Q+ P ) = 0 (56)

−K12L− (ATK12 + CTNTK22) + P = 0 (57)

−(K12A+K22NC)− LTK12 + P = 0 (58)

(K12B +K22M)R−1(BTK12 +MTK22)−K22L− LTK22 − P = 0 (59)

The sum of the four equations gives

(K12B +K22M)R−1(BTK12 +MTK22)
−(K12 +K22)(L+NC)− (L+NC)T (K12 +K22)
−(K11 +K12)A−AT (K11 +K12)−Q = 0

(60)
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An analysis of (60), in which both the term K12B + K22M and the term
K12 + K22 are present, suggests that if the position M = B is set, the whole
expression (60) simplifies. On the other hand, M = B means that in the observer
design, the same effect of the input as in the original dynamics is chosen, so that
in the observation error the contribution of the input is neglected. It corresponds
to the choice of a Luenberger classic observer. Moreover, if M = B is used in
the expression of the matrix (50), in addition to (51), one gets(

A−BR−1BT (K12 +K22) −BR−1BT (K12 +K22)
L+NC −A L

)
(61)

With M = B, constraint (51) yields to

K11 +K12 = 0↔ K12 = −K11 (62)

and the four equations (56)–(59) simplify as

−K11(A−NC)− (A−NC)TK11 − (Q+ P ) = 0 (63)

K11L+ (ATK11 − CTNTK22) + P = 0 (64)

(K11A−K22NC) + LTK11 + P = 0 (65)

(−K11 +K22)BR−1BT (−K11 +K22)−K22L− LTK22 − P = 0 (66)

and (60) becomes

(−K11 +K22)BR−1BT (−K11 +K22)
−(−K11 +K22)(L+NC)− (L+NC)T (−K11 +K22)−Q = 0

(67)

Setting L + NC = A, equation (67) corresponds to the Riccati equation which
arises when the LQR problem is defined for the system (4), the plant part of
(37), and with cost function (6). In addition, it must be observed that the gain
matrix in (52) reduces to −R−1BT (−K11 + K22), that is the same obtained
solving (67). Then, the relation L + NC = A is defined and the LQR problem
with full state measurement for (4) and (6) can be firstly solved, finding the
positive definite symmetric matrix Ks = −K11 + K22 and using it in the full
problem.

Moreover, under all these hypothesis, matrix (61) becomes(
A−BR−1BT (−K11 +K22) −BR−1BT (−K11 +K22)

0 A−NC

)
(68)

from which it can be concluded that the closed loop system (49) is asymptotically
stable if A−NC has all its eigenvalues with negative real part, since the block
A − BR−1BT (−K11 + K22) is asymptotically stable from the reduced LQR
problem solution.
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Finally, it is possible to rewrite the optimal control law (47) in a simpler
form, particularising (52) and (53). One gets

u = −R−1BTKsz̃

−R−1BT
(
I I

)( −AT −(NC)T

KsBR
−1BT KsBR

−1BT − LT
)−1(

Qxe
0

)
(69)

Since (
−AT −(NC)T

KsBR
−1BT KsBR

−1BT − LT
)

= (70)

=

(
I −I
0 I

)(
−AT +KsBR

−1BT 0
KsBR

−1BT −LT
)(

I I
0 I

)
(71)

computing the inverse of both members, one has that(
−AT −(NC)T

KsBR
−1BT KsBR

−1BT − LT
)−1

= (72)

=

(
I −I
0 I

)(
−(AT −KsBR

−1BT )−1 0
−(LT )−1(KsBR

−1BT )(AT −KsBR
−1BT )−1 −(LT )−1

)(
I I
0 I

)
(73)

which can be computed since both AT − KsBR
−1BT and L are invertible by

construction.
With all these positions, the expression for the optimal control (69) becomes

u = −R−1BTKsz̃

−R−1BT
(
I 0
)(−(AT −KsBR

−1BT )−1 0
∗ −(LT )−1

)(
Qxe

0

)
=

= −R−1BTKsz̃ +R−1BT (AT −KsBR
−1BT )−1Qxe (74)

Comparing the expression (8) for the control when the state feedback without
observer is considered (obtained in Section 2), with (74) obtained with the pro-
posed procedure, it clear that (74) corresponds to (8) with the state x̃ substituted
by the estimated state z̃.

