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Abstract—In recent years, the booming of Internet of Things
(IoT) has populated the world with billions of smart devices
that implement novel services and applications. The potential
for cyberattacks on IoT systems have called for new solutions
from the research community. Remote attestation is a widely used
technique that allows a verifier to identify software compromise
on a remote platform (called prover). Traditional challenge-
response remote attestation protocols between the verifier and
a single prover face a severe scalability challenge when they are
applied to large scale IoT systems. To tackle this issue, recently
researchers have started developing attestation schemes, which
we refer to as Collective Remote Attestation (CRA) schemes, that
are capable of remotely performing attestation of large networks
of IoT devices.

In this paper, after providing the reader with a background on
remote attestation, we survey and analyze existing CRA schemes.
We present an analysis of their advantages and disadvantages,
as well as of their effectiveness against a reference attacker
model. We focus our attention on CRA schemes’ characteristics
and adversarial mitigation capabilities. We finally highlight open
research issues and give possible directions for mitigating both
the limitations of existing schemes, and new emerging challenges.
We believe this work can help guiding the design of current and
future proposals for CRA.

I. INTRODUCTION

Internet of Things (IoT) [1] devices are typically tiny
embedded and low-power devices that enable a wide range
of applications, from wearable applications, e.g., medical
wearable devices, to smart homes, or smart factories [2].
These small devices may be employed in interconnected
groups, and perform critical operations. Despite their poten-
tial in facilitating new applications and services, their low-
cost nature, pervasivness, and often reduced set of security
capabilities makes them an attractive target for cyber attacks.
IoT devices may present vulnerabilities that adversaries could
exploit [3] to mount an attack. This poses a potential danger
to services’ availability and, in certain applications, users’
data privacy [4]. As an example, in 2016 hackers launched
a Distributed Denial of Service (DDoS) attack on the website
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krebsonsecurity.com1 by using two botnets of 980,000
and 500,000 hacked devices, mostly cameras. Furthermore,
recently researchers have shown that security cameras affected
by malware can receive covert signals and leak sensitive
information from the very same surveillance system which
is meant to protect the facility and or data [5].

Remote Attestation (RA) [6] is an effective solution to
detect software compromise on a (remote) platform, and has
been successfully adopted to secure low-end devices [6]. At
a high-level, a RA scheme enables a verifier to assess the
integrity of the configuration (e.g., software and/or data) of
a remote prover device. In order to achieve this, the verifier
engages in an interactive procedure with the prover, where
the prover securely supplies a measurement (typically a hash)
of its platform’s configuration to the verifier, and the verifier
matches it against a known set of measurements of “healthy”
configurations.

Given the size and complexity of IoT systems, in particular
swarms of resource constrained devices, current RA schemes
are hard to scale [7]. In order to overcome the scalability
challenges of RA, several recent research works proposed
Collective Remote Attestation protocols (CRA), which allow a
verifier to obtain a unique measurement from a whole network
of smart devices; such measurement expresses the collective
status of the network, and optionally the individual status
of every device, effectively improving the scalability of the
RA protocol. Different schemes proposed in the literature
make different assumptions, e.g., they work on a hop-by-hop
basis [7], or on an end-to-end basis [8], and tackle different
types of attacker (e.g., software-only adversaries [7] and/or
physical-adversaries [9]).

Contribution. This paper makes an effort to provide a sys-
tematic and thorough revision of the state-of-the-art CRA
schemes, and to discuss their security properties w.r.t. a
reference attacker model. Our broader goal is to provide the
reader with the current state of the art in CRA protocols,
discussing open problems and future directions. In particular,
in this paper we provide the following contributions:

• We describe the system and security model for collective
remote attestation, and survey the state of the art for CRA.

• We analyze the different adversary typologies and attacks
that can be conducted on the IoT network.

1https://motherboard.vice.com/en us/article/8q8dab/15-million-connected-
cameras-DDoS-botnet-brian-krebs

https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-DDoS-botnet-brian-krebs
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• We perform a comparison between the protocols proposed
in the literature in terms of their characteristics, adver-
sarial mitigation capabilities and defensive capabilities
against different attacks.

• We discuss open problems and future research directions
in the field of CRA.

Organization. The rest of the paper is organized as follows.
In Section II, we discuss the common system and adversarial
model for CRA schemes. Section III discusses the different
types of device attestation mechanisms along with their pros
and cons. In Section IV, we present state-of-the-art for CRA
schemes which includes their features and comparative studies.
Security analysis of different CRA protocols is provided in
Section V. In Section VI, we highlight open problems regard-
ing CRA and their wide adaptability. Finally, in Section VII
and Section VIII, we present possible directions and future
work, and conclude the paper.

II. SYSTEM AND SECURITY MODEL FOR COLLECTIVE
REMOTE ATTESTATION

A. System Model

In this section, we outline the general system model for
CRA schemes. Typically, a system-model in CRA considers
a large network of low-end, embedded devices, e.g., IoT
devices in smart environments, cyber-physical systems in
industrial settings. These devices are heterogeneous in terms
of underlying software and hardware configurations and act as
provers (P). Along them, the other major stakeholders are the
network owner (O), the verifier (V), and aggregators (A). In
line with [7], [8], [10], we assume that devices in a large
network are able to communicate and identify their direct
neighbours.

Verifier (V)Owner (O)

Swarm 
Network

Aggregator (A)

Prover (P)

Prover (P)

Prover (P)

Fig. 1. Example of Swarm Network.

As shown in Figure 1, a brief description of the CRA system
model is as follows:
• Owner or Operator (O): The network owner (O) is

responsible for: (1) network setup and maintenance; (2)
provisioning of necessary cryptographic material and

credentials for attestation; and (3) (optionally) delegate a
third party entity to carry out periodic attestation rounds.

• Verifier (V): Throughout the CRA literature, the attes-
tation process is usually carried out by a third-party
entity that acts as a verifier (V) on behalf of the owner.
V carries out the attestation process usually by sending
an attestation request to the network, and collecting the
(global) attestation result in the form of an aggregated
proof. As an alternative, the attestation protocol can be
triggered by provers.

• Prover (P): Each device that has to be checked by
the verifier is referred to as prover (P). Provers in
the network are assumed to be heterogeneous w.r.t. the
underlying software and/or hardware. As a result of the
attestation procedure, P can be considered “healty”2 or
“compromised”.

• Aggregator (A): The main purpose of an aggregator (A)
is to relay messages among entities in a network and,
when possible, aggregate inputs from neighbors in the
topology. This entity is first explicitly introduced in [8].
In a decentralized environment, within a network each
prover can act as an aggregator.

B. Reference Attacker Model for CRA

Adversaries are interested in compromising IoT network
services to perform attacks on authentication, network avail-
ability, and service integrity3. In order to succeed, they are
hence interested in compromising devices and evade detection
by CRA schemes. In what follows, we summarize the attacker
models for CRA considered in the literature. The CRA and RA
literature, typically deal with the following types of attacker:
• Software Adversary (AdvSW ). This type of adversary,

also regarded as Remote Adversary in [12], has the ability
to run malicious code or firmware on a device.

• Mobile Software Adversary (AdvMSW ). This adver-
sary [13] is capable of compromising the software con-
figuration of a device and then to eliminate any trace of
its presence from the device (e.g., he is capable of erasing
the malware used to compromise the device).

• Physical Non-Intrusive Adversary (AdvPNI ). The at-
tacker [12] is in the proximity of the device and may infer
information from the devices, e.g., using side-channel
attacks.

• Stealthy Physical Intrusive Adversary (AdvSPI ). This
attacker [12] is capable of capturing a device, and may
attempt to exfiltrate information from it.

• Physical Intrusive Adversary (AdvPI ). This attacker [12]
is not only capable of capturing a device, but also to
introduce external hardware on it.

III. BACKGROUND: DEVICE REMOTE ATTESTATION

Device Remote Attestation (RA) is a well established
technique and has been studied extensively in the context of

2A device is healthy if it is running latest legitimate software version.
3The reader may refer to the survey in [11] for an extensive treatment of

attacks on Wireless Sensor Network systems.
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IoT [6], [12]. RA allows V to obtain a proof of the integrity of
the configuration (e.g., software, or data) of P. This is carried
out over an interactive protocol between V and P.

