
Physics Letters B 815 (2021) 136137
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Probing the inflationary background of gravitational waves from large 

to small scales

William Giarè ∗, Alessandro Melchiorri

Physics Department and INFN, Università di Roma “La Sapienza”, Ple Aldo Moro 2, 00185, Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 July 2020
Received in revised form 19 November 2020
Accepted 5 February 2021
Available online 11 February 2021
Editor: M. Trodden

Keywords:
Inflation
Primordial gravitational waves
Higher-order corrections
Scale dependence

The detection of Primordial Gravitational Waves (PGWs) is one of the most important goals of modern 
cosmology since PGWs can both provide substantial evidence for primordial inflation and shed light on 
its physical nature. Small scale experiments on gravitational waves such as LIGO/VIRGO and, in future, 
LISA and Einstein Telescope (ET), being sensitive to the stochastic background of gravitational waves, 
can be used together with the CMB data to constrain the inflationary parameters. In performing these 
analyses the primordial tensor spectrum is usually parametrized with a power law that includes only 
the amplitude and a scale independent tilt. In this paper, we investigate the robustness of assuming 
the tensor tilt as scale independent. We show that due to the huge difference in the scales probed by 
CMB and GWs data, even a small scale dependence can remarkably affect the shape of the primordial 
spectrum possibly breaking the power-law assumption. When the non-linear corrections are considered 
the final constraints can be significantly changed. We also study the scale dependence in two different 
physical models of inflation providing an example of negligible scale dependence and an example of 
non-negligible scale dependence.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The search for primordial gravitational waves (PGWs) is one of the main goals of modern cosmology as they can both provide a 
substantial evidence for primordial inflation and shed light on its physical nature [1–4]. In fact long-wavelength gravitational waves are 
predicted by primordial cosmic inflation [5–8] and, at least in the simplest models, the scale at which inflation occurs is itself related to 
the amount of PGWs [1,9–16]. The missing evidence of the B-modes in the Cosmic Microwave Background (CMB) polarization originated 
from the inflationary tensor modes and, in general, a combined analysis of the Planck and BICEP2/Keck array (BK15) data [17], allows us
to set only an upper bound on the amplitude of PGWs on the CMB scales r < 0.07 at 95% C.L. at the pivot scale k∗ = 0.05 Mpc−1 [18]. 
Nevertheless, in the upcoming decade, a new generation of CMB experiments such as BICEP3 [19], CLASS [20], SPT-3G [21], Advanced 
ACTPol [22], LBIRD [23] and CMB-S4 [24] are expected to bring the sensitivity to the tensor amplitude down to r ∼ 0.01 − 0.001 possibly 
leading to its first detection.

In deriving such bounds the slow roll consistency relation nt = −r/8 is usually assumed, basically leading to an almost scale indepen-
dent slightly red tilted primordial tensor spectrum Pt(k). However this relation can be violated in many non standard models of inflation 
and when it is relaxed the Planck data only weakly constrain the tensor tilt to −0.55 < nT < 2.54 at 95% C.L. [18]. Nevertheless, always in 
[18], it was shown that a significant improvement in the upper bound on the tensor tilt can be obtained considering the LIGO/VIRGO data 
on the stochastic background of gravitational waves �GW, i.e. the analogous of CMB for gravitational waves [25]. Indeed, while a direct 
detection of the stochastic background has not been provided yet, in the frequency range f ∈ (20− 85.8) Hz, which corresponds to the 
wavenumber range k ∈ (1.3− 5.5) × 1016 Mpc−1, the first and second observing runs of the LIGO/VIRGO collaboration set an upper bound 
on the stochastic background

�GW(kLV) ≤ 1.7 × 10−7 (1)
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at 95% C.L. [18,26]. The Planck Collaboration, including the LIGO/VIRGO limit (1) as a half-Gaussian prior on the tensor tilt, under the 
assumption of scale independence, derived the improved upper bound nT < 0.53 at 95% C.L. [18]. Notice that these constraints are obtained 
marginalizing over the probability distribution of r, that is typically sampled assuming a flat prior r ∈ [rmin , rmax] with rmin � 10−3 � 0. 
This makes the constraint on the tensor tilt subject to misunderstanding as if there is no detection of r no reliable constraint can be 
derived. Moreover, another important assumption beyond this analysis, is to consider the tensor tilt as scale independent extending the 
well known power law relation

Pt(k) = r As

(
k

k∗

)nt

(2)