4.2 Second Hypothesis

A different choice can be performed, instead of introducing the constraint (51)
to have the feedback control law depending on the observer state only. It can be
assumed that, once the control (47) is computed, the state x̃ is substituted by
its estimate z̃. With this position, dynamics (49) becomes

˙̃x = Ax̃−BR−1(BTK11 +MTK12 +BTK12 +MTK22)z̃ +Br̂

˙̃z = (L−MR−1(BTK12 +MTK22 +BTK11 +MTK12))z̃ +NCx̃+Mr̂

(75)
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while matrix (50) assumes the expression(
m11 m12

m21 m22

)
(76)

with

m11 = A−BR−1(BT (K11 +K12) +MT (K12 +K22))

m12 = −BR−1(BT (K11 +K12) +MT (K12 +K22))

m21 = L+NC −A− (M −B)R−1(BT (K11 +K12) +MT (K12 +K22))

m22 = L− (M −B)R−1(BT (K11 +K12) +MT (K12 +K22))

It can be verified that, setting M = B and L = A−NC, matrix (76) reduces to(
A−BR−1BT (K11 + 2K12 +K22) −BR−1BT (K11 + 2K12 +K22)

0 A−NC

)
(77)

At the same time, if the Riccati equation (46) is multiplied on the left by
(
I I
)

and on the right by

(
I
I

)
, using the relations defined above for M and L, easy

computations give the expression

(K11 + 2K12 +K22)BR−1BT (K11 + 2K12 +K22)

− (K11 + 2K12 +K22)A−AT (K11 + 2K12 +K22)−Q = 0 (78)

Defining, in this case,

Ks = K11 + 2K12 +K22 (79)

matrix (77) becomes the same as (68), which results asymptotically stable since
Ks is the solution of the Riccati equation (78) and N is chosen so that A−NC
is asymptotically stable, provided that (A,C) is observable.

Both the hypothesis adopted in Subsection 4.1 and in the present Subsection
4.2 bring to the same procedure for the control system design. It consists in solv-
ing the LQR problem defined by dynamics (4) under cost function (6), solving
a Riccati equation of the form (7), with K = Ks, and using the state feedback
(12) using the estimate state z̃ provided by the linear observer (11) with G = N
computed to have A−NC asymptotically stable.

The behaviour and the performances of this approach are compared with
the same of the approach described in Section 3 making use of the numerical
example introduced in next Section.

5 The Case Study

As anticipated in the Introduction, the case study of an epidemic spread is con-
sidered for comparing the proposed approaches. The mathematical model, briefly
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recalled in Subsection 5.1, is the one introduced in [3] and [4], for which a LQR
optimal control has been proposed in [5]. The classical state feedback solution
there obtained has been enhanced introducing a state observer in [6], whose de-
sign is here shortly recalled in Subsection 5.2, necessary since (at least) one of the
state variable is not measurable. Finally, in [7], an improvement in the observer
design is introduced to compensate some of the effects of the nonlinearity of the
dynamics, as recalled in Subsection 5.4. The solution here proposed, described
in Section 4, is applied in Subsection 5.5.

5.1 A Short Recall of the Mathematical Model

In this paper, the model of the HIV/AIDS diffusion presented in [3, 4] is adopted
and is here briefly recalled.

The state variables introduced in the model denote the healthy people S1,
not aware of dangerous behaviours and then can be infected, and S2, the ones
that, suitably informed, give great attention to the protection, and the three
levels of infectious subjects: I, the infected but unaware of their status, P , the
HIV positive patients, A, the AIDS diagnosed ones.