RA for IoT devices can be performed in several ways,
with different requirements in terms of device capabilities and
equipment, and security guarantees. At a high-level, we can
distinguish between software-based attestation, and attestation
based on root of trust. The remaining of this section briefly
describes each of them. Note that the following does not intend
to be a thorough treatment of the various attestation tech-
niques, for which we point the reader to the works in [6], [14].
Rather, in this section we provide the necessary background
information to the reader on remote device attestation, in order
to make the exposition self contained.

A. Software-Based Attestation

Software-based RA protocols typically rely on timing infor-
mation to allow V to assess the correctness of the firmware
running on the prover, and have little or no special hard
requirements on provers. These approaches usually imply strict
timing requirements on the network, which may not be feasible
in any generic IoT environment. An example of software-based
RA protocol is SoftWare-based ATTestation (SWATT) [15],
which leverages the fact that a malicious firmware running on
a (compromised) node must redirect the memory access to the
memory location where the original code resides, in order to
get a valid response to an attestation request. The overhead
introduced by this memory redirection has a direct impact on
the overall runtime, and thus, on the necessary amount of time
for the prover to respond. This would make a compromise
detectable by a remote verifier.

Furthermore, software-based RA schemes such as [15]–[17]
usually depend on strong assumptions regarding adversarial
capabilities. Moreover, these schemes work in scenarios where
V communicates with P in a one-hop network setting. This
makes them hard to deploy over large networks with multi-hop
distance between the verifier and provers.

B. Attestation Based on Root of Trust

To overcome some of the limitations of software-based RA,
several existing schemes rely on a Root of Trust (RP) residing
inside P. RP is assumed to be trusted, and is the endpoint of
the attestation protocol. In practice, RP typically consists of
some combination of hardware and software capabilities [14].

An example of attestation based on RP is Measured Boot,
which enables the verification of the integrity of a system
at boot time; Measured Boot relies on a RP that com-
prises a trusted bootloader and a Trusted Platform Module
(TPM) [18]. During boot, integrity measurements of the
memory are “recorded” into TPM’s Platform Configuration
Registers (PCRs), and sent to a remote verifier for verification.

When it comes to IoT security, RP is realized by leveraging
hardware providing minimal security capabilities, in partic-
ular code and memory isolation [19]. Examples of research
platforms for embedded systems with such capabilities are
SMART [20], SPM [21], SANCUS [22] and TyTAN [23];

commercial solutions, such as ARM TrustZone4, are already
available on popular IoT platforms. We will refer to the above
as Trusted Execution Environment (TEE) technologies.

Remote attestation schemes based on Root of Trust in
IoT assume either a shared secret between V and P (i.e., a
symmetric key k), or public key cryptography techniques (e.g.,
traditional public key cryptography, or more complex aggre-
gate multi-signatures [8]). Symmetric cryptography introduces
a considerably lower overhead than public key cryptography
in resource-constrained devices [7]; as such, it is generally
considered to be the preferable security solution to adopt in
the IoT space.

From the literature, independently from the cryptographic
scheme in use, and based on different assumptions and/or
prover’s capabilities, we can distinguish, at a high-level, four
strategies for a remote attestation protocol based on Root of
Trust: (1) Interactive RA, (2) Interactive Self-RA, (3) Non-
interactive RA, and (4) Non-interactive Self-RA. In what fol-
lows, for simplicity we are going to show each of them using
a symmetric key scheme.

1) Type 1: Interactive Remote Attestation: This is the most
widely used method. It consists of an interactive protocol
between V and P: V sends a challenge N to P’s RP,
which responds with a proof of the device’s configuration.
This proof usually consists of a hash of P’s configuration
c ← hash(conf(P)), concatenated with N . This proof is
signed, in case of public key cryptography, or tagged, in case
of symmetric cryptography, using a Message Authentication
Code (MAC). In the latter case, the result is a value h. V
verifies the integrity of P’s configuration by verifying the
authenticity of h, that is, recomputing h as a MAC using the
shared key k over c′||N (or verifying the signature using P’s
public key), where c′ is the expected configuration for P. Note
that, in the simplest scenario where the expected configuration
is one and known in advance, only the MAC (or signarure, if
using a public key scheme) is sent to V. The protocol is shown
in Figure 2. The scheme can be trivially extended to pass along
also the computed measurement c to V.

←

←

←

Fig. 2. Type 1: Interactive RA.

2) Type 2: Interactive Self-RA: Leveraging the capabilities
of the TEE, it is possible to perform the verification of c
directly at P’s side, provided that the list C = {c1, c2, . . . , cn}
of potential allowed configurations for P is securely installed

4https://www.arm.com/products/security-on-arm/trustzone

https://www.arm.com/products/security-on-arm/trustzone
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in a write-protected area of the device, and accessible by
RP. This type of attestation is depicted in Figure 3. In
this case, after receiving N from V, and computing the
measurement c ← hash(conf(P)) of P’s configuration, RP

produces a signed/MACed token h authenticating the binary
result r ∈ {TRUE,FALSE} of the attestation process, which is
then delivered to V. Self-attestation allows RP to produce
a customized token to communicate the result to V, which
may be needed, e.g., to scale attestation collection [8]. The
main disadvantage of this approach is the need for C to be
pre-installed in P’s memory, and/or securely updated.

∊
←

←
←

…

←

Fig. 3. Type 2: Interactive Self-RA.

3) Type 3: Non-interactive RA: Recently, protocols such
as SeED [24] and ERASMUS [13] modify the attestation
protocol flow by allowing P to autonomously determine the
time at which attestation happens, and to locally generate a
pseudo-random nonce N (ERASMUS uses time t to ensure
freshness). This removes the need for V to initiate the process,
giving more freedom to the specific device (see Figure 4). This
technique, however, requires additional hardware requirements
compared to Type 1 and Type 2 techniques. In particular, non-
interactive attestation protocols require some secure source of
time. SeED requires [24] a reliable Real Time Clock (RTC), to
correctly report the time at which the attestation result refers
to; and an Attestation Trigger (AT) circuit, which triggers
the attestation process at unpredictable points in time (using
a pseudo-random function). ERASMUS requires a Reliable
Read-Only Clock (RROC), which is not modifiable by soft-
ware.

Prover (P)

Root of Trust (R
P
) Firmware

INPUTS:
- Shared Secret key k

attestationTrigger()

N ← getNextNonce()

c ← conf(P)

h ← mac
k
(t||c||N)

t, c, h t, c, h

Verifier (V)

INPUTS:
- Shared Secret key k
- Allowed Configurations set 

C = {c
1
, …, c

n
}

N ← getNextNonce()

VERIFY:
(c∊C) AND h ← mac

k
(t||c||N)

Fig. 4. Type 3: Non-Interactive RA.

4) Type 4: Non-interactive Self-RA: This is a variation of
Type 3 used in [25] where, similar to Type 2, P’s TEE knows

the set of known configurations C = {c1, c2, . . . , cn}, and
can therefore perform self-attestation, when triggered by the
secure hardware (e.g., by the AT in [24]). The protocol is
shown in Figure 5.

…

←

←

…

←

∊
←

←

Fig. 5. Type 4: Non-Interactive Self-RA.

IV. STATE-OF-THE-ART FOR COLLECTIVE REMOTE
ATTESTATION

In this section, we overview the CRA literature. All of the
works proposed in the literature adopt a similar approach:
reduce the communication and computation of the attestation
process by securely “offloading” the execution of certain
operations to the nodes themselves. Furthermore, all the
CRA schemes presented in the literature assume provers are
equipped with a hardware-enabled TEE (e.g., TyTAN [23]).

