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Abstract

The key to the understanding of our Solar System, how it originated

and evolved, lies with the exploration of the miniature system of its largest

planet, Jupiter. To this end, a number of space missions have been dedi-

cated to probing the planet itself and its satellites, aiming at studying and

comprehending the physical phenomena taking place within the system. In

this context, a fundamental role is played by the determination of the grav-

ity field of the bodies forming the system, by means of onboard radio sci-

ence experiments. The main purpose of my research is to assess the accura-

cies attainable with the gravity measurements performed by NASA’s Juno

and ESA’s JUICE missions, that will influence the comprehension of the in-

terior structure and dynamics of the Jovian system bodies. In the frame of

this dissertation I show how the precise reconstruction of the gravitational

potential of Jupiter and its largest moons have the potential of improving

our knowledge of the geodesy of the whole system.
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Introduction

Jupiter had been known to humanity since ancient times, while the

Galilean moons, the largest in the system, were first observed by Galileo

Galilei in 1610, using a telescope. Half a century later, Giovanni Domenico

Cassini discovered that Jupiter appeared oblate and noticed the differen-

tial rotation of its atmosphere bands. As the technological innovation ad-

vanced, more questions arose that needed to be answered.

The first spacecraft to ever fly by Jupiter were Pioneer 10 and 11, the

encounters occurred over a two-year period (1973-1974), capturing the first

close images of the planet and the Galilean moons. Furthermore, the mis-

sion provided the first in-situ measurements of the planet’s main features:

the complex atmosphere, the huge magnetosphere and radiation environ-

ment, and even attempted to get a grasp of the interior. After the end of the

Pioneer program, the exploration of the Jovian system was took over by

Voyager 1 and Voyager 2 missions (1979). Among the extremely important

scientific breakthroughs, made by means of Voyager observations, there

were the discovery of Jupiter’s ring (Smith et al., 1979) and the observation

of active volcanism on Io (Morabito et al., 1979).

A turning point in the exploration of Jupiter system was the orbit in-

sertion of the Galileo spacecraft around the planet, in 1995. During its tour

of the system, not only did the probe complete 35 orbits around Jupiter

(NASA/JPL, 2009), but also carried out multiple encounters with its major

satellites (i.e. Galilean moons). Despite the failure of the onboard high-

gain antenna, the mission managed to gather crucial information about the

complex environment, regarding both the planet and the satellites. The

most striking discoveries made by this mission concern the collection of the

first observations of ammonia clouds in a planet’s atmosphere other than

Earth’s and the identification of Jupiter’s magnetosphere global structure.
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In July 1995, a probe detached from the main spacecraft and entered the

atmosphere, collecting data for almost an hour before being destroyed by

pressure and temperature. It managed to detect and measure atmospheric

elements, giving indication on how the planet formed from the primary

solar nebula (NASA, 2003).

The Galileo mission also provided the first evidence for the presence of

subsurface oceans on icy satellites. The spacecraft collected enough magne-

tometer data to verify the presence of induced magnetic fields surrounding

Europa, Callisto (Khurana et al., 1998; Zimmer et al., 2000) and Ganymede

(Kivelson et al., 2002). For the first two satellites, the absence of an intrinsic

magnetic field, made the identification of induced magnetic dipoles much

easier. For Ganymede, which possesses an intrinsic magnetic field gener-

ated within the satellite’s core, the decoupling between the induced field

and the satellite’s own magnetosphere was harder. The most reasonable

explanation for the existence of these induced magnetic dipoles remains

the presence of global oceans underneath the satellites’ surfaces. Europa’s

and Ganymede’s topographies show evidence for geological differentia-

tion, where the presence of a liquid water layers between two high-pressure

ice layers is very likely. On the other hand, Callisto appears to be an undif-

ferentiated body of ice and rock. Nevertheless, a global or partial subsur-

face liquid ocean still represents a possibility.

For all the above reasons, the gravity investigation of these bodies needs

to move further. Only with the newest missions to Jupiter, Juno and JUICE,

dedicated to the exploration of the planet and its satellites, will we be able

to answer the key questions about the interior configuration and compo-

sition of some bodies among the most interesting and active of the Solar

System.

This task can be accomplished by using highly accurate Doppler track-

ing of the spacecraft. Precise gravity measurements are enabled by an

onboard Ka-transponder capable of establishing a radio link between the

spacecraft and Earth stations, characterized by high phase stability. The

real innovation with respect to previous missions is the exploitation of Ka-

band links in both uplink and downlink (34 GHz and 32.5 GHz respec-

tively). The expected accuracies on range-rate measurements are around

0.012 mm/s at 60 s integration time. Furthermore, a complete cancellation
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of the plasma noise will be possible, if the Ka/Ka link is operated together

with X/X and X/Ka links (enabled by the onboard DST).

Both missions envisage an onboard radio science experiment, though

they are, at present, in two very different phases. Juno has been launched in

August 2011 and is now on its way to Jupiter (arrival due in July 2016). The

spacecraft will complete 33 highly-eccentric polar orbits around Jupiter, of

which 25 will be dedicated to gravity measurements aimed at determining

and resolving the open issues about the interior structure and dynamics of

Jupiter. The determination of the planet’s low-degree gravity field is re-

lated to the mass and size of the core, while the high-frequency anomalies

of the surface gravity indicate localized variations in the density distribu-

tion. Recently, the opportunity of determining the scale height of Jupiter’s

thermal winds by using gravity measurements has been explored (Galanti

et al., 2013). Indeed, compared to a fast-rotating solid body, Jupiter’s odd-

zonal and tesseral harmonics, related to zonal and meridional winds, are

much larger (Kaspi et al., 2009).

JUICE is advancing through phase A/B1 of early definition and plan-

ning of its scientific goals and requirements. The current mission profile en-

visages three different science cases dedicated to as many Galilean moons:

Ganymede, Callisto and Europa. The spacecraft will perform an orbital

phase around Ganymede, the main target of the mission, part of which will

be spent in a circular polar orbit. The low altitudes ensure the determi-

nation of the satellite’s gravity field up to degree and order 20 (at least),

with very high accuracy. Furthermore, the wide range of mean anoma-

lies at which Ganymede will be observed, allows the determination of the

degree-2 Love number k2, a crucial parameter in the detection of subsur-

face oceans. JUICE will also perform 20 flybys of Callisto, the main gravity

science objective for this phase is the determination of the octupole grav-

ity field. Since Callisto will be observed close enough to its perijove and

apojove, the determination of k2 will be attempted for this body as well.

Europa is perhaps the most interesting of the Galilean satellites, though a

severe radiation environment makes its exploration very difficult. For this

reason, the number of JUICE Europa flybys will be limited to 2, even so,

the determination of its quadrupole gravity field may be possible.
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This work focuses on crucial aspects of the numerical simulations of

Juno and JUICE radio science experiments and is organized as follows:

Chapter 1 is dedicated to an overview of the two space missions, a de-

scription of the nominal gravity experiments and a report on the current

knowledge of the involved celestial bodies; Chapter 2 contains theoretical

principles of planetary geodesy; Chapter 3 introduces the problem of or-

bit determination in terms of mathematical formulation and adopted tech-

niques; Chapter 4 is dedicated to the description of the adopted dynamical

models and numerical simulation setup; Chapter 5 contains analysis results

concerning the influence of Jupiter’s thermal winds on Juno gravity exper-

iment performance; Chapter 6 contains analysis results concerning the at-

tainable accuracies in the determination of the Galilean satellites’ gravity

fields with the JUICE mission; Chapter 7 is dedicated to conclusions and

discussion.
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Chapter 1

Juno and JUICE disclose Jovian

system’s mysteries

Despite being two separate missions, Juno and JUICE are destined to

be synergic and interconnected, for they will share a similar severe envi-

ronment and mission conditions throughout their exploration of the Jovian

system. However, the main scientific objectives deeply differ from one an-

other. While Juno will have as its major target the gas giant itself, JUICE’s

interests in the planet will be limited to an initial high-latitude phase, and

will focus instead on probing three Galilean moons.

This chapter will give an overview of the two missions, their scientific

objectives and trajectories, with particular focus on the description of the

onboard radio science experiments.

1.1 The Juno mission

NASA’s Juno mission was named after the Roman-Greek goddess, wife

of Jupiter, who was able to discover her husband’s true nature by removing

the cloudbank surrounding him. Likewise, the Juno spacecraft will figura-

tively unveil all the mysteries and secrets of the planet Jupiter, and will

forever change our understanding of the whole system.

Juno was approved in 2005 as the second mission of NASA’s New Fron-

tiers program (Grammier, 2009) and was launched in 2011. After a 5-year

cruise, the spacecraft will arrive at Jupiter and perform several complete

orbits around the planet, collecting a great amount of science data.
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Figure 1.1: Artist concept of Juno and Jupiter. Image credit: NASA/JPL-Caltech.

1.1.1 Scientific objectives

Juno is the natural step further in the exploration of Jupiter after the

Galileo mission, and will be the second spacecraft to ever orbit the planet.

The gas giant presents three different fundamental realities: the mag-

netosphere, the atmosphere and the interior. The main scientific objectives

regarding these main features can be summarized as follows (Grammier,

2009):

- Magnetosphere:

• determination and characterization of the 3D structure of Jupiter’s

magnetosphere;

• observations of Jupiter’s auroras;

- Atmosphere:

• determination of the atmospheric composition, including the mea-

sure of oxygen abundance and variations in water and ammonia

concentrations;
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• characterization of the temperature profile;

• study of the winds at great depth;

• investigation of convection phenomena;

• study of the clouds dynamics and characteristics;

- Interior:

• determination of Jupiter’s gravitational and magnetic fields;

• set constraints on the core mass;

• assess the depth of the winds and their influence on high-degree

gravity field.

Since Juno orbit will be polar, the mission will achieve completely inno-

vative and un-addressed scientific goals, aiming at answering crucial ques-

tions about the formation and evolution of the system.

1.1.2 Launch, trajectory and orbit around Jupiter

Juno lifted off on August 5, 2011 from Cape Canaveral Air Force Sta-

tion in Florida, on an Atlas V 551. During launch, telecommunications with

ground stations were provided by the Deep Space Network Station (DSS)

at Canberra (Nybakken, 2011). Right after the separation (SEP), the solar

arrays deployed and the spacecraft was inserted in a EGA (Earth Gravity

Assist) trajectory. In preparation for the Earth flyby, two deep space maneu-

vers were scheduled after 13 months from launch, to adjust Juno trajectory.

The encounter with our planet took place in October 2013 and represented

the first critical event of the mission (Nybakken, 2011).

Upon its arrival at Jupiter, the spacecraft will perform a Jupiter Orbit

Insertion maneuver (JOI), 59 months after launch (Nybakken, 2011). The

maneuver will be followed by a long-duration capture trajectory of 107

days, before entering the science phase. The chosen orbit is characterized

by high eccentricity (e=0.947) and high inclination (90◦ ± 10◦). Each pas-

sage will take about 11 days to be completed, for a total duration of at least

1 year (and 33 pericenters). Juno cruise phase is sketched in Figure 1.2.

The first two orbits will be dedicated to further checkouts and veri-

fication before the beginning of the science observation phase. In order
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Figure 1.2: Juno trajectory during cruise (2011-2016). Image credit: NASA/JPL-

Caltech.

to collect highly significant data, Juno will fly within 4600 km of Jupiter’s

surface (Grammier, 2009). Due to the fast rotation of the planet under the

spacecraft, Juno will span the planet in longitude (span of 12◦), while the

pericenters are confined at latitude between 5◦ and +35◦ (see Figure 1.3a).

Of these 33 science orbits, 25 will be dedicated to the gravity experi-

ment (4 and 9 to 32), while the remainder will be used for MicroWave Ra-

diometric (MWR) measurements. Other instruments do not require a par-

ticular attitude of the spacecraft and therefore can operate simultaneously

with one another (see Figure 1.3b).

Orbit 34 will mark the end of the mission through a de-orbiting phase:

the spacecraft will fly through Jupiter’s atmosphere and be destroyed.

1.1.3 The spacecraft

Juno will be the first solar powered spacecraft to go as far from the Sun

as Jupiter’s orbit. This condition of extreme distance from our star is one

of the key drivers of the craft design. In fact, the solar arrays mounted on

Juno will be the largest panels to ever fly, since their size must guarantee

enough power to operate the instruments and the onboard equipment. The
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(a)

(b)

Figure 1.3: a) Juno science orbits around Jupiter. Image credit: NASA/JPL-

Caltech. b) Juno attitude during science observations through orbits

3-33 (Grammier, 2009). Image credit: NASA/JPL-Caltech.
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spacecraft design envisages three solar arrays symmetrical about the bus

(forming a 120◦ angle with each other) for an overall area of 60 m2 (of which

45 m2 are active, Grammier, 2009). One of the arrays also hosts a boom for

magnetometer observations (Grammier, 2009, see Figure 1.1).

The need for such large solar panels influenced the choice of a spin-

stabilized spacecraft over a stabilization based on reaction wheels, much

more expensive in terms of energy consumption. Also, this decision al-

lowed avoiding the complications related to the use of instrument scan

platforms, associated with complex spacecraft maneuvers and pointing re-

quirements (Grammier, 2009). The instruments will be placed on the edges

of the main hexagonal structure, ensuring the required field of view needed

for the scheduled observations and measurements.

Figure 1.4: Juno view inside the vault (Grammier, 2009). Image credit:

NASA/JPL-Caltech.

The radiation environment at Jupiter is one of the harshest in the Solar

system, for this reason, Juno electronics and instruments are located under

a radiation vault, in order to prevent them from degradation (see Figure

1.4). The vault covers the main structure of the spacecraft and has a mass

of about 160 kg. This safety measure reduces the total radiation dose ab-

sorbed by internal equipment throughout the mission from 100 Mrads to a

maximum of 25 krad (Nybakken, 2011). Also, the geometry of the science

orbits allows the collection of ± 3h of science data below Jupiter’s radia-
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tion belt, maximizing the science return and minimizing the radiation dose

absorbed during observations.

The spacecraft is provided with a high gain antenna as main asset for

the transmission of science data. In addition to the HGA, the spacecraft

is also endowed with a medium gain antenna (MGA) and two low gain

antennas (LGAs).

The main engine will be used for the two deep space maneuvers, while

four thrusters will be used to perform minor maneuvers, including the de-

orbiting (Grammier, 2009).

1.1.4 Payload

Juno payload is composed of 8 scientific instruments plus a visible cam-

era (JunoCam) whose purpose is to capture images of Jupiter for education

and public outreach. The onboard experiments can be divided into two

main categories (Grammier, 2009):

- Instrument payload:

• Microwave Radiometer;

• Magnetometer;

• Radio Science Package;

- Fields and particles instruments:

• Jovian Auroral Distribution Experiment;

• Jupiter Energetic-particle Detector Instrument;

• Waves instrument;

• Ultraviolet Spectrometer;

• Juno Infra-Red Auroral Mapper;

Table 1.1 contains a list of the instruments with a brief description of

their scientific objectives and characteristics.
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Instrument Classification Scientific Objectives and characteristics

Juno Gravity

Experiment

Radio Science

Experiment

Investigation of the interior structure through the

determination of Jupiter’s gravity field.

X- and Ka- band uplink and downlink.

MAG Magnetometer Investigation of the interior structure and mag-

netic dynamo of Jupiter.

Dual flux-gate magnetometers and two advanced

stellar compasses.

MWR Microwave

Radiometer

Deep atmospheric sounding and measure of water

and ammonia abundance.

Six peripherally mounted antennas; radiometers;

control/calibration electronics for 6 wavelengths

(1.3 - 50 cm).

JEDI Juno Energetic

particle Detector

Instrument

Auroral distributions and measure of electrons

and ions in the Jovian polar region.

TOF vs. energy, ion and electron sensors.

JADE Jovian Auroral

Distributions

Experiment

Auroral distributions and measure of the time

variable pitch angle and energy distributions of

electrons and ions over both polar regions.

1 ion mass spectrometer and 3 electron analyzers.

Waves Radio and Plasma

Wave Detector

Measure of the radio and plasma wave emis-

sions associated with the auroral phenomena in

Jupiter’s polar magnetosphere to reveal the pro-

cesses responsible for particle acceleration.

4-m. electric dipole and search coil.

UVS Ultraviolet

Spectrometer

Characterize the spatial and temporal structure of

ultraviolet auroral emissions.

FUV spectral imager; 1024 256 micro channel plate

(MCP).

JIRAM Juno Infra-Red

Auroral Mapper

Investigation of auroral structure and upper tro-

posphere structure, atmospheric sounding.

IR imager and IR spectrometer (λ = 2 - 5 µm).

Table 1.1: Juno payload (Grammier, 2009 and Bolton, 2010).
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1.2 The JUICE mission

The European Space Agency officially selected the JUICE mission in

May 2012, as the first European large-class science mission in ESA’s Cosmic

Vision 2015-2025 program. The launch is scheduled for 2022 and, after a 8-

year cruise, the spacecraft will reach the Jovian system in 2030. The current

mission timeline entails two Europa flybys (2030), twenty Callisto flybys

(2031) and an orbital phase around Ganymede (2033) (Parisi et al., 2012).

The latter represents the main target of the mission, being the largest nat-

ural satellite of the Solar System and the only moon known to possess an

intrinsic magnetic field. JUICE’s exploration of the Jovian system will allow

the scientific community to address two key science themes: the conditions

for planet formation and the emergence of life (ESA, 2011). All these bod-

ies could host sub-surface oceans, so the spacecraft will, very ambitiously,

assess the possibility for the moons to be potential habitats for human life

(ESA, 2012).

The current mission is heir to a joint ESA/NASA mission to Ganymede

(JGO) and Europa (JEO), respectively, known as EJSM/Laplace. After NASA

withdrawal in 2011, ESA took over part of the scientific objectives expected

from the exploration of Europa, and reformulated a new European-led mis-

sion, called, indeed, JUICE. The acronym stays for Jupiter Icy moons Ex-

plorer.

1.2.1 Scientific objectives

JUICE is part of a space program devoted to the exploration of the outer

solar system. Its main, ambitious goal is the research of possible environ-

ments in the Jovian system that would (or already have) allow the emer-

gence and/or establishment of life. To this day, many extra-solar planets

orbiting around nearby stars are known to be very similar to our gas gi-

ant Jupiter, thus the study and exploration of the latter will provide sev-

eral pieces of information about the evolution and formation of these outer

bodies. The tag line of the mission could be the study of the physical prop-

erties, interior structure, composition and geology of Ganymede and the

research for subsurface oceans on three Galilean satellites. More specifi-

cally, the main scientific goals of the mission can be summarized as follows
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(ESA, 2011):

- search for favorable environments for the emergence of life, among

which stands out the presence of liquid water oceans and/or thick

ice layers underneath the surface;

- study of the interaction between high-pressure ice and underlying

layers on icy satellites;

- identification of the chemical composition of the satellites;

- characterization of Ganymede’s intrinsic magnetic field;

- study of the satellites’ geology and topography, identification of their

surface activity, past and present;

- study of the thermal structure and dynamics of Jupiter’s atmosphere;

- characterization of Jupiter’s magnetosphere, affected by the fast rota-

tion of the planet;

- observation of Jupiter’s polar auroras.

Some of these goals are very innovative, since JUICE will be the first

spacecraft to ever orbit a moon other than ours.

1.2.2 Launch, trajectory and tour of the satellite system

The JUICE mission will be launched in 2022, using an Ariane 5 ECA

launcher from ESA’s spaceport in Kourou, with a backup opportunity in

2023. The spacecraft will be inserted in a direct escape trajectory from Earth

with an injected mass of 4800 kg and a hyperbolic escape velocity of 3.15

km/s. JUICE will perform a Venus-Earth-Earth gravity assist sequence,

allowing to save a great amount of chemical propellant (ESA, 2011).

After a cruise lasting 7.6 years, the probe will arrive in the Jovian sys-

tem in January 2030 and a JOI (Jupiter Insertion Orbit) will be performed

(Figure 1.5). This maneuver is the most critical of the mission, and will

be preceded by a Ganymede gravity assist, to gain the required ∆V. The

spacecraft will be inserted in a highly eccentric orbit (13x243 RJ) around

the planet, outside Ganymede’s orbit. Its geometry has been defined not
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Figure 1.5: JUICE orbit insertion around Jupiter (JOI). The image also shows the

orbits of the Galilean satellites (ESA, 2011). Image credit: ESA.

only optimizing the propellant consumption, but also trying not to force

the spacecraft to undergo extreme radiation exposure.

The next step in the exploration of the system will consist of two Eu-

ropa flybys, added after the reformulation of the mission. Europa is the

innermost of the satellites designated as scientific objectives of the mission.

Being so close to Jupiter, the radiation conditions which the spacecraft is

exposed to reach almost unbearable levels. For this reason, the flybys are

designed so that the integrated radiation dose is as low as possible. The

flybys are scheduled to take place within 14 days from one another, prob-

ing the satellite in a region centered at 180◦ longitude, while the range of

explored latitudes will be wider, about ± 45◦ (see Figure 1.6).

Callisto science phase will be used to increase the inclination of the

Jovi-centric orbit up to 30◦ over Jupiter’s equator. This maneuver will al-

low the sampling and the probing of the planet’s magnetosphere as well

as exploring and studying the satellite, almost the same size as Ganymede.

The orbit will be Callisto-resonant and the total duration of this phase will

be about 200 days. The mission profile envisages 20 flybys of Callisto, of

which 10 will take place at very low altitudes (200 - 400 km). The coverage
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Figure 1.6: Ground tracks of the Europa flybys (ESA, 2011). Image credit: ESA.

of the satellite’s surface, obtained through these encounters, is constrained

by the geometry of the spacecraft trajectory (see Figure 1.7).

Figure 1.7: Coverage of Callisto surface after 20 flybys. The closest approaches are

divided into two groups around two different longitudes. Convention-

ally, for Galilean moons, 0◦ longitude indicates the side facing Jupiter.

Different colors indicate different Sun elevation of the sub-nadir point

(ESA, 2011). Image credit: ESA.

Being the orbit in resonance with Callisto, JUICE will encounter the

satellite always at the same mean anomalies. For this reason, since Callisto

is tidally locked to Jupiter, the closest approaches will all occur in a certain

range of longitudes, except the spacecraft will skip a number of gravity as-

sists around the moon that will allow a change of quadrant (Figure 1.7).
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Also, Jupiter’s northern polar region will be visible during this phase, al-

lowing the observation of polar auroras (ESA, 2011).

After the numerous flybys of Callisto, the orbiter will finally be trans-

ferred to Ganymede, through a number of CGC gravity assists. As antici-

pated, the scientific phase at Ganymede will be the most important and ex-

tensive, composed of several sub-phases, each of which will be dedicated

to achieving different scientific objectives. The sub-phases are summarized

in Table 1.2.

Phase Altitude (km) Duration (d)

Elliptical 200x10,000 30

Circular 5000 50,000 90

Elliptical 200x10,000 30

Circular 500 500 102

Circular 200 200 30

Table 1.2: Ganymede science phase: sub-phases.

Of course, from a scientific point of view, the circular polar orbit phases

at low altitudes will be the most interesting. The spacecraft will be able

to complete several orbits around the satellite, gathering a great deal of

science data.

The end of the mission, as scheduled, will be in 2033: the spacecraft will

crash onto Ganymede surface at the end of the last science phase. Since the

probe equipment does not include radioactive sources, the thermal condi-

tion would not compromise the environment of the satellite.

1.2.3 The spacecraft

Being the mission in its A/B1 phase, the spacecraft design is still only

a concept. So far, three independent studies have been conducted by dif-

ferent industrial possible contractors. For the sake of this particular work,

I chose to briefly describe one of these configurations, since the impact on

the numerical simulations of the radio science experiment is limited, al-

though a good model of the spacecraft would help assessing the effect of

non-gravitational forces on the trajectory of the probe. In general, the main

drivers of the spacecraft development can be summarized as (ESA, 2011):
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Figure 1.8: Artistic view of Ganymede and the spacecraft (ESA, 2011). Image

credit: ESA.

- great distance from the Sun and the Earth;

- use of solar power generation;

- Jupiter’s severe radiation environment;

The most strict constrains are then (ESA, 2011):

- high ∆V requirement that leads to a high wet/dry mass ration;

- maximization of the diameter of the high gain antenna (HGA) for

maximum science return;

- use of large solar arrays (60-75m2);

- maximization of the shielding efficiency;

The main structure is built around the propulsion sub-system. One

main MON tank will be mounted inside a central cylinder, with the four
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MMH tanks around it, providing a total thrust of 400 N. Two auxiliary he-

lium tanks will also be included for pressurization, for an overall propellant

mass around 2400 kg. The payload will be located in a separate box, so that

the compactness of the allocation will work as additional shielding of the

onboard instruments. The 3.2m high-gain antenna will be mounted on top

of the spacecraft, with the axis along +X direction (Figure 1.9).

Figure 1.9: Spacecraft configuration as seen in solution 3. The +Z direction repre-

sents the nadir direction. (ESA, 2011). Image credit: ESA

The solar arrays will be aligned with the Y direction, providing an over-

all exposed area of 64 m2. The box containing all instruments will be allo-

cated at the +Z panel, with the remote sensing instruments aligned with the

nadir direction and the in situ instruments mounted on the -X panel. Using

this disposition there is no need to change the spacecraft orientation with

respect to the flight direction in between remote and in situ observations

(ESA, 2011).

In this configuration, the overall size of the spacecraft will be 3.52 m x

2.76 m x 3.47 m, with a wing span, after the solar arrays deployment of 27.5

m (ESA, 2011). The maximum dry and wet mass at launch would be 1255.1

kg and 4078.9 kg, respectively, with a w/d ratio of 3.25 (ESA, 2011).

JUICE will be three-axis stabilized, the AOCS subsystem allows the ori-

entation of the spacecraft in the desired direction, during communications

and observation phases. The subsystem comprises four reaction wheels

(maximum capacity of 68 Nm), two star trackers and two Sun trackers.

A navigation camera will be used in the most critical passages. Correc-

tion maneuvers and de-saturation of the wheels will be operated by the

thrusters (10 N each, ESA, 2011).
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The inclusion of Europa science case, has overloaded the already dif-

ficult prospect on the radiation environment, to which JUICE will be sub-

jected. The total radiation dose absorbed by the spacecraft depends mostly

on the total electron fluence over the different mission phases (Figure 1.10).

Figure 1.10: Fluence spectrum of electrons, divided by mission phases. (ESA,

2011). Image credit: ESA.

The most severe conditions are found during the phases that bring the

spacecraft close to Jupiter. The energy spectrum of such electrons span

between 0.01 and 10,000 MeV. Higher energy means higher frequency, thus

deeper penetration into the structure. Consequently, a thick shielding (10-

15mm Al) of the instruments and electronic components will be needed.

The total radiation dose, absorbed over the entire duration of the mission,

inside a 10 mm solid Al sphere would be around 240 krad. Furthermore,

possible employment of high Z materials such as tantalum or tungsten is
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being considered, implying a remarkable reduction of the shielding mass

(ESA, 2011).

1.2.4 Payload

In February 2013 the European Space Agency selected the instruments

to carry onboard the JUICE mission. The payload comprises 11 scientific

experiments, involving many European countries and also contributions

from the US and Japan. The onboard experiments can be divided into two

main categories: the remote sensing package and the in situ package. Actu-

ally, the classification is a bit more complicated than that, in particular we

can differentiate between:

- remote sensing package:

• spectro-imaging instruments, from UV to NIR;

• camera package;

• sub-millimeter wave instrument;

• radio science instruments;

- geophysical package:

• laser altimeter;

• ice penetrating radar;

• radio science instruments;

- in situ package:

• magnetometer;

• radio and plasma wave instrument;

• particle package;

The choice of the payload has been made by ESA Science Study Team

(SST) so that the mission scientific return is maximized. Table 1.3 contains

a list of the instruments with a brief description of their scientific objectives

and characteristics, while Figure 1.11 shows the allocation of the instru-

ments for the chosen configuration.
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Instrument Classification Scientific Objectives and characteristics

JANUS Camera system Global, regional and local imaging of Ganymede,

Callisto and Europa. Mapping of the clouds on

Jupiter.

Use of 13 filters; FoV = 1.3◦; Spatial resolution up

to 2.4 m on Ganymede and about 10 km at Jupiter.

GALA Laser Altimeter Measure of the satellites’ topographies. Measure

of Ganymede’s tidal deformations.

20 m spot size; 0.1 m vertical resolution at 200 km.

RIME Ice Penetrating

Radar

Identification of the satellites’ strati-graphic and

structural subsurface patterns.

Resolution down to 9 km depth with vertical reso-

lution of up to 30 m in ice.

3GM Radio Science

Experiment

Investigation of the interior structure of

Ganymede, Callisto and Europa through the

determination of their gravity fields. Verify the

presence of subsurface oceans by measuring their

tidal response.

2-way Doppler and ranging with Ka-band

transponder; 1-way Doppler at X-and Ka-band

with Ultra-stable Oscillator.

MAJIS Imaging

Spectrometer

Characterization of ices and minerals on the sur-

faces of icy moons. Observations of tropospheric

clouds features and minor species on Jupiter.

λ = 0.4 ÷ 5.7 µm; Spectral resolution of 3-7 nm;

Spatial resolution up to 25 m on Ganymede and

about 100 km on Jupiter.

UVS UV imaging

Spectrograph

Characterization of the composition and dynam-

ics of the exospheres of the icy moons. Study of

the Jovian auroras. Investigation of the composi-

tion and structure of Jupiter’s upper atmosphere.

Nadir observations and solar and stellar occulta-

tion sounding; λ = 55 ÷ 210 nm; Spectral reso-

lution ¡0.6 nm; Spatial resolution up to 0.5 km at

Ganymede and up to 250 km at Jupiter.
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SWI Sub-millimeter Wave

Instrument

Direct measure of Jupiter’s atmospheric vertical

profile (velocity, composition and temperature).

Heterodyne spectrometer using a 30 cm antenna

and working in two spectral ranges 1080-1275

GHz and 530-601 GHz with spectral resolving

power of 107.

J-MAG Magnetometer Characterization of the Jovian magnetic field,

Study of its interaction with the intrinsic magnetic

field of Ganymede. Study of possible induced

magnetic field signatures due to subsurface oceans

on the icy moons.

Use of fluxgates (inbound and outbound) sensors

mounted on a boom.

PEP Particle

Environment

Package

Characterization of the plasma environment in the

Jovian system. Measure of the density and fluxes

of positive and negative ions, electrons, exospheric

neutral gas, thermal plasma and energetic neutral

atoms in the energy range from < 0.001 eV to > 1

MeV with full angular coverage. The composition

of the moons’ exospheres will be measured with a

resolving power of more than 1000.

RPWI Radio &

Plasma Wave

Investigation

Characterization of the radio emission and plasma

environment of Jupiter and its icy moons.

Use of a set of sensors, including two Langmuir

probes to measure DC electric field vectors up to

a frequency of 1.6 MHz; use of antennas to mea-

sure electric and magnetic fields in radio emission

in the frequency range 80 kHz- 45 MHz.

PRIDE Planetary Radio

Interferometer &

Doppler

Experiment

Use of standard telecommunication system of the

JUICE spacecraft and VLBI - Very Long Baseline

Interferometry - to perform precise measurements

of the spacecraft position and velocity.