The control actions are the information campaign, u1 and the test campaign
to discover the infection as soon as possible, u2. A third action, u3, the therapy
which aims at reducing the transition from HIV to AIDS, is also considered,
since mortality among A is higher that in P . Then, the mathematical model is

Ṡ1 = Z − dS1 − β
S1I

Nc
+ γS2 − S1u1

Ṡ2 = −(γ + d)S2 + S1u1

İ = β
S1I

Nc
− (d+ δ)I − ψ I

Nc
u2

Ṗ = εδI − (α+ d)P + φψ
I

Nc
u2 + Pu3

Ȧ = (1− ε)δI + αP − (µ+ d)A+ (1− φ)ψ
I

Nc
u2 − Pu3 (80)

where Nc = S1 + S2 + I. In (80), d denotes the rate of natural death; Z denotes
the flux of new subjects in the class S1; β is related to the dangerous interactions
between S1 and I categories; γ is the rate of wise subjects that could change,
incidentally, their status, increasing S1(t); ψ is related to the control action
aiming at helping the individuals in class I to discover their infectious condition,
and therefore to flow to the P or the A class; φ is the percentage of test positive
subjects with HIV ((1−φ) the percentage with AIDS); δ is the rate of transition
from I to P (percentage ε) or A (percentage (1−ε)) without any external action;
α is the rate of the natural transition from P to A; µ is the rate of death in class
A caused by the infection.

The compact form for (80) can be expressed as

Ẋ = f(X) + g(X)U = F (X,U) (81)
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once X = (S1 S2 I P A)T , U = (u1 u2 u3)T and

f(X) =


Z − dS1 − βS1I

Nc
+ γS2

−(γ + d)S2
βS1I
Nc
− (d+ δ)I

εδI − (α+ d)P
(1− ε)δI + αP − (µ+ d)A

 (82)

g(X) =
(
g1 g2 g3

)
=


−S1 0 0
S1 0 0
0 −ψ I

Nc
0

0 φψ I
Nc

P

0 (1− φ)ψ I
Nc
−P

 (83)

are defined.

For the choice of possible output functions, it must be observed that the
subject with a positive diagnosis, P and A, can be easily measured, since reported
by medical operators.

Then, it seems reasonable to assume the measure of the total number of
diagnosed individuals, P (t) +A(t), as the possible meaningful output, so giving

y(t) = CX(t), C =
(
0 0 0 1 1

)
(84)

5.2 Control Problem Definiton and LQR Problem Formulation

An optimal control problem for the HIV/AIDS dynamics (80) has been formu-
lated in [5]. It aims at minimising the most dangerous class of individuals, the
infected I, keeping the control amplitude as low as possible. With these choices,
the distinction between P and A, as well as the presence of the control u3, be-
come not relevant. Then, the two–dimensional control vector Û = (u1 u2)T is
introduced, neglecting, consequently, the vector field g3(·) in (83) introducing
the matrix ĝ(X) =

(
g1 g2

)
.

Under these positions, the cost function

J(X, Û) =
1

2

∫ ∞
t0

(
qI2 + r1u

2
1 + r2u

2
2

)
dt =

1

2

∫ ∞
t0

(
XTQX + ÛTRÛ

)
dt (85)

is defined, with Q the five dimensional square matrix with all zero entries except

Q(3, 3) = q, and R =

(
r1 0
0 r2

)
, r1, r2 > 0.

The quadratic structure of (85) and the preference for a state feedback im-
plementability of the control law drove the solution of such problem in [5] to a
LQR form designed on the linearised approximation of (80) in the neighbour-
hood of one equilibrium point. A study of the existence of equilibrium points
and of their stability properties has been performed in [3, 4], yielding to the two
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possible solutions

Xe
1 =


1/d
0
0
0
0

Z Xe
2 =


1/H

0
H−d
H(d+δ)
εδ(H−d)

H(α+d)(d+δ)
δ(H−d)[(1−ε)d+α]
H(α+d)(d+δ)(µ+d)

Z (86)

where H = β − δ. The non negativeness of the elements in the vector state Xe
2

implies the condition H ≥ d > 0; therefore the equilibrium point Xe
2 is a feasible

one if and only if H ≥ d, being Xe
1 = Xe

2 if H = d. The presence of a bifurcation
in the stability analysis is discussed in [4].