A. CRA Schemes Description

SEDA. The work by Asokan et al. [7] first highlighted the
scalability challenges of remote attestation for large swarms
of low-end devices; the authors proposed SEDA (Scalable
Embedded Device Attestation), a scalable protocol for col-
lective attestation. SEDA allows the verifier to efficiently
perform attestation over an (overlay) spanning tree, rooted at
the verifier. The protocol comprises two phases: (1) an offline
phase; and (2) an online phase. The offline phase comprises: (i)
Device Initialization, performed by the owner (or operator) O
in a trusted setting, which provides provers with their expected
correct configuration conf(Pi) = ci, signed by O (it may
be different per each prover Pi), and credentials; and (ii)
Device Registration, where nodes securely establish pairwise
keys with their neighbors (e.g., wirelessly reachable devices)
using their credentials. The online phase of the protocol is
initialized by V, which broadcasts an attestation request to the
swarm creating a spanning tree. Each prover, after verifying
the authenticity of the request, propagates it to their children
in the spanning tree. Every prover Pi then attests its children
using the shared keys established during the offline phase, and
sends an “accumulated” result to the parent node indicating
whether the subtree routed at Pi has correct configuration (1)
or not (0), as shown in Figure 6.
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Fig. 6. Spanning Tree based CRA.

This process continues along the spanning tree until reach-
ing V, which assesses the status of the swarm by verifying
only the last attestation report. SEDA offers some degree of
protection against DoS attacks by limiting the “join-request”
frequency or by making them low-priority tasks in the net-
work. The authors of [7] also proposed a variant of SEDA
where every device piggybacks the IDs of the compromised
devices in the subtree alongside the aggregated attestation
result.

While a noteworthy first step towards a more scalable
attestation protocol, SEDA has some important limitations.
First, it requires the network to be “stable”, that is, every
node will maintain a fixed set of neighbors throughout the
operation time. Second, configurations are statically deployed
during the offline phase, and it is unclear how they are updated,
e.g., in case of Over-The-Air (OTA) firmware update. Third,
the attacker model considered by this protocol is limited to a
software-only attacker (AdvSW ).

DARPA. Ibrahim et al. [9] proposed DARPA as an attempt to
complement SEDA [7] to detect device captured by stronger
attackers, i.e., AdvSPI and AdvPI , which may evade detection
through attestation. The main essence of this protocol is to
detect whether an attack has been occurred rather than detect-
ing the individual malicious devices, i.e., detecting whether a
device has been captured. The assumption is that any physical
attack requires a non-negligible time tcap to be carried out.
Nodes periodically run an absence detection protocol with
their neighbors, recording present devices in a secure log. De-
vices generates “heartbeat” messages, along with a timestamp,
signed with their secret key and share them to the immediate
neighbours. During every absence detection protocol run,
every device initiates its own heartbeat based on either an
internal secure timer, or an heartbeat message received from
one of its neighbours. The neighbouring devices exchange
their respective heartbeats. In this way this timestamp-based
heartbeats of the devices are stored into a log file, which is
then transferred to V upon the protocol time out.

SANA. Ambrosin et al. [8] proposed SANA that addresses
some of the limitations of SEDA [7]. SANA relies on a
novel cryptographic method, called as Optimistic Aggregate
Signatures (OAS) to aggregate the attestation result of a
network through untrusted aggregators. OAS is a multi-party
signature scheme which enables SANA to efficiently aggregate
attestation report irrespective of the number of the signers due
to its short signature size and short verification time. SANA
also employs token for verifier assigned by the network owner.
This step helps to counter DoS attack, as only legitimate
verifiers can initiate attestation requests for the devices in the
network. In SANA, the attestation report is publicly verifiable
and provides details of compromised devices in the network.
Although SANA resolves many shortcomings of SEDA, it
still requires full connectivity among devices; furthermore,
the aggregate signature scheme introduces severe overhead on
low-end devices with respect to computation.

LISA. In [26], Carpent et al. proposed two Lightweight
Swarm Attestation (LISA) protocols, LISAα and LISAs.
These protocols improve SEDA [7] with respect to scalability
and resiliency to physical adversaries. Both versions of the
protocol operate over a spanning tree topology. LISAα is the
asynchronous version of the protocol. Authors describe the
Finite State Machines (FSMs) for provers and the verifier to
carry out the attestation procedure in the swarm. Differently
from SEDA, the nodes in LISAα collaborate only for prop-
agating the attestation requests, and responses. Furthermore,
provers in LISAα verify the session of an attestation response
before forwarding it to the parent node in the tree (to prevent
reply attacks and/or old messages to reach the verifier). LISAs

is the synchronous version of the protocol, and is similar to
SEDA in nature: nodes help “aggregating” attestation response
messages by attesting each children in the spanning tree, and
sending upstream in the tree only its attestation, together with
a list of IDs of the (attested) children.

An additional contribution of the paper in [26] consists
in the introduction of a metric named “Quality of Swarm
Attestation” (QoSA); QoSA compares the quality of different
swarm-attestation protocols based on the report generated by
swarm-attestation protocols and the information they yield.
Both protocols in LISA use a master key shared among all the
devices in the swarm in order to make the swarm attestation
less complex. As a consequence, in this scenario even a single
compromised node may result in the compromise of the whole
network. In cases where this problem is a concern (e.g., in case
of a physical attacker), the authors suggest to use a Public
Key Infrastructure (PKI) to establish trust among entities, at
the price, however, of additional complexity in the system.
Despite the effort for bringing collective remote attestation
closer to reality, LISAα and LISAs require full connectiv-
ity among nodes during the attestation process, which may
limit their applicability in dynamic networks or where there
is intermittent connectivity among nodes; it is noteworthy,
however, the effort by the authors in trying to formally define
the connectivity requirements, in terms of time the nodes shall
remain connected for the protocols to succeed.
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SeED. The protocol proposed in [24], SeED, enables attesta-
tion to be initiated by provers, rather than the verifier. This
translates in a reduced energy cost, communication overhead
and run-time compared to other verifier-initiated protocols,
such as SEDA [7], as well as additional protection against DoS
attacks on end devices (e.g., from a malicious verifier). SeED
per se is not a CRA protocol, but relies on SEDA [7] to effi-
ciently deliver attestation reports to the verifier. The security
of SeED relies on a secure random seed shared between every
device and O during the initial device bootstrapping phase;
end devices (provers) store their seed in a Memory Protection
Unit (MPU). This shared seed is used to generate a pseudo-
random sequence of times at which execute attestation (based
on a pseudo-random number generator), preventing a mobile
attacker AdvMSW to anticipate the next scheduled attestation
round. Every device in the network generates its respective
attestation report based on the randomly generated time, which
is delivered to V using SEDA [7]. As a consequence, SeED
inherits the same limitations of SEDA.

SCAPI. Kohnhauser et al. [27] presented SCAPI, which im-
proves DARPA [9] by reporting the exact captured devices. In
SCAPI the authors propose to periodically distribute a session
key among all the devices that are not physically compro-
mised. A “leader” device generates a secret session key for the
subsequent time period. When a new session key is generated,
devices need to authenticate with the old session key in order
to receive the updated session key. The security of SCAPI
relies on the assumption that a AdvPI cannot capture a device
without turning a device off for a noticeable amount of time.
In this way, the captured devices will not be able to obtain the
updated session key, and consequently, the protocol allows the
detection of physical attacks. SCAPI improves DARPA w.r.t.
network communication, energy consumption and run time.
However, SCAPI relies on other CRA protocols like [7], [8] for
scaling and consequently it has limited application in highly
dynamic networks or where there is intermittent connectivity
among nodes.

ERASMUS. In [13], Carpent et al. proposed ERASMUS,
a RA protocol that, differently from existing RA schemes,
aims at detecting mobile adversaries AdvMSW and reducing
computation requirements for provers. In ERASMUS, provers
self-attest at pre-defined time intervals (Type 3 attestation
in Section III-B), and locally store up to n consecutive
measurements in its untrusted storage. V occasionally collects
and verifies the latest k measurements from the swarm of
(potentially unattended) provers. This technique enables V to
identify whether there is any presence of a mobile adversary
between two successive attestation occurrences. ERASMUS
achieves roughly 2X improvement w.r.t. simple interactive
RA: ≈ 0.3 seconds runtime vs ≈ 0.6 seconds on a single
device with memory size of 10 MBytes. Authors claim that
this unique feature makes ERASMUS as an ideal candidate
for device attestation of unattended or safety-critical resource
constraint devices. As for CRA on swarms, ERASMUS can
leverage techniques such as SEDA or LISA. However, dif-

ferent from the original schemes that use Type 1 or Type 2
attestation (Section III-B), ERASMUS simplifies the collection
phase, which does not involve any online computation (provers
simply hand over k store measurements to V); this makes
ERASMUS a better fit to highly mobile use cases.