Table 1.3: JUICE payload (ESA, 2011), (ESA, 2013a).
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The radio science package is the core of the gravity experiment, for

this reason an additional section will be dedicated to the description of the

involved instruments (see Section 1.4).

Figure 1.11: JUICE payload configuration (ESA, 2011). Image credit: ESA.

1.3 Planetary targets of the gravity experiments

The reasons why the scientific community has decided to fly so many

missions with the intent of exploring Jupiter and its system, are numerous

and heterogeneous. Truth is, the gas giant is home to physical conditions

and phenomena unique in the solar system, that are not only worth being

observed, but also deeply investigated.

The purpose of this subsection is to provide basic information about

the planet and its satellites that are relevant to the Juno and JUICE mis-

sions and their gravity experiments.
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1.3.1 Jupiter

Jupiter is, very likely, the first planet to have formed in the solar system,

besides being the largest. As other gas giants, its composition is very rich in

light elements such as hydrogen (> 87% of the total mass) and helium, very

much like the Sun, although heavy elements (mostly oxygen) are present

in greater quantities (Bagenal et al., 2004).

Jupiter is a striped huge spherical body without topography (Bagenal

et al., 2004), whose atmosphere is the vastest in the solar system, governed

by strong east-west winds (NASA, 2011). The horizontal bands are tra-

ditionally divided into zones (white bands) and belts (dark bands) which

rotate the opposite way. The winds generate giant long-lasting storms, the

greatest is known as the Great Red Spot and spins near Jupiter’s equator.

The clouds are made mostly of ammonia while water concentrations can

be found at depth. The boundaries between atmosphere and deeper lay-

ers are not well-defined, conventionally the atmosphere extends down to a

pressure of 20 bar (Seiff et al., 1998). The planet is the fastest spinner of the

solar system, its day lasting only 9.9 hours on average, in fact the rotation

period is 5 minutes longer at the poles than at the equator, making Jupiter

a differential rotator.

Figure 1.12: Jupiter with the visible Great Red Spot. Image credit: NASA.

As the depth increases, pressure and temperature rise, allowing the
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change of state of the hydrogen, which becomes electrically conductive and

behaves like a metal. Considering that Jupiter spins exceptionally fast, this

phenomenon generates the impressive magnetic field, characteristic of the

planet (NASA, 2011). Auroras take place on Jupiter, very similarly to what

happens in some regions of the Earth, yet the phenomenon is much more

powerful and amplified. Jupiter’s magnetic field traps great quantities of

electrons and ions that are accelerated, creating immense electrics current

and thus, the auroras (NASA, 2011).

The current knowledge of the interior structure of Jupiter envisages a

radial division into three main layers (Bagenal et al., 2004). From top to

bottom (Figure 1.13) these are:

- a helium-poor molecular hydrogen envelope which includes the at-

mosphere;

- deeper, a helium-rich metallic hydrogen envelope;

- a central dense liquid core of uncertain composition.

The upper atmosphere deficiency of helium can be explained by its

separation into metallic hydrogen that takes place at depth, though this

hypothesis requires the presence of a deeper helium-rich region. The two

regions are homogeneous in composition thanks to convective phenomena

and are separated by a narrow in-homogeneous region in which helium de-

mixing occurs (Bagenal et al., 2004). The extent and position of this region

remains a key question about the planet’s interior. The measure of Jupiter’s

gravitational moments postulates the presence of a dense core, though its

compositions and structure is still unknown (Bagenal et al., 2004).

The task of the new missions to Jupiter, regarding the interior of the

planet, is to constrain three fundamental parameters:

- the mass of the core;

- the mass mixing ratio of heavy elements in the molecular region;

- the mass mixing ratio of heavy elements in the metallic region.

For centuries Saturn has been, in the collective imagination, the only

planet to possess rings. In truth, fainter rings formed also around Jupiter
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Figure 1.13: View of Jupiter’s interior. Image credit: Burkhard Militzer at Univer-

sity of California, Berkeley.

equatorial belt, consisting of thin dusts related to the formation of its biggest

moons (NASA, 2011).

1.3.2 Ganymede

Ganymede is the largest natural satellite of the solar system with a

mean radius of 2631.2 ± 1.7 km (Bagenal et al., 2004), is larger than Mer-

cury and its size is about three quarters of that of Mars. This moons is the

typical icy satellite composed of mostly water and silicates.

Early gravity measurements indicate a mean density for Ganymede of

1942.0 ± 4.8 kg/m3 (Bagenal et al., 2004), pointing to a partial differentia-

tion of the satellite between the icy surface and the rocky core (McKinnon

and Parmentier, 1986, Schubert et al., 1986). Moreover, the presence of a

self-generated magnetic field suggests that the differentiation process has

gone even further, leading to a three-layer model: water-ice shell, a rock

mantle and a metallic core (Schubert et al., 1996). Crary and Bagenal (1998)
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pointed out that, even rock cores that have high magnetic susceptibility

(because rich in magnetite) cannot be sufficiently magnetized by the exter-

nal Jovian field. Thus they indicate the metallic core as the possible and

more plausible cause of Ganymede’s intrinsic magnetic field. Also, Schu-

bert et al. (1986) concluded that the mentioned magnetic field is generated

by dynamo action in a liquid or partially liquid metallic core. In both cases

a metallic core for Ganymede is required.

Figure 1.14: View of the interior structure of Ganymede. Image credit: NASA.

The Galileo mission collected several pieces of evidence for a subsur-

face ocean at Ganymede (Kivelson et al., 2002). The spacecraft detected an

induced magnetic field at shallow depths (100-200 km underneath Ganymede’s

surface) in response to the huge Jovian magnetosphere, usually associated

to the presence of salty, conductive liquid water (Kivelson et al., 2002).

However the interpretation of the magnetometer data proved quite chal-

lenging, due to interference from Ganymede’s intrinsic magnetic field. Still,

the evolution model of Ganymede based on its topography is compatible

with a subsurface, salty, conductive ocean amidst two high-pressure ice

layers. Nonetheless, its composition, location and extension are still un-

known. A solid detection of a global ocean requires the measure of its tidal

deformation, whose entity would be much larger in case of presence of

liquid layers. Only gravitational measurements collected by a dedicated
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space mission to Jupiter’s moon will confirm the existence of liquid water

reservoirs, local or global, within Ganymede’s surface layer.

Ganymede possesses sufficient mass to attract and retain a thin atmo-

sphere. The Hubble telescope has detected the presence of atomic oxygen

by means of Far Ultra Violet (FUV) observations (λ = 130.4 - 135.6 nm). The

atomic oxygen results from the dissociation of molecular oxygen, which is

the dominant species of the atmosphere, due to incident collisions with free

electrons. The column density of Ganymede’s atmosphere probably ranges

between 1÷ 10 · 1014 cm−2 (Hall et al., 1998). In turn, the molecular oxygen

might come from the dissociation of water molecules on Ganymede’s sur-

face, as a result of incident radiation. The hydrogen is, on the other hand,

scattered because of its small density.

1.3.3 Callisto

Callisto is the outermost of the Galilean moons, its mean radius is about

200 km smaller than Ganymede’s, and its density is very similar to that of

the bigger moon, being 1834.4 ± 3.4 kg/m3 (Bagenal et al., 2004).

Callisto formation occurred after Jupiter’s cooling, allowing the consol-

idation of water masses into ice and preventing the vaporization of volatile

elements. Callisto surface is ancient, dark, heavily cratered and, unlike

Ganymede, shows no evidence for geological internal activity. This kind of

information led to the conclusion that Callisto was undifferentiated (Schu-

bert et al., 1981, 1986). However, gravity measurements from the Galileo

mission indicated that Callisto interior was, at least partially, differentiated

(Anderson et al., 1998, 2001). Even more surprisingly, magnetometer ob-

servations detected signatures characteristic of an induced magnetic field,

evidence for a subsurface ocean at Callisto (Zimmer et al., 2000). Despite

the apparent lack of internal activity, the high-resolution camera onboard

Galileo, revealed the presence of erosion and degradation processes on the

surface of Callisto. These phenomena are caused by the exposition to the

severe and highly-corrosive Jovian environment, giving Callisto the char-

acteristic lumpy look.
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Figure 1.15: View of the interior structure of Callisto. Image credit: NASA/JPL-

Caltech.

A simple layered model has been proposed for Callisto, consisting of

(Bagenal et al., 2004):

- a denser (more rock and dense-ice-phase rich) interior;

- a less rock-rich and more low-density ice-polymorph-rich shell;

The depth at which the layers differentiate obviously depends on the

mean densities. The upper limit of the interior density is that of a cool,

undifferentiated and dehydrated rock+metal (3850 kg/m3). This condition

would set the extension of the outer shell to 1250 km, while the lower limit

is represented by the case of a clean-ice shell with or without a water ocean,

for an extension of 300 km (Bagenal et al., 2004).

The existence of this two-layer model is legitimated by the fact that ice

and rock can separate either by melting of the ice or by sinking of the rocks

through ice. Considering the latter phenomenon, a rocky core could form,

surrounded by a rock+ice layer and an outer shell, leading to a three-layer

model (Mueller and McKinnon, 1988). In this model, the core of Callisto is

composed of (18± 4) % of its total rock and extends up to 900 km in radius

(Bagenal et al., 2004). The ocean would lay between the rock+ice layer and

the pure ice shell, where thermal conditions leading to the melting of ice

operate at the ice minimum-melting temperature.
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1.3.4 Europa

The size of this satellite makes it the smallest among the Galilean satel-

lites, despite that, Europa is, perhaps, the most interesting body in the Jo-

vian system. Unfortunately the harsh radiation environment makes its ex-

ploration very challenging. The estimated mean radius is 1565.0 ± 8.0 km,

for a mean density of 2989 ± 46 kg/m3 (Bagenal et al., 2004).

Gravity measurements collected by the Galileo spacecraft show that

the satellite is likely to be differentiated and a three-layer model has been

proposed, consisting of (Anderson et al., 1997):

- a metallic core (mostly iron);

- a silicate mantle;

- a water ice-liquid outer shell.

As always, gravity interpretations are not unique and there still is un-

certainty on the state of the core and the outer shell, that could be either

solid or fluid. For instance the interior could be composed of a mixture of

silicates and metal, surrounded by an ice-water shell (Bagenal et al., 2004).

For the latter, a mean density of 1050 kg/m3 is assumed, while for the core

two different options exist (Bagenal et al., 2004):

a) a Fe core of density 8000 kg/m3, in this case the radius of the core

could be only as large as 13% of Europa radius if the ice shell is 170

km thick;

b) a Fe-FeS core of density 5150 kg/m3, corresponding to a core radius

as large as 45% of Europa radius, with 100 km thickness of ice.

Given the uncertainty on the composition of the mantle, it is not possi-

ble to set a lower bound on the radius of the core, however, the density of

this mid layer must be at least 3800 kg/m3, implying that the mixture must

be rich in metal and cannot be purely rock (Bagenal et al., 2004). Further-

more, supposing the mantle density is at least 3000 kg/m3, the outer shell

must be at least as thick as 80 km, in order to fulfill the constraint on the

mean density.
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Figure 1.16: View of the interior structure of Europa. Image credit: NASA/JPL-

Caltech.

Galileo magnetometer observations have not detected an intrinsic mag-

netic field at Europa (Schilling et al., 2004), thus they do not provide infor-

mation about the state of the core (Bagenal et al., 2004). The generation of

an internal magnetic field requires the core to be at least partially molten,

however, the lack of dynamo action does not exclude a liquid core, in fact

this could still be fluid but non convective (Bagenal et al., 2004).

Different conclusions can be drawn regarding the state of the outer

shell, in fact observations have demonstrated that Europa responds to the

time-variant magnetic field of Jupiter producing internal electric currents

(Bagenal et al., 2004). In turn, these currents produce an induced magnetic

field, providing information on the electrical conductivity, depth and thick-

ness of the conductive region within Europa. Zimmer et al. (2000) located

this region within 200 km of the surface, with an electrical conductivity

compatible with that of sea water, postulating the presence of a subsurface

ocean at Europa (see Figure 1.16).

1.4 Radio science experiments

Radio science experiments (RSE) exploit the radio-frequency link be-

tween a spacecraft and ground stations, in order to determine crucial pa-

rameters related to physical properties of a celestial body. In general, the
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main scientific goals pursued by this kind of experiments can be summa-

rized as:

- determination of a planetary gravity field;

- study of a planetary surface;

- study of a planetary atmosphere.

In the frame of this work, this section will be dedicated to the imple-

mentation of gravity experiments onboard recent missions to the Jupiter

system. By means of radiometric observations, one can determine several

parameters characterizing planetary gravity fields and providing informa-

tion on the interior models and structures of celestial bodies. To this end,

changes in phase, frequency and polarization of a microwave signal are

analyzed and interpreted.

The success of gravity experiments strongly depends on technical char-

acteristics of the onboard and ground equipment, but also on optimal mis-

sion conditions. In the following subsections, a detailed description of the

instruments composing the radio science system will be provided.

1.4.1 Space segment

The key onboard instrument of a state-of-the-art radio science experi-

ment is the Ka-band transponder, which is able to establish radio links with

ground characterized by high phase stability. The crucial innovative aspect

of the newest experiments is the exploitation of the Ka-band of the electro-

magnetic spectrum (26.5 - 40.0 GHz), both in up-link and down-link. The

transponder can also operate in a multi-frequency configuration (with X-

band links, 7.0 to 11.2 GHz), so as to make possible the total cancellation of

plasma noise in critical conditions, such as solar conjunctions (see Section

3.3.2).

In the triple-link configuration, two uplink and three downlink carrier

signals are employed at the same time:

- X-band (8.4 GHz) downlink and X-band (7.2 GHz) uplink;

- Ka-band (32.5 GHz) downlink and X-band (7.2 GHz) uplink;
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Figure 1.17: Triple-link configuration of the Ka-band transponder (ESA, 2011).

- Ka-band (32.5 GHz) downlink and Ka-band (34.0 GHz) uplink.

The main link used for gravity science investigation is the Ka-Ka link.

Radiometric measurements are characterized by high accuracies, in partic-

ular range-rate measurements (radial velocity of the spacecraft) can be as

well resolved as 3µm/s @ 1000 s integration time, while the average accu-

racy of a range measurement (radial distance of the spacecraft) is about 20

cm for a two-way link.

All measurements must be carried out in a coherent way, using fre-

quency standard characterized by high stability (hydrogen masers) for the

generation and conversion of the carrier. The Ka-band transponder sup-

ports an innovative wide-band Pseudo Noise (PN) ranging modulation

scheme for the carriers (Thales, 2012).

A very important parameter characterizing the Ka-band transponder

is the phase stability and the group delay, which is, currently, better than

0.1 ns pk-pk over a time of 36 hours (Thales, 2012). Aging effects on the

KaT could degrade the group delay stability, jeopardizing the accuracies

on range measurement. The KaT Allan deviation is also indicative of the

frequency stability of the instrument. At this stage of development, the

Allan deviation is assured to be better than 10−15.

For further information, the technical performance of the KaT can be

found in Table 1.4, where information about the mass and power consump-

tion are reported as well (Thales, 2012).
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Figure 1.18: The Ka-band transponder (Thales, 2012). Image credit: Thales Alenia

Space.

Mass 3 kg

Power consumption < 40 W (for 32 dBm output power)

Dimension (LxWxH) 215x140x175 mm

Qualification temperature range 20/+65◦C (operative)

Design life >15 Years

Acquisition threshold -131 dBm @ 4 kHz/s

Tracking threshold -135 dBm @ 1.2kHz/s (-138 dBm @ 400 Hz/s)

Turn-around ratio 3360/3599

Output power Up to 35 dBm @ 32GHz

Allan Deviation ≤4x10−16 @ 1000s

Doppler shift ±6 MHz

Noise figure <4 dB

PN Ranging Chip rate up to 25 Mcps

Transparent Ranging BW 27 MHz

Mixed Ranging low-frequency BW 4 MHz

KaT Group-delay stability ¡0.1ns pk-pk

Table 1.4: KaT Technical Typical Performance (Thales, 2012).
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1.4.2 Ground segment

An equally important role in the radio science experiments is played

by ground stations with which the spacecraft establishes deep space radio

links. In this frame the ground segment is composed of NASA’s Deep Space

Network (DSN) and ESA’s Estrack tracking stations.

NASA’s DSN is composed of three complexes (DSCC): one in Gold-

stone (California), one in Robledo (Spain) and one near Camberra (Aus-

tralia). Each complex has one 70-m diameter station, one 34-m high-efficiency

(HEF) station, and at least one 34-m beam-wave-guide (BWG) station (Kliore

et al., 2004). Each DSN station comprises several subsystems (see Figure

1.19, all important to the acquisition of radio science data (Kliore et al.,

2004):

- monitor and control subsystem: receives and archives information

sent to the complex from the control center, handles and displays re-

sponses to directives for configuration or information;

- antenna mechanical subsystem: the primary surface is a paraboloid

that collects and forms a narrow microwave beam from and to the

spacecraft;

- microwave subsystem: accepts the S-, X-, and/or Ka-bands and di-

rects them to low-noise amplifiers, then the amplified signals are down-

converted by local oscillators and routed to the receivers;

- receiver-exciter subsystem: the closed-loop receiver is the primary

receiver for telemetry and tracking data, it phase-locks to the signal

carrier and demodulates science data, engineering data, and ranging

signals transmitted by the spacecraft;

- transmitter subsystem: utilizes a frequency reference to synthesize

the uplink frequency channel assigned to a specific spacecraft, can

transmit at S-, X- or Ka-bands;

- tracking subsystem: measures Doppler shifts and ranging informa-

tion based on the closed-loop receiver output;

- spectrum processing subsystem;
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- frequency and timing subsystem: provides a reference that drives the

local oscillator devices throughout the complex.

Figure 1.19: DSN subsystems (Kliore et al., 2004).

The 70-m diameter stations are currently equipped for transmission at

the S-band frequencies and reception at S- and X-band frequencies. Only

one 34-m diameter BWG station in the Californian (DSS 25) complex is in-

strumented for transmission and reception at Ka-band frequencies, devel-

oped to meet stringent Radio Science requirements. It is expected that Ka-

band downlink will be available at 34-m BWG stations DSS-54 and DSS-34

in Spain and Australia, respectively (Kliore et al., 2004).

ESA’s deep space tracking stations are located in Cebreros (Spain), New

Norcia (Australia) and Malargue (Argentina). All complexes are equipped

with 35-m diameter antennas which communicate using mostly X-band,

while data rates typically range from 256 Kbit/s to 8 Mbit/s, depending on

the mission and other factors (ESA, 2013b). ESA had also added Ka-band

signal reception capabiliteis at both Cebreros (DSA 2) and Malargue (DSA

3), unblocking larger data rate for future deep space missions (ESA, 2013b).

The antenna design is based on waves guided by multiple mirrors (M1

to M5, see Figure 1.20), reflecting all frequency bands. The M6 and M7 mir-

rors pass specific ranges of frequencies while reflecting others (ESA, 2013b).

The pointing accuracy has been increased to 0.0035◦ by increasing the me-

chanical rigidity and installing sensors to compensate for the deformation

of the structure due to changes in temperature (ESA, 2013b).

Table 1.5 reports the technical profile of a typical ESA X-band ground

station (ESA, 2013b).
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Figure 1.20: DSA diagram (ESA, 2013b).

Antenna dish diameter 35m

Transmit frequency X-band 7.145-7.235 GHz

Receive frequency X-band 8.400-8.500 GHz

Telemetry (downlink) Maximum data rate up to 105 Mbps

Telecommand (up-link) Normal data rate 2 Kbps

Tracking Range accuracy 1 m; Range rate accuracy 0.1 mm/s

Table 1.5: DSA technical profile (ESA, 2013b).

In this work it is assumed that Ka-band transmitting capabilities will

be available at all DSAs within the next few decades.
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1.4.3 Media Calibration system

One of the main sources of phase and amplitude noise for a spacecraft

radio signal is the Earth’s atmosphere. In particular, Doppler signal are

affected by tropospheric noise due to the presence of water vapor in the

troposphere, especially at low station elevations, when the signal path in-

creases significantly. For each deep space complex, dual frequency GPS

measurements and weather data can be combined to obtain good calibra-

tion of the tropospheric delay, at least for the dry component, known as

Tracking System Analytical Calibration (TSAC). On the other hand, the wet

component of the troposphere is much smaller but much more variable,

and unlike plasma noise, propagation in the troposphere is effectively non-

dispersive at microwave frequencies (Armstrong, 2008). The experience

with the Cassini mission at Saturn, has demonstrated how water vapor

radiometer measurements could calibrate and remove much of the tropo-

spheric noise in precision spacecraft Doppler tracking observations (Arm-

strong, 2008). For this reason, a water-vapor-radiometer-based Advanced

Media Calibration (AMC) system was installed near DSS 25 (Armstrong,

2008). In an AMC system, two identical radiometer units are placed close

enough to each other and to DSS 25 that the coherence of the tropospheric

signal on the time scales of interest was high in all three time series (Arm-

strong, 2008). The AMC calibrations were used successfully in both the

Cassini gravitational wave observations and in relativity and plasma ex-

periments taken near solar conjunction (Armstrong, 2008).
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Chapter 2

Basic principles of geophysics

Gravitational and non-gravitational forces influence, sometimes ever

so slightly, the spacecraft trajectory as it flies by or orbits a planetary body.

Thus, the detection of possible deflections allows the determination of pa-

rameters of interest such as those characterizing gravitational fields (Bage-

nal et al., 2004). The main goal of an onboard gravity experiment is to ex-

ploit radiometric measurements, such as Doppler data, to derive the body’s

mass and gravitational coefficients. To this end, it’s most important to de-

fine a solid mathematical model able to describe very accurately gravita-

tional actions. This chapter is dedicated to the description of the models

used to express a body’s gravity field and density distribution.

2.1 Harmonic representation of the gravity field

The real mass distribution of a celestial body generally deviates from

the ideal case of spherical symmetry (Bertotti et al., 2003). This status is ac-

tually fortunate since the interior structure of a body affects its gravitational

potential only if the condition of spherical symmetry is not fulfilled (as in

the totality of the cases). The main deviation from sphericity is axisymmet-

rical and is due to the oblateness of the body (degree 2 gravity field). On

the other hand, gravity anomalies corresponding to high-frequency varia-

tions of the gravity field, give information about local mass concentrations

or deficiencies and are much more sensitive to the decrease of the distance

from the body center (Bertotti et al., 2003). One of the main objectives of

this chapter is to introduce the spherical harmonic basis, used to represent
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the gravitational potential of a body.

2.1.1 Gravitational potential and spherical harmonics

In a generic geometrical point P, external to the body, where no mass is

present, the gravitational potential U, satisfies Laplace equation (Bertotti et

al., 2003):

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0 (2.1)

where x, y, z are Cartesian coordinates of a body-fixed reference frame,

whose origin is typically chosen in correspondence to the center of mass of

the body.

Figure 2.1: Spherical coordinates. Image credit: SEOS Project.

A homogeneous polynomial pl (r) of degree l, fulfills Laplace equation,

provided that the coefficients of the polynomial are chosen appropriately.

Also, it can be shown that the function:

Ul (r) =
pl (r)

r2l+1
(2.2)

satisfies Laplace equation as well (Bertotti et al., 2003), depends only

on r/r and is called spherical harmonic. It is easily demonstrated that there
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are only 2l + 1 independent spherical harmonics of degree l, solutions of

Laplace equation (Bertotti et al., 2003).

Evidently, the gravitational potential in P can be conveniently expanded

in series of spherical harmonic functions Ylm (θ, φ) of degree l and order m:

U(r) = −GM
r

+ δU = −GM
r

1 +
∑
l≥1

(
R

r

)l l∑
m=0

UlmYlm (θ, φ)

 (2.3)

where G is the gravitational constant, M is the mass of the body, R is

the mean radius of the body, r is the distance between P and the center

of the body, θ is the colatitude and φ is the longitude. The predominant

monopole term −GM
r represents the degree-0 harmonic. The constants Ulm

are the spherical harmonic coefficients and the functions Ylm are the surface

spherical harmonics:

Ylm (θ, φ) = Plm (cosθ) eimφ, l ≥ 1, m = 0, .., l (2.4)

with Plm un-normalized Associated Legendre polynomials which de-

pend only on u = (cosθ):

Plm (u) =
(
1− u2

)m/2 dm

dum

[
1

2ll!

dl

dul
(
u2 − 1

)l]
, l ≥ 1, m = 0, .., l

(2.5)

2.1.2 Normalization

Since these functions tend to large values as degree increases, while

the harmonic coefficients tend to decrease with l, it is convenient to adopt

a normalization for both the Associated Legendre functions and the har-

monic coefficients:

P̄lm (u) = NlmPlm (u) , l ≥ 1, m = 0, .., l

Ūlm (u) = 1
Nlm

Ulm (u) , l ≥ 1, m = 0, .., l
(2.6)

where:

Nml =
√

2− δm0

√
2l + 1

[
(l −m)!

(l +m)!

]
, l ≥ 1, m = 0, .., l (2.7)
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The gravitational potential, expressed as an infinite sum of harmonic

functions, still satisfies Laplace equation, being it linear. Ul denotes the con-

tribution of degree l to the gravitational potential, which tends to 0 when r

increases indefinitely. The larger is l, the more Ul becomes a high-frequency

contribution, and the more it decreases dramatically with the l+1 power of

the distance r. Thus we can say that:

Ul (r) = O

(
1

rl+1

)
, l ≥ 1 (2.8)

Switching from a dimensionless, complex basis to a real one, the grav-

itational potential in (2.3) can be divided into cosine and sine contributions

(Bertotti et al., 2003):

U(r) = −GM
r

1 +
∑
l≥1

(
R

r

)l l∑
m=0

C̄lmȲ
C
lm (θ, φ) + S̄lmȲ

S
lm (θ, φ)

 (2.9)

where:

Ȳ C
lm (θ, φ) = NlmPlm (cosθ) cos(mφ), l ≥ 1, m = 0, .., l

Ȳ S
lm (θ, φ) = NlmPlm (cosθ) sin(mφ), l ≥ 1, m = 0, .., l

(2.10)

that is the standard representation in geophysics (Bertotti et al., 2003).

The relation between the complex and real bases is:

C̄l0 = Ūl0, l ≥ 1

C̄lm − iS̄lm =
√

2Ūlm, l ≥ 1, m = 0, .., l
(2.11)

The harmonics characterized by degree l and order 0 are the so-called

zonal harmonics and they do not depend on the longitude φ. If the harmon-

ics are un-normalized, then the following expression for the coefficients Jl
is valid:

√
2l + 1C̄l0 = −Jl, l ≥ 1 (2.12)

2.1.3 Low-degree harmonics

Suppose the origin of the reference frame does not coincide with the

body’s barycenter for a translation of modulus a, then the distance r be-

tween a generic point and the origin can be expressed as:
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1

r
=

1

|r′ + a|
=

1

r′

[
1− r

′ · a
r′2

+O

(
a

r′
2
)]

(2.13)

where r’ is the distance in the old reference frame centered at the barycen-

ter. An additional dipole term appears, along with higher order contribu-

tions. This means the reference frame can always be optimally chosen (ori-

gin in the barycenter) so that the degree-1 coefficients are identically null

(Bertotti et al., 2003).

The harmonic of degree l and order m divides the globe in (l-m)+1 lat-

itudinal bands (meaning the harmonics has l-m zeros) and 2m longitudinal

ones (with 2m zeros, see Figure 2.2). Aside from the monopole term (GM),

the quadruple (l=2) contribution is the first non-null term in the spherical

harmonic expansion, and it is characterized by five coefficients. In particu-

lar, the order-0 coefficient, J2, represents the body oblateness, and its pos-

itive for bodies flattened at the poles and negative otherwise (see Figure

2.2).

Figure 2.2: Visualization of low-degree spherical harmonics.

The degree and order 2 real coefficient (C22) represents the ellipticity

about the equator, it’s basically a measure of how much the equator shape

deviates form a circumference (Bertotti et al., 2003). Tesseral coefficients

C21 and S21 and sectorial S22 are related to the polar motion and in a Carte-

sian system based on the principal axes of inertia these coefficients vanish
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(Bertotti et al., 2003). Also very interesting is the degree 3 and order 0 coeffi-

cient J3, which represents the asymmetry between North and South (Figure

2.2), the so-called superior or inferior pear shape.

2.1.4 Kaula’s rule

Harmonic coefficients of same degree l tend to be of the same order of

magnitude, which generally decreases as l increases (Bertotti et al., 2003).

To show this trend, there can be defined coefficients that only depend on l

and consists essentially of the sum of the square of the normalized gravity

coefficients over the order m:

C2
l =

1

2l + 1

∑
m

(
C̄2
lm + S̄2

lm

)
(2.14)

Kaula (1966) was the first to notice that the decrease in C2
l was propor-

tional to the 4th power of l:

C2
l = Ak

10−10

l4
, l� 1 (2.15)

this empirical relation has been known as Kaula’s rule and holds very

well for the Earth (with Ak = 0.7, Bertotti et al., 2003) and for terrestrial

planets in general, provided that l� 1, although the explanation is not yet

known.

2.2 Tides

The gravitational potential of an isolated body is given by (2.9). If

an external perturbing body is present, perturbations to this potential can

arise: tides, defined as variations in the mass distribution of a non-rigid

body due to disturbances exerted by perturbing masses. In the frame of

this thesis, I will discuss the case where the distance between two bodies

(perturbed and perturbing) is much greater than their mean radii. Hence,

the cause of tidal stresses is the differential (tidal) acceleration that exists

between two points belonging to the perturbed body.

The study of tidal processes is very important since they are responsi-

ble for long-term variations of the body’s rotational and orbital elements.
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Furthermore, they produce time-variant deformations and energy dissipa-

tion within the body.

Let’s indicate with subscript 1 the perturbed body and with subscript

2 the perturbing mass. For each object, the equation of motion must hold:

r̈1 = −∇U (r1)

r̈2 = −∇U (r2)
(2.16)

here r1 (r2) is the distance between the origin of the chosen reference

frame and the center of the perturbed (perturbing) body. By subtracting the

two equations in 2.16 one gets:

r̈2 − r̈1 = r̈ = −∇U (r2) + ∇U (r1) (2.17)

where r is the relative distance between bodies 1 and 2. One can expand

the gravitational potential of the perturbing body at the first order around

the potential of the perturbed body (Bertotti et al., 2003):

r̈ = −r ·∇∇U (r1) +O
(
r2
)

(2.18)

The relative motion between the two bodies depends only on the ini-

tial position and velocity and not on their masses. Figure 2.3 shows that

tides are caused by the differential force per unit mass existing between a

generic point which belongs to the body and its barycenter. The maximum

tidal stress within a body can be found on two points of its surface, along

the conjunction line between the bodies’ barycenters. Intuitively, tidal de-

formations are also maximum in correspondence to this points and are ax-

isimmetrically distributed about this direction (Bertotti et al., 2003).

Each point is subjected to two opposite actions: on one hand there’s

the tidal stress exerted by the external body, on the other hand there’s the

body’s own gravitational acceleration.

If the body of mass Mp is not completely rigid, one can approximately

estimate the entity of the tidal effect by computing the ratio of the tidal

displacement hT of the perturbed body to its mean radius Rp (Bertotti et

al., 2003):

hT
Rp
≈ m

Mp

(
Rp
R

)3

(2.19)
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Figure 2.3: Tidal effects on the perturbed body. (Bertotti et al., 2003).

known as the tidal parameter (m is the mass of the perturbing body). If

the body is made of fluid, the work done by the two actions are of the same

order of magnitude.