Making use of the same values for the model parameters as in [5], condition
H > d holds, so that both the equilibrium points exist. Computing the two
linearised dynamics of (81) in the neighbourhood of the two equilibrium points
one gets

˙̃X = AiX̃ + B̂iÛ

ỹ = CX̃ (87)

with Ai = ∂f
∂X

∣∣∣
X=Xe

i

, B̂i = ĝ(Xe
i ) ỹ = CX̃ = y − CXe

i and

X̃ = X −Xe
i (88)

i = 1, 2 depending on the choice.
Despite the procedure can be adopted making reference to both the equilib-

rium points, easy computations show that the linear dynamics which approxi-
mates the nonlinear one in the neighbourhood of Xe

1 is neither detectable nor
controllable. So, in view of a control synthesis in the local linear domain, the
linearisation in a neighbourhood of Xe

2 is chosen. Then, the linear dynamics is
(87) with i = 2.

5.3 The Linearised Optimal Control Problem Solution

The use of the new coordinates X̃, consequence of (88), implies a change of
variables also in the cost function (85), where X̃ must appear instead of X. The
new expression is

J(X, Û) = J(X̃ +Xe
2 , Û) = J̃(X̃, Û) =

= 1
2

∫∞
t0

((
X̃T − r̄

)
Q
(
X̃ − r̄

)
+ ÛTRÛ

)
dt

= 1
2

∫∞
t0

(
q
(
Ĩ(t) + H−d

H(d+δ)

)2

+ r1u
2
1(t) + r2u

2
2(t)

)
dt

(89)

where r̄ = (∗ ∗ r̄Ĩ ∗ ∗)T denotes the LQR tracking term, with r̄Ĩ = − H−d
H(d+δ) .
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For a dynamics (87), the optimal control problem with cost function (89)
corresponds to a classical Linear Quadratic Regulator (LQR) problem with a
constant tracking term. The result, computed and discussed in [5], is a state
feedback control law with a reference term. Once the Algebraic Riccati Equation

0 = KRB̂2R
−1B̂T2 KR −KRA2 −AT2 KR −Q (90)

is solved w.r.t. KR, the state feedback optimal control law is given by ([1])

Û = −R−1B̂T2 KRX̃ +R−1B̂T2 gr̄ = FX̃ + r (91)

where gr̄ =
(
KRB̂2R

−1BT2 −AT2
)−1

Qr̄ withQr̄ =
(
0 0 qr̄Ĩ 0 0

)T
;K = −R−1B̂T2 KR

is the gain matrix as in (9) while r = R−1B̂T2 gr̄ is the constant tracking term r.
Stability for the linear controlled system is proven in [5]. In the same paper,

the problem of the unavailability of a measure of all the state variables has been
solved computing a linear state observer under the hypothesis that, once only
local solutions are available, due to the request of a state feedback control, then
also for the observer a linear approach can be sufficient, whose approximation is
well compensated by its simplicity of design and implementation.

Then, once verified the detectability property on (A2, C) in (87) (i = 2),
the state estimation z̃(t) of the state X̃ verifying the asymptotic condition

lim
t→+∞

‖X̃(t) − z̃(t)‖ = 0 can be obtained as the state evolution of the Luen-

berger like linear observer

˙̃z(t) = (A2 −GC) z̃(t) + B̂2Û(t) +Gỹ(t) (92)

with matrix G chosen in order to have all the eigenvalues of the dynamic matrix
(A2 − GC) with negative real part. The whole control system is a dynamical
output feedback control with state observer and feedback from the state estima-
tion.