SALAD. Kohnhauser et al. proposed Secure and Lightweight
Attestation for Highly dynamic or disruptive networks
(SALAD) [28]. SALAD per se does not provide any novel
attestation mechanisms. Rather, its main focus is to provide a
lightweight message aggregation scheme for highly dynamic
networks which has intermittent connectivity. SALAD works
in a distributed fashion. V starts the CRA protocol by sending
a (signed) request to a device. The device exchanges the
request with its neighbors (i.e., devices in its communication
range), and computes its measurement. Neighboring devices
also mutually exchange their attestation reports, and locally
aggregate them. Eventually, this leads to a state where every
node has an (aggregated) attestation result for the whole
network. V can connect to one of the devices to obtain
the attestation result for the whole network. In order to
optimize storage and communication overhead, SALAD relies
on aggregation of Message Authentication Codes (MACs),
proposing two MAC schemes: MACGreedy, whose goal is
to minimize the storage consumption of all the attestation
reports, by aggregating MACs in a greedy manner via XOR,
and MACSmart, which aims at minimizing the size of the
transmitted reports among devices. Both MAC schemes try
to eliminate duplicate information contained in aggregated
attestation reports. As this is equivalent to solving the set
coverage problem and the set packing problem, the authors
utilize some heuristics that are suitable to resource-constrained
devices.

PADS. Ambrosin et al. [25] presented PADS, a protocol
that, similar to SALAD, focuses on highly dynamic swarm
topologies. PADS turns the problem of attesting a swarm
of devices into a consensus problem. Each prover in PADS
attests itself using a non-interactive attestation technique sim-
ilar to SeED [24] (Type 3 attestation), and then broadcasts
an attestation report to its neighbors (i.e., devices within its
communication range) for a certain number of times. The
attestation report contains a representation of the health status
of the network from the point of view of the prover, in the
form of a bitmap, and it is signed by the TEE of the device.
Devices efficiently merge their knowledge of the network
with the one received from their neighbors using the AND

operator. Over time, the view of the network of every prover
will converge to the true state of the network. V can then
query an arbitrary device (or a subset of them) for the CRA
result. The main advantage of PADS w.r.t. other CRA schemes
is its resiliency w.r.t. network topology changes; as devices
continue to broadcast for a certain amount of time their “view
of the network”, and lost transmissions do not affect the result
collection. PADS does not rely on a spannig tree to perform
attestation. Furthermore, PADS allows an attestation report to
provide “partial” knowledge of the network, and introduces
the notion of coverage, to quantify the completeness of the
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information.
Similar to LISA [26], PADS uses symmetric cryptography

for efficiency reasons, and a single key is shared by all the
devices. This assumption reduces the overall security of the
system, making it vulnerable to a hardware adversary.

WISE. Ammar et al. [29] recently proposed a novel approach
to perform remote attestation of large-scale IoT network
by employing resource efficient machine learning techniques
based on Hidden Markov model. The main goal of WISE is
to perform attestation over a carefully selected subset of the
provers, to reduce the complexity of the attestation process,
and reduce memory and energy consumption on devices.
WISE consists of two phases. The first phase is an offline
phase, where the owner of the deployment provisions the
provers with some key material, and groups them into clusters
(e.g., based on their geographic location). The second phase is
triggered by the verifier (V), which runs a collective attestation
protocol over a subset of devices (instead of the entire swarm)
that are selected depending on: (i) the attestation history
of every device, and (ii) some individual characteristics of
these devices and constraints (e.g., number of compromised
devices in the device’s neighborhood, maximum amount of
time between attestation rounds for the device, etc.). The first
round of attestation is performed for all the network. Similar to
other schemes, it uses a spanning tree to propagate the request,
and aggregates the response. The “wiser” selection of targets
is performed in subsequent rounds of the protocol. The use of
spanning tree for communicating and aggregating the results
makes the protocol more prone to communication errors, in
case of high mobility.

Apart from providing smart, efficient and clustering based
RA approach, WISE also provides security against the roving
malware5 due to its unpredictable and variable attestation time
and frequency which differs among types of devices in a mesh
network.

slimIoT. Ammar et al. proposed slimIoT [30], a protocol that
improves SCAPI [27] in the following aspects: (1) unlike
SCAPI, it does not assume that majority of the total devices in
the network should be healthy, slimIoT can accurately identify
the compromised devices with the assumption that at least one
device in the network remains healthy; (2) it allows device
mobility during attestation. slimIoT organizes the devices
into clusters that are periodically attested at pre-define time
intervals called epochs; these epochs are chosen s.t. the length
of the interval is smaller than the time needed by a physical
adversary AdvPI to mount an attack and remain undetected.
The absence of any device from the cluster indicates the
possibility of a physical adversary. slimIoT uses symmetric key
cryptography to rely on authenticated parameterized broadcast
messages. slimIoT relies on a one-way keychain composed
on n symmetric keys, built s.t. ki−1 = hash(ki). In a
initialization phase, devices are provided with key k0, so

5An advanced type of malware that is knowledgeable about the attestation
schedule and therefore only active between any two successive attestation
routines. It also has the ability to delete itself at the beginning of the attestation
to avoid detection.

that they can verify the authenticity of every key used, as
hash(hash(hash(...hash(ki)...))) = k0, but cannot construct
any ki from k0. Each key is mapped to a series of non-
overlapping time intervals, where each epoch is divided into
four time sub-intervals. Provers use delayed key disclosure
(similar to other broadcast authentication protocols such as
TESLA [31]) to authenticate messages from V. During the
online phase, at the beginning of the first time sub-interval of
each epoch, V issues four messages: (1) a message with a
fresh nonce authenticated by a Hash Message Authentication
Code (HMAC), (2) an encrypted and HMAC-authenticated
message with the attestation request (using an encryption key
derived from the key corresponding to the 2nd time sub-
interval in the epoch k2), (3) a key disclosure message for
the key used to compute the HMAC on the first message, and
(4) a key disclosure message for the key used to compute
the HMAC on the second message. Each prover performs
a variation of the Type 2 attestation in Section III-B. Every
attestation report carries the ID of the prover, a bit array, s.t.,
value 1 at position i indicates that prover Pi is in a correct
status, and an authentication value computed by hashing a
nonce value received in the (encrypted) attestation request
and the correct prover configuration; message authenticity is
achieved by HMAC using k0. Broadcast messages from V
are propagated by devices along the spanning tree maintained
by the network; certain fields of the attestation response are
aggregated on a hop-by-hop manner using XOR. slimIoT
tolerates temporary disconnections of devices by mapping keys
to time sub-intervals: if a device misses an attestation round,
it will still be able to participate once connection is available
in the next epoch, as it will still be able to verify messages
from V. Still, slimIoT requires devices to maintain a static
formation for the duration of the attestation protocol instance.

SAP. Nunes et al. [32] defined Timely Collective Attestation
(TCA) (i.e., an use-case formal model for CRA) model defi-
nition and systematically designed a Synchronous Attestation
Protocol (SAP) based on TCA. The TCA model serves as
an analyzing base for the other proposed CRA schemes
and helps in identifying the main design requirements for a
CRA approach. The design specifications include parameters
like network topology, devices specifications (e.g., hardware
and software), adversarial model, device computation power,
network communication and attestation results. Attestation
results are again further subdivided based on the Quality of
Attestation, as proposed in [26]. The proposed TCA model
systematically treats any CRA based on the TCA-Efficiency,
TCA-Soundness and TCA-Security.

In SAP, the authors propose to construct the swarm network
as a balanced binary tree in which the root is the verifier.
The attestation challenge propagates along the tree and a
secure clock on every device guarantees the verification of
the attestation challenge at time tatt. Upon receiving the
challenge, each device performs attestation and sends the
result to its parent. In [32], a parent node performs XOR
operation over received result along with own attestation result
and forwards the result to its own parent. Upon successful
completion of the network-wide attestation, V receives the
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XORed result of the swarm S and validates the result. SAP
depends on symmetric key based cryptography and employs
secure, read-only clock to synchronize the attestation time with
other nodes in S. In this work, the clock is instrumental to
provide security against DoS or man in the middle attacks by
validating the attestation time. While SAP provides the base
for comprehensive and categorical analysis of any CRA based
on the TCA-model, it does not support device mobility. In
addition, SAP is not resilient against a stronger attacker such
as a physical adversary or a run-time attack. Moreover, SAP
does not allow the V to identify specific malicious nodes in the
network because the attestation result of SAP is only a binary
output which shows whether the entire S is trustworthy or not.