Figure 2.4: Tidal displacement. Image credit: David J. Stevenson, Notes of Plane-

tary Structure and Evolution, California Institute of Technology.
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2.2.1 Tidal potential

Suppose the perturbing body is characterized by a mean motion n and

that the rotational axis passes through its center of mass and is also per-

pendicular to its orbital plane. Then the external potential U at a point P

located on the surface of the perturbed body and caused by the external

mass is (Bertotti et al., 2003):

U = − Gm

| R− r |
− 1

2
n2b2 (2.20)

where b is the distance between P and the rotation axis. The potential is

the sum of two contributions: the gravitational attraction and the rotational

energy.

Before it has been assumed that r � R, then it is possible to use the

expansion for the term | R− r |:

1

| R− r |
=

1

R

∑
l≤0

( r
R

)l
Pl (cosψ) (2.21)

where ψ is the angle between r and R (Figure 2.3). It’s very easy to

show that:

cosψ = cosθ′cosλ (2.22)

where θ′ is the colatitude of P with respect to the perturbing body or-

bital plane and λ is its longitude from the point where R pierces the per-

turbed body surface. Using Carnot theorem (Bertotti et al., 2003):

b2 =

(
mR

m+Mp

)2

+
(
rsinθ′

)2 − 2

(
mR

m+Mp

)
rcosψ (2.23)

By applying Kepler’s third law to the system (perturbing + perturbed)

one gets:

n3R3 = G (Mp +m) (2.24)

Putting equations (2.23) and (2.24) into equation (2.20) one gets (Bertotti

et al., 2003):
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U = −Gm
R

(
1 +

1

2

m

m+Mp

)
− 1

2
n2r2sin2θ′ − Gm

R

∑
l≤2

( r
R

)l
Pl (cosψ)

(2.25)

The second term represents the rotational potential about the axis through

the perturbed body barycenter and normal to its orbital plane. The effect

of this term is to produce a permanent equatorial bulge and perturbing the

quadrupole field.

The last term is the most important for the analysis carried out in this

work, it represents the tidal potential. Since r/R � 1, the largest term of

the perturbing gravitational potential is the quadrupole term (Bertotti et

al., 2003):

U2 = −Gm
R

( r
R

)2
P2 (cosψ) = −Gm

2R

( r
R

)2 (
3cos2ψ − 1

)
(2.26)

Due to this perturbation, the body’s equipotential surfaces are deformed

in prolate ellipsoids, axisymmetric around the line connecting the centers

of the two bodies.

It is useful to get an idea of the order of magnitude of the phenomenon

of tides. If the planetary body is rigid, then it doesn’t respond to the pertur-

bation of an external body by deforming or changing its mass distribution.

However, a variation of the surface gravity due to tidal phenomena exists

and is of order (Bertotti et al., 2003):

δgR
g

=

(
R2
p

GMp

)(
−∂U2

∂r

)
r=Rp

= − m

Mp

(
Rp
R

)3 (
3cos2ψ − 1

)
(2.27)

As an example, for the Earth-Moon tidal system, this number is ap-

proximately 10−7. In addition, the equipotential surfaces are subject to a

variation in their height of about (Bertotti et al., 2003):

δhR =
U2

g
=

1

2

m

Mp

(
Rp
R

)3

Rp
(
3cos2ψ − 1

)
(2.28)

of order 1 m for the Earth-Moon system.
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2.2.2 Love numbers

If the body is non perfectly rigid, then the presence of tidal stresses

will result in the deformation of the body itself. The perturbing external

potential on the surface of the body is denoted with U2 (Rp), and causes

variations in the shape of the perturbed body. This deformation will cause,

in turn, variation in the gravitational potential of the body, denoted with

UT (Rp) (Bertotti et al., 2003).

In the case where R � Rp, we can assume that U2 and UT are linearly

related:

UT (Rp) = k2U2 (Rp) (2.29)

by the coefficient k2. Analogously, the ratio of total tidal deformation

δhT to δhR defines:

h2 =
δhT
δhR

(2.30)

These two parameters are referred to as Love numbers of degree-2. From

equations (2.28) and (2.30) (Bertotti et al., 2003):

δhT = h2
U2

g
(2.31)

In principle, the presence of a perturbing tidal potential gives rise to

variations in the body’s potential UT at all degrees and orders, although in

this work higher-degree contributions are neglected, since the changes in

the degree-2 coefficients are the most relevant. If the resulting potential UT
is proportional to U2, then it must be a degree-2 term as well, thus being

proportional to 1
r3

(Bertotti et al., 2003):

UT (r) =

(
Rp
r

)3

UT (Rp) =

(
Rp
r

)3

k2U2 (Rp) = −k2
Gm

Rp

(
Rp
r

)3

P2 (cosψ)

(2.32)

In turn, the variation in the gravitational acceleration δgT of the de-

formed perturbed body can be expressed as the sum of two contributions:

the variation of the potential (perturbed + perturbing) with the radial dis-

tance r and the presence of a tidal deformation δhT (Bertotti et al., 2003):
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δgT = −∂ (U2 + UT )

∂r
+
∂g

∂r
δhT (2.33)

Substituting equations (2.27), (2.31) and (2.32) into (2.33) we obtain:

δgT = −
(

1− 3

2
k2 + h2

)(
∂U2

∂r

)
=

(
1− 3

2
k2 + h2

)
δgR (2.34)

which represents the relation between the variation in the gravitational

acceleration for a rigid body (gR) and for a tidally deformed body (gT ).

Analogously, we can compare the variations in the height of equipo-

tential surfaces in the two different cases:

δz = (1 + k2 − h2)
U2

g
= (1 + k2 − h2) δhR (2.35)

where ∆ = 1 + k2 − h2 is a very important parameter related to the

thickness of the body’s icy crust.

2.2.3 Eccentricity tides

The tidal potential U2 and the entity of the body’s tidal deformation

depend on time because of two fundamental effects: variations in the an-

gle ψ (Figure 2.3) with time, basically variations in the angular position of

the perturbing body with respect to the perturbed one; and changes in the

value of R, not constant because of the eccentricity of some orbits.

For many natural satellites such as Ganymede and the Moon, the ro-

tation period around their axes is equal to their orbital period around the

central body (1:1 resonance). This condition is referred to as being tidally

locked. In this case the relative motion is locked and the central body al-

ways faces the same side of the satellite. The result is that for tidally locked

satellites, the variations due to changes in ψ are negligible.

Intuitively, satellites that rotate slowly and distant from the central

body are less affected by tidal and rotational perturbations and their shape

tends to be closer to a sphere. On the other hand, when satellites orbit fast

and close to the planet, as for Ganymede, the body is subject to perturba-

tions that are stronger, the lower its mean density.

In either case, it’s logical to expect variations in the degree-2 coefficients

with respect to the gravitational potential of an isolated body. Therefore we
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can express coefficients C2m as the sum of a static component and a tidal

variation:

J2 = J2s + ∆J2

C21 = C21s + ∆C21, S21 = S21s + ∆S21

C22 = C22s + ∆C22, S22 = S22s + ∆S22

(2.36)

It is also consistent to expect that these alterations are proportional to

the perturbation through the Love number k2m (Jacobson, 2011):

∆J2 = 1
2k20

(
m
Mp

)(
Rp

R

)3 (
1− 3cos2θ′

)
∆C21 − i∆S21 = k21

(
m
Mp

)(
Rp

R

)3
cosθ′sinθ′e−i(λ+ξ)

∆C22 − i∆S22 = 1
4k22

(
m
Mp

)(
Rp

R

)3 (
1− cos2θ′

)
e−2i(λ+ξ)

(2.37)

In this notation λ is the longitude of the planet with respect to the satel-

lite orbital plane and ξ is the longitude offset angle, due to the fact that the

satellite is not moving along a circle but rather along an ellipse, thus its

Prime Meridian is not always aligned with the elliptical radial direction

pointing towards the central body.

Through some mathematical manipulation one can express the changes

in the quadrupole field coefficients in terms of orbital elements of the satel-

lite with respect to the planet and then switch to a real representation (for

details see Jacobson, 2011). Also, considering that for satellites in syn-

chronous rotation the relation: λ ≈ e sinM holds, then:

∆J2 = 1
2k20

(
m
Mp

)(
Rp

a

)3
(1 + 3e cosM)

∆C21 = k21

(
m
Mp

)(
Rp

a

)3
sin I sin (M + ω) cos ξ

∆S21 = k21

(
m
Mp

)(
Rp

a

)3
sin I sin (M + ω) sin ξ

∆C22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
[cos 2ξ + e cos 2ξ cosM + 2e cos (M + 2ξ)]

∆S22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
[sin 2ξ + e sin 2ξ cosM + 2e sin (M + 2ξ)]

(2.38)

where a is the semi-major axis of the satellite orbit around the planet, e

is the eccentricity, M is the mean anomaly, I is the inclination and ω is the

argument of periapsis.
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Satellite Inclination (◦) Eccentricity

Io 0.036 0.0041

Europa 0.466 0.0094

Ganymede 0.177 0.0013

Callisto 0.192 0.0074

Table 2.1: Inclination and eccentricity of the orbits of the Galilean satellites with

respect to Jupiter’s equator (”Planetary Satellite Mean Orbital Parame-

ters”. Jet Propulsion Laboratory, California Institute of Technology).

At this point, there are a number of considerations that I wish to make.

Firstly, the orbits of the four Galilean satellites are characterized by very

small inclinations, as reported in Table 2.1. If I ≈ 0, from equation (2.39) it

is evident that we can neglect the variations of C21 and S21 due to tides:

∆C21 ≈ 0

∆S21 ≈ 0
(2.39)

Also, given the small eccentricity characterizing the orbits of the Galilean

satellites (Table 2.1), we can assume that the variations in the qudrupole

coefficient due to the longitude offset angle ξ are much smaller than the

variations depending on the quickly varying mean anomaly:

cos 2ξ ≈ 1

cos (M + 2ξ) ≈ cosM, sin (M + 2ξ) ≈ sinM

sin 2ξ + e sin 2ξ cosM � 2e sinM

(2.40)

The new form of equations (2.38) is then:

∆J2 = 1
2k20

(
m
Mp

)(
Rp

a

)3
+ 1

2k20

(
m
Mp

)(
Rp

a

)3
3e cosM

∆C22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
+ 1

4k22

(
m
Mp

)(
Rp

a

)3
3e cosM

∆S22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
2e sinM

(2.41)

The first terms in equations (2.41a) and (2.41b) represent the perma-

nent tidal deformation of the body, independent of the mean motion of the

satellite around the planet. Since the estimate of these contributions can’t

be decoupled from that of static components (J2s and C22s) of the degree-2
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coefficients, we can simply ignore those terms when speaking of variations

in the harmonics due to periodic effects.

Lastly, we have to take into account another important phenomenon

that affects the changes in the coefficients, namely the angle δ due to the

misalignment between the maximum tide height and the line through the

centers of the perturbing and perturbed bodies (Figure 2.5).

Figure 2.5: Offset angle between the tidal bulge of the satellite and the line through

the centers of the perturbing and perturbed bodies.

This angle exists because the elastic response of the satellite lags behind

(in time) the tidal potential. This effect is also responsible for the presence

of a tidal torque between the two bodies. If the satellite’s spin rate is greater

than its orbital motion, then the bulge will lead the planet, otherwise the

bulge lags the planet and the torque changes sign (ref: Cornell Education).

In this scenario, the maximum deformation is not reached at periapsis

(M = 0) but rather when M = δ. Thus, in order to obtain the correct

formulation, we have to substitute M with the angle M − δ in equations

(2.41):
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∆J2 = 1
2k20

(
m
Mp

)(
Rp

a

)3
3e cos (M − δ)

∆C22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
3e cos (M − δ)

∆S22 = 1
4k22

(
m
Mp

)(
Rp

a

)3
2e sin (M − δ)

(2.42)

If the body is characterized by two distinct degree-2 Love numbers k20

and k22 it means that it responds differently depending on the direction of

the deformation. On the other hand we can safely assume, to the first order,

that the body behaves isotropically, therefore being described by one global

degree-2 Love number, namely: k2 = k20 = k22. Furthermore, for clarity

we can indicate with:

qt = −3

(
m

Mp

)(
Rp
a

)3

, k2< = k2 cos δ, k2= = −k2 sin δ (2.43)

where k2< and k2= are the real and imaginary components of k2, re-

spectively. Then using some mathematical manipulation:

∆J2 = −1
2k2<qte cosM + 1

2k2=qte sinM

∆C22 = −1
4k2<qte cosM + 1

4k2=qte sinM

∆S22 = −1
6k2<qte sinM − 1

6k2=qte cosM

(2.44)

valid for eccentricity tides of satellites characterized by very small in-

clinations with respect to the central body and in presence of a phase lag.

2.3 Introduction to thermal wind balance

A planetary atmosphere is defined as a layer of fluid on a sphere char-

acterized by a thickness much less than its horizontal extent. Fluids are

different from solid bodies in many regards but mainly because they form

a continuum and are able to flow and deform. As a consequence, the equa-

tions describing the behavior of fluids are different from those governing

solid body mechanics, although both respond to the same basic principles

such as Newton’s laws (Vallis, 2006).

In this section it is my intent to introduce some basics of fluid dynamics

in order to quantify the effects that zonal and meridional winds, involving

a great deal of fluid mass on gas giants such as Jupiter, have on the gravity

field of the planet itself.
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2.3.1 Eulerian and Lagrangian viewpoints

When describing the motion of a solid body, it is sufficient to report on

the evolution of the position and velocity of the center of mass of the ob-

ject and its attitude with respect to a body-fixed reference frame. The state

of every other mass element belonging to the body can be then simply in-

ferred assuming that the body is undeformable. Clearly, in fluid dynamics

this is not the case, therefore there exist two different approaches to study-

ing the motion of a fluid, both capable of describing its evolution in space

and time but with different characteristics, defined as follows.

We refer to a fluid element or parcel as an infinitesimal, indivisible, piece

of fluid of fixed mass. The Lagrangian or material point of view consists in

following independently every single fluid parcel in its motion, as if each

of them were marked with a specific label. In this view, the equations of

motion are solved for every element, also considering the internal forces

between different parcels. The material derivative D
Dt is the operator associ-

ated to the variations in time of a scalar property φ of a specific fluid parcel

(e.g. density of a single element). Although this approach provides an ex-

tremely detailed description of the motion of a fluid, it is often redundant

and difficult to implement (Vallis, 2006).

Another option is to look at the temporal variability of properties of

the fluid that we are interested in (velocity, density, temperature) at fixed

points in space. This viewpoint is known as Eulerian or field, where we

observe the evolution in time of a fluid field from an anchored reference

frame. The Eulerian derivative ∂
∂t is then the rate of change of a certain prop-

erty at a fixed point in space. The two derivatives are related through the

expression:

Dφ

Dt
=
∂φ

∂t
+ (v · ∇)φ (2.45)

where on the right side we find an additional term that depends on the

velocity field v (x, t) (which gives the fluid speed at every fixed point and

instant of time). Hence the two operators differ from one another by a term

that depends on the spatial variation of φ, due to the parcel moving in the

continuum (Vallis, 2006).

We might as well be interested in the material derivative of a vector

field b, the expression is all in all analogous to that for a scalar field:
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Db

Dt
=
∂b

∂t
+ (v · ∇) b (2.46)

with the term in parenthesis being a operator to apply to the vector

field. For a formal derivation of equation (2.45)-(2.46) see the reference (Val-

lis, 2006, section 1.1.2)

2.3.2 Equations of motion for fluids

The purpose of this subsection is to introduce a set of equations capable

of describing the behavior of a fluid as a continuum.

The mass continuity equation states that the mass of a fluid system is con-

served as it flows into and away from regions and as its density changes,

provided there are no sources or sinks of mass (Vallis, 2006). The differen-

tial, Eulerian form of the equation is the following:

∂ρ

∂t
+∇ · (ρv) = 0 (2.47)

The equation asserts that possible changes in the fluid density must be

matched by inflow or outflow of mass and this must be true for every point

of the continuum. On the other hand, from a Lagrangian point of view the

mass continuity equation simply states that the mass of every single parcel

is constant:

D (ρ∆V )

Dt
= 0 (2.48)

whit ∆V being the infinitesimal volume of the fluid element. By ma-

nipulating the expression (for detail see Vallis, 2006, section 1.2.2), equation

(2.48) can be written in the form:

Dρ

Dt
+ ρ∇ · v = 0 (2.49)

In addition to the mass balance, the momentum equation is needed to

account for changes in the momentum of the fluid, due to the action of

internal and external forces. From Newton’s second law:

ρ
Dv

Dt
= F (2.50)

or, in term of field derivative of the velocity (Vallis, 2006):
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∂v

∂t
+ (v · ∇)v =

F

ρ
(2.51)

thus the acceleration of the fluid is proportional to the applied forces

(not all external) and inversely proportional to the mass of the fluid (den-

sity if the equation is written per volume unit).

Now we need to specify the right hand of equation (2.51), characteriz-

ing the different contributions. In the balance we must take into account

the effects of the direct contact between two fluid elements. One of these

contact forces is the so-called pressure force Fp. Intuitively, the pressure term

of the momentum equation would be proportional to the pressure gradient

with a changed sign since fluid tends to flow from high-pressure regions to

low-pressure ones (for a complete formulation see Vallis, 2006, sect. 1.3.2).

Then, equation (2.51) becomes:

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ F ′ (2.52)

where F ′ = (F − Fp) /ρ. Another contribution is due to the viscosity

of the fluid. For most Newtonian fluids, a very good approximation of the

viscous force per unit volume is (Vallis, 2006):

F̂v = µ∇2v (2.53)

where µ is the viscosity. Since all equations have been written per unit

volume, it is convenient to introduce the kinetic viscosity as ν ≡ µ
ρ . For a

gas, the kinetic viscosity is roughly equal to the product of the mean free

path and the mean molecular velocity. That being so, equation (2.53) takes

now the form:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + Fb (2.54)

where it has been chosen to represent the combination of all external

(body) forces, such as gravity, with the notation Fb.
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2.3.3 Hydrostatic balance

When talking about planetary atmosphere, it is useful to introduce in

this context a set of spherical coordinates as done in section 2.1. The veloc-

ity of the fluid can then be expressed in terms of longitudinal, latitudinal

and radial components (u, v, w) respectively (see Figure 2.6).

Figure 2.6: Components of the fluid velocity in spherical coordinates (Weisstein,

Eric W. Spherical coordinates. From MathWorld, A Wolfram Web Re-

source).

The projection of the momentum equation in the radial direction r̂ is:

Dw

Dt
= −1

ρ

∂p

∂z
− g (2.55)

where g is the gravitational acceleration.

If the fluid has no motion in the radial direction, namely w ≡ 0, then

the pressure and gravitational terms balance each other out:
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∂p

∂z
= −ρg (2.56)

This condition is known as hydrostatic equilibrium and states that at ev-

ery fixed point the pressure is due to the weight of the fluid column above

(Vallis, 2006).

2.3.4 Incompressible flows

A fluid is referred to as incompressible when its density is constant from

a Lagrangian point of view:

Dρ

Dt
= 0 (2.57)

then the mass conservation equation in (2.49) can be written as:

∇ · v = 0 (2.58)

In this case, equation (2.48) can be manipulated to prove that the vol-

ume of each fluid parcel is constant in time and thus it doesn’t deform

(Vallis, 2006).

Although in the context of planetary atmospheres there are basically

no real flows that can be considered strictly incompressible, sometimes the

temporal variations in the density can be neglected if compared to the di-

vergence term in equation (2.49), explicitly:∣∣∣∣DρDt
∣∣∣∣� ρ∇ · v (2.59)

It is worth noting that for not strictly incompressible flows, although

the changes in the fluid density can be neglected in the mass conserva-

tion equation, and thus equation (2.58) stands, this doesn’t imply that these

variations can be neglected when standing alone, namely it can’t be subse-

quently assumed that DρDt = 0 (Vallis, 2006).

2.3.5 Equations of motion in a rotating reference frames

The rotation of a celestial body about one of its axis influences greatly

the dynamics of a planetary atmosphere. For this reason it is very conve-

nient to write the equations of motion for a fluid with respect to a rotating

reference frame.
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Switching from an inertial reference frame (indicated by the subscript

I) to a rotating one (indicated by the subscript R) the relation between the

acceleration of an arbitrary point in space as seen by the two frames is (for

details on the mathematical derivation see Section 2.1.2 of Vallis, 2006):

(
dvR
dt

)
R

=

(
dvI
dt

)
I

− 2Ω× vR −Ω× (Ω× r) (2.60)

where vR is the relative velocity as seen in the rotating reference frame,

vI is the inertial velocity and Ω is the body’s rotation rate.

In this context we introduce the Coriolis acceleration (−2Ω×vR) and the

centrifugal acceleration (−Ω × (Ω× r)). These forces for unit mass are the

so-called apparent forces, affecting the motion of a body only when this is

described in a non-inertial reference frame.

From (2.60) it follows that the Coriolis acceleration affects the motion of

a body in a rotating frame only when the body is provided with a non-null

relative velocity. If this is the case, this apparent force tends to deflect the

motion of the body to right angles with respect to their direction of motion

(Vallis, 2006).

A useful vectorial identity is:

Ω× (Ω× r) = (Ω · r⊥)Ω− (Ω ·Ω) r⊥ (2.61)

here r⊥ is the component of the position vector perpendicular to the

rotation rate Ω. Noting that the first term on the right side of equation

(2.61) is zero because of the dot product, the centrifugal acceleration can be

expressed as:

−Ω× (Ω× r) = Ω2r⊥ (2.62)

In principle, this force can be expressed in term of a scalar potential Φce

(Vallis, 2006) so that:

Fce = −∇Φce (2.63)

then for equations (2.62) and (2.63) to be equivalent it must be:

Φce = −
Ω2r2

⊥
2

(2.64)

57



Basic principles of geophysics

Applying these considerations to the equations of motion, it is intuitive

that the rate of change of a scalar quantity such as the density of a fluid, is

invariant of the reference frame. this means that the mass conservation

equation maintains the same formulation in both inertial and rotating ref-

erence frames (Vallis, 2006, Section 2.1.4).

On the other hand, when coming to the momentum equation, it is nec-

essary to take into account the presence of the centrifugal and Coriolis

accelerations when switching to a rotating reference frame. In particular,

equation (2.54) becomes:

Dv

Dt
+ 2Ω× v = −1

ρ
∇p−∇Φ (2.65)

where v is now the relative velocity and the potential function Φ com-

prises both the gravitational and centrifugal terms.

2.3.6 Geostrophic and thermal wind balance

The presence of a centrifugal term in the effective gravity (−∇Φ) results

in the equipotential surfaces not being spherical because of Φ dependence

on latitude through r⊥. Given this, by keeping the traditional formulation

of spherical coordinates, the horizontal component of the momentum equa-

tion would be dominated by the centrifugal and pressure gradient terms,

as well as the vertical balance, whereas it is important to emphasize the role

of the Coriolis acceleration in the horizontal flow.

For this reason, it is common practice to redefine the vertical direction

in spherical coordinates as the normal to the new equipotential surfaces,

this way the component of the effective gravity in the vertical direction is

again null. By carrying on with the formulation of the equations of mo-

tion as if the equipotential surfaces were spherical, a small geometric er-

ror is accepted and traded with bigger dynamical errors introduced by the

appearance of centrifugal and gravitational accelerations in the horizontal

momentum balance (I refer the reader willing to go into more detail of this

discussion to Section 2.2.1 of Vallis, 2006).

In the approximation discussed above the terms depending on the ver-

tical component w of the velocity can be neglected in the horizontal mo-

mentum equation, thus the projection of equation (2.65) on the plane de-

fined by θ̂ and φ̂ is:

58



Basic principles of geophysics

Du

Dt
+ f × u = −1

ρ
∇zp (2.66)

where u = uφ̂ + vθ̂ is the horizontal velocity, f = 2Ω cos θk is the

Coriolis parameter and ∇z is the gradient operator at constant z (Vallis,

2006). The relation can be expressed in terms of stationary variations as

well, obtaining:

∂u

∂t
+ (v · ∇)u+ f × u = −1

ρ
∇zp (2.67)

The order of magnitude of the advective term (second term on the left

hand) is given by U2/Lwhere U is the magnitude of the horizontal velocity

and L is the characterizing length scale. This quantity can be compared

to the magnitude of the Coriolis acceleration (about fU ) by defining the

Rossby number:

Ro =
U

fL
(2.68)

that characterizes the importance of rotation in a fluid. If the celestial

body is a fast rotator (like Jupiter), than the Rossby number is very small

and the advective term in the horizontal momentum equation can be ne-

glected (Vallis, 2006), leading to:

f × u ≈ −1

ρ
∇zp (2.69)

basically, when Ro � 1, the horizontal pressure gradient is balanced

by the Coriolis force only. This balance is known as geostrophic. In Cartesian

coordinates (Vallis, 2006):

fu ≈ − 1
ρ
∂p
∂y

fv ≈ 1
ρ
∂p
∂x

(2.70)

whence the flow is parallel to isobaric lines. Also note that for f > 0 (i.e.

in the northern hemisphere) the flow has an anticlockwise motion around

regions of low pressure and clockwise motion around high-pressure areas

(see Figure 2.7). Viceversa is true for the southern hemisphere.

Leaving this 2D formulation (that holds for every equipotential sur-

face) for a 3-D model, the thermal wind balance is then the combination of

the geostrophic and hydrostatic approximation (Vallis, 2006). This union
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Figure 2.7: Geostrophic (anti) clockwise flow around (low) high pressure regions.

Explanatory image for the Earth rotation. Image credit: UCI Edu

ESS124.

introduces vertical derivatives of the geostrophic winds (u and v) in the

vertical direction. In order to show that, it is convenient to express the 3-D

inviscid momentum equation (2.65) in terms of the vorticity∇× v:

∂v

∂t
+ (2Ω +∇× v)× v = −1

ρ
∇p−∇Φ (2.71)

By taking the curl of the equation above, one gets (for a detailed math-

ematical formulation see Kaspi et al., 2009):
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2Ω∇ · (ρv)− 2Ω · ∇ (ρv) = −∇ρ× g (2.72)

Before proceeding further, there are a few considerations to be made.

Since the system is in hydrostatic equilibrium, the following relation holds:

∇p̃ = −ρ̃∇Φ (2.73)

where p̃ and ρ̃ are the reference hydrostatic pressure and density, re-

spectively, that depend only on the radial direction (r̂). The deviations of

the total pressure and density p′ and ρ′ from this reference stationary values

are very small and functions not only of the depth but also of colatitude θ

and longitude φ:

p = p̃ (r) + p′ (r, θ, φ)

ρ = ρ̃ (r) + ρ′ (r, θ, φ)
(2.74)

Supposing that the temporal variations of the total density are negligi-

ble if compared to the divergence term in equation (2.49) (and they are, if

the Rossby number is small), then the mass conservation equation becomes:

ρ∇ · v = 0 (2.75)

then it’s clear that the first term on the left hand of equation (2.72) is

null, thus:

2Ω · ∇ (ρv) = ∇ρ× g (2.76)

Now, given that:

ρ̃v � ρ′v (2.77)

and∇ρ̃ is parallel to g, equation (2.76) can be reduced to:

2Ω · ∇ (ρ̃v) = ∇ρ′ × g (2.78)

known as the standard thermal wind relation (Kaspi et al., 2009). If the

temperature decreases going from the equator to the poles, as it happens on

Earth, then equation (2.78) states that eastward winds increase with height,

a phenomenon that has been observed on our planet (Vallis, 2006). In a
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continuum, regions where the fluid is colder are characterized by larger

densities, thus, for the hydrostasy equation (2.73), these regions are also

characterized by greater vertical pressure gradients, giving rise to the ver-

tical shear, representative of thermal winds.

Figure 2.8: Mechanism of thermal wind for an atmospheric layer between 700 and

1000 hPa. Image credit: B. Geerts, University of Wyoming, Dep. of

Atmospheric Science.

To get a grasp of this phenomenon, let’s take a look at Figure 2.8. The

presence of a horizontal temperature gradient results in the deformation of

isobaric lines. As a consequence, the horizontal pressure gradient is larger

between points A and B than between C and D, meaning that thermal

winds increase with height (B. Geerts, University of Wyoming, Dep. of

Atmospheric Science).
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Chapter 3

Orbit determination

The discipline of orbit determination is a very powerful tool used to

determine the trajectory of a body (celestial or not) in space, with respect

to an observational reference frame (e.g Earth-centered). In this chapter

I will focus on the description of the orbit determination problem for an

artificial satellite (i.e spacecraft or probe). I will introduce the mathematical

formulation of the problem, as well as the optimization method used in

order to attain the optimal reconstruction of the satellite trajectory and the

best estimate of physical parameters affecting the motion of the body.

In Sections 3.1, 3.2 and 3.3, I will use the same mathematical terminol-

ogy as in Tapley (2004), although the argumentations will be reformulated.

3.1 Introduction

The orbit determination of non-celestial bodies consists of obtaining

the best estimate, yet undefined, of a complete set of initial conditions that

represents the state of the body X (t0) at some reference epoch t0. Intu-

itively, the minimal collection of parameters necessary to describe the state

of a satellite is the composition of the position and velocity vectors. Never-

theless, this set can be further expanded including parameters characteriz-

ing the dynamical model in which the spacecraft is immersed, in order to

obtain a better description of the surroundings.

For the fundamental theorem of calculus, the knowledge of the initial

state represents enough information to define the future evolution of a dy-

namical system, provided that the set of differential equations that governs

63



Orbit determination

its motion is known and can be integrated. Once the initial conditions are

made available, the state of the systemX (t) at every future instant of time

t can be derived by simply propagating the initial state forward.

In practice, the initial state of a spacecraft (e.g components of position

and velocity in Cartesian coordinates at t0) is never known with the desired

accuracy, as well as the constants characteristic of the dynamical model or

the mathematical formulation itself. All these effects make the prediction of

the body trajectory very difficult from a deterministic point of view, hence

the necessity of tracking the spacecraft from Earth stations of well-known

position in order to provide a better estimate of the orbit. However, the

state of a satellite is never directly observed, the actual observable quanti-

ties are usually of the kind of range and range-rate measurements that repre-

sent the relative distance and velocity between the spacecraft and the Earth

along the line of sight, respectively. One could even exploit angular obser-

vations, measuring the angle between the probe-station direction and the

local horizon (Figure 3.1).

These observations are, of course, subject to both random and system-

atic errors, creating the necessity of defining and then finding the best esti-

mate of the body state in a statistical sense. Yet, even after the optimization

process (to be described in the next sections), the estimated trajectory X̂ will

be different from the true trajectory X actually outlined by the spacecraft,

for several reasons:

• Errors in the estimate of the initial state due to:

- inaccuracies in the formulation of the dynamical model or in the

updating procedure;

- observation errors;

- computational errors;

• Integration errors due to error in the dynamical model (e.g lineariza-

tion) or truncation and round-off errors.

All the effects listed above contribute to create the necessity of con-

stantly updating the trajectory of the spacecraft by solving the orbit deter-

mination problem for the body at different epochs. In fact, after a certain
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Figure 3.1: Differences between estimated, true and nominal trajectories. ρ, ρ̇ and

θ represent range, range-rate and angular observations, respectively.