5.4 The Solution With The Improved Observer Design

The approach proposed in [7] is here recalled. Following what illustrated in
Section 3, consider the control law of the form (91) computed solving the LQR
control problem on the basis of the linear approximation of the dynamics in a
neighbourhood of Xe

2 . Under the action of this state feedback, the controlled
system assumes the form

Ẋ = f(X) + ĝ(X)(FX̃ + r) = Φ(X, r) (93)

with its linear approximation asymptotically stable. Its equilibrium point can
be denoted by Xc

e : Φ(Xc
e , r) = 0 and the linear approximation of (93) in the

neighbourhood of Xc
e can be computed; it is given by

˙̄X = AcX̄ (94)



On local observer design for LQR problems with tracking 19

where Ac = ∂Φ(X,r)
∂X

∣∣∣
X=Xc

e

and X̄ = X −Xc
e .

A local linear observer for the linear approximating dynamics can be designed
in the usual form

˙̄z = (Ac −GC)z̄ +Gȳ (95)

when dealing directly with the linearised dynamics, or

ż = (Ac −GC)z +Gy −AcXc
e (96)

expressed in the original state variables. According to the general discussion
in Section 3, once the observer has been designed, the control law (91) can be
implemented using the state estimate z̄ instead of the real but not measurable
state X̄ (or z instead of X). Then, the control law (91) can be rewritten as

u = FX̃ + r = F (X −Xe
2) + r = F (X̄ +Xc

e −Xe
2) + r =

= FX̄ + r + F (Xc
e −Xe

2) (97)

so that the dynamics (93), using the observer (95), assumes the expression

Ẋ = f(X) + ĝ(X)(F z̄ + r) + ĝ(X)F (Xc
e −Xe

2) (98)

to be considered along with the observer dynamics (95). Some manipulations
allow to write the dynamics (98) as

Ẋ = f(X) + ĝ(X)(F z̄ + r) + ĝ(X)F (Xc
e −Xe

2) =

= Φ(X, r) + ĝ(X)F (z̄ − X̃ +Xc
e −Xe

2) = Φ(X, r) + ĝ(X)F (z −X) (99)

where z −X can be replaced by z̄ − X̄ or z̃ − X̃ according to the convenience.
It is easy to verify by substitution that the whole dynamics (95)–(99) has the
equilibrium point X = Xc

e , z = Xc
e (X̄ = z̄ = 0). This means that asymptotically

the state of the observer and one of the original system are equal. The fact that
the asymptotic error is equal to zero can be proved also computing the error
dynamics

ė = (Ac −GC)z̄ +GCx̄− F (X, r)− ĝ(X)K(z − x) (100)

and evaluating it in a neighbourhood of X = Xc
e , yielding

ė = (Ac −GC)z̄ +GCx̄−Acx̄− B̂cK(z̄ − x̄) =

= = (Ac −GC + B̂cK)e (101)

Then, with σ(Ac −GC + B̂cK) ∈ C− the error goes asymptotically to zero.

It is confirmed what stated in the previous Section: the observer (95) works
properly, without producing undesired changes in the system dynamics and con-
verging asymptotically to the system state, once G is designed to have σ(Ac −
GC − B̂cK) ∈ C−, provided that (Ac − B̂cK,C) is a detectable pair.



20 P. Di Giamberardino and D. Iacoviello

5.5 The Proposed Combined Approach

Following the description reported in Section 4, the solution of the problem
consists of the two steps. The first one concerns the design of the optimal state
feedback control computing matrix Ks as the solution of the Riccati equation
(67) which, for the present example, assumes the expression (90) with KR = Ks,
G = N , and where A2 = L−NC. The solution (91) corresponds to the expression
(74). With respect to the initial formulation of the problem in Section 4, Ks can
represent −K11 + K22 if the choice described in Subsection 4.1 is adopted, or
K11 + 2K12 +K22 for the choice of Subsection 4.2.

The second step is the observer design, for which N and L = A2−NC must
be computed. Under the observability condition on (A2, C), N can be computed
so that n eigenvalues with negative real part can be set to matrix L.