MTRA. Tan et al. [33] proposed a hierarchical attestation
framework for IoT networks named Multiple-Tier Remote
Attestation protocol (MTRA). In MTRA there are three types
of entities: the trusted verifier V (e.g., a base station), high-
end devices equipped with a Trusted Platform Module (TPM),
and low end devices without any secure hardware capability.
V is directly connected with TPM-equipped devices; low-
end devices are assumed to be 1-hop connected to a TPM-
equipped device, which acts as cluster head(s) in the wireless
network. The attestation process is divided into two phases,
an offline phase, and an online phase. During the offline
phase, V provides TPM-enabled devices with unique key
pairs that are bound to the state of TPM’s PCR registers
(this, in turn, depends on the device configuration, and can
be populated, e.g., through measured boot). V generates a
key chain, i.e., a sequence of n+1 keys, k0, . . . , kn such that
ki = hash(ki+1), and distributes kn to all the TPM-equipped
devices, sealed (encrypted) against the correct status of the
PCRs using the TPMSeal function; the device will later be able
to unseal (decrypt) this value if the status of its PCRs is valid.
End devices are initialized with their application code, and
the remaining of their memory is filled with unique random
incompressible bits.

In the online phase, V initiates the i-th round of attestation
sending a challenge to one of the TPM-equipped cluster-heads.
V attests the TPM-equipped device first (Type 1 attestation
in Section III-B), which in turn will attest the end devices.
The challenge contains a nonce and kn−i, and is encrypted
with kn−i+1. The TPM-equipped devices have kn−i+1 locally
stored and sealed (initially kn). The TPM-equipped device
unseals (TPMUnseal) kn−i+1 (note that, if the boot sequence
populated the PCRs with an invalid configuration, this would
not be possible) and decrypts the challenge; then, it verifies
that kn−i+1 = hash(kn−i). If this matches (this is used to
authenticate the attestation request), the TPM-equipped device
sends its configuration to V (as explained in the paper, the fact
that the keys are sealed against PCRs in the device ensures the
devices is in a correct state), which verifies it. If the TPM-
equipped device does not respond within a certain amount of
time, V assumes it is compromised. The TPM-equipped device
then stores and seals kn−1. The provers connected to the TPM-
equipped device are attested via software-based attestation,
performing similar operations as the TPM-equipped devices,
but sending to V (through the TPM-equipped device) the

hash of their entire program flash. The authors argue that this
process of measuring the whole flash will prevent adversaries
to perform Time Of Check To Time Of Use [34] (TOCTTOU)
attacks6; furthermore, they claim that the use of key chains
prevents other type of network attacks, such as rainbow attacks
and wormhole attacks. Local key chains can be employed
between TPM-equipped devices and end IoT devices to thwart
wormhole attacks. Finally, as acknowledged by the authors,
MTRA works only for static networks.

RADIS. Conti et al. proposed RADIS [35], a CRA scheme
that turns the CRA problem into a distributed service attes-
tation problem. RADIS aims to detect compromised devices
in a distributed IoT service and the legitimate IoT devices
that are performing a malicious operation due to corrupted
communication data exchanged with the compromised devices.
RADIS relies on the so called control flow attestation, which
aims at measuring the integrity of the execution of a software,
rather than only its static properties; this is to detect runtime
attacks, such as code-reuse attacks [36]–[38]. Figure 7 shows
two services Service Si and Service Sj (running on Prover
Pi and Pj respectively) which compose a distributed IoT
service. Below each service, it is depicted the corresponding
control-flow graph, where the nodes of the graph are the code
instructions. The main idea of RADIS is to represent the entire
execution flow of a distributed IoT service as a single hash
value. RADIS computes this single hash with an accumulative
hash algorithm, where for each node N the hash is calculated
as Hi = hash(Hi−1, N).

The protocol starts with V sending an attestation request
for a service Si to a prover Pi. When the execution of a
distributed service starts at node A (as shown in Figure 7), Pi
will compute the local control flow starting from 0, and will
maintain an accumulative hash value for entire service flow
execution. When the service Si in Pi needs to use another
service Sj on another prover Pj , the trust anchor in such
device will validate the request from Pi and this time the
computation of the control-flow attestation measurement will
not start again from 0 but from the hash of the calling service
e.g., computation of H3 in Figure 7. Clearly, if Sj in turn
requires another service, this process will be repeated and the
accumulated result will be returned to Pi. The final result will
then be the accumulation of the entire execution flow of the
distributed IoT service.

RADIS improves the state of the art by tackling runtime
attacks. However, the need for precomputing all the possible
control flows, not only within one device, but for the inter-
actions among devices in the network, along with the need
for additional specialized hardware, makes RADIS hard to
scale to large systems, and mostly usable for rather small
and controlled IoT environments (such as a Smart Home IoT
system).

ESDRA. Kuang et al. proposed Efficient and Secure Dis-

6Remote attestation checks the state of a device at a given time, but does
not provide information about the device’s state between consecutive RA
executions or between attestation and following use of the device. Therefore,
transient malware may be undetected.
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Fig. 7. Attestation of distributed IoT services

tributed Remote Attestation (ESDRA) [39], which aims to
reduce the possibility of single node failure. In ESDRA, the
network is divided into clusters based on the communication
distance among nodes; one of the nodes within a cluster
acts as a cluster-head. In ESDRA, every node is attested by
three of its neighbours; the cluster head re-checks and sends
the attestation report to the verifier. The ESDRA protocol
uses elliptic curve cryptography to generate asymmetric key
pairs sk, pk. These key pairs will be assigned to devices at
the bootstrapping phase. To attest a node in the network,
ESDRA employs a reputation mechanism, which defines the
reputations of nodes based on their previous behaviors. Every
node in ESDRA maintains a reputation score (called by the
authors credit score) for all the neighbours it attests. The
score for a P increases if the P can be successfully attested
by another P which acts as a V, and decreases if it fails.
During attestation, the neighbors of a given P challenge P
and immediately record the challenge time. The credit score
also indicates the current status of any P in the network.
However, it introduces assumption like software only attacker.
Moreover, the use of elliptic curve cryptography for attestation
and link establishment among devices and public private
cryptography for the secure communication incur cost in terms
of computation and memory usages for tiny IoT devices.

US-AID. Ibrahim et al. [40] proposed a CRA scheme called
Unattended Scalable Attestation of IoT Devices (US-AID) to
attest large autonomous dynamic IoT networks. The authors
claim that US-AID is different from the collective attestation
state-of-the-art as it performs in-network attestation among
neighbours in the network without the presence of a trusted
centralized verifier; US-AID also performs absence detection
to identify physical adversary in the network. US-AID does
not require the network of IoT devices to be static during
the attestation phase. The US-AID protocol has an offline
and an online phase. During the offline phase the network
owner sets up the network and bootstraps devices with nec-
essary attestation details. At this stage all devices are benign.
During the online phase neighbour devices perform mutual
attestation: two neighbour devices exchange their respective
software state upon mutual authentication (i.e., achieved by
secure key sharing). Upon successful attestation, devices store
the respective results into two separate lists (one for benign

state and another one for compromised state devices). US-
AID employs DARPA’s heartbeat protocol [9] for absence
detection. The absence of a centralised verifier makes US-
AID robust as removes the single-point failure of a centralised
attestation. While in US-AID the devices can perform attesta-
tion periodically and maintain a snapshot of the neighbour’s
health, the complex key establishing mechanism (i.e., Diffie-
Hellman) makes this protocol computationally costly for low-
end devices.