Image credit: Tapley, 2004.

amount of time, the approximations used and the errors involved make the

prediction of the orbit not good enough.

The nominal trajectory X∗ is, instead, the best realization of the trajec-

tory before the orbit determination process; in a way, the desired trajectory

as designed by the project of a space mission. Needless to say, this reference

trajectory also differs from both the estimated and the true trajectories.

From Figure 3.1 it is clear that the values of the actual observed observ-

ables are functions of both the state of the spacecraft X and the position of

the station XS at the epoch of the observation, a dependence on time that

one must take into account when formulating the orbit determination prob-

lem. On the other hand, it is possible to produce another set of observables,

calculated starting from a reference dynamical model, nominal trajectory of

the spacecraft, position of the tracking station and some relations capable
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of linking the observables with the state of the spacecraft. These quantities

are the so-called computed observables that will be discussed in more detail

in the following sections. The difference between observed and computed

observables at any instant of time can provide information on the goodness

of the real-time knowledge of the spacecraft motion and a tool to improve

the satellite estimated trajectory as well as the dynamical model.

3.2 Observables

Nowadays, several set of observables are made available by onboard

tracking systems, capable of measuring scalar quantities related to the state

of the spacecraft. In the frame of this dissertation, I will focus on the de-

scription of two of the most common radiometric measurements: two-way

range and two-way range-rate, as these will be the observations carried out

by the radio science instrument of the Juno and the JUICE missions.

3.2.1 Two-way range

Range measurements are related to the linear distance between the

spacecraft and the Earth. If rI is the position vector of the ground station

and r is the position vector of the spacecraft with respect to the origin of a

reference coordinate system (e.g Earth-centered), then the idealized linear

distance between the two bodies is:

ρ =
√

[(r − rI) · (r − rI)] (3.1)

which is a function of the specific instant of time at which the measure-

ment is performed, namely rI = rI (t), r = r (t). Obviously, the distance

between two points is invariant of the reference frame, for example in a

Earth-centered inertial frame it would be:

ρ =

√
(X −XI)

2 + (Y − YI)2 + (Z − ZI)2 (3.2)

In the idealized case in which it is possible to measure the true range

this will not differ from the observed one, while in fact, due to medium

propagation and instrumental limitations, the observed range never coin-

cides with the actual radial distance, but rather:
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ρobs = ρ+ ε (3.3)

where ε is the error term, the nature of these alterations will be specified

later in the dissertation.

Now that the geometric nature of ρ has been specified, it is important

to understand how this kind of observations are carried out, as they are

related to the measure of the time of flight of a radio signal in the microwave

region (section 1.4.1). In the case of two-way range, a signal is originally

transmitted from the ground station, received, amplified and coherently

re-transmitted back by the spacecraft transponder to the same station. The

signal trip from the ground instrumentation to the satellite is known as

uplink, while the way back is known as downlink, whence the label two-

way.

Suppose the ground-based hardware transmits a pulse of Gaussian

shape at the time tT . Suppose also that the spacecraft receives the signal

and re-transmits it back without any time delay. Then, the station will de-

tect the returning pulse at the time tR, measured by the same clock as the

transmitting time. The back and forth signal path is then:

ρrt = c(tR − tT ) (3.4)

where c is the speed of light. At this point it is essential to make some

considerations about the clock model. In fact, there are some differences

between the time t as measured by the clock and the true time T . A suitable

relation between these two quantities is:

t = T + a+ b (T − T0) + εclock (3.5)

where a is the clock constant offset, b is the linear drift, εclock is a term

comprising other possible errors (non-linear and stochastic) and T0 is the

reference time. Applying this definition to equation (3.4) one gets:

ρrt = c(TR − TT ) + b(TR − TT ) + εclock (3.6)

here the constant offset disappears as the time measurements are based

on the same clock, indeed this property represents the biggest advantage

in adopting two-way range measurements.
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In reality, atmospheric delays must be taken into account as well, then

equation (3.6) becomes:

ρrt = c(TR − TT ) + b(TR − TT ) + εclock + δρatm (3.7)

the last term will be discussed in much more detail in Chapter 4.

In this ideal formulation the round-trip distance is twice the distance

between the spacecraft and the Earth station:

ρavg =
ρrt
2

(3.8)

although for several reasons, such as the finite propagation speed of

light, this is true only up to the sub-millimeter level (Tapley, 2004).

3.2.2 Two-way range-rate

Range-rate measurements correspond to the rate of change, in time,

of the radial distance between the ground station and the spacecraft. The

mathematical expression for these observations can be determined by dif-

ferentiating equation (3.2) in time:

ρ̇ =
(X −XI)

(
Ẋ − ẊI

)
+ (Y − YI)

(
Ẏ − ẎI

)
+ (Z − ZI)

(
Ż − ŻI

)
[
(X −XI)

2 + (Y − YI)2 + (Z − ZI)2
]1/2

(3.9)

in which temporal variations of the station location, due to Earth ro-

tation (if the adopted reference frame is inertial), tectonics and so on, are

accounted for. As expected, also in this case systematic and randomic ef-

fects must be considered, giving rise to an error term ε:

˙ρobs = ρ̇+ ε (3.10)

In the next few paragraphs I will show how range-rate observations

are related to recordings of the Doppler shift of a radio signal.

In most Doppler tracking systems, the ground station transmits a peri-

odic radio signal of frequency fT , between two instants of time tT1 and tT2 .

Suppose that this signal is received back by the station instrumentation be-

tween times tR1 and tR2 , after being coherently re-transmitted back by the

spacecraft. Then:
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tR1 = tT1 + ∆t1 = tT1 + 2ρ1
c

tR2 = tT2 + ∆t2 = tT2 + 2ρ2
c

(3.11)

where 2ρ1 is the round-trip distance between the station and the satel-

lite at the time tR1 , the same applies for 2ρ2. Here I used the same approxi-

mation as in expression (3.8).

The process of extracting the received frequency fR includes the mul-

tiplication with the reference frequency standard fG, representative of the

transmitted frequency. The outcome of the beating is a pair of periodic sig-

nals of frequencies fG + fR (which is filtered out) and fG − fR, containing

the desired information content. The next step is counting the number of

cycles between tR1 and tR2 by integrating the differential frequency:

N1,2 =

∫ tR2

tR1

(fG − fR) dt (3.12)

Developing the integral:

N1,2 = fG

[
tT2 − tT1 +

2 (ρ2 − ρ1)

c

]
−
∫ tR2

tR1

fRdt (3.13)

The numbers of recorded oscillations of the transmitted and received

signals are the same, thus:

∫ tR2

tR1

fRdt =

∫ tT2

tT1

fTdt = fT (tT2 − tT1) (3.14)

Equation (3.13) becomes:

N1,2 = (fG − fT ) (tT2 − tT1) + fG
2 (ρ2 − ρ1)

c
(3.15)

If δρ = ρ2 − ρ1, then:

N1,2 = fT
2δρ

c
(3.16)

because, in principle fG = fT . Dividing by δt = tR2 − tR1 and treat-

ing these finite differences as proper derivatives (this is the least rigorous

assumption), comparing with equation (3.12) one gets:

N1,2

δt
= fT − fR = fT

2

c

δρ

δt
(3.17)

whence the Doppler shift is:
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fT − fR = ∆f = fT
2ρ̇

c
(3.18)

in relation to the range-rate of the spacecraft.

3.3 Mathematical formulation

In section 3.1 it has been discussed how the n-component state vector

of a bodyX can be univocally determined for every instant of time t > tk if

the differential equations that govern its motion are perfectly known along

with a set of initial conditionsXk at the reference epoch tk:

Ẋ = F (X, t)

X (tk) ≡Xk

(3.19)

However, since the state of a satellite is never directly observed, in sec-

tion 3.2 it’s been specified what are the classes of observations used in space

navigation and gravity science to get the best estimate of the initial state

vectorXk and other physical parameters. These observables are connected

to the state of the body through the observation equations (e.g. equation (3.2)

and (3.9)) that can be written in a compact form as:

Yi = G (Xi, ti) + εi i = 1, ..., l (3.20)

where Yi is the p-dimension observation vector at the time ti and εi
is the vector of observation errors as defined in section 3.1. In the case of

both range and range-rate measurements it would be p = 2. Usually, p < n

but, in order to overcome this under-parametrization of the problem a great

number of observations is used so that: m = p · l� n.

3.3.1 Linearization

There is one fundamental thing to be noted: there is no reason not to

assume that the equations of motion and the observation equations are, in

general, non-linear. It is not my intent in the frame of this dissertation to

convince the reader how the linearization of these equations would be ben-

eficial to the solution of the orbit determination problem. Let just say that if

a sufficiently reliable nominal trajectory X∗ is available, then it is possible
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to expand the true trajectory X around the nominal state, provided that

the interval of time in which this approximation is used is small enough

that the two trajectories are close enough. Applying the linearization to

equations (3.19) and (3.20) one gets:

Ẋ = F (X∗, t) +

[
∂F (t)

∂X (t)

]∗
[X (t)−X∗ (t)] +O [X (t)−X∗ (t)] (3.21)

Yi = G (X∗i , ti) +
[
∂G
∂X

]∗
i

[Xi (ti)−X∗i (ti)] +O [Xi (ti)−X∗i (t)] + εi

i = 1, ..., l

(3.22)

where the partial derivatives are computed on the nominal trajectory.

But F (X∗, t) = Ẋ∗ and G (X∗i , ti) = Y ∗i , also one could introduce the

quantities x (t) = Ẋ−Ẋ∗ and y (ti) = Yi−Y ∗i as the deviations of the state

and observation vectors with respect to the nominal state, then expression

(3.21) and (3.22) become:

ẋ (t) = A (t)x (t) (3.23)

yi = H̃ixi + εi i = 1, ..., l (3.24)

defining A (t) =
[
∂F (t)
∂X(t)

]∗
as the time-dependent coefficient matrix of

the system of linear differential equations of motion, H̃i =
[
∂G
∂X

]∗
i

as the

partial derivatives matrix of the observations with respect to the compo-

nents of the state and yi as the difference between the observed observables

Yi and the computed observables Y ∗i calculated starting from the nominal

state at the time ti.

Provided that the coefficient matrix is not singular, the solution to sys-

tem (3.23) of n unknowns is:

x (t) = Φ (t, tk)xk (3.25)

where Φ (t, tk) is the state transition matrix that links the state vector

x (t) at the generic instant of time t to the state vector xk = x (tk) calculated

at the reference epoch tk.

Introducing expression (3.25) in system (3.23) one gets:
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Φ̇ (t, tk)xk = A (t) Φ (t, tk)xk (3.26)

reducing to:

Φ̇ (t, tk) = A (t) Φ (t, tk) (3.27)

One of the properties of the state transition matrix is:

xk = Φ (tk, tk)xk −→ Φ (tk, tk) = I (3.28)

that can be used as the initial condition for system (3.27), to get a solu-

tion for Φ, which is unique if A (t) is composed of continuous functions of

time (Tapley, 2004).

The reason why it is more convenient to formulate the problem in terms

of the state transition matrix is that, using this approach, instead of solving

system (3.23) for each epoch t, it is possible to refer every observation to a

reference epoch tk.

The system of equations (3.24) is now to be dealt with. In principle, for

each epoch ti, there is an algebraic equation to be solved for xi. Instead,

thanks to the introduction of the transition matrix, we can express all equa-

tions in terms of xk, going from l · n unknowns to n:

y1 = H̃1Φ (t1, tk)xk + ε1

y2 = H̃2Φ (t2, tk)xk + ε2

...

yl = H̃lΦ (tl, tk)xk + εl

(3.29)

In a compact form:

y = Hxk + ε (3.30)

It would appear that the system has been reduced to m equation and n

unknowns, representing an over-parameterized problem that would lead,

in principle, to a unique solution if some of the equations were linear com-

binations of others. However, also the vector of observation errors ε is to

be considered not known, turning the problem into a m× (m+ n) system.
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Since the problem is characterized by an infinite set of solutions from

a deterministic point of view, the best estimate of the state vector must be

found using optimization considerations.

3.3.2 Weighted Least Square solution with a priori information

The least square method (Gauss, 1809) consists of choosing, among the

infinite solutions for xk of system (3.30), the one that minimizes the follow-

ing cost function:

J (xk) =
1

2
εT ε (3.31)

defined as the sum of the squares of the observation residuals (Tapley,

2004). Extracting vector ε from (3.30), an alternate expression for J (xk) is:

J (xk) =
1

2
(y −Hxk)T (y −Hxk) (3.32)

This function has a minimum if both conditions:

∂J

∂xk
= 0 (3.33)

δxTk
∂2J

∂x2
k

δxk > 0 ∀δxk 6= 0 (3.34)

are fulfilled, in particular expression (3.34) requires that the matrix ∂2J
∂x2

k

is positive definite. Applying condition (3.33) to expression (3.32) one gets:

− (y −Hx̂k)T = −HT (y −Hx̂k) = 0 (3.35)

leading to the best estimate x̂k of the state defined as:

x̂k =
(
HTH

)−1
HTy (3.36)

where the n x n symmetric matrix HTH is the normal matrix, which can

be also defined by calculating the (Hessian) matrix of second derivatives:

∂2J

∂x2
k

= HTH (3.37)

positive definite if H is full (n) rank (Tapley, 2004).

73



Orbit determination

One of the main limitations of the simple least square method, is that

all observations are uniformly weighted, regardless of the observation con-

ditions. Suppose instead to assign to each observation yi a different diag-

onal weighting matrix wi, with its elements ranging from 0 to 1. The cost

function is now:

J (xk) =
1

2
εTWε (3.38)

where W = diag (w1, w2, ..., wl). Repeating all the calculations done

from (3.32) to (3.36), the weighted least square solution is:

x̂k =
(
HTWH

)−1
HTWy (3.39)

with HTWH positive definite.

If an a priori estimate x̄k of the state is available, together with an a

priori weighting matrix W̄k, the definition of the cost function can be further

modified:

J (xk) =
1

2
εTWε+

1

2
(x̄k − x̂k)T W̄k (x̄k − x̂k) (3.40)

and the associated solution is:

x̂k =
(
HTWH + W̄k

)−1 (
HTWy + W̄kx̄k

)
(3.41)

The a priori solution functions as a ”spring”, keeping the estimate of

the state not far from its previous realization. The rigidity of the spring is

characterized by its a priori weighting matrix W̄k.

The n x n matrix:

Pk = HTWH + W̄k (3.42)

is known as the covariance matrix and is the inverse of the normal ma-

trix. It is to be noted that Pk is related to two fundamental conditions: the

observability of the parameters, if all the physical parameters in the solve-

for vector are observable, then the covariance matrix will be full rank and

have an inverse; the accuracy of the estimate, associated to the inverse of

the elements of the covariance matrix.

To demonstrate the latter point, one can write equation (3.41) explicitly

for each component j of the estimated state vector:
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x̂j =
n∑
k=1

Pjk

(
m∑
i=1

Hkiwiyi

)
(3.43)

where m is the total number of observations. The weights on the mea-

surements can be expressed as the inverse of the variance of the expected

errors:

wi =
1

σ2
i

i = 1, ...,m (3.44)

then:

x̂j =

n∑
k=1

Pjk

(
m∑
i=1

Hkiyi
σ2
i

)
(3.45)

suppose we want to determine what is the expected variation δxj in

the estimate of the components of the state vector when the observations

vary within their standard deviation σi. Differentiating with respect to the

observation vector:

δxj =

m∑
i=1

∂xj
∂yi

δyi (3.46)

but also from equation (3.45), the differential of xj is:

∂xj
∂yi

=
∂

∂yi

n∑
k=1

Pjk

(
m∑
r=1

Hkryr
σ2
r

)
=

n∑
k=1

Pjk
Hki

σ2
i

(3.47)

The next step is to compute the correlation products between the dif-

ferent components of x̂ as:

〈δxkδxl〉 = 〈
m∑
i=1

∂xk
∂yi

δyi

m∑
j=1

∂xl
∂yj

δyj〉 =
m∑
i=1

m∑
j=1

∂xk
∂yi

∂xl
∂yj
〈δyiδyj〉 (3.48)

Supposing that the observation errors are un-correlated one gets:

〈δyiδyj〉 = σ2
i δij (3.49)

where δij is the Dirac Delta. Consequently:

〈δxkδxl〉 =

m∑
i=1

∂xk
∂yi

∂xl
∂yi

σ2
i (3.50)
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We can substitute expression (3.47) for the partial derivatives into (3.50):

〈δxkδxl〉 =
m∑
i=1

(
n∑
a=1

Pka
Hia

σ2
i

)(
n∑
b=1

Plb
Hib

σ2
i

)
σ2
i

=

n∑
a=1

n∑
b=1

PkaPlb

m∑
i=1

HiaHib

σ2
i

(3.51)

the last term represents the (a, b) component of the normal matrix,

which is the inverse of the covariance matrix, thus:

〈δxkδxl〉 =
n∑
a=1

n∑
b=1

PkaPlbP
−1
ab (3.52)

the product between the two latter matrices represents the matrix mul-

tiplication between the covariance matrix and its inverse, hence:

PlbP
−1
ab = δkb (3.53)

expression (3.52) becomes:

〈δxkδxl〉 =

n∑
b=1

Plbδkb = Plk (3.54)

meaning that the covariance matrix is related to the correlation prod-

uct of two components of the state vector due to errors on the observables

within the expected standard deviation.

A shortcoming of the least square method is that this criterion does not

consider the statistical nature of the observation errors and makes no at-

tempt on characterizing them as random processes (Tapley, 2004), as high-

lighted in expression (3.49).

In real applications, it is most unlikely that the optimal solution, as the

one that minimizes the sum of the squares of the residuals, is reached after

one iteration. In fact, it is highly recommended to iterate the process so that

the best estimate x̂jk at iteration j is the reference state for iteration j + 1.

The convergence criterion is arbitrary and can be chosen so as the dif-

ference between two consecutive estimates of the state is sufficiently small:

||x̂jk − x̂
j+1
k || < ε (3.55)
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The least square filter is part of a larger group of methods known as

batch processors in which all the observations are referenced to the same

reference epoch and a unique estimate of the state at that reference time is

obtained. In the frame of this dissertation, this will be the only family of

filters used and analyzed.

3.3.3 Estimate propagation

Suppose that an estimate x̂k of the state and its associated covariance

matrix Pk are available at the time tk. One could be interested in propagat-

ing the state and the covariance matrix forward in time to get a forecast of

the position of the satellite at different epochs. Given the state transition

matrix, the state at the time tl is:

x̄l = Φ (tl, tk) x̂k tl > tk (3.56)

while the propagated covariance matrix is defined as:

P̄l = E
[
(x̄l − xl) (x̄l − xl)T

]
= E

[
Φ (tl, tk) (x̂k − xk) (x̂k − xk)T ΦT (tl, tk)

] (3.57)

where E is the operator of the expected value or mean. In expression

(3.57), Φ (tl, tk) is deterministic, thus:

P̄l = Φ (tl, tk)E
[
(x̂k − xk) (x̂k − xk)T

]
ΦT (tl, tk)

= Φ (tl, tk)PkΦ
T (tl, tk)

(3.58)

The covariance matrix at the time tl is built by pre- and post-multiplying

the covariance matrix at tk for the transition matrix between the two epochs.

3.4 Multiarc method

Gravity experiments onboard planetary missions may last several months

as in the case of Juno pericenters about Jupiter and the Ganymede phase of

the JUICE mission. Therefore, instead of analyzing a huge amount of data

as a single batch, sometimes it is convenient to divide the duration of the

mission into many non-overlapping arcs of short duration (e.g. 1 day).

In section 3.1 it has been mentioned as the vector of solve-for param-

eters in orbit determination problems is often composed not only of the
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position and velocity vectors of the spacecraft but also of other physical

parameters of interest. Among these quantities, the spacecraft state vec-

tor at the initial epoch of each arc and every other parameter characteristic

of the specific interval, are labeled as local parameters. On the other hand,

there are some constants such as the coefficients of the spherical harmonic

expansion of the gravity field of a planet or satellite, Love numbers and so

on, that are shared by all trajectory segments and do not change arc by arc,

thus they are called global parameters.

A single-arc estimate of the solve-for vector as described in subsection

3.3.2 is an independent solution for all local and global parameters using

uniquely radiometric data collected within the single arc, not considering

any correlations between adjacent arcs are not considered. The main is-

sue with this approach is that the number of local (and therefore total) pa-

rameters to be estimated increases dramatically with the number of arcs.

Also, possible mis-modelings of non-gravitational forces tend to produce

errors that accumulate with time and can bias the estimate of the parame-

ters, making single-arc estimates often inadequate for long-duration grav-

ity experiment.

These complications can be overcome by using a multi-arc filter that

includes an independent estimate of the local parameter vector li relative to

each single arc (i) and a combined estimate of the global parameter vector

g, shared by all arcs. This method provides the required and necessary

over-parameterization of the problem.

Going into more detail, suppose the tracking phase is divided into n

arcs: the duration of the single arc must be neither too long, in order to

avoid accumulation of dynamical errors, nor too short, for in this case the

solution could be driven to instability.

The solve-for vector is the combination of the local and global parame-

ters:

x = [g; l] , l = [l1; l2; ...; ln] (3.59)

Analogously, the vector of observations y is an ensemble of all single

observation vectors yi (i = 1, ..., n) collected within the ith single arc:

y = [y1;y2; ...;yn] (3.60)
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In the multiarc solution, the matrix of the partial derivatives H is com-

posed of two different parts:

• Partial derivatives of the observables with respect to each local-parameter

vector Hj
li

=
∂yj

∂li

• Partial derivatives of the observables with respect to the vector of the

global parameters Hj
g =

∂yj

∂g

The overall matrix is then:

H =


∂y1

∂l1
0 ... 0 ∂y1

∂g

0 ∂y2

∂l2
... 0 ∂y2

∂g

... ... ... ... ...

0 0 0 ∂yn

∂ln
∂yn

∂g

 (3.61)

At this point, to build the normal matrix C, the contribution from each

single arc must be taken into account (Milani and Gronchi, 2010):

C =



(
Cgg + Γ−1

g

)
Cgl1 ... Cgln−1 Cgln

Cl1g

(
Cl1l1 + Γ−1

l1

)
... 0 0

...
...

...
...

...

Cln−1g 0 ...
(
Cln−1ln−1 + Γ−1

ln−1

)
0

Clng 0 ... 0
(
Clnln + Γ−1

ln

)


(3.62)

where:

Clilj =
(
Hj
li

)T
Hj
lj

Cgli = CTlig =
(
H i
g

)T
H i
li

Cgg =

n∑
i=1

(
H i
g

)T
H i
g

(3.63)

the first matrix is different from the zero matrix only when i = j. Other

matrices are the a priori covariance matrices for global and i-arc local pa-

rameters Γg and Γli , respectively.

The second term of the right side of normal equation (3.36), depends

on the observation vector and, in the multiarc method, can be written as:

D = [Dg;Dl] , Dg = −
n∑
i=1

(
H i
g

)T
yi, Dli = −

(
H i
li

)T
yi (3.64)
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The normal equations for each section of the normal matrix are (Milani

and Gronchi, 2010): Cgg∆g + Cgl∆l = Dg

Clg∆g + Cll∆l = Dl

(3.65)

where ∆g and ∆l are the corrections to the state vector obtained with

the multiarc method and represent the solution for local and global pa-

rameters to a long-lasting orbit determination problem. Some weighting

process for the observations and the presence of an a priori solution must

be considered as well, I refer the interested reader to Chapter 15 of Milani

and Gronchi (2010).
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Chapter 4

Dynamical model and

simulation setup

Simulations of radio science data acquisition are crucial during the

early stage of interplanetary mission planning. By means of this numerical

tool, the assessment of the experiment performance, the choice of the opti-

mal spacecraft trajectory and the search for an effective estimation method

are possible. The purpose of this chapter is to characterize in detail the

dynamical model used in order to reproduce the most realistic scenario in

which the spacecraft will operate. The simulation setup includes mainly

the description of relevant gravitational and non-gravitational forces act-

ing on the probe (Section 4.2), the characterization of the radio-link noise

and the definition of the observation schedule.

4.1 Simulation process

Space missions dedicated to the exploration of the solar system are very

long-term projects that take decades from their first concept to the decom-

mission of the spacecraft. Until the date of the orbit insertion about the

investigated body, the only available mean to get a grasp of what will be

the expected accuracies in the determination of the gravity field of a planet

or satellite, is to simulate, in the most realistic way, the prospected trajec-

tory of the spacecraft and the observed observables along with it.
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To do so, the necessary steps are:

• Choice of a simulated dynamical model, comprising gravitational and

non-gravitational forces, the latter is dependent on both the mass and

the shape of the spacecraft, therefore a description of its design model

and configuration is required;

• Selection of a reference trajectory in terms of spacecraft position and

velocity at defined epochs. Integration of the spacecraft trajectory us-

ing an appropriate dynamical model and nominal initial conditions;

• Production of realistic simulated tracking data, provided that the po-

sition of the ground stations involved in the experiment and the ob-

servation model are known.

SPACECRAFT  
MODEL 

GRAVITATIONAL 
FORCES 

NON- 
GRAVITATIONAL  

FORCES 

SPACECRAFT 
INITIAL 

CONDITIONS 

INTEGRATION OF THE 
SPACECRAFT 
TRAJECTORY 

SIMULATION OF 
TRACKING DATA 

Figure 4.1: Block diagram of the simulation process, from the definition of the

dynamical model to the simulation of synthetic tracking data. Image

credit: JPL/Caltech for the Juno spacecraft; ESA for the JUICE space-

craft; NASA for the Jupiter system; JPL Robotics for the Aerocapture

Systems Definition; NASA/JPL for the Galieleo trajectory; University

of Wisconsin for Juno Doppler tracking.

Each point of the process will be thoroughly described in the next few

sections.
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4.2 Dynamical model

The equation of motion for a spacecraft in orbit about a central body,

with respect to an inertial reference frame, can be written as:

~̈rs = −µp
~rps
r3
ps

−
∑
k

µk
~rks
r3
ks

−
∑
i

µi

(
~ris
r3
is

+
~rpi
r3
pi

)
+
∑
j

∆~̈rj (4.1)

where the term on the left hand represents the inertial acceleration

vector of the spacecraft; the first term on the right hand is the gravita-

tional pull due to the monopole term of the central body, the second one

is the gravitational pull exerted by the kth satellite, the third one repre-

sents the third-body perturbations external to the sphere of influence of

the primary body, the last one is the collection of all other gravitational and

non-gravitational forces acting on the spacecraft (e.g. higher-degree gravity

field, atmospheric drag, solar radiation pressure, etc.).

Each term of the equation will be separately discussed in the following

subsections, as part of the adopted dynamical model.

4.2.1 Gravitational accelerations

In orbital mechanics gravitational forces represent the bulk of the ac-

tions which the spacecraft is subject to. For this reason, when dealing with

orbit determination problems, it is crucial to define a consistent model of

the gravity fields of the involved bodies.

The gravity field of Jupiter

Jupiter is a very fast rotator with an estimated rotation period of 9 h 55

m 29.71 s. As one would expect, this phenomenon affects greatly the grav-

ity field of the body, which is supposedly, for a fluid body, almost purely

zonal and symmetric with respect to the equatorial plane (Bagenal, 2004):

U (r, θ) =
GM

r

[
1−

∞∑
l=1

(
Req
r

)2l

J2lP2l (cos θ)

]
(4.2)

with no dependence on the longitude. HereReq is the equatorial radius

and the other parameters are those introduced in Section 2.1. Equation

(4.2) is exactly true when the planet acts as a rigid rotator and the flow
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is a function of only the distance from the rotation axis, thus of r and θ.

Deviation from the rigid rotation condition are believed to be very small for

Jupiter (Hide and Stannard, 1976; Stevenson and Salpeter 1977), therefore a

model that envisages the rotation of Jupiter as a solid body is an acceptable

approximation.

In 2012 Hubbard proposed a model for the gravity field of a rigid rotat-

ing liquid planet based on a numerical approach to the Maclaurin solution

for even zonal harmonics Jl of a constant-density body. Starting from the

observation of the low-degree gravity field of Jupiter from pre-Juno obser-

vations (Jacobson, 2003), the results for the even zonal harmonics of Jupiter

up to degree 30, are reported in Table 4.1. I refer the interested reader to

Hubbard (2012).

degree (n) Jn × 106 (calculated) Jn × 106 (observed)a

2 14696.43 14696.43 ± 0.21

4 -587.14 -587.14 ± 1.68

6 30.82 34.25 ± 5.22

8 -1.862 ...

10 0.1227 ...

12 -8.573 ×10−3 ...

14 6.253 ×10−4 ...

16 -4.711 ×10−5 ...

18 3.641 ×10−6 ...

20 -2.873 ×10−7 ...

22 2.304 ×10−8 ...

24 -1.873 ×10−9 ...

26 1.534 ×10−10 ...

28 -1.154 ×10−11 ...

30 6.358 ×10−13 ...

Table 4.1: Jupiter’s un-normalized even zonal harmonics. aJacobson (2003).

The harmonic coefficients in Table 4.1 are used as the reference grav-

ity field in the simulations of the Juno gravity experiment (Finocchiaro,

2013), while possible asymmetrical deviations from the condition of per-

fectly zonal flows will be discussed extensively in Chapter 5 as part of this
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dissertation.

Regarding Jupiter’s tidal deformations due to the perturbing effect of

Io, in the frame of these simulations Jupiter’s Love numbers of degree 2

and 3 (k2 and k3) have been tentatively set to the value of 0.5.

The gravity field of Ganymede and Callisto

The Galileo mission has performed several flybys of Jupiter’s main

satellites, some of which were dedicated to the determination of their grav-

ity fields, up to different degrees. Table 4.2 shows the current knowledge

of the Jovian satellite gravity in terms of estimated spherical harmonic co-

efficients for three of the Galilean moons, by means of Doppler tracking of

the Galileo spacecraft (Bagenal, 2004).

Body GM
(
km3/s2

)
J2

(
106
)

C22

(
106
)

µ

Ganymede 9887.83 ± 0.03 127.53 ± 2.9 38.26 ± 0.87 1.000

Callisto 7179.29 ± 0.01 32.7 ± 0.8 10.2 ± 0.3 0.997

Europa 3202.72 ± 0.02 435.5 ± 8.2 10.2 ± 0.3 0.993

Table 4.2: Low-degree un-normalized spherical harmonic coefficients for the grav-

ity fields of Ganymede, Callisto and Europa from Galileo gravity data

(Bagenal, 2004). µ is the correlation coefficient.

The estimate of the degree-2 coefficients for the satellites of Jupiter has

been carried out applying the condition of hydrostatic equilibrium (J2/C22 =

10/3), which explains the high-correlation between the coefficients of the

spherical harmonic expansion. For the simulations of the JUICE gravity

experiment, these values are considered as the baseline for the simulated

gravity field.

Ganymede is the main scientific objective of the JUICE mission, there-

fore some effort has been put in order to simulate a more realistic gravity

field expansion then that in Table 4.2. Specifically, its gravitational poten-

tial has been expanded in spherical harmonics up to degree and order 30,

in the following way:

• degree-2 coefficients from the hydrostatic solution by Anderson et al.

