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White-light continuum (WLC) generation in bulk media
finds numerous applications in ultrafast optics and spectros-
copy. Due to the complexity of the underlying spatiotemporal
dynamics, WLC optimization typically follows empirical
procedures. Deep reinforcement learning (RL) is a branch
of machine learning dealing with the control of automated
systems using deep neural networks. In this Letter, we
demonstrate the capability of a deep RL agent to generate
a long-term-stable WLC from a bulk medium without any
previous knowledge of the system dynamics or functioning.
This work demonstrates that RL can be exploited effectively
to control complex nonlinear optical experiments. © 2021

Optical Society of America under the terms of the OSA Open Access

Publishing Agreement

https://doi.org/10.1364/OPTICA.414634

In recent years, a strong synergy has developed between photonics
and the computational tools collectively referred to as artificial
intelligence (AI) [1], bringing mutual benefits to both disciplines.
On one hand, photonic technologies are increasingly employed
to improve and speed up data collection, at the basis of every AI
application. On the other hand, AI provides robust analytical and
predictive tools adapted to a wide variety of photonic contexts:
nonlinear spectroscopy [2,3], quantum optics [4], supercontin-
uum generation in optical fibers [5], and image propagation in
diffuse media [6]. In this work, we deepen the link between the two
fields by applying reinforcement learning (RL) [7] to automate
white-light continuum (WLC) generation, one of the central prob-
lems in nonlinear optics. We demonstrate how RL is able to locate,
in a multidimensional space and in an unsupervised fashion, a set
of parameters able to guarantee a broadband and long-term stable
WLC. Previously, machine learning has been used in combination
with evolutionary algorithms such as genetic algorithms [8] to tai-
lor the supercontinuum produced in an integrated-photonic chip
[9] or to automatically perform mode-locking on a fiber laser [10].

WLC generation is a complex third-order nonlinear process
that finds numerous applications in ultrafast optics and spec-
troscopy. Experimentally, WLC generation is quite simple: a
moderately energetic (0.5–3 µJ) femtosecond pulse is tightly
focused in a plate of a transparent material (such a sapphire, CaF2,
YAG, YVO4) with few-millimeter thickness. By suitably control-
ling the pulse energy, the focused beam divergence and the position

of the nonlinear plate with respect to the focal plane, one obtains
the formation of a filament and an explosive spectral broadening,
resulting in a spectrum that extends to both the blue and the red
of the driving pulse spectrum, with a moderate spectral energy
density of 10–20 pJ/nm [11]. Due to its spectral extension, high
spatial beam quality, and outstanding shot-to-shot energy stability,
WLC is employed for seeding of optical parametric amplifiers [12],
as the probe pulse in broadband transient absorption spectroscopy
[13,14], and in the generation of octave-spanning spectra for
characterization of the carrier–envelope phase of few-optical-cycle
pulses [15,16]. WLC generation involves the complex com-
bination of several nonlinear optical processes, such as spatial
self-focusing, temporal self-phase modulation, self-steepening,
and space–time focusing [17,18], as well as group velocity disper-
sion and plasma generation through multi-photon ionization. The
complexity of the underlying spatiotemporal nonlinear optical
processes prevents a complete theoretical description of WLC
generation and has led to the development of empirical procedures
for optimization of WLC properties (bandwidth, energy, stability).
Often, a variation in the parameters of the driving laser, due to
either fluctuations or change in operating regime (such as, e.g., a
different repetition rate) degrades the quality of the WLC, calling
for a time-consuming manual adjustment procedure.

RL is a powerful method for the solution to optimization prob-
lems that can be formalized as Markov decision processes (MDPs)
[19]. The solution is determined by an agent that observes, at each
discrete temporal step t , the state s t of an environment E and is
then able to decide actions at that affect the environment evolu-
tion. After taking an action, a reward r (s t , at , s t+1) is given to the
agent, reflecting the quality of the action taken given the current
state and the subsequent one. The agent’s objective is to determine
an optimal policy π to perform the best actions so as to maximize
the expected cumulative reward. Initially the agent has no a priori
knowledge of the internal functioning or dynamics of the environ-
ment, and the optimal policy is determined by the agent through
direct experience of the behavior of the environment. RL agents
are currently at the center of intensive research, especially for what
concerns solutions based on deep learning. Deep neural networks
(NNs) [20] are powerful mathematical tools that allow the agent to
understand complex environments, and learn how to obtain good
rewards (see Supplement 1). Deep RL agents were demonstrated
to be particularly successful in complex tasks such as playing video
games [21,22] and traditional games [23]. Moreover, deep RL is
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Fig. 1. Scheme of the actor and critic NN of the RL agent. The actor
NN takes as input the state and outputs an action; the critic NN takes
as input the state–action pair (s t , a t) and outputs the state–action value
function. See Supplement 1 for a full description of the two NNs.

used for control tasks such as robotics and autonomous driving
[24], with recent contributions focusing on critical features for
real-world application, namely, safety [25] and constrained control
[26]. In this work, we propose and demonstrate that deep RL is
a powerful tool also within the nonlinear optics research field.
In particular, we train a deep RL agent to control and optimize a
strongly nonlinear process such as WLC generation.