6 Numerical Results and Discussion

In this Section, a numerical analysis is performed to compare the solution pro-
posed in [7] and the one obtained following the approach her proposed in Section
4. The values for the parameters in the dynamics (80) adopted for the numerical
computations have been taken from [5, 11, 3, 10]:

d = 0.02, β = 1.5, δ = 0.4, ε = 0.6, φ = 0.95

γ = 0.2 ψ = 105, α = 0.5, µ = 1, Z = 1000

Then, H = β − δ = 1.1 > 0 so that the equilibrium point Xe
2 exists and it is

locally asymptotically stable. Numerically, Xe
2 = (0.91 0 2.34 1.08 0.9)

T · 103.
The linear approximation in the neighbourhood of this equilibrium point is

described by C as in (84) and by the following numerical matrices:

A2 =


−0.80 0.20 −0.12 0 0

0 −0.22 0 0 0
0.78 0 0.30 0 0

0 0 0.24 −0.52 0
0 0 0.16 0.5 −1.02

 (102)

B̂2 =


−0.91 0
0.91 0

0 −72
0 68.40
0 3.60

 103 (103)

6.1 Case of Improved Observed Design

As far as the controller is concerned, the control law is computed as the solution
of the LQR problem with offset (tracking) term defined in Subsection 5.3 thanks
to the controllability property of A2, B̂2 in (102) and (103). Performing the
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computations, the LQR reference term r̄Ĩ to be used in (91) assumes the value
r̄Ĩ = −2.34 · 103.

As in [5], the cost function weights q = 10−4, r1 = 1, r2 = 1000 are chosen.
The solution KR of the Algebraic Riccati Equation (90) gives

KR =


0.07 −0.01 0.14 0 0
−0.01 0.02 −0.05 0 0
0.14 −0.05 4.33 0 0

0 0 0 0 0
0 0 0 0 0

 10−6 (104)

and then gr̄ =
(

0.05 0 −1.03 0 0
)T · 10−2.

The optimal control (91) so obtained, which should drive the state variable
Ĩ of the linearised system to the reference value r̄Ĩ , is of the form (91) with

K = 10−4

(
−0.71 0.25 −1.78 0 0
−0.10 0.04 −3.12 0 0

)
(105)

and

r =

(
0.41
0.74

)
(106)

As far as the observer design is concerned, following the procedure described
in Section 3, the observer to be designed has the form (29) rewritten as in (30)
and here reported for the present case

ż = (Ac −GC)z +GCx−AcXc
e (107)

where G has to be computed, according to (33), after having verified the de-
tectability property for the pair (Ac −BcK,C), in order to have σ(Ac −BcK −
GC) ∈ C−.

The numerical value of the equilibrium point Xc
e for the controlled system

(93) is

Xc
e = 104

(
1.0176 3.9822 0 0 0

)T
(108)

For the computation of the matrix Ac − BcKR, Ac has to be computed as
the Jacobian of the controlled system evaluated in (108), Bc = g(Xc

e), while KR

is the output of the LQR optimal control problem previously solved. One has

Ac =


1.09 0.21 1.04 0 0
−1.11 −0.23 −1.34 0 0

0 0 −0.34 0 0
0 0 0.24 −0.52 0
0 0 0.16 0.50 −1.02

 (109)

and, then,

Ac +BcK =


1.04 0.21 0.92 0 0
−1.06 −0.23 −1.22 0 0
−0.76 −0.01 −23.40 0 0
0.72 0.01 22.15 −0.52 0
0.04 0 1.31 0.50 −1.02

 (110)
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Observability of the couple Ac − BcKR, C) can easily be checked and then
it is possible to compute G so to verify the convergence condition. Discus-
sion about the characteristics of the transient in the observer dynamics are
reported in [5] and they bring to the choice of the set of eigenvalues Λ =
{−1.0, −1.1, −1.2, −1.3, −1.4} to be assigned to the matrix Ac−BcKR +GC.
One has

G = 103
(
−0.22 1.20 0.03 −0.02 0

)T
(111)

6.2 Case of the Solution Proposed

The control law design for this case follows the same steps as for the previous
case. Firstly the solution of the Riccati equation (90) with A2 as in (102), B̂2 as
in (103) and where KR = Ks has to be computed. With the same choice of the
cost function weights q = 10−4, r1 = 1, r2 = 1000, the solution Ks of (90) is the
same as KR in (104). As a consequence, the same holds for gr̄.