(1996, Table 4.2);

85



Dynamical model and simulation setup

• degree-3 coefficients as a mean between Titan SOL1 + 1σ and SOL2 +

1σ in Iess et al. (2010);

• degree-4 to 30 coefficients using Kaula’s rule (Section 2.1.4) withAk =

2, corresponding to a very weak field.

The reference high-degree gravity field is tabulated in Table 4.3, where,

however, only the zonal harmonics are displayed for simplicity.

Coefficient (zonal) Simulated value

C30 7.6 ×10−7

C40 5.6 ×10−7

C50 -7.0 ×10−7

C60 4.8 ×10−7

C70 -1.8 ×10−7

C80 -2.1 ×10−7

C90 -1.3 ×10−7

C10 0 8.4 ×10−8

C11 0 -5.6 ×10−7

C12 0 4.9 ×10−7

C13 0 -4.3 ×10−7

C14 0 3.9 ×10−7

C15 0 -3.5 ×10−7

C16 0 3.2 ×10−7

C17 0 -2.9 ×10−7

C18 0 2.7 ×10−7

C19 0 -2.4 ×10−7

C20 0 2.3 ×10−7

C21 0 -2.1 ×10−7

C22 0 2.0 ×10−7

C23 0 -1.8 ×10−7

C24 0 1.7 ×10−7

C25 0 -1.6 ×10−7

C26 0 1.5 ×10−7

C27 0 -1.4 ×10−7

C28 0 1.4 ×10−7

C29 0 -1.3 ×10−7

C30 0 1.2 ×10−7

k2< 0.30

k2= 0.00

Table 4.3: Normalized simulated full 30 × 30 zonal gravity field of Ganymede

(weak case) plus tidal Love numbers.
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Ganymede’s degree-2 Love numbers were set to a Earth-like value for

the real component (k2< = 0.3) and to null for the imaginary component

(k2= = 0.0).

The 20 flybys of Callisto will allow the determination of its full degree-

3 gravity field plus the real component of its Love number k2. In addition

to the estimated values for the quadrupole field reported in Table 4.2, a full

octupole expansion has been considered, with the coefficients randomly

chosen among those that satisfy Kaula’s rule with Ak computed using the

degree-2 coefficients (though the law should be applied for l� 2).

The following values were used for the integration of the spacecraft

trajectory during the Callisto phase:

Coefficient (real) Simulated value Coefficient (imaginary) Simulated value

C30 -7.4403 ×10−6

C31 4.4815 ×10−6 S31 4.2071 ×10−6

C32 1.0356 ×10−6 S32 -1.0708 ×10−6

C33 -1.4090 ×10−6 S33 -2.7244 ×10−6

k2< 0.30 k2= 0.00

Table 4.4: Un-normalized simulated 3x3 gravity field for Callisto.

The real component of the tidal Love number was set to k2< = 0.3 for

Callisto as well.

Other gravitational effects

In addition to the detailed definition of the gravity fields of the bodies

directly involved in the Juno and JUICE gravity experiments, one must take

into account the point mass acceleration exerted by all other main bodies

in the solar system: Sun, Mercury, Venus, Earth, Mars, Saturn, Uranus,

Neptune, Pluto, Moon, Jupiter’s moons Io and Amalthea. Information

about the mass of celestial bodies are provided by NASA/JPL’s planetary

ephemerides. For Juno and JUICE simulations, ephemeris set DE421 was

used.

For Jupiter, Saturn and the Sun, relativistic effects become relevant be-

cause of their masses and must be considered in the dynamical model.
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4.2.2 Planetary rotation model

The rotational models used in the simulations of the gravity exper-

iments are those filed in the official Report of the IAU Working Group

(Archinal et al., 2010), giving the rotation of the pole and the prime merid-

ian of planets and satellites.

4.2.3 Non-gravitational accelerations

Unlike the study of the motion of celestial bodies, the trajectory of an

artificial satellite is markedly influenced by non-gravitational effects. In

general, the absence of an onboard accelerometer makes the detailed mod-

eling of such perturbations, that depend on both the mass and the geometry

of the spacecraft, necessary. For this reason, a brief description of the Juno

and the JUICE spacecraft models, in their science phase configurations, will

precede the characterization of non-gravitational accelerations.

Juno spacecraft model for orbit determination

The Juno spacecraft will be the first solar-powered mission to ever

reach the Jovian system. Consequently, the design of the spacecraft is mainly

driven by the necessity of collecting enough solar power.

Figure 4.2: The Juno spacecraft. Image credit: NASA.

The geometry of the spacecraft is, in fact, dominated by three super-

sized surfaces hosting more than 18,000 solar cells for a span of over 20 m
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(Juno Press Kit, Figure 4.2). In addition, the hexagonal bus of the spacecraft

and the High Gain Antenna are also identified as main components.

In the orbit determination code, the probe is sketched as a compound

of five basic components, synthetically described in Table 4.5.

Element Model Pointing Size

Solar array 1 flat plate ~n ‖ ~rEP S = 23.85m2

Solar array 2 flat plate ~n ‖ ~rEP S = 23.85m2

Solar array 3 flat plate ~n ‖ ~rEP S = 23.85m2

High Gain Antenna antenna ~k ‖ ~rEP r = 1.25m

d = 0.47m

Bus cylinder ~k ‖ ~rEP r = 1.75m

l = 3.50m

Overall Mass 1593.0 kg

Table 4.5: Summary of the geometric properties of the Juno spacecraft compo-

nents. ~n is the normal unit vector, S is the overall surface, ~k specifies

the axis direction, r is the radius, d is the depth and l is the length. The

information has been retrieved from the Juno Launch Press Kit.

A constant value for the overall mass of the spacecraft has been con-

sidered, although changes in this value are expected due to maintenance

maneuver fuel consumption.

Some of the non-gravitational accelerations such as solar radiation pres-

sure, albedo and planetary infrared emission depend on the optical prop-

erties of the listed components. The incident electromagnetic radiation that

hits the surfaces of the spacecraft, is partially (ratio of r) reflected both spec-

ularly (ratio of s) and diffusively (ratio of 1−s). These phenomena are char-

acterized by specular reflection νs and diffusive reflection νd coefficients,

respectively. Table 4.6 lists the adopted value for these properties:
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Element νs νd

Solar array 1 0.016 0.123

Solar array 2 0.016 0.123

Solar array 3 0.016 0.123

High Gain Antenna 0.036 0.176

Bus 0.074 0.252

Table 4.6: Optical properties adopted for the Juno spacecraft model. For the solar

panels and the other components, SMART-1 like and Cassini-like prop-

erties have been adopted, respectively.

JUICE spacecraft model for orbit determination

The current JUICE spacecraft design foresees the exploitation of solar

radiation as the main source of power during all the phases of the ex-

ploration of Jupiter’s satellite system. Therefore the same considerations

pointed out before about the geometry of the spacecraft are still valid.

At present, three different spacecraft concepts are being evaluated by

ESA and undergoing feasibility studies. Since detailed descriptions of the

design are not yet available, in this work, the adopted 2-panel model is the

heritage from the joint ESA/NASA EJSM/Laplace mission, withdrew in

2011 and predecessor of JUpiter ICy moon Explorer (Figure 4.3; ESA, 2009).

For orbit determination purposes, four main structural elements have been

identified: 2 solar arrays, 1 HGA and 1 bus. The properties and character-

istics of each element are listed in Table 4.7.

Element Model Pointing Size νs νd

Solar array 1 Flat plate ~n ‖ ~rEP S = 32m2 0.016 0.123

Solar array 2 Flat plate ~n ‖ ~rEP S = 32m2 0.016 0.123

High Gain Antenna Antenna ~k ‖ ~rEP r = 1.40m 0.036 0.176

d = 0.52m

Bus Cylinder ~k ‖ ~rEP r = 1.0m 0.074 0.252

l = 2.50m

Overall Mass 1493.5 kg

Drag Coefficient 2.05

Table 4.7: Summary of the geometric properties of the JUICE spacecraft compo-

nents.
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Figure 4.3: Sketched model of the JUICE spacecraft, dimensions are given in mm.

Image credit: ESA.

The optical properties have been chosen using the same criteria as for

the Juno spacecraft model.

As Ganymede possesses a thin atmosphere (likely rich of H2, H2O, O2,

OH , O and H) the JUICE spacecraft will be subject to atmospheric drag

during the science phase at this satellite. For this reason, a realistic value of

the drag coefficient of the spacecraft must be assigned. For the purpose of

this dissertation, a Cassini-like value of CD = 2.05 has been adopted.

Solar Radiation Pressure

It is defined as the force per unit area exerted on the spacecraft surfaces

by solar electromagnetic radiation. The presence of large panels oriented

towards the Sun in both designs suggests that solar pressure will cause

non-negligible perturbations on the trajectory of the probes.

The acceleration sensed by the spacecraft and due to this phenomenon

can be expressed as (ODP User’s Manual v.1, p.113):

~̈r =

(
C1P

mr2
SP

)
~FB (4.3)

where C1 =
Φ1AUr

2
1AU

c = 1.02 × 108 kgkm3

m2s2
is the solar flux constant at
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one Astronomic Unit; P is the shadow factor (P = 1 if the spacecraft is

in clear sunlight, P = 0 if the spacecraft is in umbra); m is the mass of

the spacecraft; rSP is the distance between the Sun and the probe; ~FB is a

vector that depends on the ratio of the effective area to the nominal area of

the spacecraft in each direction ÛSP , X̂SP , ŶSP (where the first direction is

along ~rSP ) and degradation factors;

Albedo and thermal emission

These non-gravitational effects are due to the sunlight reflected by the

surface of a planet or satellite and act on the spacecraft causing a non-

negligible acceleration (ODP User’s Manual v.1, p.128):

~̈r =

∫
S
G

(∑
i

FT iN̂i + FRir̂pS

)
cosψ

πr2
pS

dA (4.4)

for albedo:

G =
−C1K cosψs

mr2
cs

10∑
l=0

l∑
m=0

(
CAlm cosmλ+ SAlm sinmλ

)
Plm (sinφ) (4.5)

for thermal emission:

G =
−C1

4mr2
cs

10∑
l=0

l∑
m=0

(
CElm cosmλ+ SElm sinmλ

)
Plm (sinφ) (4.6)

where K is the analogous of the shadow factor; rcs is the planet-Sun

distance; ψs is the Sun - planet center - point P on the planet (dA) angle; A

is the albedo of the planet in spherical harmonics;E is the thermal emission

coefficient in spherical harmonics.

For the bodies involved in the Juno and JUICE missions, the following

albedo and thermal coefficients have been assumed:
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Body A E

Jupiter CA
00 = 0.520a CE

00 = 1.020b

CE
10 = 0.056

CE
20 = −0.474

CE
30 = −0.106

CE
40 = 0.007

CE
50 = 0.078

CE
60 = −0.110

CE
70 = −0.060

CE
80 = 0.013

CE
90 = 0.009

CE
100 = −0.011

Ganymede CA
00 = 0.430c CE

00 = 0.950d

Callisto CA
00 = 0.170c CE

00 = 0.800e

Europa CA
00 = 0.670c CE

00 = 0.960f

Table 4.8: Planetary radiation coefficients. aJupiter albedo coefficients for the Juno

orbit determination (Finocchiaro, 2013); bJupiter thermal emission coef-

ficients for the Juno orbit determination (Finocchiaro, 2013); cYeomans

(2006); dSpencer et al., 1983; eBurgdorf et al., 2000; fMarshall et al., 2011.

Atmospheric drag

The acceleration on the spacecraft caused by the atmospheric drag ex-

erted by a planetary atmosphere is (ODP User’s Manual v.1, p.147):

~̈r = − 1

2m
ρCDSVb~Vb (4.7)

where ρ is the atmospheric density, CD is the spacecraft drag coeffi-

cients, S is the cross-sectional area and ~Vb is the body-fixed spacecraft ve-

locity. The implementation of a suitable atmosphere-spacecraft interaction

is relevant only in the Ganymede science phase of the JUICE mission, at

least in this work.

In 2007, Marconi proposed a kinetic, multispecies, 2-D axisymmetric

model of Ganymede’s neutral atmosphere, using the available observa-

tions. The resulting density profiles of different compounds are shown to

depend on the altitude and the subsolar latitude, keeping in mind that the

subsolar point (subsolar latitude = 0) is the point on the planet or satellite

where the Sun is perceived to be at zenith. Figure 4.4 shows the results of
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the simulations in terms of species abundance.

From Figure 4.4 it is clear that the natural choice for the atmospheric

model to be implemented in the numerical simulation of JUICE Ganymede

phase is that of a density profile depending on both the altitude and the

angular distance from the subsolar point.

For instance, the Harris-Priester atmospheric model can be adopted,

where (ODP User’s Manual v.1, p.155):

ρ (h) = (1 + ρ0 cosn (ψ/2)) (ρm (h) + (ρM (h)− ρm (h)) cosn (ψ/2)) (4.8)

here ρ0 and n are model constants, ψ is the subsolar latitude of the

spacecraft, and ρm and ρM are the minimum and maximum densities at a

certain altitude h, respectively.
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(a)

(b)

Figure 4.4: Plots from Marconi (2007). Column density of Ganymede’s atmo-

sphere with respect to subsolar latitude (a). Density at 90◦ subsolar

latitude with respect to the altitude over Ganymede’s surface (b).
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4.2.4 Simulated trajectories

Juno

The nominal trajectory of the Juno mission is stored in a SPICE kernel

provided by NASA/JPL. In the simulations of the Juno gravity experiment

the science phase has been divided into 25 arcs of duration 24h (±12h from

perijove), corresponding to the 25 pericenters dedicated to gravity investi-

gations. The state of the Juno spacecraft is re-initialized at every starting

epoch of each arc.

The geometry of the science orbits has been briefly introduced in Chap-

ter 1: the orbit is highly eccentric (e = 0.95), highly inclined (i = 90◦ ± 10◦)

and repetitive in an inertial reference frame (Figure 4.5). The observation

period for the gravity experiment goes from November 21, 2016 to Septem-

ber 25, 2017.

Figure 4.5: Juno science orbits around Jupiter. The size of the orbits and Jupiter is

to scale.

Table 4.9 reports all the relevant information about Juno simulated clos-

est approaches to Jupiter.

Since the design of the spacecraft and that of the trajectory is driven by

the necessity of pointing the solar panels towards the Sun, as a consequence

the angle α between the orbital plane and the line of sight of the spacecraft

is always close to 90◦, not representing the best scenario for radio science

experiments.
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Orbit Day of C/A Latitude (◦) Longitude (◦) Altitude (km) α (◦)

1 11/21/2016 6.5 156.9 4162.6 73.5

2 01/15/2017 11.3 277.8 3636.6 67.3

3 01/26/2017 12.3 86.2 3722.9 66.2

4 02/06/2017 13.2 254.24 3743.3 65.9

5 02/17/2017 14.2 62.7 3671.6 66.4

6 02/28/2017 15.1 230.9 3988.1 67.5

7 03/11/2017 16.1 39.0 3760.4 68.4

8 03/22/2017 17.0 207.5 3891.8 69.0

9 04/02/2017 18.0 15.6 3940.1 70.8

10 04/13/2017 18.9 183.9 3808.7 71.5

11 04/13/2017 19.9 4.2 3716.1 73.1

12 05/05/2017 20.8 172.4 3937.5 74.4

13 05/16/2017 21.8 340.5 3705.4 75.0

14 05/27/2017 22.8 149.0 3855.5 75.3

15 06/07/2017 23.7 317.1 4000.9 75.9

16 06/18/2017 24.7 125.5 3890.1 76.0

17 06/29/2017 25.6 293.7 4022.8 75.1

18 07/10/2017 26.6 102.0 4130.6 74.3

19 07/21/2017 27.5 270.2 4117.1 74.3

20 08/01/2017 28.5 78.7 4137.4 72.1

21 08/11/2017 29.3 246.8 4380.6 71.2

22 08/22/2017 30.4 55.1 4123.6 68.8

23 09/02/2017 31.2 223.5 4414.2 67.5

24 09/13/2017 32.2 31.6 4397.0 65.3

25 09/24/2017 33.2 200.1 4567.7 63.1

Table 4.9: Information about the geometry of the ground tracks at the epochs of

pericenters. The latitude and longitude of the C/As are given with re-

spect to Jupiter body-fixed reference frame. α is the angle between the

line of sight and the orbital plane.

JUICE

ESA provided JUICE Science Team with the SPICE kernel of the space-

craft trajectory covering the whole duration of the mission. For the simu-
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lations of the gravity experiment the nominal trajectory has been divided

into the following phases (in chronological order):

• 20 arcs of 1-day duration representing the 20 gravity flybys of Cal-

listo (from November 16, 2030 to February 1, 2032). The state of the

spacecraft is initialized 12h prior to each closest approach. Figure 4.6

shows the ground tracks (yellow curves) of the spacecraft over the

surface of Callisto during this science phase:

Figure 4.6: JUICE ground tracks over Callisto’s surface around closest approach

(±4h).

• 132 continuing arcs of 1-day duration (from February 22, 2033 to July

3, 2033) representing the polar orbital phase at Ganymede. Figure 4.7

shows the altitude of the spacecraft over the surface of the satellite

through the 3-month investigation;

Figure 4.7: Altitude of the JUICE spacecraft over Ganymede during the orbital

phase. The separation between the 500-km altitude and 200-km alti-

tude phases is evident.

98



Dynamical model and simulation setup

4.3 Sources of noise on radiometric measurements

For the sake of the simulations of gravity experiments, it is crucial to

correctly account for all possible noise sources affecting radiometric ob-

servables. Being the Doppler measurement the main mean by which in-

terplanetary probes are tracked by ground stations, in this section I will

focus on the description of possible disturbances affecting range-rate ob-

servations. The main causes of errors on these measurements are those due

to media propagation and instrumentation itself. Here the observations

will be noted as y (t), defined as the ratio of the fluctuation in frequency

between the received and reference signals and the nominal frequency f0

(Asmar et. al., 2005):

y (t) =
∆f (t)

f0
(4.9)

This quantity includes both the signal and the noise. The Allan devia-

tion represents frequency fluctuation as a function of the averaging time τ

(Asmar et. al, 2005):

σ2
y (τ) =

1

2
〈| ȳ (t)− ȳ (t+ τ) |2〉 (4.10)

where: ȳ (t) =
∫ t′+t
t′ y (t′) dt′. This parameter is a measure of the fre-

quency stability.

4.3.1 Instrumental noise

This source of random errors depends upon the characteristics of the

onboard and ground instrumentation. This contribution can be divided

into several separate effects (Asmar et. al, 2005).

Thermal noise

One of the major instrumental effects is that due to the finiteness of the

radio link signal to noise ratio (SNR). This phase noise is white and is also

regarded as thermal noise, causing the degradation of the radio signal. Ev-

ery not-idealized system characterized by a temperature above the absolute

zero (like the onboard DST and KaT) produces a noise component due to
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the thermal agitation of the particles characterized by electric charge, caus-

ing fluctuations in the electric tension. The SNR is defined, intuitively, as

the ratio of the power associated to the signal and the noise power. In order

to quantify the thermal noise, one must consider that the effect is governed

by the least favorable leg of the link, in the case of two-way Doppler mea-

surements, the downlink, because of the limited onboard power. The Allan

deviation associated with thermal noise can be estimated as:

σy (τ) =
1

2πf0τ

√
3B

(SNR)UL + (SNR)DL
(4.11)

where f0 is the downlink frequency and B is the working bandwidth

of the phase locked loop.

To quantify the entity of the thermal noise superimposed to two-way

Doppler measurements, it is necessary to carry out the link budget between

the spacecraft and the ground station. Generally speaking, the power re-

ceived by the receiving antenna can be expressed, in terms of dBW , as:

PRX = EIRP +GRX − LATM − LFS (4.12)

where EIRP = PTX + GTX is the Equivalent Isotropically Radiated

Power, PTX is the transmitted power, GTX and GRX are the transmitting

and receiving antenna gains, respectively, LATM is the media propagation

attenuation and LFS is the free space attenuation.

In turn, the generic antenna gain can be computed as:

G = η

(
πD

λ

)2

(4.13)

where η is the antenna efficiency, D is the antenna diameter and λ is

the wavelength of the electromagnetic signal. The free space losses depend

on the radial distance R between the station and the spacecraft:

LFS =

(
4πR

λ

)2

(4.14)

The power associated to the noise has to be quantified as well. For this

quantity, the following simple relation holds:

N = KTsysB (4.15)
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Parameter Juno JUICE

Ground Station antenna diameter (m) 34.0(a) 35.0(b)

Ground Station antenna efficiency 0.6 0.6

Ground Station system temperature (K) 39.6(a) 39.6

Ground Station PLL bandwidth (Hz) 0.1 0.1

Spacecraft antenna diameter (m) 2.5 2.8

Spacecraft antenna efficiency 0.6 0.6

Spacecraft system temperature (K) 300(c) 300

Spacecraft PLL bandwidth (Hz) 1.0(c) 1.0

Distance from Earth (AU) 4.0-6.5 4.0-6.5

Uplink frequency (GHz) 34.4 34.4

Uplink wavelength (mm) 8.7 8.7

Transmitted power (dBW) 28.8(a) 29.0

Transmitting antenna gain (dBi) 79.5 79.8

Transmitting antenna polarization loss (dB) 0.08 0.08

Transmitting antenna pointing loss (dB) 0.12(a) 0.12

Free Space loss (dB) 302.2 302.3

Atmospheric attenuation (dB) 0.37(a) 0.37

Receiving antenna gain (dBi) 56.9 57.9

Receiving circuit loss (dB) 1.69 1.69

Receiving antenna pointing loss (dB) 0.20 0.20

Received power (dBW) -139.5 -139.0

Noise power (dBW) -203.8 -203.8

Uplink SNR 64.3 64.8

Downlink frequency (GHz) 32.0 32.0

Downlink wavelength (mm) 9.4 9.4

Transmitted power (dBW) 4.0(d) 7.0

Transmitting antenna gain (dBi) 56.2 57.5

Transmitting antenna circuit loss (dB) 1.69 1.69

Transmitting antenna pointing loss (dB) 0.20 0.20

Free Space loss (dB) 301.6 301.9

Atmospheric attenuation (dB) 0.37 0.37

Receiving antenna gain (dBi) 78.9 79.1

Receiving antenna polarization loss (dB) 0.08 0.08

Receiving antenna pointing loss (dB) 0.12 0.12

Received power (dBW) -165.9 -160.8

Noise power (dBW) -212.6 -212.6

Downlink SNR 46.7 51.8

Table 4.10: Summary of the link budget for a space mission at Jupiter. (a) Slobin,

2012; (b) ESA, 2013b; (c) TAS-I; (d) Simone et al., 2009. Values of other

parameters, such as the power transmitted by the JUICE spacecraft,

have been arbitrarily, yet coherently, selected.
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whereK is the Boltzmann constant, Tsys is the system temperature and

B is the bandwidth.

Table 4.10 reports the link budget carried out for both legs of the link,

for the missions Juno and JUICE.

Other sources of instrumental noise

The ground and spacecraft electronics also affect the total noise budget.

However, at present, the transponder noise and ground instrumental noise

do not contribute markedly to the total system noise. As a reference one

can use the value of the transponder noise as measured on the ground for

the Cassini mission: 10−15 for the DST and as small as 2 × 10−16 for the

Ka-band translator.

Another source of Doppler noise is represented by un-modeled pertur-

bations of the spacecraft motion, contributing with few parts per 1016 (at

1000 seconds integration time) to the total noise, provided that the spec-

tra is measured for f > 0.1mHz. The very low frequency contribution is,

instead, of a few parts in 1015. Also, one must consider the ground an-

tenna motion noise that can cause significant disturbances of the radio link

(1− 4× 10−15 at τ = 1000s) depending on the diameter of the antenna.

Noise associated to the frequency and timing system (FTS), is not really

an issue for two-way Doppler measurements. In fact, the frequency stan-

dard is the same for both the uplink and the downlink, which is ground-

based with a stability better than 10−15 at 1000 seconds integration time

when using, for example, hydrogen masers.

4.3.2 Propagation in the medium

When dealing with the propagation of radio signals, one must take

into account that, in order to connect to deep space probes, the electromag-

netic wave passes through at least three different media characterized by

different refractive indexes: the Earth’s troposphere and ionosphere and

the solar wind. These diverse contributions will be briefly described in the

following subsections.
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Tropospheric noise

In the microwave region of the electromagnetic spectrum, the Earth’s

troposphere behaves as a non-dispersive medium, meaning that the refrac-

tive index is not a function of the frequency, but is, indeed, dominated by

the water vapor content. The troposphere is that portion of the atmosphere

that extends from the sea level up to 17 km at the equator and 9 km at the

poles. It is dominated by the motion of large fluid masses due to density

and temperature gradients.

The refractive index n of the medium depends on the polarization of

the gas molecules, on the fluid density and its absolute temperature. In-

troducing the refractivity as N = (n − 1) × 106, the fluctuations due to the

dry and wet component of the troposphere can be expressed as (Bernardini,

2008):

N =
A

T

(
ptot +

pvB

T

)
= Ndry +Nwet (4.16)

where A = 77.6K/mbar and B = 4180K are constants, T is the ab-

solute temperature, ptot is the total pressure, pv is the water vapor partial

pressure. This parameter is, evidently, a function of the altitude. The effect

of n not being unitary, is that the signal path is not straight but rather bent,

the optical path is defined as:

Lopt =

∫
L
n (s) ds (4.17)

where L is the trajectory of the signal. The difference between the op-

tical and geometric paths is:

∆L =

∫
L

(n− 1) ds = f (E) (4.18)

being a function of the station elevation E, which is the angle between

the local horizon and the spacecraft as seen by the spacecraft (Figure 4.9).

The smaller is the elevation angle, the wider is the portion of the tropo-

sphere crossed by the signal and the larger is the tropospheric delay.

Studies of water vapor seasonal fluctuations show that these are higher

during summer rather than during winter (Asmar et. al, 2005). The distur-

bances affecting the refractive index are variable depending if considering
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Figure 4.8: Ground station elevation angle (MeteoTrentino.it).

the dry or wet component: usually the latter is the dominant part where

the fluctuations can vary in the range 3− 30× 10−15 at τ = 1000s.

Ionospheric noise

The ionosphere is the region of the Earth’s atmosphere that extends

from 85 km of altitude to about 600 km. The effect of the direct exposition to

solar radiation (UV) is that this layer is ionized and therefore composed of

plasma rich in atoms and electrically charged atoms and molecules, deeply

affecting radio propagation.

The fluctuations due to the crossing of the terrestrial ionosphere by the

signal are proportional to 1
f2

, where f is the carrier frequency. This relation

clearly states that the ionosphere is a dispersive medium, with disturbances

the weaker, the higher the frequency. For radio links exploiting the Ka-band

(∼ 32GHz) these effects are very small compared to those affecting the X

and S bands.

Intuitively, the refraction index is not only a function of the carrier fre-

quency, but also of the electron density Ne. To quantify this correlation, a

very important property introduced in the study of ionospheres is the Total

Electron Count (TEC), defined as the integral of Ne along the signal path:

TEC =

∫
L
Ne(s)ds (4.19)

It can be shown that, both the range corrections and the phase delay
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due to ionospheric noise are proportional to this parameter:

δρ, δφ ∝ TEC

f2
(4.20)

Interplanetary plasma

The hot plasma composing the solar wind is one of the main noise

source for radiometric measurements. 95% of the interplanetary medium

is composed of protons and electrons and the remainder 5% of α particles

(helium nuclei).

The phase delay due to the signal passing through interplanetary plasma,

is inversely proportional to the square of the carrier frequency in this case

as well, but it is also a function of the angle between the Sun, The Earth

and the probe (SEP). When the SEP is small, The Sun is between the Earth

and the spacecraft and the contribution of plasma noise is very high (solar

conjunction) due to the high temperatures and high electron concentration

of the solar corona. On the contrary, when the SEP angle is around 180◦ the

plasma noise affecting Doppler measurements is irrelevant (solar opposi-

tion).

The power spectral density of one-way plasma fluctuations is plotted

in Figure 4.10 (Asmar et. al, 2005) versus the SEP angle.

The plot reports phase differential observations of the Viking spacecraft

in S and X bands (circles) and of the Cassini spacecraft in X and Ka bands.

The solid curves for the X and Ka bands are scaled for the one obtained

for the S band. The axis on the right represents the Allan deviation of the

disturbances at 1000 seconds integration time.

4.3.3 Calibration of the propagation noise

The fluctuations due to the wet component of the Earth’s troposphere

can be vey well calibrated at a 90 % level under favorable conditions (As-

mar et. al, 2005) by using Advanced Media Calibration (AMC) based on the

use of water vapor radiometers located in deep space communication com-

plexes. The smaller contributions due to the dry component are instead

calibrated using surface meteorology and a model for its elevation depen-

dence (Asmar et. al, 2005). Figure 4.11 shows Cassini Doppler residual in
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Figure 4.9: Power spectral density of one-way plasma fluctuations. Image credit:

Asmar et. al, 2005.

June 2002 before (red solid line) and after (green dashed line) the calibration

of tropospheric noise. The improvement reaches in some points, almost the

1 order of magnitude level.

The effects of the ionosphere can easily be calibrated by using multi-

frequency configurations (e.g. simultaneous use of X and Ka bands). In

fact, differential phase measurements allows the isolation of plasma noise

from other non-dispersive effects such as tropospheric delay.

As for interplanetary plasma noise, it is possible to completely remove

plasma noise on both legs of the link by using a multi-frequency config-

uration as well. For example, the Cassini spacecraft could exploit, before
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Figure 4.10: Doppler residuals of the Cassini solar conjunction experiment in 2002

at 300s integration time. Image credit: Asmar et. al, 2005.

the KaT failure in 2003, 5 links simultaneously (see Chapter 1, Figure 1.17),

making the Doppler accuracy at conjunction almost the same as that attain-

able in opposition (Asmar et. al, 2005).

A summary of the main (calibrated and un-calibrated) sources of noise

on Doppler measurements is shown in Table 4.11 (Asmar et. al, 2005).

4.4 Data Simulation

4.4.1 Juno

The gravity experiment onboard the Juno mission has been simulated

using Doppler measurements only, within ±3h from every pericenter. The

data have been produced with a sampling time of 60 seconds. The only

configuration of the KaT available for science observations will be the Ka-

Ka link, for which the instrument requirement is an error on the Doppler

observable not larger than 5 × 10−3mm/s equivalent to asking for an Al-

lan deviation of σy (1000s) = 1.67 × 10−14. In the simulations it has been

assumed that the only station tracking the Juno spacecraft during gravity

measurements is the DSS 25 in Goldstone.

In order to account for the lack of a multi-frequency configuration and
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Source Two-way Allan Deviation at 1000 seconds.

Ground FTS < 10−15

USO ∼ 10−13 (only for one-way data)

Antenna mechanical noise < 4× 10−15 (favorable conditions)

Ground electronics 2.3× 10−16

Plasma noise at Ka-band < 10−15 (for SEP > 160◦)

Plasma noise at Ka-band ∼ 5× 10−15 (for SEP ∼ 30◦)

Spacecraft motion 2.6× 10−16

Thermal noise ∼ 10−16

Ka-band translator noise < 1.7× 10−15

Raw tropospheric noise 3− 30× 10−15

Tropospheric noise after calibration < 1.5× 10−15

Best Case 9.0× 10−15

Worst Case 1.5× 10−14

Table 4.11: Allan deviations for the main noise sources on range-rate measure-

ments (Asmar et. al, 2005).

all the uncertainties in the description of the dynamical model, the Allan

deviation corresponding to the worst case in Table 4.11 has been assumed

to obtain the noise level over Juno range-rate measurements. Firstly, it is

necessary to report the value to the proper sampling time:

σy (60s) =

√
1000

60
σy (1000s) = 6.1× 10−14 (4.21)

that can be converted into frequency fluctuations:

∆f (60s) = σy (60s) f0 ∼ 2.10mHz (4.22)

where f0 = 34.3GHz is the reference carrier frequency. The noise RMS

expressed in mHz characterizes the white Gaussian noise superposed on

Juno Doppler measurements.