(with A S = 2.1 × 10−9 the scalar amplitude at the pivot scale k∗ = 0.05 Mpc−1) from the CMB scales (k ∼ 0.05 Mpc−1) all the way up 
to the small scales probed by the gravitational interferometers (k ∼ 1016 Mpc−1). This is clearly an approximation as Eq. (2) is just a first 
order expansion: depending on the model of inflation, nt can also acquire a slight scale dependence and non-linearities may break the 
power-law relation. It is therefore timely to investigate the impact of higher-order corrections on the constraints one can derive exploiting 
small-scale data on Gravitational Waves. We show that due to the huge difference in the scales probed by CMB and GW data, the higher-
order terms in the spectrum, the so-called tensor runnings [27,28], albeit small on the CMB scales, may give non-negligible contributions 
on the ultrahigh k probed by gravitational detectors, drastically changing the final predictions.

The paper is organized as follows: in Sec. 2 we discuss the constraints on the inflationary parameters from gravitational wave ex-
periments allowing the possibility to have a scale dependent tilt. We show that the results strongly depend on the assumption of 
scale-independence. In Sec. 3 we study the scale dependence in two different physical models of inflation. In particular in Sec. 3.1 we 
consider the Starobinsky model showing that it predicts a negligible scale dependence as expected in the standard slow roll paradigm. In 
Sec. 3.2 instead we study a more elaborated scenario of inflation that employs a pseudo scalar axion naturally coupled to gauge fields. We 
show that in this model the tensor tilt can acquire a non negligible scale dependence leading to appreciable corrections on small scales. 
In Sec. 4 we present our conclusion.

2. Scale dependence

Along with B-modes polarization, primordial tensor fluctuations may have imprinted also the stochastic background of gravitational 
waves, the analogous of CMB for gravitational waves [25]. The energy density of the universe due to PGWs at the present time and at a 
given scale k = 2π f is given by [18,29–32]

�GW(k)
.= 1

ρc

dρGW

d log k
� Pt(k)

24zeq
(3)

where zeq � 3400 is the redshift at the matter-radiation equivalence [18]. Using Eq. (2), it is easy to see that, under the assumption of 
scale-independent tilt, a constraint on the amplitude of the stochastic background �GW(k) can be translated into an upper bound on the 
tensor tilt

nt <
ln

(
24 zeq �GW(k)

r AS

)
ln

(
k

k∗

) � 0.39 + 0.025 × log(1/r), (4)

where in the last inequality we considered the LIGO/VIRGO limit (1). Note that the constraint (4) is derived without any assumption on 
the tensor amplitude1: if future measurements will reveal evidence for r �= 0, its detection will immediately place a well defined upper 
bound on the tensor tilt that however, because of its logarithmic dependence, is not drastically sensitive to the precise value of the tensor 
amplitude, as one can also appreciate in Fig. 1. The physical reason beyond this weak dependence on the tensor amplitude is actually that 
a large positive tilt will strongly amplify the GWs production on the ultrahigh k probed by gravitational detectors, easily compensating a 
small (but of course not vanishing) r on the CMB scales. On the other hand, it is also true that constraints on nt cannot be derived for 
a vanishing tensor amplitude, and in fact we may see that taking the limit r → 0, the right side of Eq. (4) logarithmically diverges, as 
expected.

As we said, the constraint (4) as well as the upper bound nt < 0.53 at 95% C.L. [18] is derived assuming a constant tilt over a range of 
about eighteen order of magnitude, namely k ∈ [0.05 , 1.3 × 1016] Mpc−1. In order to include a possible scale dependence, we generalize 
the power law parametrization to the following expansions:

Pt(k) = r As

(
k

k∗

)nt(k∗)+∑∞
n=1

αt
n(k∗)

(n+1)!
[

log
(

k
k∗

)]n

(5)

where

αt
n(k∗)

.=
(

d

d log k

)n

nt(k)

∣∣∣∣
k=k∗

(6)

is the n-order tensor running of the tensor tilt.2 When the runnings are included, the upper bound (4) is modified to

1 This is a different approach with respect to those performed in [18] where the upper bound nt < 0.53 at 95% C.L. was derived marginalizing over the distribution of r. 
Anyway we see that for r ∼ 10−2 − 10−3 we basically recover the same result, see also Fig. 1.