A broad and stable WLC spectrum requires the optimization of
at least three degrees of freedom, namely, the energy of the pump
pulse, the numerical aperture of the focused beam, and the position
of the nonlinear plate with respect to the beam waist. All these
quantities are continuous, making the task suitable, from a deep
RL standpoint, to be solved through an “actor–critic” architecture
[27]. In general, deep learning-based actor–critic solutions use
a pair of NNs trained with different purposes (Fig. 1): the actor
network approximates the policyπ(s ), the mapping between states
and actions, while the critic network approximates the so called
state–action value function Q(s , a) [7], a quantity that, for each
state–action pair (s , a) approximates the cumulative reward that
can be obtained starting in (s , a) and following the policyπ there-
after (see Supplement 1). Several training processes for the two
networks have been proposed in the last few years. One of the first
and most widely used deep RL solutions for the actor–critic setting
is the deep deterministic policy gradient (DDPG) [24]; to solve the
WLC generation problem, we employed its recent evolution called
twin delayed DDPG (TD3) [28], which represents the state of the
art in the field [29].

The optical setup used for WLC generation is sketched in Fig. 2.
It starts with a fiber-based ytterbium laser system (Coherent

Monaco) providing pump pulses with ≈300 fs duration at
1030 nm, at a variable repetition rate up to 50 MHz, which we

Fig. 2. Optical setup. HWP, half-wave plate; PBS, polarizing beam
splitter; L1, focusing lens (focal length 5 cm); L2, collimating lens (focal
length 2 cm); BS, beam splitter T:R-90:10; SPF, short-pass filter; L3,
focusing lens (focal length 3 cm); OMA, optical multichannel analyzer;
RL, reinforcement learning agent observing the state of the environment,
taking actions on it, getting rewards in turn.

Fig. 3. Example of transition between two states. (a) Spectra collected
during the transition reported along with the (b) corresponding area
under the curve. The sum of the values in (b) divided by the number of
acquired spectra (proportional to the length of the dynamics) gives the
scalar reward.

fixed at 2 MHz, and a pulse energy up to 80 µJ, which we fixed
at ≈1.25 µJ. A motorized rotary stage (Thorlabs, PRM1Z8)
varies the orientation angle ϑ of a half-wave plate (HWP), fol-
lowed by a polarizing beam splitter (PBS), so as to finely control
the power reaching the crystal. The aperture of an iris (set at
an angle φ) is controlled by a second motorized rotary stage
(Thorlabs, K10CR1) to vary the numerical aperture of the pump
beam focused on a 6 mm thick YAG crystal via lens L1 with 5 cm
focal length. The position (z) of the crystal with respect to the
laser focus can be varied by a third motorized actuator (Thorlabs,
MT1-Z8). After the interaction, lens L2 with 2 cm focal length
collimates the generated WLC, which is then filtered by a short-
pass filter (Thorlabs, FESH1000) to reject the fundamental
beam and the long-wavelength lobe that is not detectable by
the silicon spectrometer employed (Ocean Insight, Flame VIS-
NIR). To reduce the light intensity, a beam splitter (BS) with
a transmittance/reflectance ratio of 90/10 is placed before the
spectrometer. No multiple filamentation or crystal damage was
observed with this experimental configuration. Python program-
ming language was used to control the actuators [30] and read the
spectrometer [31].

To express the WLC generation problem as a MDP, we define
the state of the system as the vector s = (ϑ, φ, z). The actions cor-
respond to movements of the actuators to absolute positions, and
thus are expressed in a similar way: a = (→ ϑ,→ φ,→ z). Each
action taken by the agent is evaluated with respect to the goal of
generating a broad WLC spectrum, by computing a scalar reward
r (s t , at , s t+1). During the movement of the three actuators, a
series of output spectra is recorded by the spectrometer (set at 3 ms
integration time). This batch of spectra enables a better estimation
of the action–value function since it does not depend on only the
last position, but contains information about the entire movement
[Fig. 3(a)]. Next, each spectrum is normalized and integrated,
obtaining a sequence of values [Fig. 3(b)] that are finally averaged
to get a single scalar value to be used as a reward for the action.