4.4.2 JUICE

For the JUICE mission, the simulated tracking period depends on the

specific science phase: during the Ganymede orbits, Doppler measure-

ments are collected for 6−8h a day, while for the Callisto flybys the tracking

period is centered ±4h around closest approach.
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In any case, Doppler data are simulated with a sampling time of 60 sec-

onds, with the involved tracking stations being: ESA DSA1 (New Norcia),

ESA DSA2 (Cebreros) and NASA DSS 25 (Goldstone).

For the JUICE mission, although the Ka-Ka link represents the baseline

for science observations, the exploitation of a dual- or multi-frequency con-

figuration is possible. For this reason, to account for the Doppler noise on

the simulated observable, the following scenarios, depending on the Sun

elongation angle, have been considered:

∆f (60s)Ka−Ka ∼ 1.20mHz SEP > 15◦

∆f (60s)Ka−Ka ∼ 1.80mHz SEP ≤ 15◦

∆f (60s)dual ∼ 1.20mHz ∀ SEP

∆f (60s)multi ∼ 1.00mHz ∀ SEP

(4.23)

with the noise RMS varying from pass to pass.

4.5 Estimation process

The estimation process, whose mathematical principles have been dis-

cussed in Chapter 3, can be divided into the following steps:

• choice of a first-guess dynamical model, with a description of gravi-

tational and non-gravitational forces;

• selection of nominal initial conditions for the state vector, comprising

position and velocity of the spacecraft and other estimated parame-

ters. This initialization could be different or not to the one given in

simulation;

• generation of computed observables at the same epochs as for the

simulated observed observables, using the reference trajectory inte-

grated starting from the nominal initial conditions;

• computation of the partial derivatives along the reference trajectory;

• data processing through a weighted least square filter: computation

of the Doppler residuals for the determination of the best estimate of

the solve-for vector, along with the formal uncertainty, based on the

data;
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• update of the dynamical model and state vector.

The process described above is an iterative technique to be repeated

until the solution meets a certain convergence criterion (see section 3.3.2).

The following flow diagram is explicative of the process:

Figure 4.11: Orbit determination: flow diagram of the estimation process.

The filter, used in the frame of Juno and JUICE gravity experiment sim-

ulations, minimizes, in the least square sense, the Doppler residuals for the

purpose of estimating the physical parameters of interest. The filter is capa-

ble of operating in batch mode, and uses the square root formulation in or-

der to minimize the bad-conditioned information matrix (Racioppa, 2012).

The estimation process performed by the filter provides central values for

the solve-for parameters along with a full covariance matrix.
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Chapter 5

Juno: the gravitational

signature of Jupiter’s winds

One of the cardinal scientific objectives of the Juno gravity experiment

is the retrieval of Jupiter’s wind depth as a function of the Jovian latitude,

by means of precise Doppler measurements of the planet’s gravitational

signal.

In parallel, the addition of information on the structure and dynamics

of the winds, has the potential of conspicuously improving the determi-

nation of the gravity field itself. An iterative method for the estimate of

Jupiter’s gravity harmonic coefficients using an adjoint based inverse ther-

mal wind model has been proposed by Galanti et al. (2013). In this method,

the recovery of the gravity field is improved thanks to the adoption of a

geophysical model for Jupiter’s jets, with consequent constraints on the

wind morphology.

In this chapter, I will address two main tasks: the formulation of a

three-dimensional model for Jupiter’s density anomalies due to the pres-

ence of atmospheric dynamics, based on thermal wind balance principles;

and assessing the possibility of detecting the gravitational signature com-

ing from the winds, with particular regard for the Great Red Spot, by using

radio science Doppler measurements. I will discuss the methods and im-

plications of such developments from the point of view of the radio science

experiment onboard the Juno mission.
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5.1 From Cassini data to a model for Jupiter’s wind

speed

The penetration depth of the winds of Jupiter is still an open ques-

tion among the planetary science community (Kaspi et al., 2010). Precise

Doppler measurements of Jupiter’s gravity field from the Juno mission

will be extremely sensitive to such parameter. In fact, the deeper the jet

streams, the more the mass involved in the wind motion and the larger the

gravity anomalies, detectable by the radio science instrument. If the wind

speed profile is available, assuming that thermal wind theory reasonably

describes the dynamics of Jupiter’s atmosphere to a certain degree of ap-

proximation, the resulting density anomalies can be determined.

Fortunately, observations of the cloud-level winds are largely available.

The main feature of Jupiter’s atmosphere is the alternation of zones and

belts, vast counter rotating zonal jets, almost symmetric about the equator

(Choi and Showman, 2011). Current theories suggest that Jupiter’s atmo-

spheric structure can be considered slow-changing and that the winds are

deep-rooted, with the main driving-mechanism being convection (Vasavada

and Showman, 2005).

The model for Jupiter’s wind velocity field, adopted in my work, is

based upon observations of the planet’s atmosphere made by the Cassini

spacecraft (Choi and Showman, 2011). In the cited work, the authors pro-

vide a full 2-D longitudinal profile of Jupiter’s wind surface velocity and

tropospheric kinetic energy, by means of spherical harmonic analysis, al-

though the analysis does not provide information on the underlying dy-

namics. The utilized data set contains observations made during Cassini

Jupiter flyby in December 2000, by the Imaging Science Subsystem (ISS),

including extensive multi-spectral analysis of Jupiter’s atmosphere. The

instrument carried out observations in both hemispheres, using 4 different

filters for its narrow angle camera. The wind vector maps were then gener-

ated using an automated cloud feature tracker (Choi et al., 2007), resulting

in a final resolution of 0.05 deg/pixel. Unfortunately, due to low contrast

and resolution at high latitudes caused by the flyby geometry, wind vectors

for latitudes polewards of 50◦ latitude are not reported in the study. For de-

tails on the measurement and data analysis setup see Choi and Showman
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(2011), Section 2.

(a)

(b)

Figure 5.1: Horizontal components of the wind velocity a) u (θ, φ) component,

along parallels. b) v (θ, φ) component, along meridians. The velocity

map is derived from Choi and Showman (2011).

The results of the cloud tracker in terms of wind velocity maps (Choi

and Showman, 2011) are shown in Figure 5.1. The plots were referenced us-

ing Jupiter System III convention and the typical uncertainty on the speed

measurements is about 5 − 10m/s. Each graph ((a) and (b)) represents one
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horizontal component of Jupiter’s wind velocity: u along parallels and v

along meridians.

The winds are mostly zonal, going from west to east (positive values)

and east to west (negative values), creating evident horizontal bands. The

contribution of the v component to the total kinetic energy is limited, al-

though the velocity anomalies identifying the Great Red Spot (up to 30

m/s) and the Oval BA are clearly visible in both maps (at around 110◦ co-

latitude, 275◦ longitude and 120◦ colatitude, 85◦ longitude, respectively,

in the chosen reference frame). As a matter of fact, the equatorial region,

comprised between 80◦ and 100◦ colatitude, contributes the most to the

overall energy, with a typical variance in the wind velocity of about 20-30

m/s between adjacent zonal bands, and somewhere even higher. As an-

ticipated, data at high latitudes have been rejected, while, where available,

maps of the wind vectors are affected by measurement noise, leading to

typical uncertainties of 5 m/s, with peaks between 10 and 20 m/s. For a

more detailed description of the effects of data processing techniques over

the velocity measurements see Choi and Showman (2011), Section 5.

Starting from Choi and Showman’s analysis, a complete 2-D map of

Jupiter surface wind velocity has been produced. For the purposes of this

dissertation, among which the generation of a 3-D model for the planet’s

density anomalies, it is necessary to make some assumptions on the pen-

etration of such jets at depth. In particular, I assumed that the discussed

horizontal profile, u (θ, φ) and v (θ, φ), penetrates in the direction parallel

to the axis of rotation as a vertical decay function (Kaspi et al., 2010), with

the penetration depth depending on the height scale H :

u (r, θ, φ) = u (θ, φ) e−
R−r
H

v (r, θ, φ) = v (θ, φ) e−
R−r
H

(5.1)

where R is Jupiter’s mean radius. Note that for r = R, the surface

profile corresponds to the original velocity maps. The velocity field has

now assumed a three-dimensional connotation over the sphere.

Due to instrumental and measurement noise on Choi and Showman’s

data, a smoothing step had to be introduced. If the resolution of the map

is δ = n × 0.5◦ (with n integer) in both longitude and latitude (e.g. 1◦, the

maximum resolution is 0.5◦), then the velocity profile is stored as a matrix
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of
(

360◦

δ

)
×
(

180◦

δ + 1
)

elements. The applied smoothing process is a linear

transformation of the observed values, involving an averaging procedure

between each pixel and the adjacent ones (Figure 5.2):

Figure 5.2: Visualization of a 2-D smoothing (e.g. over latitude and longitude).

The 2-D smoothing function for a scalar field φ is:

φ (j, k) =
1

2
φ (j, k)+

1

8
[φ (j − 1, k) + φ (j + 1, k) + φ (j, k − 1) + φ (j, k + 1)]

(5.2)

which can easily be extended to the 3-D case, as the wind velocity in

(5.1).

Throughout this chapter, three different scenarios characterized by dif-

ferent height scales H will be considered and thoroughly analyzed:

• a shallow wind case with H = 300 km, where the location of wind

dynamics is supposed to extend within 1% of Jupiter’s atmosphere;

• a mid-penetrating wind case with H = 3000 km, here the winds are

deeper, penetrating up to 10% of Jupiter’s gaseous surface;

• a very-deep wind case, with H = 1000000 km, this represent the other

extreme case where the wind dynamics involve a great portion of

Jupiter’s mass.

The following plots (Figure 5.3) are visual displays of the wind profile

over meridional sections, at a given longitude.
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(a)

(b)

(c)

Figure 5.3: Velocity profile over a longitudinal section (φ = π). a) for H = 300km;

b) for H = 3000km; c) for H = 1000000km.
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In case a) the penetration is very marginal, the mass involved in the

wind motion is limited and the expected density anomalies are negligible;

in case b) the penetration depth is about 1/20 of Jupiter’s mean radius, the

infiltration of the jets at deeper layers is evident, with peaks in the prox-

imity of the equatorial belt; in case c) the height scale is much larger than

Jupiter’s mean radius, resulting in the complete penetration of the winds

parallel to Jupiter’s spin axis, with evident discontinuities in the equatorial

plane.

5.2 A model of Jupiter’s density anomalies

Jupiter is an extremely fast rotator and characterized by very large

scales, therefore the planet’s atmospheric dynamics is governed by geostrophic

balance (and thus thermal wind balance in three dimensions), at least to the

first order (Kaspi et al., 2010).

Thermal wind balance equations have been deduced in Chapter 2, Sec-

tion 2.3.6. In this formulation the density anomalies are expressed as func-

tions of the wind velocity profile, considered as known from observations.

In this paragraph, I will show how, starting from a known 3-D model of

the winds speed v, one can deduce the resulting distribution of the density

anomalies.

Thermal wind fundamental equation is:

2Ω · ∇ (ρ̃v) = ∇ρ′ × g0 (5.3)

where Ω is the planetary rotation rate, ρ̃ (r) is the hydrostatic state den-

sity, g0 is the mean gravity vector and ρ′ (r) is the density anomaly.

When dealing with planetary bodies, it is convenient to adopt a set of

spherical coordinates (ρ, θ, φ), centered at Jupiter’s barycenter and related

to Cartesian coordinates by:


x = rsinθcosφ

y = rsinθsinφ

z = rcosθ

(5.4)

where θ is the colatitude and φ is the longitude. In this reference frame,

the gradient of the density anomaly can be expressed as:
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Figure 5.4: Spherical coordinates in the 3-D space (math.stackexchange.com).

∇ρ′ = ∂ρ′

∂r
r̂ +

1

r

∂ρ′

∂θ
θ̂ +

1

rsinθ

∂ρ′

∂φ
φ̂ (5.5)

while the gravitational acceleration has only one non-null component,

along the radial direction:

g0 = −g0r̂ (5.6)

the cross-product between the gradient of the density anomaly and the

gravitational acceleration is then easily computed:

∇ρ′ × g0 = det


r̂ θ̂ φ̂
∂ρ′

∂r
1
r
∂ρ′

∂θ
1

rsinθ
∂ρ′

∂φ

−g0 0 0

 = − 1

rsinθ

∂ρ′

∂φ
g0θ̂ +

1

r

∂ρ′

∂θ
g0φ̂ (5.7)

The left hand of the thermal balance equation can also be expanded to

become:

2Ω · ∇ (ρ̃v) = 2
(

Ωx
∂
∂x + Ωy

∂
∂y + Ωz

∂
∂z

)
(ρ̃v)

=
(
2Ωz

∂
∂z

) [
ρ̃
(
wr̂ + vθ̂ + uφ̂

)] (5.8)
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since, by definition of a body-fixed reference frame, Ωz =| Ω |. Project-

ing along the φ̂ direction one gets:

2Ω
∂ρ̃u

∂z
=

1

r

∂ρ′

∂θ
g0 (5.9)

Projecting along the θ̂ direction:

2Ω
∂ρ̃v

∂z
= − 1

rsinθ

∂ρ′

∂φ
g0 (5.10)

Thus, thermal wind balance can be expressed as a system of two partial

differential equations:


∂ρ′

∂θ = 2Ω
g0
r ∂ρ̄u∂z

∂ρ′

∂φ = −2Ω
g0
rsinθ ∂ρ̄v∂z

(5.11)

where ρ′ (r, θ, φ) is the unknown variable to solve for.

In the next paragraphs different solutions for (5.11), depending on the

structure of the winds, will be considered, analyzed and thoroughly dis-

cussed.

5.2.1 2-D model: purely zonal winds

It has already been pointed out that Jupiter’s wind structure is mostly

zonal, with the main jets moving parallel to the equator (see Figure 5.1).

That being so, it is interesting to understand what happens to the density

anomalies in the case where the v component of the wind velocity is ne-

glected:

u = u (r, θ, φ) r ∈ [0,∞) , θ ∈ [0, π] , φ ∈ [0, 2π]

v ≡ 0 r ∈ [0,∞) , θ ∈ [0, π] , φ ∈ [0, 2π]
(5.12)

To build such peculiar profile, Choi and Showman’s velocity map for

the u component has been averaged out over the longitudinal direction,

providing a purely zonal wind structure (Figure 5.5). The field has been

then propagated in the vertical direction as in Section 5.1, for different val-

ues of the height scale H .
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Figure 5.5: Surface velocity map for the zonal case. Display of the v component.

As a consequence, from the second equation of system (5.11), the vari-

ations of the density anomalies along the longitudinal direction (φ̂) are also

null:

∂ρ′

∂φ
= 0 (5.13)

In Section 2.3.6 of Chapter 2, it has been shown that, for a flow in

geostrophic balance, the projection of the velocity divergence onto the tan-

gent plane defined by θ̂φ̂ is null:

∇r · v = 0 (5.14)

because of the mass conservation equation. Expanding the divergence

operator in spherical coordinates one gets:

1

rsinθ

∂ (vsinθ)

∂θ
+

1

rsinθ

∂u

∂φ
= 0 (5.15)

but v ≡ 0, then:

∂u

∂φ
= 0 (5.16)

meaning that the longitudinal component of the wind velocity cannot

depend on longitude in the zonal case, which is consistent with the previ-

ous assumption. The thermal wind equations become:
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∂ρ′

∂θ = 2Ω
g0
r ∂ρ̄u∂z

∂ρ′

∂φ = 0
(5.17)

One can solve the first differential equation for ρ′ (r, θ):

ρ′ (r, θ) =

∫ (
2Ω

g0
r
∂ρ̄u (r, θ)

∂z

)
dθ + ρ′1 (r) (5.18)

where ρ′1 (r) represents the constant of integration. This expression also

fulfills the second equation, being the integrand entirely not dependent on

φ. To find a unique solution for the density anomaly in equation (5.18),

a boundary condition must be imposed. For example, one can impose

that the density anomaly along the θ̂ direction is zero-average, to maintain

Jupiter’s total mass:

∫
θ
ρ′ (r, θ) dθ = 0 (5.19)

whence:

ρ′1 (r) = −
∫
θ

[∫ (
2Ω

g0
r
∂ρ̄u (r, θ)

∂z

)
dθ

]
dθ (5.20)

Starting from the velocity map in Figure 5.5, equation (5.18) can be nu-

merically integrated using the rectangle rule. A finite difference method is

used to calculate the derivatives.

Figures 5.6-5.8 show the results in terms of density maps at the surface

of the planet and over a longitudinal slice at a fixed longitude, for different

values of H . From the plots it is evident that, although the main features

of Jupiter’s winds are captured in a 2-D model in which the density profile

depends only upon the colatitude, longitudinal features such as the Great

Red Spot and the Oval BA are not represented by this model.

Another option is to consider the actual velocity map for the u compo-

nent (Figure 5.1 a), thus with longitudinal fluctuations, and integrate equa-

tion (5.18) for each longitudinal slice of Jupiter. In this case the model is

quasi 2-D, meaning that the second equation of system (5.11) is still ap-

proximately satisfied, given the much less pronounced variations of the

wind speed along parallels, but the latitudinal velocity profile varies, de

facto, for each slice. However, in my dissertation I will focus directly on the

complete 3-D model.
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Figure 5.6: Integrated density profile for H = 300km. a) Surface density anoma-

lies; b) Density anomalies over a longitudinal section, at φ = π.
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Figure 5.7: Integrated density profile for H = 3000km. a) Surface density anoma-

lies; b) Density anomalies over a longitudinal section, at φ = π.
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Figure 5.8: Integrated density profile for H = 1000000km. a) Surface density

anomalies; b) Density anomalies over a longitudinal section, at φ = π.
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One could argue that, starting the integration from the south pole of

Jupiter, as in this case, the density disturbances at the north pole are not

zero, as evident from Figure 5.6-5.8. This happens because of the integra-

tion constant, which, in order to average out the anomalies in the latitudinal

direction, assigns a negative values to the northern region. The objection

itself is relevant but one must consider that in the frame of this work, the

interesting outcome of this modelization is an estimate of the effect of the

winds of Jupiter on the overall gravity field of the planet. Being so, this

inconsistency in the density model can be neglected, since the fluctuations

of the gravity harmonics ∆Jn depend exclusively on the changes of the

density anomalies along θ and φ (Kaspi et al., 2010), while the constant of

integration is a function of only r.

5.2.2 3-D model

In this subsection I will consider the general case where both compo-

nents of the velocity u and v are non-negligible. Starting from system (5.11)

the cross-derivative of each equation is taken:


∂
∂φ

(
∂ρ′

∂θ

)
= ∂

∂φ

(
2Ω
g0
r ∂ρ̄u∂z

)
∂
∂θ

(
∂ρ′

∂φ

)
= ∂

∂θ

(
−2Ω
g0
rsinθ ∂ρ̄v∂z

) (5.21)

If the density anomaly function is C2 (with second derivatives exist-

ing and continuous), then its cross derivatives are equivalent and the two

equations can be summed up:

2
∂2ρ′

∂φ∂θ
=

∂

∂φ

(
2Ω

g0
r
∂ρ̄u

∂z

)
− ∂

∂θ

(
2Ω

g0
rsinθ

∂ρ̄v

∂z

)
(5.22)

Always assuming that ρ′ is C2, equation (5.22) can be integrated a first

time with respect to θ:

∂ρ′

∂φ = 1
2

∫ [
∂
∂φ

(
2Ω
g0
r ∂ρ̄u∂z

)
− ∂

∂θ

(
2Ω
g0
rsinθ ∂ρ̄v∂z

)]
dθ + f ′0 (r, φ)

= 1
2

∫
∂
∂φ

(
2Ω
g0
r ∂ρ̄u∂z

)
dθ − 1

2

∫
∂
∂θ

(
2Ω
g0
rsinθ ∂ρ̄v∂z

)
dθ + f ′0 (r, φ)

= 1
2

∫
∂
∂φ

(
2Ω
g0
r ∂ρ̄u∂z

)
dθ − 1

2

(
2Ω
g0
rsinθ ∂ρ̄v∂z

)
+ f ′0 (r, φ)

(5.23)

and a second time with respect to φ :
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ρ′ = 1
2

∫∫
∂
∂φ

(
2Ω
g0
r ∂ρ̄u∂z

)
dθdφ− 1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v∂z

)
dφ+

∫
f ′0 (r, φ) dφ+ ρ′1 (r, θ)

= 1
2

∫ (
2Ω
g0
r ∂ρ̄u∂z

)
dθ − 1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v∂z

)
dφ+

∫
f ′0 (r, φ) dφ+ ρ′1 (r, θ)

(5.24)

but
∫
f ′0 (r, φ) dφ is still only a function of r and φ, hence:

ρ′ (r, θ, φ) =
1

2

∫ (
2Ω

g0
r
∂ρ̄u

∂z

)
dθ−1

2

∫ (
2Ω

g0
rsinθ

∂ρ̄v

∂z

)
dφ+ρ′2 (r, φ)+ρ′1 (r, θ)

(5.25)

Analogously to the 2-D model it is necessary to select a physical solu-

tion for the density anomalies by calculating the constants of integration

ρ′1 (r, θ) and ρ′2 (r, φ). To do so, one must impose two boundary conditions.

The first constraint is that, for v → 0 the expression for the density per-

turbation must converge to its expression for the 2-D model, hence com-

paring equation (5.25) with equation (5.18):

lim
v→0

ρ′ (r, θ, φ) =

∫ (
2Ω

g0
r
∂ρ̄ũ (r, θ)

∂z

)
dθ + ρ′3 (r) (5.26)

Suppose the u component of the velocity can be expressed as the sum of

two different contributions: one that depends only on depth and colatitude:

ũ (r, θ); and one that depends only on the longitude: u′ (φ). When v → 0,

u tends to ũ which cannot be a function of the longitude for the previously

discussed reasons, then:

lim
v→0

u (r, θ, φ) = ũ (r, θ) (5.27)

Also, the following expressions:

v → 0,

u (r, θ, φ)→ ũ (r, θ)

u′ (φ)→ 0

(5.28)

are equivalent. Using the general formula for the density perturbation

(5.25), equation (5.26) becomes:

limv→0

[
1
2

∫ (
2Ω
g0
r ∂ρ̄u∂z

)
dθ − 1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v∂z

)
dφ+ ρ′2 (r, φ) + ρ′1 (r, θ)

]
=
∫ (

2Ω
g0
r ∂ρ̄ũ(r,θ)

∂z

)
dθ + ρ′3 (r)

(5.29)
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whence:

1
2

∫ (
2Ω
g0
r ∂ρ̄ũ∂z

)
dθ + limv→0 (ρ′2 (r, φ) + ρ′1 (r, θ))

=
∫ (

2Ω
g0
r ∂ρ̄ũ∂z

)
dθ + ρ′3 (r)

(5.30)

and consequently:

lim
v→0

(
ρ′2 (r, φ) + ρ′1 (r, θ)

)
=

1

2

∫ (
2Ω

g0
r
∂ρ̄ũ

∂z

)
dθ + ρ′3 (r) (5.31)

At this point a few considerations about the limits on the left side of

equation (5.31) are in order. Since ρ′1 is only a function of r and θ, this

constant of integration can only depend on the components of u and v that

don’t depend on the longitude, namely ũ and ṽ. However ṽ = 0, because

the v component of the velocity must be zero-average over the longitude,

otherwise we would have a net flux in the latitudinal direction (south-north

or north-south), and this cannot be the case. Hence ρ′1 = ρ′1 (r, θ, ũ), and:

lim
v→0

ρ′1 (r, θ, ũ) = ρ′1 (r, θ, ũ) (5.32)

cannot be affected by v approaching the zero value. As a consequence,

from (5.31) an expression for ρ′1 is now available:

ρ′1 (r, θ) =
1

2

∫ (
2Ω

g0
r
∂ρ̄ũ (r, θ)

∂z

)
dθ + ρ′3 (r)− lim

v→0
ρ′2 (r, φ) (5.33)

Furthermore one must consider that for the second equation of system

(5.11), when v → 0, the density perturbation can only be a function of θ,

thus:

lim
v→0

ρ′2 (r, φ) = ρ′4 (r) (5.34)

Applying the first boundary condition, one of the constants has been

determined and put into the general expression for ρ′1:

ρ′ (r, θ, φ) = 1
2

∫ (
2Ω
g0
r ∂ρ̄u(r,θ,φ)

∂z

)
dθ − 1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v(r,θ,φ)

∂z

)
dφ+

1
2

∫ (
2Ω
g0
r ∂ρ̄ũ(r,θ)

∂z

)
dθ + ρ′2 (r, φ) + ρ′3 (r)− ρ′4 (r)

(5.35)
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Now, indicating with ρ′5 (r, φ) = ρ′2 (r, φ) + ρ′3 (r) − ρ′4 (r), the second

boundary condition has to be imposed. In particular the constant of in-

tegration can be computed as in the 2-D case assuming that the density

perturbation is zero-mean, this time over the whole 3-D domain:

1

2π2

∫
θ

∫
φ
ρ′ (r, θ, φ) dθ = 0 (5.36)

meaning:

1
2π2

∫
θ

∫
φ

[
1
2

∫ (
2Ω
g0
r ∂ρ̄u(r,θ,φ)

∂z

)
dθ − 1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v(r,θ,φ)

∂z

)
dφ
]
dθ+

1
2π2

∫
θ

∫
φ

[
1
2

∫ (
2Ω
g0
r ∂ρ̄ũ(r,θ)

∂z

)
dθ + ρ′5 (r, φ)

]
dθ = 0

(5.37)

or else:

ρ′5 (r, φ) = ρ′5 (r) = −
∫
θ

∫
φ

[
1
2

∫ (
2Ω
g0
r ∂ρ̄u(r,θ,φ)

∂z

)
dθ
]
dθ

−
∫
θ

∫
φ

[
−1

2

∫ (
2Ω
g0
rsinθ ∂ρ̄v(r,θ,φ)

∂z

)
dφ
]
dθ−

−
∫
θ

∫
φ

[
1
2

∫ (
2Ω
g0
r ∂ρ̄ũ(r,θ)

∂z

)
dθ
]
dθ

(5.38)

Otherwise, we can impose that the density anomalies are null at the

poles:

ρ′ (r, θ, φ)θ=0,π = 0 (5.39)

in any case, as stated in Section 5.2.1, the constant of integration has no

effect on the resulting gravity field due to the winds.

As reported in Choi and Showman (2011), the velocity maps have been

produced substituting data at high latitudes (higher than 50◦) with zonally

symmetric winds, because of measurement noise and flyby geometry. For

this reason, the mass anomalies calculated starting from the observed wind

speed profile, can be considered reliable only for 40◦ < θ < 140◦ (Choi and

Showman, 2011).

Figure 5.9 reports the results of the numerical integration of the com-

plete thermal wind equations, showing the surface density anomalies for a

typical height scale of H = 3000 km. The levels of penetration in the vertical

direction of the mass perturbations at different height scale are not shown

but are all in all equivalent to those in Figure 5.6b - 5.8b.
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Figure 5.9: Integrated 3-D density profile for H = 3000 km at the surface of Jupiter.

When comparing Figure 5.7a with 5.9, a number of considerations can

be made. The new density profile is not purely zonal anymore but longitu-

dinal features appear in the surface anomalies, reflecting the actual velocity

map. In particular, smaller-scale perturbations such as the Great Red Spot

and the Oval BA are now evident in the plot, characterized by positive den-

sity disturbances. However, the main horizontal structure of the jets is still

clear, with the equatorial band responsible for most of the mass perturba-

tions due to Jupiter’s winds.

5.3 From density anomalies to gravity

The main result of the previous section is that a 3-D map of the atmo-

spheric density anomalies ρ′ (r, θ, φ) for Jupiter has been produced starting

from the wind velocity profile. Such disturbances in the mass distribution

obviously affect the gravity field of the planet up to high-degree harmonics,

depending on the penetration depth of the winds. For the zonally symmet-

ric gravity, the changes in the zonal harmonics due to the wind dynamics

can be expressed as:
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∆Jl = − 1

MRl

∫ R

0
r2+ldr

∫ 2π

0
dφ

∫ 1

−1
Pl (cos θ) ρ′ (r, cos θ, φ) d cos θ (5.40)

where l is the harmonic degree,M andR are the mass and mean radius

of Jupiter, r is the distance from the center of the planet and Pl is the Legen-

dre Polynomial of degree l. Equation (5.40), expanded for the computation

of tesseral harmonics as well, can be numerically integrated to produce the

contributions of the winds to the gravity field of Jupiter.

In the frame of the simulations of the gravity experiment onboard the

Juno mission, a 30x30 gravity field of Jupiter has been generated for three

different values of the height scale. Tables 5.1reports the first 10 un-normalized

zonal harmonics, due to the presence of jets, for different values of H.

Degree (n) Central value

J2 8.606e-09

J4 -3.931e-09

J6 2.549e-09

J8 -9.298e-10

J10 5.660e-10

Degree (n) Central value

J2 1.103e-06

J4 -2.026e-07

J6 1.967e-07

J8 -2.147e-08

J10 -5.585e-08

degree (n) Central value

J2 1.174e-05

J4 6.916e-07

J6 8.553e-07

J8 -3.167e-07

J10 -2.263e-07

Table 5.1: Contributions to the zonal harmonics due to the winds of Jupiter, up to

degree 10. The coefficients are unnormalized. Top left: for H = 300 km;

Top right: for H = 3000 km; Bottom: for H = 1000000 km.

Obviously, the deeper the wind penetration, the stronger the gravita-

tional signature of the jets, in fact for H = 300 km the harmonic coefficients

are at least three orders of magnitude smaller than the case for H = 3000

km and H = 1000000 km, because much more planetary mass is involved
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in the wind dynamics. Figure 5.10 shows the overall 30x30 Jupiter’s grav-

ity field in terms of the real component of the tesseral harmonics (Clm) for

different values of H. As H grows larger, the first columns of the spectrum

(zonal harmonics) acquire a darker shade, from yellow to light red, index of

a stronger gravity field. The gravity coefficients decrease with the second

power of the degree l.
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Figure 5.10: 30x30 gravity field of Jupiter. Each box indicates a specific tesseral

harmonic of degree l and order m. a) for H = 300 km; b) for H = 3000

km; c) for H = 1000000 km.
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Recalling the expression for the gravitational potential of a planetary

body (Chapter 2, Section 2.1), dependent on the spherical harmonics, the

surface gravity can be easily calculated as:

g = −∇U (R, θ, φ) (5.41)

Figure 5.11 shows the resulting surface gravity for the three typical

cases at different H. Note that the longitude scale is the same as before,

with longitudes between 181◦ and 360◦ being substituted by negative an-

gles.