EAPA. Yan et al. proposed a CRA scheme named Efficient
Attestation scheme resilient to Physical Attacks (EAPA) [41].
EAPA utilizes the mechanisms proposed in DARPA [9] and
SCAPI [27] by employing heartbeats. In this approach, every
device in the network establishes secure communication with
its neighbour based on secure key communication. Based on
the internal secure clock, every device generates a heartbeat
and shares it with its neighbour. Upon receiving the heart-
beats from the neighbours, every device authenticates the
message. Then, upon successful attestation, the device stores
the neighbour’s device ID in the present device list and update
the corresponding session keys. To detect physical adversary,
EAPA relies on the same assumptions and mechanisms as
DARPA. In EAPA every device manages two distinct lists for
its neighbour: the list of devices that are successfully attested
and the list of absent devices. During verification, the network
owner will take the report from the prover device which acts
as a verifier for its neighbours. The authors claim that EAPA
improves SCAPI in terms of runtime and network overhead.
Further, authors in EAPA also claim that they have improved
SCAPI in terms of security as EAPA eliminates the single
point of failure and all the provers mutually attest each other.

SHeLA. Rabbani et al. proposed SHeLA [42], a scalable
heterogeneous (i.e. a swarm that consists of nodes that com-
municate over different wireless communication protocols)
layered attestation scheme for large IoT networks. The paper
provides an architecture and a protocol for remote attestation
of a swarm of IoT devices that considers the mobility of the
provers. To this aim, the paper introduces an edge computing
layer between the verifier and the swarm network. Multiple
edge verifiers are deployed to cover different areas allowing
swarm nodes to leave and join as needed. Each edge verifier
(V) also maintains information of every swarm registered P,
P moved as guests, and all other V. The root V has the
information of all the other edge verifiers and swarm P.

In SHeLA the attestation process is divided into an offline
phase and an online phase. In the offline phase, P in network
are bootstrapped with attestation related details and registered
with an edge V. During the online phase, edge verifiers per-
form attestation of the underlying IoT devices over a spanning
tree. Unlike most of the RA schemes, SHeLA supports device
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mobility. Through built-in redundancy7 of the edge verifiers,
it allows the swarm nodes to be temporarily unavailable or
invisible to one or more edge devices. Therefore, even during
attestation, P does not have to be static. Furthermore, SHeLA
helps the root V to collect detailed information on the sanity
of the individual network device. It varies from most current
schemes where the granularity of the attestation is restricted
to a binary outcome for the whole swarm. Authors claim
that SHeLA satisfies all the properties of quality of swarm
attestation (QoSA), as proposed by Carpent et al. [26].

HEALED. Ibrahim et al. in [43] proposed Healing and at-
testation for low-end embedded devices (HEALED). Authors
claim that unlike other attestation mechanisms, HEALED not
only detects malicious P in a network, but also provides
efficient mechanisms to disinfect the affected P. The authors
assume a network of low-end embedded devices where a
set of devices act as verifiers and others set of devices as
provers. Based on predefined time, the verifier V attests the
prover P. The devices can be heterogeneous in terms of
software and hardware configurations, however, V will share
pairwise symmetric keys with all provers in the network.
The attestation mechanism is divided into two main parts.
In the first phase, one of the network devices acts as a V
and sends the “Nonce” to the potential untrusted P. Upon
receiving the Nonce, each P performs a merkle hash tree
based measurement over its software state and computes a
MAC using the shared key and sends the result to V. Upon
receiving the MAC, V verifies the result. If the attestation is
successful V stores the result as 1 (benign state), otherwise,
if the attestation result does not match with the predefined
state, V initiates the heal function. In the second phase of
the attestation mechanism, called Healed, V broadcasts for a
similar class of devices for the affected P. Once V finds a
similar device, it performs the mutual attestation to verify the
device’s internal state. Upon successful attestation, the similar
device will initiate the healing process. HEALED constructs
the segments of the Prover’s software as a Markle Hash Tree
(MHT), where the root of the tree is the measurement of
the software state of the Prover. Thus, a compromised code
segment generates a non-valid hash value along the path to
the MHT root. Upon locating the corrupt memory region,
the healer device sends authenticated patch to restore the
original software and P, then updates its internal state with
the patch. However, a P can decline the healing process, but
in this case it will not be able to prove its trustworthiness to
other network devices. HEALED is built based on the design
principle of distributed attestation mechanism where devices
perform attestation without the presence of centralized entity
like V. However, the protocol may not be scalable over a
large network due to its mechanism. Furthermore, the healing
process does not guarantee whether the affected device will

7In SHeLA, when a P become mobile and moves between the coverage of
edge verifiers then redundancy is introduced through one to one RA between
edge verifier and the P. The edge verifiers cove rthe entire swarm network,
in the unlikely event of a missing P, that is out of coverage for all the edge
V, the edge V that performs the last attestation of the missing P keep tracks
of the timestamp based attestation result.

update its affected memory region with the benign code or
not. In addition, use of distributed V raises concern over the
safety of V itself, since there is no mechanism to guarantee
the authenticity of V device.

SARA. Dushku et al. in [44] proposed a Secure Asyn-
chronous Remote Attestation (SARA) protocol which attests
asynchronously a group of interacting IoT devices. SARA
assumes that each device provides one or many IoT services
and IoT services follow a publish/subscribe communication
paradigm to interact among themselves composing the so-
called distributed IoT services. SARA aims to attest distributed
IoT services running on IoT devices by guaranteeing that
the software of IoT services have not been compromised and
that the exchanged communication data have not maliciously
influenced directly or indirectly the operation of the commu-
nicating services. In addition, SARA allows the attestation
of a group of IoT devices without suspending the regular
operation of all the devices at the same time. Given the
challenges of physical clock synchronization of IoT devices
and unpredictable triggering of events in the publish/subscribe
model, SARA traces the execution order of IoT devices
by adopting the usage of vector logical clock mechanisms.
Specifically, in SARA each service Si maintains a vector
clock V Ci, where initially each value V Ci[i] is 0. Before a
service Si sends a message, it computes V Ci[i] = V Ci[i]+1,
and then sends V Ci along with the message. When Si
receives a message associated to another vector clock OV ,
Si sets: (1) V Ci[j] = max{V Ci[j], OV [j]},∀j ∈ [1..N ],
(2) V Ci[i] = V Ci[i] + 1. In SARA, attestation starts at time
T0 when the V, i.e., an external trusted party, sends an
attestation challenge to a Publisher Pub. Then, Pub registers
the input received by environment, registers the output data of
its own operation, computes the checksum of Pub’s program
binary, and then increments by one its own logical clock. Next,
Pub signs this evidence and sends it along with the published
data. When a Subscriber Sub gets a signed message from
Pub, Sub verifies the signature of the received message,
records the input received from Pub, and based on the logical
clock sent by Pub, Sub will update its own logical clock.
V collects the attestation result at time T1, by sending an
attestation request to one (or more) subscriber Sub (acting
as a P) which along with the timestamped attestation result
of Sub will send also the timestamped attestation result of
previous interacting services. To verify the attestation result,
V relies on vector logical clock properties to: (1) accurately
construct a graph of the order of interactions among services,
(2) verify the checksum of each service, and (3) verify the
communication data exchanged among them. The vector clock
properties allow V to identify those services that directly or
indirectly have influenced the current state of P. The size of
the attestation evidence in SARA increases linearly with the
number of the services that are included in the evidence.