The training procedure for a TD3 deep learning agent is divided
into episodes, each lasting for Te time steps. During the training, all
the transitions (s t , at , s t+1, r t), composed by the initial state, the
action taken, the next state, and the reward received, are stored in
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the so-called replay-buffer, which gathers all the acquired knowl-
edge of the system. At the beginning of the training process, usually
the environment is explored by performing random actions, so that
the agent may gather some starting data. After a few episodes of
random exploration, a sufficient amount of transitions is present
in the replay-buffer, and the agent can start the training of its actor
and critic NNs. As the agent trains, its knowledge on the system
increases. As customary in RL solutions, to maintain active the
exploration of the environment and improve the learned policy to
obtain higher rewards, the actions produced by the actor network
are randomly perturbed. This ensures that the agent experiences
possibly more rewarding states that are not considered within its
(current) policy, and avoids being attracted towards locally optimal
policies.

After each episode is completed, the system is randomly reset to
a new initial condition. To assess the improvements of the learned
policy after some training episodes, the agent undergoes some
evaluation episodes in which its actions are not perturbed. This
evaluation procedure allows to determine whether the agent has
completed the training (i.e., is able to obtain sufficiently high
rewards) or if it needs to undergo a new training phase. We refer
the reader to Supplement 1 for a more detailed description of the
training procedure.

Figure 4 reports an exemplary complete experiment of our RL
agent controlling WLC generation. We selected Te = 50 time
steps for each episode, and used the first four episodes for random
sampling. After that, three evaluation episodes are then performed
to check the agent knowledge just after the random initialization.
Clearly, at this point the agent is not able to produce positive
rewards (i.e., to generate WLC). During the first exploration phase
(time steps 350–450), some positive rewards are observed by the
agent, also due to the random perturbation of its actions that causes
the controller to try new strategies. However, it is only during the
third exploration period (time steps 600–700) that the policy is
consolidated to systematically obtain positive rewards. In fact,
during the third and final set of evaluations (time steps 700–850),
the reward obtained by the agent is always positive and reaches high
values, meaning that the WLC is constantly generated. Note that,
despite following a deterministic policy, the obtained reward varies
in intensity among the three last evaluations. This is due to the dif-
ferent starting point of each evaluation and to the strong nonlinear
nature of the WLC generation process, which determines different
spectra even for slight variations in the actuators’ positions, as
shown in Fig. 5.

Figure 6 reports the details of the beginning of an evaluation
episode, once the correct policy is determined by the agent. The
system starts in a random state, and the actor NN is used to pre-
dict the next position given the current state. Already after four
steps the system converges to a stable state for WLC generation.
In Fig. 6(d), the spectra corresponding to the first four steps are
sequentially reported, to highlight the onset of WLC. Notably, the
final spectrum is not the most intense of the series; this behavior is
commonly found in RL solutions, as the agent aims at maximizing
the cumulative reward in the future. The strong nonlinearity of the
underlying process does not guarantee that all transitions with high
rewards are reproducible; therefore, the agent moves towards states
that give lower but more constant rewards.

To assess the long-term quality of the generated WLC, after the
agent convergence to a stable WLC generation configuration, its
activity was blocked and a sequence of N = 7000 spectra ({S}N)

Fig. 4. Example of training of RL agent for WLC generation.
(a)–(c) All positions of the actuators during the whole experiment.
The different phases of the experiments are highlighted by vertical gray
bars. (d) Reward corresponding to each transition. The experiment is
concluded when the policy is able to provide a stable solution for WLC
generation.

Fig. 5. WLC spectra produced by RL agent after training. Differences
in shapes are due to the strong nonlinearity of the process and random
nature of parts of the training procedure.

Fig. 6. Example of evaluation episode. (a)–(c) Positions of the three
actuators. (d) Spectra corresponding to the first transitions of the episode
reported sequentially.

was acquired during 40 min, at a rate of ≈3 spectra per second.
To evaluate the overall stability we computed the auto-correlation
between the recorded spectra as a function of the delay τ :
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Fig. 7. Correlation function for 7000 WLC spectra sampled in 40 min.
See Eq. (1).

C(τ, {S}N)=
1

n − t

n−1−τ∑
i=0

Si · Si+τ . (1)

The results are shown in Fig. 7. Very high correlation values
(>99,9%) along the whole sampling period are observed, thus
confirming the good stability reached by the AI-generated WLC.

To conclude, in this work, we demonstrated the capability of
RL, currently the state of the art for model-free control, to handle
and optimize a complex and strongly nonlinear optical process
such as WLC generation. The agent is able to learn an effective pol-
icy of control of three degrees of freedom that, correctly combined,
allow stable and broadband WLC generation from a YAG crys-
tal. This proof-of-concept result may be helpful in experimental
contexts in which careful optimization of light sources is required
before performing the actual experiments, such as nonlinear spec-
troscopy, often requiring broadband and stable pulses, or quantum
optics, to control and tailor the spontaneous parametric down con-
version process, by which entangled photon pairs are generated.
More generally, multi-parametric processes that require precise
automated control may exploit RL as a control tool. Photonics can
benefit from AI not only to process data after measurements, but
also to control complex experimental processes.
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