In case a), the gravity anomalies due to the winds are of order of tenths

of mGal (1 Gal = 0.01 m
s2

), the horizontal belts and zones are clearly visible

with alternate signs, and a positive gravity disturbance is placed at the lo-

cation of the GRS. Also the Oval BA is visible as a localized yellow circle

at 120◦ colatitude, 95◦ longitude. In case b) the gravity surface reaches a

maximum value of 6 mGal in the equatorial belt, while the Great Red Spot

contributes with an anomaly of around 3 mGal. The signature of the Oval

BA is more blurred than the previous case. In the last case c), the mass

involved in the wind dynamics is so large that it is difficult to recognize

any small-scale features, the GRS is barely visible, though the horizontal

regions are still distinguishable.

5.4 Estimation setup for the Juno gravity experiment

Gravity measurements have been simulated throughout the duration

of the Juno mission (2016 - 2017), using three different gravity fields for

Jupiter, corresponding to as many penetration depths of the winds (see Sec-

tion 5.3, Table 5.1 and Figure 5.10).

As described in Chapter 4, the first step for the estimation of physical

parameters of interest by means of Doppler tracking of the spacecraft is

the definition of a first-guess model for the environment surrounding the

probe. Indeed, the main goal of integrating the trajectory of the spacecraft

during the estimation phase is to generate the computed observables to be

compared to the (synthetic) observed ones.

The gravity field of Jupiter used for initializing such process comprises

only the effect of the solid body rotation up to degree 6, as intended by
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Figure 5.11: Gravitational signature of the thermal winds. a) for H = 300 km; b)

for H = 3000 km; c) for H = 1000000 km.
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Hubbard (2012) and reported in Table 4.1. All other harmonics, zonal and

tesserals are initialized to null. One of the objectives of this analysis is,

in fact, assessing the possibility of recovering the actual simulated gravity

field, which includes the effects of the winds, starting from values that are

considerably off. The first-guess tidal Love numbers’ are equal to the ones

used in simulations, since the estimate of such parameters is not a goal of

this study.

The initial condition used to integrate the trajectory during the esti-

mation process, are the same as the ones used for the simulated orbit, not

considering any errors on the spacecraft initial position and velocity. Nev-

ertheless, due to the differences between the gravity fields used in simula-

tion and estimation, the two trajectories will differ at times different from

the initial epoch.

All non-gravitational effects (solar radiation pressure, albedo, thermal

emission, etc.), including the model of the Juno spacecraft, have been re-

produced for the estimation process, starting from the simulation setup.

Therefore a strong assumption is made: that forces other than gravity are

perfectly calibrated by the instrument, which is in most cases untrue, how-

ever this mismodeling can be easily compensated by, for example, intro-

ducing a slightly higher noise on Doppler measurements.

In this regard, Tapley et al. (2004) give a tool for properly weighing the

simulated observations. In particular, for Doppler data, each range-rate

measurement is weighed as follows:

w =
1

σ2
(5.42)

where:

σ = RMS

[
1 +

18

(E + 1)2

]
(5.43)

RMS is the noise standard deviation (the same as used in the simulation

step) and E is the station elevation angle characterizing the datum. Obvi-

ously, the smaller the elevation, the smaller the data weight (see Chapter 4,

Section 4.3.2).

The vector of estimated parameters represents the set of physical quan-

tities which system (3.41) is solved for. This comprises: the position and

velocity of the spacecraft (6 parameters) in Jupiter System Barycenter Earth
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Mean Equator J2000 at the beginning of each one of the 25 arcs (correspond-

ing to the 25 flybys of Jupiter). This set represents the local parameters

(totally 25 × 6 = 150), known with a priori uncertainties of 10 km for the

position components and 10−5 km/s for the velocity components.

The vector of global parameters varies according to the minimum or-

der of the gravity field necessary to obtain an un-biased fit of the data. This

minimum set of harmonics depends, in turn, on the strength of the simu-

lated gravity field, in particular the deeper the penetration depth, the larger

the asymmetries in the gravity field of Jupiter and the higher the required

harmonic order. In general, the estimated gravity field can vary between a

20x5 and a 30x30 expansion in spherical harmonics.

Figure 5.12 shows the simulated zonal harmonics due to the winds of

Jupiter (not considering the solid body rotation) and the associated a priori

uncertainties (see legend).
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Figure 5.12: Zonal gravity field of Jupiter in terms of harmonic coefficients (degree

2 to 30) and associated a priori uncertainties.

As expected when the depth of the winds increases, the magnitude of

the harmonics increases as well, but all lines lie below the highest uncer-

tainty curve (blue solid line), even for very deep winds (turquoise line).

This degree of freedom was adopted to make the gravity field coefficients

free to vary and recover the correct wind depth. The a priori uncertainties

136



Juno: the gravitational signature of Jupiter’s winds

have been selected by multiplying the wind harmonics corresponding to

H=106 km by a factor of 1, 10 and 100. Different levels of initial uncertain-

ties are selected depending on the case.

Jupiter’s GM, k2 and k3 are included in the solve-for vector as well,

with a priori uncertainties of 2 km3/s2, 0.5 and 0.5, respectively. The masses

of the Galilean satellites are taken into account in the process by including

them as consider parameters, meaning that their values are not estimated

and updated yet their uncertainties affect the estimate of other parameters.

5.5 Estimate of Jupiter’s gravity field: detection of mass

anomalies produced by winds

The estimation results in term of assessment of the accuracies attain-

able in the estimation of the gravity harmonic coefficients of Jupiter has

already been discussed by Finocchiaro (2013). In this dissertation, I follow

up on his work and try to understand whether or not solving the thermal

wind balance equations in a 3-D domain is advantageous to the detection of

Jupiter’s wind gravitational signatures, especially that coming from small-

scale features such as the Great Red Spot. In particular I will explore the

prospect of recovering the actual simulated surface gravity (Figure 5.11) for

different values of H, starting from a plain solid body gravity field.

5.5.1 Shallow-wind case

In this case the winds fold with a height scale of H = 300 km, indicat-

ing very shallow perturbations that influence the motion of Jupiter’s atmo-

sphere just close to the planetary surface. That being so, the gravity field

deviates mildly from that of a solid rotator and one can expect very small

tesseral harmonics due to winds if compared to the rotational zonal con-

tributions. For this reason, the a priori uncertainties can be set tighter (x1

factor, dashed blue thin line in Figure 5.12) than for stronger field cases.

The minimum set of spherical harmonics necessary to fit the data is a

degree-20 zonal gravity field, this is because the tesseral and higher zonal

harmonics corresponding to this wind depth are too small to be detectable

by the Juno gravity experiment. In other words the accelerations sensed

by the spacecraft and due to high-frequency harmonics are so small for the
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shallow wind case, that they appear to lie below the noise level. Neverthe-

less, since I’m interested, among other things, in detecting the gravitational

signal of the GRS, I have considered a 20x5 gravity field, to maintain a cer-

tain longitudinal variations of the anomalies.

Figure 5.13 shows the estimation results, for H = 300 km, in terms of

reconstruction of the gravity anomaly map. The top plot (a) shows the es-

timated gravity anomalies as output of the data filtering, over a Hammer

projection of Jupiter’s surface. The estimated disturbances are of the same

order of magnitude of the simulated ones, ranging between ± 0.1 mGal.

Between 5◦ and 35◦ Jupiter latitude, where Juno closest approaches will

take place, the reconstruction of the anomaly map is rather accurate (com-

pare with Figure 5.11a), with quite distinct boundaries between different

zonal bands. As one moves poleward from this central belt, the estimated

anomalies are less and less consistent with the simulated ones, because of

the orbit geometry. From the graph it is not really possible to spot the lon-

gitudinal variations of the disturbances, because of the rather low-order

expansion (m=5) of the gravitational potential in spherical harmonics. In

particular the small gravity anomaly produced by the GRS, visible in the

top plot, cannot be resolved in the estimation process for the shallow wind

case.

The bottom graph (b) represents the formal uncertainties on the grav-

ity anomalies over the reference ellipsoid, using a logarithmic scale. The

same considerations are valid, the central sector (5◦ < LAT < 35◦) is char-

acterized by higher accuracies (around 0.01 mGal, at the 1σ level), with the

uncertainties gradually growing toward the poles, reaching a maximum of

about 5 mGal at the south pole.

Theoretically, in order to increase the resolution of the map and reduce

the length scale of the detected features, it could be possible to expand the

gravity field up to higher orders (e.g. m=10), expecting the gravitational

signature of the GRS and other vortices to appear. In practice, this is never

convenient, because of the concurrent degradation of the uncertainty map,

that would jeopardize the accuracies outside the central region even more.

Generally speaking, when analyzing radio science data, this is the kind

of pursued trade-off: on one hand, from a purely scientific point of view,

one would want to estimate the largest number of physical parameters, on
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(a)

(b)

Figure 5.13: Gravity anomalies due to thermal winds, for H = 300 km. a) estimated

anomalies; b) formal uncertainties (1σ, logarithmic scale).

the other hand the formal uncertainties tend to increase with this number.

The sought compromise consists in balancing these two effects.

139



Juno: the gravitational signature of Jupiter’s winds

Figure 5.14 shows the quality of the data fit in terms of proper recon-

struction of the gravity disturbance map. A possible performance index is

the ratio of the differences between the simulated and estimated anomalies

(estimation errors) to the correspondent formal uncertainties at 1σ. Con-

sequently, the index is an adimensional quantity. The smallest relative er-

rors are localized either at low-north latitudes, where the sensitivity to the

gravity field is the highest, or at the poles, where the uncertainties are very

large. In any case, everywhere on the map the magnitude of the errors is

contained within 3σ.

Figure 5.14: Estimation errors versus formal uncertainty (1σ).

At this point, one might be interested in comparing the gravitational

signature of the gravity anomalies due to Jupiter’s shallow winds to the

mapped formal uncertainties, in other words the signal to noise ratio (SNR).

To this end, the adimensional ratio of the two quantities, at the 1σ level, is

produced and plotted using a Hammer projection (Figure 5.15). If the ratio

is smaller than the unit the signal of the gravity anomaly is weaker than the

uncertainty characterizing the measure, thus it’s not detectable. Hence, for

clarity, only absolute values in the range 1-4 have been plotted, while the

extended dark blue region represents the areas in which gravity measure-

ments are not sensitive to mass anomalies produced by shallow winds. All
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Figure 5.15: Ratio of the gravitational signal of the anomalies and associated for-

mal uncertainties (1σ).

over the map, the strength of the gravity anomaly signal does not exceed

4σ, meaning that the detection of the density disturbances due to winds

characterized by a small height scale (300 km) is highly challenging, if not

improbable, except maybe for the equatorial and northern low-latitude re-

gions.

In particular, in the shallow wind case, there are no premises for infer-

ring any properties characterizing the Great Red Spot, besides the fact that

it does not extend in depth below 300 km under the surface of Jupiter, since

the anomaly is not visible by gravity observations, the SNR being only 2.5

times bigger than the local uncertainty in that region.

5.5.2 Mid-deep wind case

Winds characterized by a folding scale of H=3000 km represent the

intermediate case where the penetration extends to 5% of Jupiter’s mean

radius. In this case a much stronger atmospheric gravitational signal is ex-

pected, involving also evident large and small scale longitudinal variations.

The a priori uncertainties are set 10 times larger than the shallow wind case,

in order to allow the estimated gravity field to deviate from Hubbard’s

(2012) solution and better adjust to the actual simulated surface gravity. At

least a 30x20 gravity field expansion is needed to properly fit the synthetic
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Doppler data, giving the gravitational map a higher resolution then before.

Figure 5.16 top plot (a) shows the estimated gravity anomalies. The

gravitational disturbances range, in general, between ± 6 mGal and, at

the GRS location, a signature of order 3 mGal is visible, meaning that, at

this penetration depth, there is some prospect of perceiving the presence of

Jupiter’s vortices from gravity measurements.

The estimation process suffers from the same limitation as before: one

can trust the reconstructed gravity map only in the usual north-equatorial

band where gravity measurements are more precise (compare to Figure

5.11b). In this case, given the high-degree and high-order gravity field

expansion, the longitudinal dependence of the anomalies is evident, al-

though the profile seems quite indented with a frequency that resembles

the spacing between two consecutive ground tracks, rather than the actual

simulated map. Indeed, the ground tracks are evident in the bottom plot

(b) showing the formal uncertainties. The 25 gravity flybys ground tracks

basically follow the meridians, with a span of 12◦, and are represented by

darker blue stripes. Again the central region is better resolved, while the

determination of the gravity field at the poles is much less accurate. The

uncertainties are about one order of magnitude larger than the shallow-

wind case, going from 0.1 mGal at the equator to 30 mGal at the poles, due

to the growth of the number of estimated parameters.

Also in this case the estimation errors are contained within 3σ all over

the map, except for a few points that slightly exceed this margin, located

where the uncertainties are the smallest (Figure 5.17). The plotted param-

eter is adimensional, being the ratio of the error to the associated formal

uncertainty.

In order to find out whether the gravitational signature of the GRS is

detectable or not, two distinct concurring factors must be taken into ac-

count: on one hand the gravity anomaly is stronger simply because the

winds are deeper, on the other hand the uncertainties have increased be-

cause of the higher-degree and order gravity field necessary to fit the sim-

ulated Doppler data. The adimensional parameter used to quantify the

proportion between these two effects is again the ratio between the gravity

anomalies to the formal uncertainties (SNR, see Figure 5.18).

For 5◦ < LAT < 35◦, the ratio is very large where the central belt
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(a)

(b)

Figure 5.16: Gravity anomalies due to thermal winds, for H = 3000 km. a) esti-

mated anomalies; b) formal uncertainties (1σ, logarithmic scale).

intersects the ground tracks, with the gravity signal being even 10 times

larger than the noise standard deviation. In particular the signatures of the

equatorial and northern jets are expected to be clearly observable by means

of radiometric measurements. Regarding the vortices, the expected distur-

bance in correspondence to the GRS location is clearly visible in Figure 5.18
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Figure 5.17: Estimation errors versus formal uncertainty (1σ).

Figure 5.18: Ratio of the gravitational signal of the simulated anomalies to associ-

ated formal uncertainties (1σ).

as a bright point isolated at a very specific latitude (−15◦). Thus, in princi-

ple one can detect the signature of this major vortex, although the high alti-

tude of the Juno spacecraft when flying over this particular location and the

longitudinal spacing between two adjacent flybys can make the discrimina-

tion between this particular anomaly and the background mean field very

disturbed, pointing out the inadequacy of a normal basis as the spherical

harmonics in describing localized regional phenomena such as vortices.
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In support to this, it is useful to plot the estimated gravity anomalies,

once the mean longitudinal field has been removed (Figure 5.19).

Figure 5.19: Estimated gravity anomalies after the removal of the mean field along

the longitude direction.

At the GRS location (LAT = −15◦, LONG = −90◦) there is, indeed, ev-

idence for a localized gravity anomaly of order 3 mGal, however the poor

quality of the gravity resolution in the southern hemisphere makes it dif-

ficult to distinguish between the GRS signature and other disturbances of

the same order of magnitude that could be a result of the natural oscillation

of the central value within 3σ.

Nevertheless, looking at Figure 5.18 it is evident that the GRS-like anoma-

lies in Figure 5.19 only appear where the ratio of the gravity disturbances

to the uncertainties is very small, if not undetectable. In the clear-signal

region below the equator, the GRS is the only visible anomaly, as under-

lined by Figure 5.20, that shows the ratio of the gravity anomalies minus

the longitudinal mean to the formal uncertainties (SNR).

Looking at the enlargement in Figure (5.20), one can conclude that, for

a wind penetration depth of about 3000 km, the signature of the Great Red

Spot is detectable by the radio science instrument, although with very small

margins.
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(a)

(b)

Figure 5.20: Ratio of the gravitational longitudinal oscillations of the estimated

anomalies and associated formal uncertainties (1σ).

5.5.3 Very-deep wind case

The last case analyzed is that of very deep winds greatly affecting

Jupiter’s interior dynamics. The height scale (H=106 km) is much larger

than Jupiter’s radius, meaning that the winds penetrate all the way in a

direction parallel to the spin axis, creating discontinuities at the equator.

The simulated and estimated anomalies (Figure 5.11 c and Figure 5.21a)

are one order of magnitude larger than the mid-deep wind case. The most

visible effect is the resulting oblateness due to the predominant equatorial

jets, appearing as a 40 mGal zonal anomaly at the equator and counter-

balancing anomalies at the poles. The vector of solve-for parameters com-
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(a)

(b)

Figure 5.21: Gravity anomalies due to thermal winds for H = 1000000 km. a) esti-

mated anomalies; b) formal uncertainties (1σ, logarithmic scale).

prises a full 30x30 gravity field, while the a priori uncertainties are set so as

to be non-constrictive at all (x 100 multiplying factor in Figure 5.12).
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Being the disturbances due to the winds so large, they can be retrieved

much better in the estimation process, even outside the usual central re-

gion. On the other hand, the gravity anomaly due to the GRS is always of

order of a few mGal, thus not really visible on the map. The uncertainty

plot (b) still presents the same characteristics, with better accuracies where

the spacecraft trajectory outlines the ground tracks. In the case of very deep

winds, the uncertainties on the gravity anomalies range between 1 and 30

mGal.

Regarding the estimation errors, their ratio to the formal uncertainties

is decisively below the 3σ level all over the map (Figure 5.22).

Figure 5.22: Estimation errors over formal uncertainty (1σ).

It is interesting to analyze what happens in this case to the signal to

noise ratio (Figure 5.23). Again, on one hand, the gravity disturbances

are evidently larger, on the other hand, the uncertainties have significantly

increased. The result is that, at the poles and at the equator, where the

anomalies are the largest, the first contribution is prevalent and the signal

is stronger than in the former cases; on the contrary, for −60◦ < LAT < 0◦,

the uncertainties are so large that the map looks more blurry than before.

Particularly at the GRS location, the signal is not even twice as large as 1σ.
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Figure 5.23: Ratio of the gravitational signal of the estimated anomalies to associ-

ated formal uncertainties (1σ).

Subtracting the mean zonal field as done in the previous subsection,

the results do not change, the longitudinal fluctuation due to GRS still does

not exceed the 3σ level. Looking at Figure 5.24 and at its enlargement (Fig-

ure 5.25), one can conclude that, in the deep wind case, the increase in the

formal uncertainties due to the required higher degree and order expan-

sion of the gravity field has a stronger effect on the detection of the GRS

gravitational signature than the increase in the gravity anomalies itself, at

least at the GRS particular location.
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Figure 5.24: Ratio of the gravitational longitudinal oscillations of the estimated

anomalies and associated formal uncertainties (1σ).

Figure 5.25: Enlargement of Figure 5.24 near the GRS location.
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Chapter 6

Numerical simulations of the

JUICE gravity experiment

Gravity measurements are essential to fully characterize the interior

structure and investigate the formation of Ganymede and Callisto, through-

out JUICE different science phases. If the bodies are found in hydrostatic

equilibrium, the radial density distribution may be constrained from their

moment of inertia factor and low-degree gravity field coefficients (Asmar et

al., 2009). Furthermore, the Love number k2 provides the magnitude of the

icy satellites’ response to tidal forces exerted by Jupiter. Since tidal defor-

mations would be much larger in case of presence of a liquid layer within

the body, the determination of this parameter represents potential evidence

for sub-surface oceans on the Galilean satellites.

The main goal of performing numerical simulations of radio science

experiments is assessing the accuracies in the estimation of planetary grav-

ity fields and tidal distortions and the capability of the orbit determination

process of reconstructing the spacecraft trajectory. In the first sections of

this chapter I introduce a number of techniques used to improve the es-

timation process, while the latter ones present the results of the analysis

of synthetic radiometric data using Ka-band, as scheduled for the JUICE

mission, with as many dedicated sections as the mission targets.

151



Numerical simulations of the JUICE gravity experiment

6.1 Satellite ephemeris update

Jupiter satellite ephemerides are provided by NASA/JPL and are com-

posed of sets of Chebyshev polynomial coefficients given at specific epochs,

called nodes, usually 4-18 days apart. At any other time instant, the poly-

nomials are interpolated between two adjacent nodes in order to provide

the state of Jupiter’s satellites. The position and velocity of the bodies are

obtained by numerically integrating the equations of motion starting from

a reference epoch. The adopted special perturbation technique is the Cow-

ell method (Peters, 1981).

Since observations of the Jupiter system are fewer than, for example,

those collected for Saturn’s satellites, the state of the Galilean satellites are

known with larger uncertainties. For this reason, during radio science data

analysis, it is necessary to update the position and velocity of the central

body, otherwise either the data cannot be fit or the estimated parameters

suffer from biases. For the JUICE mission, the set of adopted and updated

satellite ephemerides is JUP230.

6.2 Satellite tides

Satellite Love numbers are auxiliary parameters introduced in the orbit

determination process for the purpose of estimating the variability of the

body gravity field along its orbit. A necessary step to estimate such coeffi-

cients is to compute the partial derivatives of the observable ν with respect

to the Love numbers. In case only degree-2 distortions are considered, this

can be done by using the chain rule:

∂ν
∂k<2

=
∑
m

∂ν
∂C2m

∂C2m

∂k<2

∂ν
∂k=2

=
∑
m

∂ν
∂C2m

∂C2m

∂k=2

(6.1)

and considering that the first term on the right hand is a direct output

of the OD code, being nothing other than the partial derivatives of the ob-

servable with respect to the degree-2 gravity field coefficients. The second

term represents the fluctuation in the dynamical gravity field of the satel-

lite with respect to the Love numbers. In particular, from equation (2.44) it

is evident that the dependence of the dynamical part of C2m on k2 is linear
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and consequently the derivative depends linearly on the orbit eccentricity

and on trigonometric functions of the mean anomaly (for details see Iess et

al., 2012, Supplementary Material).

Furthermore, it is necessary to account for the resulting accelerations

caused by a non-null value of k2 while integrating the spacecraft trajec-

tory. Therefore, at each iteration, the quadrupole gravity field must be cor-

rected introducing tidal variations in the definition of the dynamical model,

depending on the previously estimated k2. However, although k2 is con-

stant, the fluctuations in the degree-2 coefficients are continuously vary-

ing along the trajectory, due to their dependence on the mean anomaly. A

good approximation is to consider ∆C2m constant within the 1-day single

arc integration and adjust the values from pass to pass. This assumption is

not compromising considering that the average tracking pass lasts 8 hours

which represents a small fraction of Ganymede and, even more, Callisto

orbital periods.

6.3 Ganymede

JUICE orbits around Ganymede represent the most extended and fi-

nal stage of the mission. As the satellite is the main target, the covariance

analysis of the gravity experiment at Ganymede is discussed first.

The requirements on the gravity field determination are very ambitious

but supported by a great number of available observations, for which the

satellite coverage will be uniform (i = 90◦). The angle between the orbital

cross direction and the Earth-spacecraft direction is such that the space-

craft is never occulted by Ganymede and is always illuminated for solar

power charging, although this is not ideal for Doppler tracking. Doppler

and range measurements are collected each day for 132 days, the tracking

schedule is shown in Table 6.1.

Obs Sample time Tracking (h) Min E (deg) Noise RMS

Range-rate 60 s 8 20 0.30-0.45 mHz

Range 50 points/pass 8 20 1 RU

Table 6.1: Observation schedule for the Ganymede orbital phase.
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Occultations by Jupiter and other Galilean satellites are taken into ac-

count as well as data removal due to small station elevation angles.

6.3.1 Estimation setup

Gravity measurements at Ganymede have been simulated using the

dynamical model described in Chapter 4. For the estimation process, the

dynamical environment, in term of gravitational effects, is the same as the

simulated one, except for the gravity field and Love numbers of Ganymede

itself. In particular, the former has been initialized to the 2x2 expansion

in Table 4.2, setting all higher-frequency harmonics to null, although the

simulated gravity field is a full 30x30 expansion. The Love numbers are

initialized to null as well (both components).

Parameter Initial value

GM 9887.83 km3/s2

J2 1.27 ×10−4

C22 3.83 ×10−5

k<2 0.0

k=2 0.0

Table 6.2: Initial values for the mass and quadrupole gravity field of Ganymede.

Spherical harmonic coefficients whose initial conditions are not shown

are initialized to null.

As for non-gravitational accelerations, in the frame of these simulations

I assumed perfect calibration of the disturbances by means of the orbit de-

termination code, although this condition is far for being true. For instance,

the presence of a thin oxygen atmosphere of Ganymede is expected to pro-

vide the largest disturbances and to prove the most difficult to calibrate.

However, given the geometry and duration of the orbital phase, estimates

of the atmospheric density or drag coefficient of the spacecraft can be at-

tempted in order to absorb the acceleration without jeopardizing the deter-

mination of the gravity field coefficients, as has been done for Enceladus

(Iess et al., 2014).

For the integration of the trajectory arcs, no errors on the initial condi-

tions of the spacecraft state are considered, nevertheless the simulated and
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estimated trajectories are necessarily different due to in-congruence in the

adopted dynamical models.

The data weighting method is the same as described in Section 5.4,

with weights inversely proportional to the square of the expected RMS of

the residuals and considerably decreasing with low station elevation.

The vector of estimated parameters is composed of:

• Locals:

- the JUICE spacecraft position and velocity at every initial epoch

for each arc (total of 132 × 6) with a priori uncertainties of 1km

on the position components and 5mm/s on the velocity.

• Globals:

- Ganymede’s GM (1 parameter) with a priori uncertainty of 3.00

km3/s2.

- Ganymede’s spherical harmonic coefficients up to degree and

order 30 (957 parameters).

- Ganymede’s Love number k2, real and imaginary components,

a priori uncertainties of σAPk2 = 1.0.

- Ganymede’s position and velocity with respect to Saturn barycen-

ter (6 parameter) with uncertainties of 10km on the position com-

ponents and 10mm/s on the velocity components.

The a priori uncertainties on the coefficients of the gravity field have

been selected in the following way: a strong full 30x30 gravity field has

been generated using a large Kaula coefficient of Ak = 50. Then, the un-

normalized coefficients have been set up to be the initial uncertainties on

the first-guess gravity field.

6.3.2 Estimation results

In this subsection the estimation results in regard to the Ganymede

phase are shown and thoroughly discussed. The data simulated for the

JUICE orbital phase are processed in a multiarc filter where a unique so-

lution for the global parameters is obtained by combining the information

matrix from each of the 132 passes (of 1-day duration).
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Gravity field estimation

The information contained in Ganymede’s gravity field 30x30 expan-

sion can be synthesized by calculating the correspondent Kaula coefficients

Cl, using the normalized estimated spherical harmonics characterized by

the same degree (see equation 2.14). The formal uncertainties on these pa-

rameters are computed using the chain rule:

σ2
Cl

=
∑
m

(
∂Cl
∂Clm

)2

σ2
Clm

+

(
∂Cl
∂Slm

)2

σ2
Slm

(6.2)

where ∂Cl
∂Clm

and ∂Cl
∂Slm

are analytically derived from (2.14) while σClm

and σSlm
are outputs of the filtering process. In turn, both central values

and uncertainties must be compared to the true errors, defined as the dif-

ferences between simulated and estimated Kaula coefficients.

Figure 6.1 shows the estimation results for Ganymede’s gravity field,

from degree 2 to degree 30. The curve of the estimated Kaula coefficients for

a very weak field (Ak = 2, solid blue line) shows how, around degree 15 of

the spectrum, the relative uncertainty, obtained by comparing the 3σ curve

(dashed black line) with the central values, becomes larger than 10%. This

means that gravity measurements at Ganymede, as intended for the JUICE

mission, are sensitive at least to the satellite degree-15 gravitational poten-

tial, but could actually go much further, if the gravity field were stronger

(Ak > 2). For example, for Ak = 20, 200 (solid orange and green lines)

the 10% relative uncertainty level moves further, around degree 25 and 30,

respectively. However, as discussed in the previous chapter, when deal-

ing with gravity experiments one has to find the minimum set of harmonic

coefficients capable of fitting the data, in order not to jeopardize the accura-

cies in the estimation of the gravity field. The true errors (red line), which

represent the capability of the filter to recover the simulated gravity field

by estimating the harmonic coefficients, are small and well below the 3σ

level.

Table 6.3 is a summary of such results in terms of un-normalized zonal

harmonics up to degree 30, plus degree-2 real sectorial. Both degree-2 co-

efficients J2 and C22 can be estimated with a relative accuracy smaller than

2 part in 10000 (absolute un-normalized uncertainty of about 3× 10−10 and

2×10−11 respectively), without imposing any constraints on the hydrostacy

of the satellite.
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Figure 6.1: Visual display of Kaula’s rule for Ganymede’s gravity field. Estimated

coefficients for Ak = 2, 20, 200 (blue, orange, green line), formal un-

certainties (black solid/dashed line, σ/3σ level) and estimation errors

(red line).

Gravity coefficient Formal uncertainty Relative uncertainty (%)

J2 2.9 ·10−10 2.2 ·10−4

C22 1.8 ·10−11 3.7 ·10−5

J3 3.5 ·10−10 1.6 ·10−2

J4 5.0 ·10−10 2.7 ·10−2

J5 6.2 ·10−10 2.4 ·10−2

J6 7.9 ·10−10 4.4 ·10−2

J7 9.9 ·10−10 1.0 ·10−1

J8 1.2 ·10−9 7.5 ·10−2

J9 1.5 ·10−9 7.9 ·10−2

J10 1.9 ·10−9 2.5 ·10−2

J20 5.0 ·10−9 3.5 ·10−1

J30 2.5 ·10−9 2.6 ·10−1

Table 6.3: Estimation results for unnormalized Ganymede’s zonal harmonic coef-

ficients, plus degree-2 sectorial (real component).

This condition is decisive for the determination of the satellite mo-

ments of inertia. One has to consider that, being the simulated gravity field

a very weak one, the relative uncertainties are actually overestimated and
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could be even smaller, since the covariance matrix does not depend on the

nominal values but only on the observation conditions and the geometry

of the spacecraft trajectory.

Figure 6.2 shows the correlation matrix, output of the filter, for the

global parameters. As expected, the elements of the principal diagonal

are unitary (blue elements). There seems to exist rather high correlations

(µ = 0.5) between the coefficients of degree l and degree l+ 2 of the gravity

field (e.g degree-2 coefficients and degree-4 coefficients). This peculiarity

can be explained considering the trajectory geometry: the orbit presents a

rather evident symmetry about the equator, being polar and circular. This

leads to high correlations between even zonals of different degrees, and the

same between odd zonals. All other combinations of parameters seem to

be characterized by low mutual correlations (µ < 0.3).

Figure 6.2: Correlation matrix for global parameters.
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Gravity anomalies

The same results can be presented in terms of gravity anomalies ∆g

over the reference ellipsoid of Ganymede. The map includes contributions

from all gravity coefficients except for the degree-2 zonal J2 and sectorial

C22, which are used to define the ellipsoid itself. Figure 6.3 shows the sim-

ulated gravity anomalies of Ganymede in terms of central value (a), formal

uncertainties (b) and estimation errors (c). For a very weak gravity field,

maximum gravity disturbances of about ± 10 mGal are expected (a).

The uncertainty plot (b) shows how JUICE polar orbit allows a rather

uniform coverage of the satellite, with uncertainties of the order of 10−2

mGal if defined as:

σ2
∆g =

(
∂∆g

∆x

)
P

(
∂∆g

∆x

)T
(6.3)

where x is the vector of solve-for parameters and P is the covariance

matrix. The accuracies are slightly better at the poles, due to the orbit ge-

ometry. The gravity experiment at the icy satellite will allow the recon-

struction of the surface gravity with very high precision and small relative

uncertainties (0.01 % - 0.10 % for the 10-mGal anomalies).