B. Summary

Table I summarizes the main characteristics of the CRA
schemes presented in this section. In particular, Table I shows
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TABLE I
FEATURES COMPARISON

Scheme
DoS Attestation Node

Mitigation Type Mobility

SEDA [7] 7 Type 1 7

SANA [8] 7 Type 2 7

LISAα, LISAs [26] 7 Type 1 7

DARPA [9] 7 Type 1 7

SeED [24] 3 Type 3 7

SCAPI [27] 3 Type 1 7

ERASMUS [13] 7 Type 3 3

SALAD [28] 3 Type 1 3

PADS [25] 3 Type 4 3

WISE [29] 7 Type 1 7

slimIoT [30] 7 Type 1 7

SAP [32] 3 Type 1 7

MTRA [33] 3 Type 1 7

RADIS [35] 7 Type 1 7

ESDRA [39] 7 Type 1 3

US-AID [40] 7 Type 1 3

EAPA [41] 7 Type 1 3

SHeLA [42] 7 Type 1 3

HEALED [43] 7 Type 1 3

SARA [44] 7 Type 1 7

whether a CRA schemes allows node mobility during attesta-
tion or not. This specific characteristic indicates whether the
CRA scheme accounts for nodes mobility (and consequently,
for potential discontinuity of the connectivity among devices),
or only when the devices are static, at least for the duration
of the attestation protocol. Furthermore, Table II presents a
comparison of the CRA schemes w.r.t. their efficiency in
terms of scalability and runtime. Moreover, Table II provides
details about implementation setup, mainly the simulation
environment and prototype implementation of the respective
CRA schemes. Note that, the data reported in Table II is
as shown in the original papers (Due to unavailability of
the simulation results in terms of scalability and runtime,
we exclude ERASMUS [13] from Table II). Due to the
heterogeneity of the simulation setting used by the different
proposals, it is difficult to provide a fair comparison of their
results. What catches the eye is the high complexity of some
recent protocols. SALAD [28], for example, trades security for
higher overhead, making the proposal potentially impractical
for very large node deployments. Similarly, HEALED [43]
introduces a healing phase for compromised devices, incurring
in additional overhead; it is thus more suitable for small to
medium sized deployments: from Table II we can see it takes
approximately 1.8 seconds to attest (and heal) 20 devices, an
order of magnitude larger than the time taken by RADIS [35]
or LISAα, LISAs [26] for a comparable network size.

V. SECURITY ANALYSIS

In this section, we compare the various CRA schemes
proposed in the literature according to the attacker model
presented in Section II-B.

Table III compares the surveyed schemes based on the
attestation adversary types they defend against (introduced

in Section II-B). As shown in the table, all the discussed
CRA schemes can detect software adversary, due to their
core motivation of finding the legitimacy of the underlying
software of P. On the other hand, only ERASMUS [13],
SeED [24], WISE [29] and SARA [44] provide solutions to
tackle AdvMSW (i.e., an adversary which changes its location
continuously to evade detection and perform malicious activ-
ities during two successive attestation periods). ERASMUS
relies on continuous monitoring, irrespective of the attestation
period, and stores the attestation results in a tamper-resistant
hardware module in order to secure it from unauthorized
accesses. With ERASMUS, during attestation period V gets
the chain of previous attestation results thus enabling the
detection of a mobile adversary. WISE leverages continuous
monitoring and unpredictable and variable attestation times to
protect against AdvMSW . In MTRA, authors rely on TPM
enabled devices to perform attestation where TPM enabled
higher-end devices act as cluster-head and perform attestation
of the underlying low-end devices which lacks in tamper-proof
hardware protection.

Physical attacks, performed by strong adversaries such as
AdvSPI and AdvPI , require adversary to capture the device
for a non-negligible amount of time in order to tamper with
the hardware. So far, few CRA schemes like DARPA [9],
SeED [24], SCAPI [27], slimIoT [30], US-AID [40], and
EAPA [41] are capable of noticing the absence of any device
in the network, as these specific attestation schemes run an
absence detection protocol where each node registers their
neighbors’ “heartbeats”. Since a physical adversary requires a
non-negligible time to capture and perform malicious activities
on devices, the compromised nodes will remain absent during
one or more attestation runs. PADS [25] uses a specific
label to identify devices whose state is “unknown”, with the
goal of disambiguating cases where a device is not reached
by the attestation protocol versus cases where the device
is simply inactive during the protocol. In PADS, only after
several successive attestation rounds where a device is reported
an “unknown” this device is considered as “compromised”.
SALAD [28] considers physical adversaries in its adversarial
model. The authors define realistic security requirements in
presence of attackers that can violate the TEE, defining the
security of the system against a physical attacker as the
inability for the attacker to fake the attestation response for a
non-physically compromised device. This requirement is not
met by PADS [25] and LISAα, LISAs [26]. DARPA [9],
SeED [24], SCAPI [27], SALAD [28], and slimIoT [30] rely
on specialized hardware and absence detection for detecting
device captures.

VI. OPEN ISSUES FOR COLLECTIVE REMOTE
ATTESTATION

Collective Remote Attestation (CRA) is a relatively low-cost
solution to check the integrity of IoT swarms. In what follows,
we highlight some limitations of the existing CRA literature.
Moreover, we sum up a few open challenges associated with
CRA that the research community is currently working on, but
that still need practical and complete solutions.
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TABLE II
COMPLEXITY COMPARISON

Scheme
Number of Devices Simulation Communication Simulation Prototype
in the Simulation Runtime Protocol Environment Platform

SANA [8] 1,000,000 ≈ 2.5 sec ZigBee OMNeT++ Tytan

SEDA [7] 1,000,000 ≈ 1.4 sec ZigBee OMNeT++ SMART and TrustLite

LISAα, LISAs [26] 40 ≈ 0.1 sec WiFi CORE Unspecified

DARPA [9] 1,000,000 ≈ 0.4 sec ZigBee OMNeT++ SMART

SeED [24] 1,000,000 ≈ 0.8 sec ZigBee OMNeT++ SMART and TrustLite

SCAPI [27] 500,000 ≈ 128 sec ZigBee OMNeT++ Stellaris EK-LM4F120XL

SALAD [28] 3,000 ≈ 10 to 20 minutes ZigBee OMNeT++ Stellaris LM4F120H5QR

PADS [25] 16,000 ≈ 2 sec IEEE 802.15.4 OMNeT++ Unspecified

WISE [29] 10,000 ≈ 12.5 sec IEEE 802.15.4 OMNeT++
Raspberry PI, Arduino (Zero, Uno and Due), Microship STK 600

with AVR Atmega644P MCU, and MicroPnP IoT

slimIoT [30] 1,000,000 ≈ 18 sec IEEE 802.15.4 OMNeT++ Unspecified

SAP [32] 1,000,000 ≈ 0.6 sec Unspecified OMNeT++ TrustLite

MTRA [33] 8,000 ≈ 24 sec Unspecified NS3 Odroid XU4

RADIS [35] 10 ≈ 0.1 sec WiFi Docker based Unspecified

ESDRA [39] 1,000,000 ≈ 0.5 sec ZigBee OMNeT++ Unspecified

US-AID [40] 1,000,000 ≈ 1.5 sec ZigBee OMNeT++ Raspberry Pi 3 Model B

EAPA [41] 25,000 ≈ 0.2 sec Unspecified OMNeT++ Unspecified

SHeLA [42] 50 ≈ 10.1 ms(*) WiFi Unspecified Xilinx FPGA

HEALED [43] 20 ≈ 1.8 sec WiFi OMNeT++ SMART and Trustlite

SARA [44] 250 ≈ 19 sec IEEE 802.15.4 Instant Contiki Unspecified

(*) Overhead measured on the prototype platform

TABLE III
MITIGATION CAPABILITIES W.R.T. ATTESTATION ADVERSARIES

Scheme AdvSW AdvMSW AdvSPI AdvPI AdvPNI

SANA [8] 3 7 7 7 7

SEDA [7] 3 7 7 7 7

LISA [26] 3 7 7 7 7

DARPA [9] 3 7 7 3 7

SeED [24] 3 3 7 3 7

SCAPI [27] 3 7 7 3 7

ERASMUS [13] 3 3 3 7 7

SALAD [28] 3 7 3 7 3

PADS [25] 3 7 7 7 7

WISE [29] 3 3 7 7 7

slimIoT [30] 3 7 7 3 7

SAP [32] 3 7 7 7 7

MTRA [33] 3 7 7 3 7

RADIS [35] 3 7 7 7 7

ESDRA [39] 3 7 7 7 7

US-AID [40] 3 7 7 3 7

EAPA [41] 3 7 7 3 7

SHeLA [42] 3 7 7 7 7

HEALED [43] 3 7 7 7 7

SARA [44] 3 3 7 7 7

Key Management. Choosing the most appropriate key mech-
anism is critical. CRA solutions in the literature have used
various approaches, trying to balance security and efficiency.