2 In what follows we will usually avoid to specify that the spectral tilt and the runnings are computed on the pivot scale k∗ and, to simplify the notation, we will only 
write nt and αt

n .
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Fig. 1. Constraints on the tensor tilt from the LIGO/VIRGO limit on the stochastic background (1). The yellow dots represent the upper bounds on nt for different values of r
when scale-dependence is ignored. When a scale dependence d lognt/d log k �= 0 is considered the yellow dots move on the red lines at constant r.

nt �
ln

(
24 zeq �GW(k)

r AS

)
log

(
k

k∗

) −
∞∑

n=1

αt
n(k∗)

(n + 1)!
[

log

(
k

k∗

)]n

. (7)

Clearly, in order to exactly compute the sum expansion and to check its convergence we need to estimate all the runnings {αt
n} and 

this is possible only fixing a specific model of inflation. Nevertheless we can appreciate how the generic n-order running must at least 
satisfy the condition |αt

n/nt| 
 (n + 1)!/ logn(k/k∗) to give a negligible contribution at the generic scale k. This should become a non trivial 
requirement, above all on the ultra-high k as those probed by gravitational interferometers.

To study how constraints on nt derived under the assumption of scale independence are modified in presence of a slight scale depen-
dence, we derive the upper bound on the tensor tilt by the LIGO/VIRGO limit (1) for different value of the tensor to scalar ratio, varying 
d log nt/d log k - that represents the rate of change of the tensor tilt with respect to the scale - in a range d log nt/d log k ∈ [−0.04 , 0.04]. 
We find that, because of the huge difference between the scales probed by CMB and GW data, also a small departure from scale inde-
pendence (� 4%) can significantly change the final results, see also Fig. 1. In particular, a small negative (positive) running,3 suppressing 
(amplifying) the amplitude of PGWs on small scales, can remarkably worsen (improve) the upper bound derived under the assumption 
d log nt/d log k = 0 (yellow dots in Fig. 1). This is clearly translated into a strong degeneracy between scale-dependence and the tensor 
amplitude (see Fig. 1) that can be broken only by an independent measurement of r from future CMB experiments. We conclude that the 
small-scale constraints on nt may be very sensitive to the assumption of scale independence: non-negligible contributions can arise from 
non-linear corrections and they cannot be always ignored when constraints on the inflationary parameters are derived exploiting GW data.

3. Examples

To further validate our discussion, in this section we study two physical models of inflation. We first analyze the Starobinsky model 
that, being pure slow roll, by definition predicts an almost scale independent slightly red tilted spectrum. It represents an example of 
models where higher order corrections are typically negligible also on small scales. However this cannot be true in more elaborated 
scenarios: as a counterexample we study a model of particle production where non linear corrections lead to a non negligible scale 
dependence.

3.1. Starobinsky inflation

In the simplest framework of single field slow roll inflation one can compute the primordial spectra both for scalar and tensor pertur-
bations to obtain [14,33–38]:

Ps =
(

1

8π2M2
p

)(
H2

ε1

)
(8)

Pt =
(

2

π2M2
p

)
H2 (9)

where Mp is the reduced Planck mass (= 2.435 × 1018 GeV), H is the Hubble parameter, ε1
.= −Ḣ/H2 is the first of the slow roll 

parameters {ε1 ..., εn} defined as εn>1
.= d logεn−1/d log k. All these relations are to be considered calculated at the horizon crossing. We 

also introduce the usual slow roll relations for the tensor to scalar ratio r, the tensor tilt nt and the scalar tilt ns [14,27]:

nt
.= d logPt

d log k
= −2ε1 = − r

8
(10)

3 We recall that d lognt/d log k .= αt
1/nt .
3
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Fig. 2. �GW(k) in the Starobinsky model both including (solid lines) and neglecting (dashed lines) the runnings. The scale dependence is negligible.

ns − 1
.= d logPs

d log k
= −2ε1 − ε2. (11)

In this subsection we want to estimate the impact of the scale dependence choosing a specific slow roll model of inflation, namely the 
Starobinsky model [6,39] that predicts the following well known relations:

ns − 1 � − 2

N
, r � 12

N2
(12)

where N is the e-fold number of inflation that we can fix since we measure ns � 0.96 with good precision [18]. The tensor tilt and its 
runnings read

nt � −3

2

(
1

N

)2

; αt
n � −3

2
(n + 1)!

(
1

N

)n+2

(13)

The sum expansion that quantifies the scale dependence of the tensor tilt can be easily computed to be

∞∑
n=1

αt
n(k∗)

(n + 1)!
[

log

(
k

k∗

)]n

� nt

( 1
N log( k

k∗ )

1 − 1
N log( k

k∗ )

)
(14)

In Fig. 2 we plot �GW(k) from the CMB scales all the way up to the GW scales both including (black solid line) and neglecting (gray 
dashed line) the runnings. As one can see the runnings lead to negligible corrections also on small scales. This is not surprising since 
by definitions the slow roll paradigm predicts an almost scale independent slightly red tilt. We actually study this model to provide an 
example of negligible scale dependence and to show how the situation can be drastically different in more elaborated scenarios as those 
discussed in the next subsection.