The bottom plot shows the estimation errors in the gravity anomalies

of Ganymede. As evident, the errors are contained into a 3σ level which is

an indicator of the OD process ability to recover the actual surface gravity

of the satellite.

Geoid heights

Likewise one can show the estimation results in terms of geoid heights

∆r (Figure 6.4): central values (a) and formal uncertainties (b). The latter

defined as:

σ2
∆r =

(
∂∆r

∆x

)
P

(
∂∆r

∆x

)T
(6.4)

The maximum reliefs and depressions expected for a weak gravity field

are of order 40 m and characterized by very small formal uncertainties that

range between 0.5 cm (poles) and 3.0 cm (low-mid latitudes). The uncer-

tainty distribution is very similar to that of the gravity anomaly, with a

global and uniform coverage of the satellite surface.
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(a)

(b)

(c)

Figure 6.3: Gravity disturbances over the reference ellipsoid of Ganymede. Cen-

tral values (a); formal uncertainties (b); estimation errors (c).
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(a)

(b)

Figure 6.4: Geoid heights over the reference ellipsoid of Ganymede. Central val-

ues (a); formal uncertainties (b); estimation errors (c).

Residuals

The quality of the fit can be verified by plotting the post-fit Doppler

residuals (Figure 6.5), in addition to comparing the estimation errors to the

formal uncertainties.

Throughout the Ganymede 132-day orbital phase, the Doppler residu-

als are characterized by a mean which is very close to zero (≈ 3 · 10−6) and

show no evident signatures, present in case of mis-calibrated accelerations.

What appears on the plot is basically white noise, with an overall RMS of

0.4 mHz, very close to that of the AWGN used in the simulation process.

To reach the convergence of the solution and un-biased Doppler residuals,

a number of 3 iterations was needed.
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Figure 6.5: Doppler residuals of range-rate measurements at Ganymede, from

February 22, 2033 to July 4, 2033.

Love number estimate

One of the major objectives of the JUICE gravity experiment is the de-

termination of Ganymede’s degree-2 Love number, both real and imag-

inary components. The more precise the measurement of such parame-

ters, in terms of formal uncertainties attainable with a state-of-the-art mi-

crowave tracking system, the more reliable the detection of existing liquid

water oceans underneath the satellite’s icy crust. Given the relevance of the
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estimate of these coefficients, a subsection is dedicated to the convergence

of the parameter estimation process and the assessment of the accuracies

output of the data filtering.

Table 6.4 summarizes the convergence steps of the least mean square

solution, after 4 iterations of the process. In order to test the capability

of the filter of recovering the simulated values, the initial values for both

components of k2 were set to null, although the simulated real component

was chosen so as to be Earth-like (k<2sim = 0.3, see Section 4.2.1).

Iter | k<2 (e)− k<2 (s) | σk<2 | k=2 (e)− k=2 (s) | σk=2

0 4.97 ·10−3 1.95 ·10−2

1 9.12 ·10−4 9.87 ·10−4

2 8.71 ·10−5 1.27 ·10−4 5.25 ·10−5 1.13 ·10−4

3 1.03 ·10−5 1.55 ·10−5

4 2.67 ·10−5 1.70 ·10−5

Table 6.4: Convergence of Ganymede’s tidal Love number, real and imaginary

components, to the simulated value, after 4 iterations.

The table shows how the estimation errors (2nd and 4th columns) tend

to approach values that are contained in the error bars (3rd and 5th), which

suggests that the estimated parameters have converged to the simulated

ones.

In Figure 6.6 the same results are graphically displayed. As the number

of iterations increases, the estimation lines (blue dots) ease down on the

simulated value (green lines) in such a way that their differences do not

exceed the error bars (red lines).

Convergence criteria are evidently satisfied and it has been pointed

out how the filter is capable of recovering the simulated tidal Love num-

ber, which controls the time-variable part of the gravity field. As a matter

of fact, convergence has been reached after only 3 iterations, the latter func-

tioning as a further test of the solution stability.

As a result of this analysis, not only has it been demonstrated that the

real and imaginary components of k2 are detectable by the 3GM experiment

onboard JUICE, but also the uncertainties with which the estimate will be

possible have been determined: about 2 parts in 104 for both components,
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Figure 6.6: Convergence of the estimation process of Ganymede’s tidal Love num-

ber, real and imaginary components, to the simulated value, after 4

iterations. (a) k<2 ; (b) k=2 .
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on a parameter whose order of magnitude is 100 and bears crucial informa-

tion on Ganymede’s interior. Here follows another evidence to support the

visibility of the tidal coefficients. If, indeed, an Earth-like k<2 for Ganymede

can be assumed in the frame of the simulations, then the maximum ex-

pected dynamical variations of Ganymede’s un-normalized degree-2 zonal

harmonic, during JUICE orbital phase, are (see Section 2.2.3):

| ∆J2 |= 2 · 1

2
k<2

(
µJ
µG

)(
RG
a

)3

3e ∼ 2 · 10−7 (6.5)

which can be compared to the formal uncertainty on the estimation of

the static coefficient, which yields:

| ∆J2 |∼ 2 · 10−7 � σJ2 ∼ 3 · 10−10 (6.6)

result that clearly supports the prospect of observing tidal variations in

the gravity field of Ganymede with the JUICE mission. If the actual Love

number proved to be larger, then the situation would be even more favor-

able, while a much smaller value of k<2 is not expected for other observa-

tional motivations (Kivelson et al., 2002). These excellent results are made

possible by the optimal geometry of Ganymede orbits (circular and polar)

and by the extended duration of the orbital phase: more than 4 months,

during which Ganymede will complete about 18 complete revolutions, and

thus double the tidal cycles, around Jupiter.

GM estimate

The monopole term of the gravity field of Ganymede determines the

bulk of the gravitational accelerations which the JUICE spacecraft will be

subject to during the orbital phase. The current best estimate of Ganymede’s

gravitational parameter GM is heritage to the Galileo mission (Jacobson,

2002), and is characterized by an accuracy of 0.03 km3/s2. However, JUICE

will have the opportunity of estimating and updating both the value and

the uncertainty on this parameter.

Figure 6.7 shows the multiarc estimation results for the satellite’s GM.

The gravity experiment at Ganymede will provide an improvement in the

knowledge of the moon’s monopole term by a factor of about 600 with

respect to the Galileo measurement, with an absolute post-fit formal uncer-

tianty of 4.9 · 10−5km3/s2. Also, the estimation error after 4 iterations (red
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bar) is smaller than the formal uncertainty (blue bar), pointing to a certain

stability of the solution.
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Figure 6.7: Ganymede’s GM estimate: output of the multi-arc filter.

Precise spacecraft positioning

In the previous sections it has been shown how the gravity field of

Ganymede can be determined with very high accuracies. This updated

knowledge can be exploited for the precise reconstruction of JUICE trajec-

tory by using the output of the multiarc filter. The relevance of this proce-

dure lies in its applications in the field of laser altimetry, the reconstruction

of the satellite’s topography and in general for precise geo-referencing of

optical images.

After the multiarc step a further single arc estimation is performed.

In this last stage of the data filtering, the 30 × 30 gravity field coefficients

and Ganymede’s mass are treated as consider parameters, whose a priori

uncertainties are taken into account in the determination of the single-arc

covariance matrix, but are not estimated. Only, this time, the a priori un-

certainties on the considers are not large but set to the post-fit uncertainties

output of the multiarc filter.

The components of JUICE position and velocity vectors are estimated

again with large a priori uncertainties. However, given the improved knowl-
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edge of the gravity field of the satellite, the position of the spacecraft can be

determined with higher accuracies through this step.

Figure 6.8 shows the results of this process in terms of uncertainties in

the determination of JUICE position components in the 3 fundamental di-

rections (radial, across-track and along-track), with respect to Ganymede’s

barycenter and as a function of time. The whole duration of the orbital

phase (132 days) has been considered.

Figure 6.8: Accuracies in the determination of the spacecraft position. Radial com-

ponent (blue line); across-track component (red line); along-track com-

ponent.

The radial position of the spacecraft, referenced to Ganymede’s barycen-

ter, is characterized by increasing uncertainties between 1 cm (beginning of

the orbital phase) and 10 cm (end). This worsening in the accuracies is due

to changes in the angle between the normal to JUICE orbital plane and the

line of sight, which, at the end of the 132 arcs, is dangerously close to 0◦,

affecting the effectiveness of Doppler measurements. However, the results

meet the scientific goal of radial orbital referencing to better than 1 m. The

component along the spacecraft angular momentum (H, red line) presents

higher uncertainties (as expected), of order a few meters. The accuracies

attained in the determination of this component are favorable to a good de-

tection of Ganymede’s librations. As for the along-track component (green

line), which is usually the worst determined in spaceflight dynamics, the

uncertainties oscillate around 10 m.
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These results can be obtained if tracking from ground is available. The

elements of the state covariance matrix for the spacecraft increase consid-

erably when radiometric measurements are not accessible. A possible op-

erational configuration is to operate the Medium Gain Antenna simultane-

ously with the laser altimeter, which would guarantee the Doppler tracking

of the spacecraft.

6.4 Callisto

The JUICE mission will provide the opportunity of extensively observe

and explore Callisto as well. With 20 flybys of the moon, the Callisto high

latitude phase is the second most extended, and the second in order of

scientific objectives.

The gravity field determination requirements for this phase are: the es-

timation of Callisto’s full degree-3 gravity field and the determination of

the real component of its degree-2 Love number k2. The encounters with

this satellite will be used mostly to increase the spacecraft inclination with

respect to Jupiter’s equatorial plane and to provide the necessary gravity

assist. That being so, the flybys do not present an optimal and ideal distri-

bution in terms of Callisto orbital mean anomaly and ground tracks on the

surface of the satellite. Nevertheless, the mission will achieve major results

in the study of the icy moon.

Simulations of the observation campaign are carried out within ± 12 h

from each closest approach, which guarantees at least 3 h and up to 9.5 h of

spacecraft tracking centered at C/A. Table 6.5 contains crucial information

about the closest approaches of the spacecraft with the satellite.

Within the observation pass, Doppler data are sampled at 60 seconds,

while the total number of range points is 50 per tracking pass. White Gaus-

sian noise has been added to both Doppler (RMS = 0.30-0.45 mHz) and

ranging (RMS = 1RU) measurements. Occultations by Jupiter and other

Galilean satellites are taken into account as well as data removal due to

small station elevation angles (minimum elevation is set to 20◦).

It is worth underlining that the flyby tracking schedule is relative to

potential tracking periods, in terms of visibility from ground stations, not

considering the real availability of the flybys to gravity investigations. To
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Flyby Epoch (UTC) H (km) M (deg) Track-sched (h)

C6 2030/11/16 1107 327.8 4.5(25)

C7 2031/01/16 1725 202.9 4.0(25) + 8.5(34)

C8 2031/02/02 743 203.4 3.5(55)

C11 2031/03/12 837 300.7 4.0(55) + 4.0(25)

C13 2031/04/14 200 299.1 4.0(25) + 9.5(34)

C14 2031/05/01 200 297.6 4.0(55) + 4.0(25)

C15 2031/05/17 367 298.1 4.0(55)

C16 2031/06/03 713 298.3 10.0(34)

C17 2031/06/20 200 298.3 4.0(25) + 9.0(34)

C18 2031/07/07 200 297.4 4.0(55)

C19 2031/07/15 200 117.6 4.0(25) + 9.0(34)

C20 2031/07/31 200 116.4 4.0(55)

C21 2031/08/17 1305 115.7 9.0(34)

C22 2031/09/03 200 116.8 9.5(34)

C23 2031/09/19 200 115.6 4.0(25)

C24 2031/10/06 589 115.6 4.0(55)

C26 2031/11/22 382 48.8 2.5(55)

C27 2031/12/17 1704 224.7 2.5(55)

C28 2032/01/16 528 142.2 9.0(34)

C29 2032/02/01 4936 142.4 4.0(25)

Table 6.5: Relevant information on Callisto flybys. The flyby nomenclature is con-

sistent with the one set by ESA.

address this issue, the result section will be divided into two scenarios:

a gravity experiment using both the HGA and the MGA; and a gravity

experiment using the HGA only.

6.4.1 Estimation setup

Similarly to what has been done for the main phase, the only differ-

ences between the simulated and estimated dynamical models concern the

gravity field of Callisto. Although a full degree-3 gravity field has been

used for producing the simulated trajectory, for the estimation process all

spherical harmonic coefficients have been set to null, except for J2 and C22,
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for which I used the values in Table 4.2 (Bagenal, 2004).

Parameter Initial value

GM 7179.29 km3/s2

J2 3.27 ×10−5

C22 1.02 ×10−5

k<2 0.0

Table 6.6: Initial values for the mass and quadrupole gravity field of Callisto. All

other gravity coefficients whose initial conditions are not shown are ini-

tialized to null.

The real component of the Love number was initialized to zero as well,

although the simulated value is Earth-like. The initial conditions for the

state vector components are set to the nominal values, for all 20 flybys.

The components of the solve-for vector are:

• Locals:

- the JUICE spacecraft position and velocity at every initial epoch

for each flyby (total of 20× 6) with a priori uncertainties of 1 km

on the position components and 5 mm/s on the velocity compo-

nents.

• Globals:

- Callisto’s GM (1 parameter) with a priori uncertainty of 1.00 km3/s2

(uncertainty from Galileo multiplied by a factor 100).

- Callisto’s spherical harmonic coefficients up to degree and order

3 (12 parameters).

- Callisto’s Love number k2, real component (1 parameter), a priori

uncertainties of σAPk2 = 1.0.

- Callisto position and velocity with respect to Saturn barycenter

(6 parameter) with uncertainties of 1 km on the position compo-

nents and 5 mm/s on the velocity components.

The a priori uncertainties on the gravity field coefficients have been cho-

sen in the following way: multiplying by a factor 103 the formal uncertain-

ties on the quadrupole coefficients reported in Table 4.2 (Bagenal, 2004);

170



Numerical simulations of the JUICE gravity experiment

adjusting the pre-fit uncertainties for the degree-3 gravity field by scaling

the degree-2 terms using the normalization factors.

6.4.2 Estimation results

In a space mission, the transmission of science data is performed, nom-

inally, with the spacecraft HGA, whose pointing tolerance is less than 0.1◦.

The tight requirements on the spacecraft attitude during radio science mea-

surements make simultaneous observation campaign by other instruments

not realistic. Therefore it is unreasonable to think that all 20 flybys of Cal-

listo will be allocated for gravity science. In this section I explore two pos-

sible different scenarios: one in which the spacecraft is endowed with a

Medium Gain Antenna, whose pointing requirements are much more loose

and thus can transmit radio signals while other instruments are operative;

the other where the radio science experiment relies only on JUICE HGA.

In the former case, the lower antenna gain will cause an increase in

thermal noise. However, since this contribution is very small if compared

to predominant contributions by propagation noise, the overall SNR is not

quite affected. As a result, the RMS of the Additive White Gaussian noise

is still determined by tropospheric and ionospheric delays, and the same

simulation setup can be used for both cases.

Scenario 1: Gravity Science with HGA + MGA

In this frame the radio link is still established with the HGA when a

flyby of Callisto is allocated to gravity measurements. In addition, when

other instruments are the leading experiment, radio science can still be per-

formed by means of the MGA. As a result, I performed numerical simula-

tions of the gravity experiment at Callisto by collecting radio science mea-

surements during all 20 flybys and processing all data in a multiarc filter,

whose output is a global solution for the gravity field of the satellite.

Estimate of gravity spherical harmonics

Figure 6.9 shows the estimation results in terms of unnormalized spher-

ical harmonic coefficients, representing Callisto’s full degree-3 gravity field.

As usual I compared the current knowledge of the gravity coefficients as
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measured by the Galileo mission whit the prospective improvement attain-

able with JUICE, and the post-fit formal uncertainties with the estimation

errors.

The plots underline an increase in the accuracies with respect to the

Galileo measurements: for J2 by a factor of about 30, with an absolute and

relative uncertainty of 2.5·10−8 and 0.08%, respectively; for C22 by a factor

of about 65, with an absolute and relative uncertainty of about 5·10−9 and

0.05%, respectively; for J3 there’s no comparison with Galileo but the abso-

lute pot-fit uncertainty is about 2.3·10−8, which is about a thousand times

better of what has been done by Cassini with Enceladus (Iess et al., 2014).

However, one has to consider that, differently from what has been done

for the Galileo data analysis, in the simulations of JUICE Callisto flybys

the hypothesis of hydrostatic equilibrium has not been used to constrain

the estimation of the quadrupole gravity field, making future observations

even more crucial.

Once again, the estimation errors, coming from the comparison be-

tween estimated and simulated coefficients, are all contained within a 3σ

level (fuchsia bars in Figure 6.9).

The correlation matrix (Figure 6.10) shows high correlations between

the components of Callisto state vector with respect to Saturn barycenter

and between some degree-2 and degree-3 coefficients (e.g. S22 and S33).

Otherwise the elements of the matrix are all below 0.5.

Gravity anomalies

Using the output of the multiarc filter it is possible to display the un-

certainties on Callisto gravity anomalies over the satellite map. Figure 6.11

shows such accuracies in the estimation of the disturbances over the refer-

ence ellipsoid as a function of Callisto latitude and longitude.

The uncertainties (b) range between 10−3 and 10−2 mGal and are smaller

in correspondence to JUICE ground tracks during the Callisto science phase

(black curves). Wherever the spacecraft flies above, the accuracies are bet-

ter, especially in presence of cross-overs and multiple passes. In general

one can conclude that the gravity anomaly map of Callisto will be better

determined in the southern hemisphere and near 0◦ (facing Jupiter) and
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Figure 6.9: Estimation results for the gravity field of Callisto. (a) unnormalized

degree-2; (b) unnormalized degree-3.

180◦ longitude.

By comparison, the multiarc estimation errors (b) are everywhere smaller

than 3σ, ranging between 1-7 ·10−3 mGal.
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Figure 6.10: Callisto science phase: numerical simulations. Correlation matrix for

the global parameters.

Geoid heights

The results in terms of geoid heights over the reference ellipsoid of Cal-

listo are analogous: the uncertainties are very small (about 0.01 m) in the

region overflown by the spacecraft during the gravity flybys, and worsen

(up to 0.10 m) as the relative distance grows.

Residuals

The post-fit Doppler residuals for the multiarc analysis of Callisto fly-

bys are shown in Figure 6.13. The distribution, after 4 iterations, is zero-

mean and shows no evident signatures. The residual RMS, about 0.34 mHz,

is compatible with the one superposed in the simulations. The color map

refers to different tracking complexes: Goldstone (green dots), New Norcia

(purple dots) and Cebreros (blue dots), the time scale is spread over more

than one year with tracking passes of variable duration.

Love number estimate

Despite a non-ideal distribution of JUICE Callisto flybys along the satel-

174



Numerical simulations of the JUICE gravity experiment

(a)

(b)

Figure 6.11: Gravity disturbances over the reference ellipsoid of Callisto. Formal

uncertainties (a), the black lines represent JUICE ground tracks over

the satellite surface; estimation errors (b).

lite orbit around Jupiter, the determination of the real component of its

degree-2 Love number is still possible with a rather good accuracy.

Unfortunately, the spacecraft will encounter the satellite many time at

intervals of 16 days, or at integer multiples. This time lapse corresponds

roughly to Callisto mean orbital period, which governs the tidal distor-

tions of the satellite, causing overlapping of many flybys in terms of mean
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Figure 6.12: Geoid heights over the reference ellipsoid of Callisto, in terms of for-

mal uncertainties.

anomaly, as it is shown in Figure 6.14. Intuitively, the more different mean

anomalies are sampled by the gravity experiment, the better the accuracy

in the estimation of the tidal k2.

Two main agglomerations composed of about 6 encounters character-

ized by the same mean anomaly (of which at least 4 at 200 km altitude) can

be spotted in the plot, around 120◦ and 300◦ from periapsis, respectively.

In addition to the poor sample diversification, 13 out of 20 flybys occur at

mean anomalies that are very close to quadrature, where tidal distortions

are null. Indeed, 7 other flybys will occur at 5 different mean anomalies but

almost every remaining encounter will be characterized by high altitudes

on the satellite surface.

Figure 6.15 shows the estimation results in the determination of Cal-

listo’s Love number. Starting from kI2 = 0.0, the ability of the filter to re-

cover the simulated value kS2 = 0.3 has been tested, performing 4 iterations.

Despite all the limitations that have been pointed out, JUICE gravity exper-

iment at Callisto will still be able to determine the tidal number with an

accuracy of σk2 = 2.7 · 10−2, value that determines the error bars in the plot

(red lines). As evident, after 3 or 4 iterations, the estimation errors are con-

tained within 1σ.

GM estimate

Callisto science phase gives also the opportunity of updating the knowl-

176



Numerical simulations of the JUICE gravity experiment

Figure 6.13: Doppler residuals of range-rate measurements at Callisto, for all 20

flybys. Spacecraft tracking from: Goldstone (green dots); New Norcia

(purple dots); Cebreros (blue dots).
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Figure 6.14: Distribution of Callisto flybys in terms of satellite mean anomaly (M).
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Figure 6.15: Convergence of the estimation process of Callisto’s tidal Love num-

ber, real component, to the simulated value, after 4 iterations.

edge of the satellite mass, in terms of central value and formal uncertainty.

The results of the simulations are shown in Figure 6.16.

The graph clearly shows that, by means of 20 flybys of Callisto, it is

possible to improve the accuracy in the estimate of Callisto mass, with re-
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Figure 6.16: Callisto’s GM estimate: output of the multiarc filter.

spect to the Galileo measurements, by 2 orders of magnitude, from 1.00 ·
10−2km3/s2 (1σ) to 3.35 · 10−4km3/s2 (1σ).

Scenario 2: Gravity science with HGA only

In this case only a limited number of flybys will be devoted to grav-

ity investigations, due to the unfeasibility of carrying out gravity measure-

ments simultaneously with other instruments. With these premises, a para-

metric study had to be performed, where different aspects of the experi-

ment were discussed in terms of descoping and potential losses due to the

reduced amount of collected data.

In particular, in the frame of this work, I chose the determination of

Callisto’s tidal Love number as the discriminating parameter, since this

physical constant is crucial for detecting hidden subsurface ocean on the

satellite. I’ve been searching for the best combination of encounters in

terms of attainable accuracy in k2 estimates, as the number of allocated

gravity flybys changes. The parameters that influence the choice of the

best combination are of varying nature: Callisto mean anomaly at the time

of the flyby; the SEP angle at the time of the flyby; the altitude of the flyby

and so on.
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Numerical simulations of the JUICE gravity experiment

Within this scenario two sub-cases are discussed: one where a baseline

Ka-Ka link is considered for the radio tracking of the spacecraft; the other

where a (at least partial) multi-frequency configuration is adopted, mak-

ing Doppler link performance virtually independent of the solar elongation

angle, or Sun-Earth-probe angle (SEP). Obviously different circumstances

yield different results in the search for the best combination and the mini-

mum requirement on the number of flybys.

Search for the best combination

The study has been carried out by producing and analyzing every pos-

sible combination of Callisto flybys, for a total of
(

20
n

)
sequences, where n

is the number of encounters allocated to gravity science. However only

the results relative to feasible values of n are presented in this work: I will

neglect the outcome of the analysis when less than 4 flybys are devoted to

radio science; on the same note, it is not realistic to think that more than

7 flybys out of a total of 20 could be reserved for gravity investigations.

Results for 4 ≤ n ≤ 7 and for different link configurations, follow.

- Number of gravity flybys: 4

Best combination:

C8, C13, C26, C27

Best σk2 = 9.5 ·10−2

Link: Ka-Ka

- Number of gravity flybys: 5

Best combination:

C8, C16, C26, C27, C28

Best σk2 = 6.2 ·10−2

Link: Ka-Ka
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Numerical simulations of the JUICE gravity experiment

- Number of gravity flybys: 6

Best combination:

C8, C16, C19, C26, C27, C28

Best σk2 = 5.3 ·10−2

Link: Ka-Ka

- Number of gravity flybys: 7

Best combination:

C8, C13, C16, C19, C26, C27, C28

Best σk2 = 4.2 ·10−2

Link: Ka-Ka

- Number of gravity flybys: 4

Best combination:

C8, C26, C27, C28

Best σk2 = 7.6 ·10−2

Link: Ka-Ka + X/X

- Number of gravity flybys: 5

Best combination:

C8, C16, C26, C27, C28

Best σk2 = 5.0 ·10−2

Link: Ka-Ka + X/X
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Numerical simulations of the JUICE gravity experiment

- Number of gravity flybys: 6

Best combination:

C8, C13, C16, C26, C27, C28

Best σk2 = 4.4 ·10−2

Link: Ka-Ka + X/X

- Number of gravity flybys: 7

Best combination:

C8, C13, C16, C19, C26, C27, C28

Best σk2 = 3.3 ·10−2

Link: Ka-Ka + X/X

As expected, the results for the case exploiting only a Ka-Ka link and

the case with both Ka-Ka and X-X links are different, since in the latter

situation the SEP at the times of the flybys does not play a significant role,

changing the selection criteria.

In the Ka-Ka case, if 7 flybys are selected for gravity, the uncertainty

on the determination of the tidal Love number is still 50% worse than what

could be achieved by using an MGA to collect data during all 20 flybys.

On the other hans, in the Ka-Ka+X-X case, 7 gravity flybys correspond to a

formal uncertainty on k2 only 20% worse than before.

In general, one can appoint a minimum requirement on the estimation

of Callisto’s tidal number, for example, I set this upper bound to the level

of accuracy achieved by Iess et al. (2012) on the determination of Titan’s k2,

which translates in σk2 ≤ 0.06. Selecting all best combinations, as the num-

ber of flybys changes, one can build a plot of the best attainable accuracy

as a function of n, for both link configurations (Figure 6.17.

I can conclude that, in order to fulfill the minimum requirement on the

estimation of Callisto’s k2, at least 6 flybys of the satellite must be devoted

to gravity measurements when using the baseline Ka-Ka link (blue line),

although the choice of this minimum number would not leave much mar-
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Figure 6.17: Estimation accuracy of Callisto tidal Love number attainable with a

different number of flyby (at the best combination).

gin for possible eventualities that could jeopardize the observations (noisy

tracking passages).

Using a double Ka-Ka+X-X link configuration (green line), the situation

is slightly more relaxed and choosing 6 flybys anyway would, most likely,

guarantee the fulfillment of the experiment requirement.
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Chapter 7

Conclusions and Discussion

This thesis demonstrates how the knowledge of the geodesy of the Jo-

vian system bodies will greatly benefit from the gravity investigations to

be carried out with the Juno and JUICE missions in the next few decades.

In this last chapter, the main results of the analyses are highlighted and dis-

cussed, and potential future research perspectives are proposed.

The issue of the determination of the penetration depth of Jupiter’s

winds can be tackled in different ways, the one proposed in this frame en-

tails the detection of the gravity anomalies due to Jupiter’s atmospheric dy-

namics, including small-scale disturbances, by using very precise Doppler

measurements of the spacecraft velocity.

It has been pointed out how two complementary factors concur in the

successful determination of Jupiter’s wind anomaly map, with particular

regard for the Great Red Spot: on one hand there’s the increase in the wind

gravitational signal due to the increase in the wind penetration depth, on

the other hand, the larger H , the more parameters are needed to fit the

simulated Doppler data with consequent degradation of the estimation ac-

cuaracies. The evolution of these two contributions has been studied by

performing several simulations of the Juno gravity experiment for differ-

ent values ofH , starting from very shallow winds up to height scales larger

than Jupiter’s radius, indicating total penetration.

The result of this parametric study is that there is a range of values

of H for which the gravity anomaly related to the GRS is clearly visible

with a quite good signal to noise ratio. Figure 7.1 shows the ratio of the
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gravitational signal to the formal uncertainty output of the filter, at the GRS

location.
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Figure 7.1: Ratio of the gravitational signal to the formal uncertainty at the Great

Red Spot location, for different values of H . The black triangles repre-

sent the analysis results. The red line represents the lower bound on

the SNR.

From the plot one can conclude that approximately for 1000 km< H <

5000 km, where SNR> 3 (considering the proper error bars), the Juno grav-

ity experiment should be able to detect the GRS anomaly, provided that the

minimum set of estimated parameters, capable of fitting the Doppler data,

is chosen.

On a different note, the analysis has shown that the spherical harmonic

basis is not the most appropriate tool to describe punctual or localized phe-

nomena such as vortices, because of the periodic nature of the harmonic

functions. Consequently a discrete disturbance in the gravitational poten-

tial of an isolated body, if described by spherical harmonics, would require

a very broad and articulate frequency spectrum. The cure for this limitation

could lie in the introduction of a different model capable of taking into ac-

count the presence of localized masses: the mascons. These elements con-

sist of concentrated masses that can assume different geometries: points;

cylinders, disks and so on. This way, vortices and other small-scale local-

ized anomalies can be described as concentrated masses while the back-

ground global gravity field is still represented by spherical harmonics. The
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mass, the location and the geometry of each mascon can be put in the vec-

tor of solve-for parameters, providing also an estimate of the vortex ex-

tension. Nevertheless, the possibility of adopting such method has to be

implemented and tested.

The results of the numerical simulations of the JUICE radio science ex-

periment have pointed out the potentiality of the mission of unraveling the

interior structure of two of the Galilean satellites: Ganymede and Callisto.

Above all, the results concerning the accuracies obtained in the estimation

of the satellites’ tidal Love numbers for the detection of liquid layers un-

derneath the icy crust. For Ganymede, the determination of this parameter

will be possible with uncertainties about 1000 times better than what has

been done with Titan using Cassini gravity data (Iess et al., 2012).

However, the JUICE mission is currently in the early-definition phase,

meaning that both the trajectory and the observation schedule of the mis-

sion are subject to variations due to technical constraints and optimization

issues. For example, in order to reduce the total ∆V , the cancellation of the

200-km orbital phase at Ganymede has been proposed, with the prospect

of eventually recovering the science phase if the remainder ∆V allows it.

The cancellation of the last 30 days of mission will certainly have an

impact on the scientific return of the gravity experiment, however the en-

tity of the losses has not yet been evaluated, making this issue the most

compelling subject of the near-future developments of the numerical sim-

ulations of the experiment.

An extensive covariance analysis of the estimation uncertainties in the

determination of the gravity fields of the satellites with the JUICE mission

has been carried out in the past three years. The results are quite solid

and very few and little changes are expected in the results, provided that

the nominal trajectory remains the same. However a thorough analysis of

the trajectory stability is needed, with the possibility of implementing a se-

quential batch filter in which the trajectory of the spacecraft is propagated

and improved for the whole duration of the mission, instead of being ini-

tialized at the beginning of each arc.

The main goal of the numerical simulations of the JUICE gravity ex-

periment is certainly that of arriving in 2030 with a solid tool for the de-
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termination of the satellites’ gravity, but also to provide, in this early defi-

nition phase, a tool for the bargaining of observation windows, given that

radio science investigations have proven, during the past few decades to

be very reliable and consistent means for the understanding of the interior

structure of celestial bodies, holding with the highest regard the search for

liquid water oceans.
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