We can broadly classify key management schemes into
centralized and decentralized [11]. With a centralized key
management scheme, a central authority is responsible for
key generation and distribution. In a decentralized scheme,
key generation, distribution and regeneration are not under the
control of any central authority, but rather managed by more
than one entity. CRA schemes predominantly use a central-
ized key distribution model, usually with the network/system
owner in charge of it, being the central trusted authority for
CRA schemes (i.e., O usually bootstraps the devices in the

offline phase). However, this method of key generation and
distribution may be tedious (i.e., in case of large network) and
time-consuming. On the other side, decentralized management
has advantages over the centralized approach due to its fault
tolerance and scalability [11]. Unfortunately, to the best of our
knowledge, so far none of the CRA schemes is employing
decentralized key management for their respective operations.

Another aspect related to key management in CRA schemes
that is worth mentioning is the use of only symmetric keys
vs a mix of public and symmetric keys. Several of the sur-
veyed schemes, such as LISAα, LISAs [26], and PADS [25],
adopt a simplistic approach where a single symmetric key is
shared among all the devices in the network. Despite this
is technically fitting their security model, as they consider
a software-only adversary and the key is protected by the
TEE, this is a potentially unsafe practice; when it comes to
stronger adversaries, e.g., AdvPI , even in the case of a single
device compromise the adversary will be able to simulate
a valid attestation response for virtually every device in the
swarm. On the other hand, the use of public-key cryptography
provides stronger security, but requires additional computation
capabilities for resource-constrained devices, and in some
cases, its use may be unfeasible (e.g., due to the computational
cost of public key encryption in low end platforms).

Intermittent Connectivity. It is a common assumption in the
CRA literature that devices in the swarm maintain connectivity
during the attestation process. In reality, stable connectivity
among IoT devices may not be feasible, as swarms can be
deployed in mobile scenarios (e.g., drones). Assuming devices
will maintain a static formation (i.e., a spanning tree) for the
duration of the attestation protocol may limit the usability of
existing schemes in scenarios with mobile devices. Only a few
recently proposed protocols like PADS [25], SALAD [28], US-
AID [40], and SHeLA [42], facilitate device mobility during
attestation. Furthermore, clusterization can be the basis for
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more efficient protocols, if a small number of mobile devices
in a cluster can be relied on to be in a static formation for the
attestation runtime. Then, attestation of larger networks can be
performed with existing or new solutions that allow mobility.

The absence of devices during swarm attestation has been
so far only considered w.r.t to the presence of physical
adversaries. That is, the absence of a device is considered sign
of a device compromise. However, IoT devices can have inter-
mittent activity, due to device necessities (e.g., power saving)
or other constraints (e.g., precedence to real-time activities),
which is true also when considering a static network forma-
tion. Thus, CRA schemes should provide ways to distinguish
between the case in which a device was absent as a result of
a compromise, or for other “legitimate” reasons. “Legitimate”
intermittent connectivity has been taken in consideration only
in few papers, with different interpretations. PADS [25] and
SALAD [28] attest only provers that are reachable at the
attestation time, delegating to following attestation rounds the
validation of missing provers. Furthermore, some attestation
results may not travel the whole network, and hence being
unavailable when V collects the attestation report. For this
purpose, PADS introduces the concept of “coverage” of the
attestation result w.r.t. the network. Coverage implies the
knowledge of one device about other devices in the network
(e.g., for instance a prover P has 80% coverage implies that P
has the knowledge about 80% other devices in the network).
Again, works such as SCAPI [27], slimIoT [30] and US-
AID [40] interpret device absence in the attestation protocol
as the will to hinder the detection of compromised devices,
even if slimIoT [30] tolerates short disconnections.

Time of check to Time of use. An important issue in
attestation is the so-called Time Of Check To Time Of Use
(TOCTTOU) [34], [45] problem. In brief, an attestation report
is relative to the time where the remote attestation is carried
out. As such, it neither guarantees whether the prover was
malicious before the attestation time, nor that the state of
the prover is correct right after attestation. An intelligent
adversary can evade the attestation by using TOCTTOU
gap. In [46] authors have demonstrated vulnerabilities of
different attestation schemes e.g., C-FLAT [36], LO-FAT [37]
and SMART [20] against TOCTTOU attacks. Unfortunately,
except for ERASMUS [13], and MTRA [33], none of the
CRA schemes consider TOCTTOU attack in their respective
adversarial model. Recently, the work in [45] tries to address
the TOCTTOU problem by formally defining the problem and
proposing a solution that is suitable for low-end devices. New
CRA schemes should focus on using solutions such as [45] to
overcome this issue.

Dealing with physical adversaries. Physical adversaries are
a serious concern for IoT devices, as they may be deployed
and left unsupervised for a long time. Unfortunately, these
adversaries are mostly overlooked in the existing CRA litera-
ture. Only a few schemes, i.e., DARPA [9], and SCAPI [27],
SeED [24], slimIoT [30], MTRA [33], EAPA [41], and US-
AID [40], are capable of partially mitigating physical at-
tacks. In particular, these schemes identify physical adversarial

presence by detecting device absence in the network. These
schemes follow the assumption that in order to capture and
modify a device in a network, a AdvPI will require to take
the device offline for a non-negligible amount of time. The
absence of device(s) identified by other neighbour devices or
by attestation procedure will indicate possible physical attack
on the missing device.

Architectural issues. Most of the swarm attestation schemes
employ specialized hardware, and some hardware-software
co-design to carry out their attestation schemes. In existing
deployments, however, the presence of such components is
unlikely. Future research should look into solutions that are
practical even for existing deployments, studying necessary
tradeoffs between security and usability of such techniques.

VII. FUTURE DIRECTIONS

Future works are not only limited to current open issues.
Several new directions can be explored by researchers. Here,
we provide some hints.

Novel IoT architectures. The proliferation of IoT devices
has opened the way for innovative architectures such as Edge
computing [47], [48] and Fog Computing [49], [50], which
are “horizontal, system-level architectures that distribute com-
puting, storage, control, and networking functions closer to
the users along a cloud-to-thing continuum”. Fog Computing
supports a general computing model, where data processing
tends to be close to the edge where they are generated. Some
works in literature propose some security solutions for fog
architectures [51], [52]. Indeed, it is necessary to secure IoT
devices composing them. Therefore, the use of attestation
should be validated to secure fog and edge computing ar-
chitectures. Moreover, collective remote attestation protocols
should be tailored around fog or edge architectures, by first
locally aggregating attestation reports, still leveraging on the
clusterized nature of the architectures, and later broadcasting
aggregated results to the cloud for attestation result fusion.

Future Internet technologies. Several novel internet archi-
tectures, such as Information-Centric Networking [53] and
Named-Data Networking [54], have been proposed in recent
years. Several works have shown the advantages of using such
technologies in IoT [55]–[58]. Future research should look
into leveraging some of the benefits of these architectures,
such as in-network caching, to, e.g., improve resiliency against
intermittent connectivity in CRA protocols.

Blockchain. Typically, most of the swarm attestation schemes
work with the presence of a centralized entity, under the
assumption of a single “owner” for the deployment of devices.
In cases in which this is not true, a centralized architecture
may not be ideal. To address the issue, Blockchain [59] based
solutions have been explored to provide trusted and distributed
mechanism for autonomous IoT environments [60]. However,
its application in CRA has not been investigated so far.
The blockchain can be used to store correct configuration of
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devices, update events, as well as which devices are healthy or
compromised at a given timestamp. Nonetheless, in our view,
the characteristics of the blockchain are detriment for CRA
protocols, especially due to the long latency in transaction
validation, while CRA protocols must be fast. Moreover, the
blockchain introduces significant computational and storage
overhead that could be unsustainable for low power IoT
devices. On the other hand, the joint use of blockchain and
novel architectures [61] could be instead helpful for swarm
attestation, moving blockchain management tasks to more
powerful devices.

VIII. CONCLUDING REMARKS

Collective Remote Attestation (CRA) protocols aim at scal-
ing remote attestation for large deployments of IoT devices.
In this paper we provide a critical review of the state of the art
of CRA schemes, comparing them w.r.t. their security features
and assumptions. We also highlight open issues and suggest
possible future research directions. Existing solutions are able
to solve only some of the open issues highlighted through
the paper. As an example, some solutions are efficient, but
cannot be used in dynamic networks, while others provide high
security guarantees, at the cost of an increased performance
overhead. We believe this work can serve as a guideline for
the research community, which is actively working on new
solutions for CRA.
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