3.2. Particle production

In this subsection we want to provide a counterexample studying a different physical model of inflation that employs a pseudo scalar 
axion naturally coupled to gauge fields. In this model a mechanism of particle production takes place during the rolling inflation and this 
can be translated into a blue spectrum of gravitational waves. We will show that the tensor tilt can acquire a non trivial scale dependence 
as well. We start giving a brief description of the model, more details can be found in [40–45]. We consider a simple theory of a Pseudo 
Nambo Goldstone Boson inflation. In this model the inflaton field φ and the axion ψ are minimally coupled to gravity and the axion is 
also coupled with a U (1) gauge field in a way consistent with symmetries.4 The action of the theory is

S =
∫

d4x
√−g

[
M2

p

2
R − 1

2
(∂φ)2 − V (φ) − 1

2
(∂ψ)2 − U (ψ) − 1

4
F μν Fμν − ψ

4 f
Fμν F̃ μν

]
(15)

Fμν and F̃ μν .= 1
2 εμναβ Fαβ are the field-strength tensor of the gauge field and its dual, respectively; f is the axion decay constant while 

V (φ) and U (ψ) are the inflation and axion potential. We also assume a flat FRW metric and that both the inflaton and the axion take a 
homogeneous vacuum expectation value (vev) while the gauge field carries no vev. Under this assumption the equations of motion for the 
inflaton and the axion are

¨̄φ + 3H ˙̄φ + V ′(φ̄) = 0 (16)

¨̄ψ + 3H ˙̄ψ + U ′(ψ̄) = 0 (17)

4 Note that the axion is not the inflaton itself but another distinct field.
4
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where the prime denotes the derivatives with respect to the argument and the over-dots denote the derivatives with respect to time. We 
also assume that the contribution of the axion on the background evolution is negligible compared to that of the inflaton i.e. |U | 
 V and 
˙̄ψ2 
 ˙̄φ2. We introduce the parameter

ξ ≡
˙̄ψ

2H f
(18)

that will play a crucial role in our future discussion. We assume ξ to be nearly but not exactly scale independent:

ξ1
.= d log ξ

d log k
= ξ̇

ξ H

 1. (19)

We instead assume ξ1 to be constant i.e. d log ξ1/d log k ≈ 0. In our future discussion we restrict our attention to the case ξ > 1 that 
allows a blue tensor tilt. We are not going to discuss in details the peculiarities of this model such as the gauge quanta production [40]
that are reviewed also in [42,45] and the references within, but for our aim it is sufficient to observe that, in order to avoid a significant 
back-reaction of the produced gauge quanta to the background dynamics, we have to require that

eπξ

ξ5/2

 13.5√

ε1P0

f

Mp
(20)

where P0 =
(

1
8π2 M2

p

)(
H2

ε1

)
is the primordial scalar spectrum without source (i.e. as predicted by the slow roll inflation). The scalar and 

tensor spectra for this model are [42,46,47]:

Ps � P0

(
1 + cs ε

2
1 P0

e4πξ

ξ6

)∣∣∣∣
k=k∗

(21)

r �
16ε1

(
1 + ct ε1 P0

e4πξ

ξ6

)
(

1 + cs ε
2
1 P0

e4πξ

ξ6

) ∣∣∣∣
k=k∗

(22)

where cs = 2.5 · 10−6 and ct = 3.4 · 10−5 are constants. We compute the spectral tilts from the relation (21) and (22) taking the logarithm 
derivatives:

ns − 1
.= d logPs

d log k

∣∣∣∣
k=k∗

= d logP0

d log k
+ cs

1 + cs ε
2
1

e4πξ

ξ6

d

d log k

(
ε2

1P0
e4πξ

ξ6

)
(23)

= −2(1 + fs)ε1 − (1 − fs)ε2 + fs(4πξ − 6)ξ1 (24)

� −2ε1 − ε2 (25)

and

nt
.= d logPt

d log k

∣∣∣∣
k=k∗

= d logε1

d log k
+ d logP0

d log k
+ ct

1 + ct ε1
e4πξ

ξ6

d

d log k

(
ε1P0

e4πξ

ξ6

)
(26)