Since the solution here adopted is based on the use of a linear state observer
of the form as in (39) with M = B̂2, L = A2−NC and N computed in order to
have sigma(L) ∈ C−. The eigenvalues can be chosen equal to the ones for the
previous case. The, the gain matrix N obtained is

N =
(
4.18 15.31 14.87 2.19 1.56

)T
(112)

6.3 Simulation Results
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Fig. 1. Time history of individuals in S1(t).

Three cases have been simulated to compare their behaviours. The first is the
direct use of the state feedback optimal control without the use of an observer. It
is introduced as a benchmark for the other two approaches. This case in denoted
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Fig. 2. Time history of individuals in S2(t).
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Fig. 3. Time history of individuals in I(t).

in the legend of the Figures 1–5 by State feedback. Moreover, the two solutions
described in this paper are reported in Figures 1–5; the approach described in
Section 3 and numerically given in Subsection 6.1 is referred as Improved observer
while the approach proposed in Section 4 with numerical values in Subsection
6.2 is addressed as Combined approach.

The pure state feedback control scheme, whose behaviour is reported in the
Figures with a solid line, shows the effectiveness of the control strategy based on
a local LQR problem solution: the number of infected I is very quickly reduced
to a very small value, Figure 3, and consequently, a decrease of the number of the
diagnosed patients P , Figure 4, and A, Figure 5 is obtained. At the same time,
the number of healthy individuals S1 is maintained sufficiently high, Figure 1,
while, due to a reduction of the infection probability, the passage from S1 to
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Fig. 4. Time history of individuals in P (t).
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Fig. 5. Time history of individuals in A(t).

S2 is no more necessary for the spread containment and the individuals in S2,
reported in Figure 2, naturally tend to zero by natural death.

The effects of the two proposed approaches are also reported in the Figures:
the dashed line, for which the denomination in the legend is Improved observer,
depicts the behaviours of the state variables when the solution proposed in Sec-
tion 3 for the observer design, with numerical values for the present case study
reported in Subsection 6.1 is applied; the dash-dot line, marked with Combined
approach, is devoted to depict the time histories of the state variables in the case
of application of the procedure described in Section 4 and particularised to the
present case study in Subsection 6.2.

The most evident effect in the use of a state observer, independently from
which approach is followed in its design, is an expected different behaviour during
the transient, since the control law bases its effect on a not well estimated state.
When, asymptotically, the state estimation error goes to zero, the differences
with the state feedback is strongly reduced.
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A comparative analysis of the performances of the two observer design pro-
cedures proposed put in evidence their differences at steady state, since the one
which takes into account the actual working point shows a behaviour which
tends to be similar to the one of the sate feedback. The other approach pays its
design simplicity with an offset difference due to the fact that in this case the
observer is designed to better approximate the state in a region that is different
to the actual one according to the differences between the equilibrium point for
the uncontrolled system and the one for the controlled dynamics.

7 Conclusions

This paper is an extension of the contribution presented at ICINCO2019. It
discusses the problem of the implementation of a state feedback control, ob-
tained solving a LQR problem for a linearised nonlinear dynamics, using a local
asymptotic state observer. The approach proposed at ICINCO2019 is based on
the construction of the local state observer which better approximates the dy-
namics in the neighbourhood of the final working point, supposed equal to the
equilibrium of the state feedback controlled system. This result is here enriched
starting from a different problem definition in which the linear state observer
design is included in the LQR control problem and the local approximations are
necessary performed in a neighbourhood of an equilibrium point of the initial
uncontrolled system. The effectiveness of the two solutions obtained, as well as
a comparison between them, are evidenced from the results of their implemen-
tation on a case study represented by a virus spread dynamics.
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