= −2(1 + ft)ε1 + ft(4πξ − 6)ξ1 (27)

where the functions

fs
.=

cs P0 ε2
1

e4πξ

ξ6

1 + cs P0 ε2
1

e4πξ

ξ6


 1 (28)

and

ft
.=

ct P0 ε1
e4πξ

ξ6

1 + ct P0 ε1
e4πξ

ξ6

(29)

weigh the corrections to the slow roll predictions for the scalar and tensor parameters respectively. In what follows we fix Ps and ns
to the observed values Ps � 2.1 × 10−9 and ns � 0.96 [18]. We also fix the tensor to scalar ratio r to reference value r � 10−2 and 
ξ1 � 5 × 10−3 
 1. Note that our results are marginally sensitive to the value of r and ξ1 and that we are not interested into a parameter 
analysis for this specific model: our task is simply to show that also in physical models of inflation scale dependence can be non-negligible.

We use the Eqs. (21) and (22) in order to explicit ε1 and P0 as functions of ξ . This means that when ξ changes, ε1(ξ) and P0(ξ)

change in such a way that Ps and r remain constant. Moreover because of Eq. (27) also nt is only a function of ξ . Being ns fixed by 
observations, we can also use the relation (25) in order to find ε2 as a function of ξ so that when ξ changes, ε2(ξ) changes leaving ns
fixed to its observed value. So in this model all the inflationary parameters5 become known functions of ξ . We plot them in Fig. 3 letting 
ξ vary in the range ξ ∈ [1 , 7].

5 The inflationary parameters are to be considered evaluated to the pivot scale k = k∗ = 0.05Mpc−1 which means that also the parameter ξ in the equations above is 
computed on the CMB scales ξ = ξ(k = k∗).
5
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Fig. 3. The parameters of the model as functions of ξ .

First of all we want to stress that we have carefully checked that the scalar spectrum (21) remains essentially equal to P0 (that is 
what predicted by the single field slow roll inflation). As a matter of fact, if we decompose the scalar spectrum Ps = P0 + Ps, sourced we 
find that the sourced term induces corrections that are extremely small compared to the vacuum contribution Ps, sourced ∼ 10−4 P0 for 
all the values of ξ . In other words, the corrections to the scalar spectrum are completely negligible ( fs ≈ 0), and the scalar parameters 
are essentially equal to that obtained in the simplest slow roll models. This can be understood by noting that the scalar corrections are 
suppressed by a factor ε2

1 P0 and that ε1 exponentially decreases with ξ in order to keep r fixed, see also Fig. 3. The fact that the scalar 
spectrum is essentially indistinguishable from the single field slow roll models is crucial since in this way all the tight constraints on the 
scalar perturbations (e.g. their high level of gaussianity) are respected as well [46,48]. On the other hand the corrections to the tensor 
spectrum can be dominant for an appreciable range of the parameter space, allowing also a blue tensor tilt, see Fig. 3. The sourced tensor 
modes could also leave a sizable non-gaussianity of nearly equilateral shape on the CMB anisotropies and polarization. The amount of 
non-gaussianity is controlled by the parameter fNL estimated as [42,49]:

fNL � 1.1 × 10−14
(
ε1

e2πξ

ξ3

)3

(30)

and its shape given in Fig. 3, as well. We estimate the scale dependence of the tensor tilt performing a second order computation and 
deriving the expression for the tensor running αt

1
.= dnt/d log k and the running of the running αt

2
.= dαt

1/d log k:

αt
1

.= dnt

d log k

∣∣∣∣
k=k∗

= −2(1 + ft)ε1ε2 − 2 f ′
tε1 + f ′

t (4πξ − 6)ξ1 + 4π ftξξ2
1 (31)

αt
2

.= dαt
1

d log k

∣∣∣∣
k=k∗

= −2(1 + ft)
(
ε1ε

2
2 + ε1ε2ε3

)
− 4 f ′

tε1ε2 − 2 f ′′
t ε1 + f ′′

t (4πξ − 6)ξ1 + 8π f ′
t ξξ2

1 + 4π ftξξ3
1 (32)

where we have defined:

f ′
t

.= dft

d log k

∣∣∣∣
k=k∗

=
⎡
⎣−2ε1 + (4πξ − 6)ξ1

1 + ctP0ε1
e4πξ

ξ6

⎤
⎦ ft (33)

and
6
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Fig. 4. �GW(k) in the particle production model both including and neglecting the first two runnings. The scale dependence is not negligible.

f ′′
t

.= df ′
t

d log k

∣∣∣∣
k=k∗

=
⎡
⎣−2ε1 + (4πξ − 6)ξ1

1 + ctP0ε1
e4πξ

ξ6

⎤
⎦

2

ft +

+
⎡
⎢⎣ (1 + ctP0ε1

e4πξ

ξ6 )(−2ε1ε2 + 4πξξ2
1 ) − ctP0ε1

e4πξ

ξ6 [−2ε1 + (4πξ − 6)ξ1]2

(
1 + ctP0ε1

e4πξ

ξ6

)2

⎤
⎥⎦ ft

(34)

In this model the tensor tilt can acquire a non trivial scale dependence. In fact, depending on the parameters, d log nt/d log k � 0.1, see 
Fig. 3. As we discussed in Sec. 2, this can lead to non negligible corrections on small scales.

As explained before all these quantities are known functions6 of ξ or equivalently nt . However, since for large values ξ � 5 the 
backreaction becomes typically non negligible as well as the primordial non gaussianity, we decide to restrict our attention to a safer 
region of the parameter space. We therefore fix nt � 0.1 (or equivalently ξ � 3.5) in such a way that both backreaction and non gaussianity 
are still under control, see Fig. 3. In this way the running αt

1 � 0.01 and the running of running αt
2 � 3 × 10−6 are fixed as well. We let 

evolve �GW(k) from the CMB scales all the way up to the ultra high k probed by the ground based interferometers both including and 
neglecting αt

1 and αt
2, see Fig. 4. The importance of scale dependence in this model is evident as �GW differs by many orders of magnitude 

when the non-linear corrections are considered, possibly becoming visible to future gravitational wave experiments such as LISA [50] and 
Einstein Telescope [51].

While we have shown that the impact of the second order running αt
2 is completely negligible, see also Fig. 4, one may ask if the higher 

order terms αt
n>2 can instead give an appreciable contribution possibly changing the shape of �GW(k). For our aim it is sufficient to note 

that being the tensor tilt only a function of ξ , the derivative with respect to the scale can be written as d/d log k = (dξ/d log k) d/dξ =
(ξξ1)d/dξ and that the overall factor ξξ1 ∼ 10−2 will further suppress the higher order derivatives. We therefore expect such terms to 
be smaller and smaller at least in this range of the parameters space. We leave the detailed analysis of the sum expansion convergence 
suitable for future works.

4. Conclusion

Along with the B-modes polarization, a satiable amount of primordial gravitational waves may have imprinted also the stochastic 
background of gravitational waves. Being the small scale experiments on gravitational waves such as LIGO and VIRGO (and in future 
LISA or ET) sensitive to the stochastic background, they can be used together with the CMB data to put constraints on the inflationary 
parameters. In particular from the LIGO/VIRGO bound on �GW, Eq. (1), under the assumption of a scale independent tilt, an upper bound 
nt < 0.53 at 95% C.L. is derived combining the CMB and GW data [18]. In this paper we focused on the robustness of assuming the tensor 
tilt as scale independent over a range of about eighteen order of magnitude k ∈ [

0.05 , ∼ 1016
]

Mpc−1. We have shown that when the 
assumption of scale independence is relaxed, the constraints may become very sensitive to the higher order corrections in the power 
law expansion and that even a tiny scale dependence can significantly change the above mentioned constraints. Due to the huge distance 
between the scales probed by the CMB and the GW interferometers, also a relatively small departure (∼ 4%) from scale independence can 
significantly affect the shape of primordial spectrum possibly leading to non-negligible corrections. We concluded that scale dependence 
cannot always be ignored when constraints on the inflationary parameters are derived from small scales data. We have also provided 
two examples in completely different physical models of inflation. We have first considered the Starobisnky model showing that the scale 
dependence is negligible as one expects in the simplest slow roll paradigm. The Starobinsky model (and in general the standard slow roll 
models) provides an example where the non-linear corrections are typically negligible even on the ultra high k probed by the ground 
based interferometers. However this is not always true. As a counterexample, we have analyzed a physical model of blue inflation which 
employs a pseudo scalar axion naturally coupled to gauge fields showing that in this model the tensor tilt can acquire a non trivial scale 
dependence leading to non negligible corrections on small scales.

6 Note that we parametrized the slow parameter ε3 appearing in (32) as ε3 = γ ε2. Letting γ vary in a range γ ∈ [−1,1] no significant changes in αt
2 are observed. We 

therefore fixed ε3 � 0.
7
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